UNIVERSITYW

This is a repository copy of Evolving models in Model-Driven Engineering:State-of-the-art
and future challenges.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/110199/

Version: Accepted Version

Article:

Paige, Richard Freeman orcid.org/0000-0002-1978-9852, Matragkas, Nikolaos
orcid.org/0000-0002-8594-1912 and Rose, Louis Matthew orcid.org/0000-0002-3419-2579
(2016) Evolving models in Model-Driven Engineering:State-of-the-art and future
challenges. Journal of Systems and Software. pp. 272-280. ISSN 0164-1212

https://doi.org/10.1016/j.jss.2015.08.047

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’'t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/




Evolving Models in Model-Driven Engineering:
State-of-the-Art and Future Challenges

Richard F. Paige, Nicholas Matragkas and Louis M. Rose

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, United Kingdom

Abstract

The artefacts used in Model-Driven Engineering (MDE) evolve as a matter
of course: models are modified and updated as part of the engineering pro-
cess; metamodels change as a result of domain analysis and standardisation
efforts; and the operations applied to models change as engineering require-
ments change. MDE artefacts are inter-related, and simultaneously constrain
each other, making evolution a challenge to manage. We discuss some of the
key problems of evolution in MDE, summarise the key state-of-the-art, and look
forward to new challenges in research in this area.

Keywords: evolution, migration, co-evolution, metamodel, transformation

1. Introduction

Software engineering — like many engineering disciplines — is all about man-
aging constraints: on the systems we want to build, those that come from the
development and business processes we operate, those from the organisational
context in which we work, and those from the people who build the software.
These constraints must be specified, related, and managed to ensure that we
build software that satisfies its requirements and does not invalidate its contex-
tual obligations. Different software engineering approaches and methodologies
attempt to manage constraints in different ways. Some approaches treat con-
straints as mathematical entities, and develop rigorous theories for their ma-
nipulation and management (e.g., [13]). Others treat constraints informally
and deploy software engineering practices (such as use of metaphors and pair
programming) to manage them indirectly (e.g., [4]). Many approaches fit in
between these two perspectives.

Model-Driven Engineering (MDE) [28] is a modern software engineering ap-
proach that attempts to present a unified conceptual model for how systems
engineering should take place. Engineering builds and operates on precise and

Email address: [richard.paige, nicholas.matragkas,
louis.rosel@york.ac.uk (Richard F. Paige, Nicholas Matragkas and Louis M. Rose)

Preprint submitted to Elsevier November 6, 2015



structured models which are created for a particular purpose, and are themselves
manipulated by software tools (e.g., for generating code) [56]. Software engi-
neering processes therefore involve constructing, storing, modifying, analysing
and destroying models. Substantial research has been carried out on MDE, and
many excellent tools exist to support different MDE tasks (such as generating
code from abstract models), e.g., [30, 41, 23, 35].

The models created when using MDE typically are defined in modelling
languages, which are precisely specified and defined using metamodels [42].
Metamodels are, informally, a set of constraints that distinguish well-formed
from ill-formed models: a valid model is said to conform to its metamodel. A
metamodel describes the abstract syntax, and certain static semantic properties
(such as multiplicities of elements involved in relationships), of modelling lan-
guages. This is, at least superficially, no different from other language-oriented
approaches to software engineering, such as formal methods, where a precisely
defined language is used to specify artefacts, and those artifacts are manipu-
lated over the course of development. However, MDE has a number of significant
differences:

e Tools come first in MDE: the modelling languages that are used are de-
signed so as to be supported by tools — e.g., editors, syntax highlighters,
debuggers, etc. Standard frameworks, such as EMF [57], exist to help
define modelling languages in such a way so as to support this. In con-
trast, formal specification languages are designed to support mathematical
reasoning, and as such the priority is to have a sound and complete math-
ematical semantics, which thereafter be supported by tools.

o Automated processing of models: models are meant to be processed by
tools. This is the discipline of model management [53, 43]. Typical model
management tasks include transformation, comparison, merging, migra-
tion, validation and text generation, though the specific tasks that are
used in industrial application are driven and dictated by engineering pro-
cess and organisational context (e.g., use of automated code generation
from models that enables audit and inspection).

e Languages are themselves models: a metamodel is itself a model, and
can be instantiated; in some interpretations of MDE, the operations on
models (e.g., transformations) are also models with their own metamodels.
Metamodels are also instances of so-called metametamodels, thus (at least
conceptually) making it easier to build generic tools that support a wide
variety of languages and modelling styles.

Models provide a unified conceptual way of thinking about and carrying out
software engineering, and the tools that exist can help to make certain aspects
of MDE work in practice [6]. But use of models is not without significant
challenges. Software engineering must always be prepared to deal with change:
of requirements, of technology platforms, of developers, etc. In some cases,
change and its impact on software engineering may be difficult to identify or



assess. Both challenges and opportunities arise with managing change in MDE.
One significant opportunity comes from MDE making dependencies between
artefacts (models, metamodels, operations on models) — typically in the form of
constraints — explicit: these relationships can, in principle, be used to identify
and calculate the impact of changes (to models, metamodels, operations) on
other artefacts. A challenge arises from the significant number of constraints
in place in MDE: models, metamodels and operations thereupon are effectively
sets of constraints on what can be specified, and what can be done to those
specifications. MDE can be reduced, conceptually, to a constraint management
problem: trying to building satisfiable sets of constraints whose instances are
solutions to important problems.

A significant issue associated with constraint management in any discipline is
dealing with change: change in the structures to which constraints are applied;
changes to individual constraints; changes to sets of constraints; or changes to
the tools that evaluate constraints on structures. Constraints invariably depend
on each other, so making even small changes can have significant impact on
other, related artefacts. Change management for MDE is a particular instance
of this problem, and there are many specialisations within MDE. One that has
seen particular recent interest is model evolution: models changing over time,
typically in response to some kind of external event. Numerous approaches
have been developed to help systematise the process of model evolution. In
this paper, we highlight the state-of-the-art in model evolution, and relate it to
future challenges in research in this area. But first, we briefly contextualise the
discussion by providing a short overview of evolution in MDE in general, before
turning to our survey.

2. Context: Evolution in MDE
When building systems using MDE, the trinity of artefacts that is used is:

e Metamodels, which describe the structures and rules applicable for a fam-
ily of models (metamodels themselves are models, which conform to a
metametamodel).

e Models, which are particular instances of structures and rules.

e Operations, which are defined on metamodels and apply to models (e.g.,
transformation, comparison, merging). Operations may have side-effects:
particuarly, they may generate trace-links which relate model elements
(e.g., the source of a transformation to the target).

When a model uses the structures and obeys the rules of a metamodel, it is
said to conform to the metamodel. Formally, conformance can be defined as a
set of constraints that hold (at precisely defined times) between a model and a
metamodel.

MDE involves constructing models (e.g., of requirements, architectures, de-
signs, code, tests) and applying operations to said models in order to automate



parts of the engineering process. Operations encapsulate some of the engineer-
ing know-how and decision making that is inherent in the design process. There
are several critical observations pertaining to this:

o Artefacts are formal entities, in the sense that precise (and often stan-
dardised) specifications of what constitutes a valid metamodel, model and
operation exists.

e All artefacts are inter-related (models conform to metamodels, metamod-
els themselves conform to metametamodels, operations are defined in
terms of metamodels and apply to models), and these inter-relationships
are formal (in the sense that precise specifications exist, e.g., of model
conformance).

e MDE processes are formal, in the sense that formally defined operations
can be used to implement significant parts of them.

e Heterogeneity is inherent with these artefacts. MDE typically uses dif-
ferent languages (metamodels), different models, different types of op-
eration (e.g., model-to-model transformations, model-to-text transforma-
tions), and even different model persistence technologies.

e Not all types of change are created equal. Gruschko et al [24] classified the
types of metamodel change that could occur, and identified some changes
that could not be processed automatically. This suggests that for change
management in MDE, engineering judgement will always be needed, either
to choose the most suitable approach for the problem at hand, or to choose
from among a set of potential change management solutions.

Of course, all of these artefacts may need to change, and some changes may be
more difficult to manage than others. Changes to models may inherently be
part of the engineering process, and may be carried out by an engineer apply-
ing operations directly (e.g., an update-in-place transformation may be used to
change a model). Changes to operations may be supported by an MDE expert
responsible for writing and maintaining the operation. Changes to metamodels
may need to be analysed and carried out by a language engineer. Any change
to an artefact may result in changes to other artefacts. This is particularly the
case for changes to metamodels, which may require changes to operations that
use those metamodels, and changes to all models that conform to the previous
version of the metamodel. Changing metamodels is a process that is related to
changing programming language APIs (both conceptually and pragmatically),
though arguably changing metamodels has significant differences, in part be-
cause metamodels can capture more than just static programming interface
details.

Arguably, MDE has all of the challenges of evolution and change man-
agement inherent in other software engineering disciplines (e.g., code-centric
or data-centric approaches, where language feature obsolescence, versioning,
change propagation and change management are all issues) — plus new ones:



the languages used in MDE are themselves software artefacts and are amenable
to change; and the dependencies between artefacts, while many, are made ex-
plicit and as such applicable to evolution and change management processes.

2.1. Key characteristics of evolution solutions in MDE

MDE approaches to managing evolution can largely be divided into two
groups: those where metamodels don’t change, and those where they do. The
former approaches make systematic use of model transformations; the latter
typically involve abstractions over transformations, e.g., higher-order transfor-
mations that generate mappings, or operators that support migration scenarios.
When attempting to manage evolution and change in MDE, there are a number
of important characteristics associated with existing solutions.

e Scope: is the solution applicable to managing change for one type of MDE
artefact (e.g., models) at a time, or more than one artefact at at time?
Many of the current approaches for managing evolution in MDE are so-
called coupled approaches, where changes to metamodels trigger changes
to other MDE artefacts.

o Automation: to what degree is the solution automated? Current solutions
range from manual approaches (which provide task-specific syntax and
tools for building custom, flexible evolution solutions) to fully automated
ones.

e Fnvironment: to what degree is a specialised environment required in or-
der to support MDE evolution? In particular, can standard modelling
tools (e.g., Eclipse EMF [8]) be used to construct models, or must spe-
cialised model editors or moperation recorders be used?

e (Conformance: when metamodel change is involved, evolution solutions
must provide means for establishing and re-establishing conformance to a
metamodel. For example, a metamodel might change, and models there-
after must be updated to conform to the new version of the metamodel.
When must conformance hold between model and metamodel? In all ap-
proaches, conformance is an outcome of evolution/migration, but some
approaches impose conformance at intermediate stages of the process, too
(e.g., to enable richer forms of analysis and reasoning). Additional, treat-
ment of constraints in conformance varies from approach to approach: in
some, constraint checking is treated separately to metamodel conformance
(e.g., in AML [20], Flock [49]), whereas in others, a unified treatment of
conformance and constraints is provided.

As we will see, the state-of-the-art solutions for change management in MDE
vary in their theoretical and practical approaches for addressing these charac-
teristics.



3. State-of-the-art

In this section we describe the state-of-the-art in managing evolution in
MDE. We consider solutions in a number of categories, and consider the key
research findings and technological results.

3.1. Co-evolution of model and metamodel

Model-metamodel co-evolution solutions apply to two MDE artefacts at once
— the intent is to update models so that they conform to an evolved metamodel.
A variety of solutions have been proposed for model-metamodel co-evolution
that vary in terms of their degree of automation, the environment required to
carry out co-evolution, and when the conformance relationship between model
and metamodel must hold.

Broadly speaking, there are three categories of co-evolution approaches in
MDE: inference approaches, operator approaches, and manual approaches. Man-
ual approaches are programmatic: engineers specify strategies, typically by
hand, which migrate models to an updated metamodel. Inference approaches
are based on so-called comparison or differencing: original and updated meta-
models are compared, and the changes that have been identified are used to
automatically or semi-automatically generate evolutionary strategies for mod-
els. Operator approaches are pattern-based, and encode a set of predetermined
micro-strategies that, step-by-step, will allow (1) a metamodel to be evolved in
systematic and predictable ways; and (2) models to be evolved to conform to
the new metamodel, in systematic and repeatable ways.

All such solutions are partly automated — some metamodel changes (break-
ing and unresolvable changes) can only be processed manually, because they
require domain expertise to resolve. Approaches vary in terms of how they deal
with breaking and unresolvable changes: most approaches make it possible for
engineers to intervene in an evolutionary process, while others rule such changes
out of scope.

A well-known example of a manual approach to co-evolution is Ecore2Ecore
[26], an EMF-specific tool that augments the EMF model loading facilities with
programmatic migration strategies. The idea with Ecore2Ecore is that inter-
relationships between original and evolved metamodels are specified (e.g., Ele-
ment is equivalent to NamedElement) and the tool automatically generates a
partial migration strategy. The approach is quite limited, in that it does not
support certain more complicated types of evolution (e.g., splitting of meta-
classes, changing the types of properties), which must be processed manually
using Java. Ecore2Ecore provides no special support for conformance checking:
EMF checks conformance of the migrated model upon completion of processing;
constraints may additionally be checked using other suitable tools (e.g., Eclipse
OCL [60], EVL [32]).

A more abstract and automated approach is Epsilon Flock [50], which sup-
ports a notion of conservative copy, wherein parts of the original model that



remain conformant to the target metamodel are automatically copied!; by con-
trast Ecore2Ecore must programmatically copy all model elements. As such,
Flock migration strategies tend to be much more concise than other manual
approaches — and even other non-manual approaches to migration [48]. Con-
formance of model with metamodel applies when the migration strategy has
completed its execution. What is telling about both Ecore2Ecore and Flock is
that these approaches ignore constraints on models — that is, conforming mod-
els are defined entirely in terms of model-metamodel constraints, and do not
take into account additional constraints that may apply to the metamodel (e.g.,
in OCL or EVL), which are checked separately from the migration/evolution
process.

A manual approach that does consider additional constraints is presented
in Taentzer et al [59], which defines a multi-stage evolution process. This ap-
proach is stricter in terms of enforcing conformance to the metamodel — co-
evolution rules are specified using graph transformations, and conformance to
a metamodel (and satisfaction of constraints applied to models) is guaranteed
by construction after every migration step, i.e., after application of a set of
graph transformations. This is useful particularly for formal reasoning about
the validity of migration strategies.

Operator approaches — such as COPE/Edapt [25] or MCL [38] — are based
on a pre-defined set of micro-strategies: patterns that map original to evolved
metamodel elements. The premise with such approaches is that a set of such
operators, when applied to a metamodel, will produce an evolved metamodel,
and then higher-order transformations can be applied to generate a migration
strategy for models that conform to the original metamodel. Such approaches
are usually extensible, so that new operators can be designed and specified
to deal with evolutionary scenarios not originally anticipated. However, these
approaches normally require use of a specialised editor for constructing meta-
models; these editors record the changes that are made as a metamodel evolves
(in terms of the operators used to modify the metamodel), so as to make the
automatic generation of migration strategies as tractable as possible. A related
operator-like approach that makes use of constraints instead of micro-strategies
is in [12]. Tt uses constraints to identify metamodel co-evolution failures, and
automatically generates repairs to resolve such failures; this promising work,
which is based on existing automatic inconsistency detection, is still at the
prototype/proof-of-concept stage, unlike many of the other frameworks and
tools described in this section. It also appears to be immediately applicable to
co-evolution for UML [52], and hence relies on a specialised editing environment,
so its applicability to other languages remains unclear. All such approaches
check conformance of models to metamodels after the migration process has
completed.

Finally, inference approaches are based on analysis and comparison of orig-

LConservative copy is related to notions of frames in programming methodology and arti-
ficial intelligence.



inal and evolved metamodels. Such approaches — e.g., Cicchetti’s [10] or AML
[21] — make use of metamodel matching algorithms (such as similarity flooding
[36]) to identify differences between metamodels, and use this to infer a record of
changes that can be used to automatically generate a migration strategy. Simi-
lar to operator approaches, a higher-order transformation is used (e.g., in ATL
[27]) to generate the migration strategy. Inference approaches are incomplete:
the same change to a metamodel can, in general, be produced in a number of
different ways, and inference approaches need engineer input to disambiguate
such cases. However, inference approaches do not require use of a specialised
editor/environment, and conformance of migrated model to evolved metamodel
is checked on completion of the migration process.

A hybrid approach — which combines elements of inference and operators —
that eliminates the need for editor-based tracking of operator application is [34].
It also makes a novel contribution in supporting composite operator detection
based on difference models, thus addressing concerns related to granularity and
scalability that apply to existing operator and inference approaches.

What are the key observations related to the state of the art in model-
metamodel co-evolution? There is a significant tradeoff between automation and
flexibility: those approaches that provide greater automation for co-evolution
(e.g., COPE (now called Edapt?), Cicchetti’s work [10]) give less control over the
process. Another observation is that some of the co-evolution platforms (e.g.,
Edapt, AML, MCL) are restricted to a specific platform, either for modelling
and metamodelling (EMF) or for implementing the generation of migration
strategies (e.g., specific model-to-model transformation languages like ATL).

What is also noteworthy is that almost all approaches are based on carrying
out model migration after metamodel evolution, where the latter triggers the
former process: there is little work on attempting to evolve metamodels based
on inference from examples of original and evolved models. Williams [61] ex-
plores the use of optimisation-based techniques for inferring model migration
strategies from example models, but notes significant concerns about efficiency
and performance. It seems likely that such approaches are much less tractable
than alternatives, in part because they will need to apply search-based and
optimisation techniques, which can be challenging to scale to large problems.

3.2. Co-evolution of operation and metamodel

Models will change frequently in many MDE processes, and metamodels may
change frequently in the early (information gathering) stages of an MDE process
that is based on development and use of domain-specific languages. The oper-
ations that are defined on metamodels, and apply to models, may also evolve
in response to changes in requirements or changes in metamodels. So, what
approaches exist to help support co-evolution of MDE operations (like transfor-
mations, comparisons, mergings) and metamodels? Approaches to co-evolution
of operations and metamodels generally follow similar approaches to metamodel

2http://www.eclipse.org/edapt/



co-evolution: the metamodel is changed, and in some approaches a change model
(which records the specific modifications that are made) is produced for later
use. Secondly, the extent to which dependent artefacts (operations) have been
affected by the metamodel evolution is assessed. Finally, change propagation is
used to migrate the dependent artefacts.

The previous section discussed key approaches to performing change man-
agement for models and metamodels (e.g., inference, operators). There are sig-
nificantly fewer approaches for metamodel-operation co-evolution (the problem
is significantly harder, because it requires evolution and migration of opera-
tion semantics as well as structure), and all of this work seems to focus on
model transformations, possibly because of the perceived importance of model
transformations in MDE. Méndez et al [37] use a metamodel monitor to report
changes, and process change events to select and execute an appropriate mi-
gration strategy for evolving model transformations; the approach is not fully
automated, and engineer guidance is sometimes required to select a strategy.
More generally, this approach could also be used for metamodel co-evolution;
even more generally, such approaches can generally be classifed as event-driven,
and event-driven operations have significant potential in MDE for addressing
scalability concerns. Another key paper in this space is [54], which presents a
methodology for coupled evolution of metamodels and transformations; what is
particularly interesting about this approach is it attempts to assess the cost of a
change and uses this information to inform the evolution of ATL transformations
(e.g., to make a “go/no-go” decision on whether to evolve a transformation).

Roser et al [51] focus on the evolution of transformations that are gener-
ated from the bindings between an ontology and a source or target metamodel.
Metamodel evolution is restricted to cases where the original and the evolved
elements remain bound to the same ontological concept, and, transformations
are automatically migrated by substituting the original meta-element with the
evolved meta-element. Such an approach may also be applicable for evolution
of operations applied to domain-specific languages, where metamodel concepts
are bound to, or derived from, a domain model.

3.3. Other approaches

While substantial research has focused on model-metamodel co-evolution,
and a very small amount has considered operation-metamodel co-evolution,
there have been approaches that sit outside of these broad categories of re-
search.

3.3.1. Round-trip engineering

One of the most fundamental approaches to managing evolution in MDE is
round-trip engineering (sometimes called synchronisation): model transforma-
tions are used (e.g., to produce executable code from models), and after code
has been modified, updated models are regenerated from code. Such approaches
are specific for model evolution, and generally assume that metamodels remain
unchanged. Naive approaches tend to struggle with non-trivial code bases and



large models; more nuanced approaches make use of deltas, or change models,
to only make relevant changes to source models while leaving unaffected parts
unchanged. Of significant note in this body of work is the FUJABA toolset,
which makes use of triple graph grammars to support incremental synchroni-
sation [22]. Incremental approaches to round-trip engineering have been highly
influential in research on change propagation in model-metamodel co-evolution.

3.8.2. Model evolution as a transformation problem

An important category of research has taken the view that model evolution
is a transformation problem, and as such can be directly addressed using model
transformation languages. This is an appealing perspective, and there seems to
be evidence to support this view, given the key role that transformations take
in many of the solutions described in the previous section. The Henshin toolset
[33] has considered use of graph transformations to support model migration
and evolution. What is novel about this work is that the graph transformations
(which carry out the model migration) are automatically generated from meta-
model evolution mappings (e.g., that relate original and target meta-elements).
Rose [46] has also considered the use of model transformations to support model
migration, but observes that there are patterns inherent in the transformations
(e.g., the so-called conservative copy pattern) that are not directly supported
by transformation languages, and these lead to transformation blow-up. Such
issues are addressed in Flock [50] by embedding some evolutionary patterns as
syntactic constructs, and others (e.g., conservative copy) in the semantics of the
language, whereas in Henshin, higher-order generative techniques are applied.

Both Henshin and Flock are general-purpose migration tools; a problem-
specific tool is GMF Evolution®, which is specifically for evolving GMF models
when an EMF model changes [55].

3.83.3. Schema evolution

Much of the work on model evolution has been inspired by, or borrowed
directly from the wealth of research on schema evolution in databases [45, 44].
While many of the key ideas from schema evolution have been directly adopted
or adapted for model evolution, one key consideration has yet to be fully ad-
dressed: after schema evolution and data migration, there is also a need for ap-
plication evolution, so that applications can be refactored to be compatible with
the new schema. While MDE research on operation-metamodel co-evolution is
one step along these lines, more research needs to be carried out, particularly
to explore how applications developed without use of MDE, but that interface
with metamodels, can be migrated automatically and efficiently.

3.3.4. Model Versioning
Model versioning plays an important role in managing evolution in the con-
text of MDE. Following [17] the goal of versioning in software engineering is

3http://www.emfmigrate.org/gmf-evolution/

10



twofold. First, versioning is concerned with maintaining a historical archive of
a set of artefacts (models and metamodels in the case of MDE), as they undergo
a series of changes. Second, versioning supports the simultaneous evolution of
an artefact by a team of engineers. As such, model versioning may be applica-
ble and useful in collaborative MDE scenarios involving model migration (e.g.,
when two or more versions of a metamodel need to be simultaneously supported
in a project).

Versioning of metamodels and models is quite different from versioning tex-
tual artefacts such a source code. This is due to the graph-based structure
of modeling artefacts. Text-based versioning systems such as Subversion* or
Git® consider only the textual information of a modeling artefact such as its
XMI serialisation. In doing so they fail to take into consideration the structural
information of models such as containment references or the multiplicities be-
tween different model elements. Therefore, graph-based versioning techniques
and systems are needed.

In a typical model versioning scenario, parallel modifications on a common
version Vj of a modelling artefact result to a set of modified versions V={V},
Va, ..., V,}, where n is the number of engineers working in parallel on that
artefact. The goal of the model versioning system is to consolidate the modified
versions in V into a new version V.

A model versioning process consists of three distinct phases, namely change
detection, conflict detection and inconsistency detection [1]. In the change
detection phase, the set of changes between the common version Vj and the
subsequent versions in V) are identified. Change detection can be realised us-
ing either state-based approaches or operation-based approaches. State based
approaches identify model changes by considering only the final states of the
modified versions, i.e. by considering only the versions is V. On the other hand,
operation-based approaches rely on a model editor to keep track of all the oper-
ation sequences applied to the original version V{, and lead to the final versions
in V. Although, state-based approaches support only atomic operations such as
deletions, additions, and updates, operation-based approaches can additionally
support composite operations such as model refactorings. However, the addi-
tional support provided by operation-based approaches comes at a price. Such
approaches have a strong dependency on a modelling editor and they are usually
language-specific.

The detection of changes in the change detection phase sets the basis for the
two subsequent phases, namely conflict and inconsistency detection. Conflicts
occur when overlapping and contradicting modifications occur concurrently by
different engineers. Such conflicts can be detected by comparing all the changes
incurred by a model element and finding which ones are overlapping and con-
tradicting. Conflicts can be resolved either manually or automatically. Manual
conflict resolution for modelling artefacts can be challenging. In the case of

4http://subversion.apache.org/
Shttp://git-scm.com/

11



textual artefacts two conflicting versions are shown to the user side by side and
the conflicting areas are highlighted. Then the user has to take action in order
to reconcile the two versions. In the case of modelling artefacts, this approach
is not straightforward. Models in MDE have dual representations manifested
by their abstract and concrete syntax. Consolidating these representations sep-
arately can be a challenging task [7].

On the other hand, automatic conflict resolution can be achieved by calcu-
lating all possible combinations of parallel performed operations leading to a
valid version. Cicchetti et al. [9] propose a domain-specific language for defin-
ing conflict patterns and reconciliation strategies. These patterns and strategies
can be used to detect and reconcile both syntactical and semantic conflicts. Pol-
icy based approaches like the one proposed by [9], require user intervention in
scenarios where no policy is specified. To address this issue [16] propose a for-
malised conflict resolution strategy for conflicts based on graph modifications
which results in a consolidated model by construction. Finally, instead of trying
to resolve conflicts a model versioning system can just tolerate them. Researches
argue that temporarily tolerating conflicts can be beneficial since these conflicts
highlight areas of the system where further analysis is needed [39].

Finally, the inconsistency detection phase takes place after the modified ver-
sions have been merged to a new, consolidated version. During these phase
consistency problems introduced by the merging activity are detected. Such
problems usually occur when the merged model violates any validation rules
associated with the metamodel. Such inconsistencies are usually resolved man-
ually.

Several model versioning systems have been proposed in the literature. These
systems employ different combinations of the aforementioned techniques to sup-
port model versioning. One of the earliest works on versioning UML models was
published in [58], which present metamodel-independent algorithms for differ-
encing, merging, and conflict resolution. Their approach calculates differences
between versions of the same model by matching the unique identifiers of model
elements and by calculating the created, deleted and changed elements. One
main limitation of their work is that they do not consider composite operations.

EMFStore is a model repository for EMF models proposed in [29] and it
provides dedicated facilities for model versioning. This tool is operation-based
and it tracks all the modifications undergone by a model, once it is checked
out. These modifications are then committed to the repository and the latest
version is updated. The tool supports also transactions, i.e. groups of atomic
operations which are treated as a single composite operation. If a conflict occurs
in one of the atomic operations of a transaction, then the entire transaction is
marked as conflicting and resolution is required.

Odyssey-VCS 2 is a version control system dedicated to UML models [40].
The tools uses state-based differencing which relies on unique identifiers to de-
tect corresponding elements between different versions of a model. Based on the
matching phase, the tool infers the atomic operations, which led to the latest
version of the model. Composite operations are not considered. If a model ele-
ment is modified in two different ways at the same time, then a conflict warning

12



is raised. Finally, the tool does not apply any inconsistency detection after the
different versions are merged.

Finally, AMOR (Adaptable Model Versioning) is a model version control sys-
tem presented in [2]. AMOR provides a conflict detection mechanism, which can
be extended by the user with custom composite operations. Moreover, AMOR
provides a recommender components, which provides suggestions to users on
how to resolve detected conflicts. Finally, the tool supports the definition of
conflict resolution policies in a collaborative manner.

4. Challenges

There has been substantial research in models and evolution over the past
ten years, but numerous challenges remain; some are technical and theoretical,
others are more focused on engineering practice and process. We identify some
of the key ongoing challenges in this section.

4.1. Scalability

A fundamental challenge for MDE — and not just evolution in MDE — is
scalability. MDE theories and tools need to support large metamodels (like
UML 2.x, AUTOSAR [19], EAST-ADL [11]), small metamodels (like those ar-
tisanal languages created as one-offs), and everything in between. They need to
support the construction of large and small models, as well as operations that
execute on large models. Support for evolving very large models is required.
This may mean providing facilities for ignoring parts of the model that are out
of scope for solving migration and evolution problems, for better decomposition
of metamodels (e.g., into parts that are unlikely to evolve and parts that may
evolve), for more scalable persistence mechanisms for models, and new archi-
tectures for model management operations (e.g., transformations that react to
triggered events, such as changes to parts of a model). Many of these concepts
are well-understood in fields other than MDE, but translational research will
be needed to exploit them here. Some of these issues are being studied in the
context of the EU FP7 MONDO project®.

4.2. Managing automation

One of the leading principles of MDE is automate repetitive and error-prone
tasks; operations like transformations, comparisons, validations and mergings
aim to encapsulate some of the automation patterns that have been identified for
MDE. There is always a trade-off between automation and control: once a task
has been (partly or completely) automated, the degree of fine control over how
the task operates, and what it produces, is likely reduced. In MDE, automation
arguably makes supporting evolution more difficult. In a model management
workflow, each operation, metamodel and model may evolve, and this evolu-
tion must be managed systematically and precisely. Operations may generate

Shttp://www.mondo-project.org/

13



traceability information as a side-effect, and this information may evolve as well
(for example, trace-links generated as a side-effect by a model transformation
may themselves be models, conforming to a traceability metamodel, which may
evolve to address new traceability scenarios). The particular challenge here may
be the close coupling between operation and metamodel — we ideally want to
automate as much of an engineering process as possible, but the automation
(in the form of operations) depends on metamodels, which may be subject to
change. At least two interesting research directions are available here: exploring
genericity in model management, to reduce the coupling between operations and
metamodels; and flexible model management, which attempts to reduce the role
played by metamodels in MDE (particularly in early lifecycle stages of language
engineering). This is discussed more shortly.

4.3. Dependency heterogeneity

The three key artefacts of MDE — models, metamodels and operations — are
all inter-dependent, and much of MDE evolution requires managing and control-
ling these inter-dependencies. A significant challenge with this is managing the
heterogeneity of inter-dependencies: many different kinds of relationships exist
between MDE artefacts. For example, between model and metamodel there is
a conformance relationship. Between model and operation there are (at least)
parameter and generates relationships. A sound, precise theory of heteroge-
neous dependencies between MDE artefacts is needed, as well as compliant and
pragmatic tool support. A promising direction for the former is delta lenses
[18, 15], which is categorical in nature, but also has connections to research
on traceability in MDE, and may also have an impact on research related to
megamodelling [14].

4.4. Empirical studies

Gruschko et al [24] identified different kinds of metamodel change and clas-
sified those changes in terms of how resolvable they were via automated means.
This work has proven influential in terms of setting requirements for tools to
support model migration and model-metamodel co-evolution: all tools are gen-
erally compared against Gruschko’s classification and aim to address all but
the so-called breaking, non-resolvable changes. However, a more nuanced and
empirical classification is yet to be produced. In particular, we need answers to
the question: which types of metamodel changes are most frequent in deployed
metamodels? With such information, we can target our model migration and
co-evolution solutions to those most commonly occurring evolution problems,
and gain increased confidence that our solutions are actually addressing the
most important MDE evolution problems.

4.5. Usability of tools

Much of the research on models and evolution so far has focused on theories
and end-user tools: languages for specifying model migration rules, generators

14



for model migration strategies, differencing algorithms, mathematical frame-
works for expressing change operators, etc. The usability of these tools for
solving end-user problems has not been explored thoroughly and systematically.
Many of the tools that exist (e.g., Flock, Henshin [3], Edapt) are Eclipse-based
and their usability is closely related to the usability (or lack thereof) of Eclipse.
Additionally, syntactic and semantic compatibility with other model manage-
ment operations has also informed the development of model migration and
co-evolution solutions: builders of migration/co-evolution tools want their so-
lutions to be familiar and easy to learn for users of other Eclipse-based model
management tools. It remains to be seen whether these constraints lead to
usable tools for end-users solving model migration problems; a thorough user
study, as well as consideration of user requirements that are not directly taken
or influenced by Eclipse, would be a worthwhile direction for future research.

4.6. Concrete syntax

Metamodel evolution is often the trigger for MDE migration problems: mi-
grating models or operations to the new metamodel. A topic that has not
received nearly as much attention as other aspects of MDE evolution is dealing
with concrete syntax: how to evolve concrete syntax as a result of metamodel
evolution or model migration? Many approaches to concrete syntax in MDE are
generative (e.g., EuGENia) based on the metamodel, so one plausible solution
for concrete syntax evolution would be to update the generators and regenerate
any editors. However, for large metamodels, or complex languages, this may be
inefficient. It may also be challenging in cases where several concrete syntaxes
depend on the same abstract syntax/metamodel. Thus, we see a case for more
significant research in better support for concrete syntax, e.g., via visitor-based
approaches.

4.7. Run-time

Language evolution can happen at any time, e.g., upon issuance of a new
version of a standard, as a result of changes to tool infrastructure (e.g., EMF).
An assumption for most research on models and evolution is that migration of
models and operations happens “off-line” i.e., when model editors are not being
used, when transformations are not being executed, etc. It is not clear that this
assumption will hold for large-scale MDE architectures — e.g., those on the cloud,
those for handling streaming transformations of continuous models — which may
be needed to support very large languages and very large models. It may be that
evolutionary processes and migration needs to be carried out while a language is
being used by engineers, e.g., the form of a model editor, language workbench,
model transformation tool. To support such run-time adaptation, we will likely
need further research in new ways of decomposing language definitions, and
decoupling operations from language definitions, along the lines of the generic
approaches used in generative software development [47].

15



4.8. Hybrid migration approaches

As discussed earlier, there are a number of migration approaches available,
and these are largely classified as operator-based, inference-based or manual.
It may be possible to achieve significant benefits in performance and scope of
applicability by combining different types of techniques to form hybrid migration
solutions. For example, a solution where a manual migration strategy is used
for all but breaking, non-resolvable changes could be supplemented with a set
of Edapt-like operators from which an engineer can choose. Inference-based
approaches could also be used in concert with operator-based approaches to
reduce the search space to which inference algorithms are to be applied.

4.9. External interfaces

MDE processes and tools do not and should not operate in a vacuum: they
must interface with other non-MDE processes (e.g., for quality assurance, cer-
tification, early requirements elicitation) and tools (e.g., compilers, debuggers,
continuous integration servers), not to mention organisational policies and pro-
cesses. Metamodel evolution, model migration and operation evolution may
have an impact on interoperation and integration with non-MDE processes and
tools: applications may exist that interface with or operate on metamodels
(e.g., via an API), and these must also be migrated to operate on new versions
of metamodels. An interesting example of this type of problem is presented in
[5]. A related issue is the relationship between evolution in MDE and evolution
of code; if we are working in an environment where both MDE and code-based
artefacts are evolving, how do we integrate the separate evolutionary processes?
More generally, we argue that evolution of MDE artefacts must be part of the
enterprise architecture of a (mature) organisation that exploits MDE. In the
specific, we may be guilty of trying to automate change management of arte-
facts that are cheaper to throw away and rebuild, or that have a very limited
lifespan within an organisation. Considering MDE evolution within the organi-
sation’s systems, processes, policies and rules should help to make such decisions
(or, at least, will help to make the trade-offs explicit).

4.10. Language semantics

The focus of much MDE research has been on abstract syntax (metamodels)
and concrete syntax (editors, graphical frameworks such as GMF and Graphiti);
semantics is relatively undertreated by comparison. There are open issues re-
lated to maintenance of semantics via model migration. If a model is migrated
from language X to language Y, is it possible — via the migration process — to
provide guarantees of either semantics preservation of features from language X
when encoded in Y, or preservation of other desirable properties? Some consid-
eration of semantics preservation has been carried out, e.g., in work on COPE
[25], though both the theory and practice of semantics preservation under model
migration is still underdeveloped.

16



4.11. Metamodels

Models depend on metamodels; MDE operations depend on metamodels.
Managing evolution for models requires managing the evolution of metamodels.
Most solutions to model evolution and co-evolution have focused on metamodels.
A different approach would be to discard metamodels entirely — take the view
that they get in the way of efficiently supporting evolutionary processes. To
what extent can we support MDE without metamodels, e.g., by using schema-
less XML, or drawing tools such as yEd [31]? Can we use flexible modelling tools
(such as GenMyModel” or EuGENia Live®) to support rigorous MDE processes?

Metamodels do provide significant benefits: they effectively provide a type
system for models that allow us to verify and validate properties. But evolution
and migration involving metamodels can be very expensive. Another interesting
avenue of investigation may be to explore when in an MDE process metamodels
can most effectively be imposed. For example, an MDE process may start with
using flexible drawing tools like yEd, and then a metamodel is imposed once
suitable domain analysis has been carried out (and the implicit metamodel
behind the models has stabilised). This (early-phase) metamodel-less MDE
might have some of the same tradeoffs as the schema-less data stores popularised
by the NoSQL movement.

Metamodels are important and useful, but we should not be dogmatic in
terms of when they should be applied in MDE.

5. Conclusions

The key principle of MDE is automating repetitive and error prone tasks.
The decisions that we make, with respect to use of particular technologies and
theories, the implementation of particular tasks, and the deployment of work-
benches to users, should always aim to support that principle. The techniques
and tools that have been developed to support evolution and migration in MDE
all address the flexibility-automation tradeoff (like other MDE operations, such
as transformation), but in doing so reveal a great deal about how constrained —
and arguably overconstrained — MDE really is. Managing evolution in MDE re-
solves to managing sets of inter-related constraints between artefacts. As such,
if we want to maximise automation, we are significantly restricted in terms of
how much control we have over the process, and still cannot automate every-
thing. Perhaps one of the problems is the dependence on metamodels. Perhaps
we should see how far we can go with using the good ideas of MDE — such as
automating tasks, building domain-specific languages and working with domain
experts (i.e., software language engineering) — without assuming that metamod-
els are required. Metamodels add value, but when in the engineering process
(assuming that evolution will happen) do they maximise their value?

"http://www.genmymodel .com/
8http://eugenialive.herokuapp.com

17



Acknowledgements. The authors thank the editors for their feedback and for
the invitation to write this article.

References

1]

[10]

Kerstin Altmanninger, Petra Brosch, Gerti Kappel, Philip Langer, Mar-
tina Seidl, Konrad Wieland, and Manuel Wimmer. Why Model Versioning
Research is Needed!? An Experience Report. In Proceedings of the Joint
MoDSE-MC02CM 2009 Workshop, 2009.

Kerstin Altmanninger, Gerti Kappel, Angelika Kusel, Werner Retschitzeg-
ger, Martina Seidl, Wieland Schwinger, and Manuel Wimmer. AMOR -
Towards Adaptable Model Versioning. In Ist International Workshop on
Model Co-Evolution and Consistency Management (MCCM’08), Workshop
at MODELS’08, Toulouse, France, 2008.

Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. Henshin: advanced concepts and tools for in-place emf
model transformations. In Model Driven Engineering Languages and Sys-
tems, pages 121-135. Springer, 2010.

Kent Beck. Embracing change with extreme programming. Computer,
32(10):70-77, October 1999.

Mathieu Beine, Nicolas Hames, Jens H. Weber, and Anthony Cleve. Bidi-
rectional transformations in database evolution: A case study ”at scale”.
In EDBT/ICDT Workshops, pages 100-107, 2014.

Jean Bézivin. On the unification power of models. Software and System
Modeling, 4(2):171-188, 2005.

Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad
Wieland, and Manuel Wimmer. An introduction to model versioning.
In Proceedings of the 12th International Conference on Formal Methods
for the Design of Computer, Communication, and Software Systems: For-
mal Methods for Model-driven Engineering, SEM’12, pages 336—-398, Berlin,
Heidelberg, 2012. Springer-Verlag.

Frank Budinsky and Stephen A Brodsky. Merks, eclipse modeling frame-
work, 2003.

Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. Managing
model conflicts in distributed development. In Krzysztof Czarnecki, Ileana
Ober, Jean-Michel Bruel, Axel Uhl, and Markus VO02lter, editors, MoD-
ELS, volume 5301 of Lecture Notes in Computer Science, pages 311-325.
Springer, 2008.

Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. Managing
dependent changes in coupled evolution. In ICMT, pages 35-51, 2009.

18



[11]

[12]

[18]

Vincent Debruyne, Frangoise Simonot-Lion, and Yvon Trinquet. East-
adlan architecture description language. In Architecture Description Lan-
guages, pages 181-195. Springer, 2005.

Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed. Co-
evolution of metamodels and models through consistent change propaga-
tion. In ME@QMoDFELS, pages 1421, 2013.

Antoni Diller. Z: An introduction to formal methods, volume 2. Wiley
England, 1990.

Zinovy Diskin, Sahar Kokaly, and Tom Maibaum. Mapping-aware meg-
amodeling: Design patterns and laws. In SLE, pages 322-343, 2013.

Zinovy Diskin and T. S. E. Maibaum. Category theory and model-driven
engineering: From formal semantics to design patterns and beyond. In
ACCAT, pages 1-21, 2012.

Hartmut Ehrig, Claudia Ermel, and Gabriele Taentzer. A formal resolu-
tion strategy for operation-based conflicts in model versioning using graph
modifications. In Dimitra Giannakopoulou and Fernando Orejas, editors,
Fundamental Approaches to Software Engineering, volume 6603 of Lecture
Notes in Computer Science, pages 202-216. Springer, 2011.

Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Ge-
offrey Clemm, Walter Tichy, and Darcy Wiborg-Weber. Impact of software
engineering research on the practice of software configuration management.
ACM Trans. Softw. Eng. Methodol., 14(4):383-430, October 2005.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bidirectional tree transforma-
tions: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst., 29(3), 2007.

Simon Fiirst, Jirgen Mossinger, Stefan Bunzel, Thomas Weber, Frank
Kirschke-Biller, Peter Heitkémper, Gerulf Kinkelin, Kenji Nishikawa, and
Klaus Lange. Autosar—a worldwide standard is on the road. In 14th In-
ternational VDI Congress Electronic Systems for Vehicles, Baden-Baden,
2009.

Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. Managing
Model Adaptation by Precise Detection of Metamodel Changes. In In Proc.
of ECMDA 2009, pages 34-49, Enschede,, Pays-Bas, 2009. Springer.

Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. Managing
model adaptation by precise detection of metamodel changes. In FECMDA-
FA, pages 34-49, 2009.

19



[22]

[23]

[24]

[27]

[30]

[31]

[32]

[33]

H. Giese and R. Wagner. Incremental model synchronization with triple
graph grammars. In Proc. 9th International Conference on Model Driven
Engineering Languages and Systems (MoDELS), Genova, Italy, 2006.

ATLAS Group. Atlas Transformation Language Project Website. http:
//www.eclipse.org/m2m/atl/, 2007.

Boris Gruschko, Dimitrios S. Kolovos, and Richard F. Paige. Towards
synchronizing models with evolving metamodels. In Proc. Workshop on
Model-Driven Software Evolution (MODSE), 11th European Conference on
Software Maintenance and Reengineering, 2007.

Markus Herrmannsdoerfer. Cope - a workbench for the coupled evolution
of metamodels and models. In SLE, pages 286—-295, 2010.

Kenn Hussey and Marcelo Paternostro. Advanced features of
EMF. Tutorial at EclipseCon 2006, California, USA. Available
at: http://www.eclipse.org/modeling/emf/docs/presentations/
EclipseCon/EclipseCon2006_EMF_Advanced.pdf, 2006.

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick
Valduriez. Atl: a qvt-like transformation language. In Companion to the
21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, pages 719-720. ACM, 2006.

Stuart Kent. Model driven engineering. In Integrated formal methods, pages
286-298. Springer, 2002.

Maximilian Koegel, Jonas Helming, and Stephan Seyboth. Operation-based
conflict detection and resolution. In CVSM °09: Proceedings of the 2009
ICSE Workshop on Comparison and Versioning of Software Models, pages
43-48. IEEE Computer Society, 2009.

Dimitrios S. Kolovos. Extensible Platform for Specification of Inte-
grated Languages for mOdel maNagement Project Website. http://www.
eclipse.org/epsilon, 2014.

Dimitrios S. Kolovos, Nicholas Drivalos Matragkas, Horacio Hoyos Ro-
driguez, and Richard F. Paige. Programmatic muddle management. In
XM@MoDELS, pages 2-10, 2013.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. Rigorous
methods for software construction and analysis. chapter On the Evolu-
tion of OCL for Capturing Structural Constraints in Modelling Languages,
pages 204-218. Springer-Verlag, Berlin, Heidelberg, 2009.

Christian Krause, Johannes Dyck, and Holger Giese. Metamodel-specific
coupled evolution based on dynamically typed graph transformations. In
ICMT, pages 76-91, 2013.

20



[34]

Philip Langer, Manuel Wimmer, Petra Brosch, Markus Herrmannsdérfer,
Martina Seidl, Konrad Wieland, and Gerti Kappel. A posteriori operation
detection in evolving software models. Journal of Systems and Software,
86(2):551-566, 2013.

mbeddr team. mbeddr language workbench. http://mbeddr.com/, 2014.

Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flood-
ing: A versatile graph matching algorithm (extended technical report).
Technical Report 2001-25, Stanford InfoLab, June 2001.

David Méndez, Anne Etien, Alexis Muller, and Rubby Casallas. Trans-
formation migration after metamodel evolution. In Proc. ME Workshop,
2010.

Anantha Narayanan, Tihamer Levendovszky, Daniel Balasubramanian, and
Gabor Karsai. Automatic domain model migration to manage metamodel
evolution. In MoDELS, pages 706-711, 2009.

B. Nuseibeh, S. Easterbrook, and A. Russo. Making Inconsistency Re-
spectable in Software Development. Journal of Systems and Software,
56(11), 2001.

Hamilton L. R. Oliveira, Leonardo Gresta Paulino Murta, and Cludia
Werner. Odyssey-ves: a flexible version control system for uml model ele-
ments. In SCM, pages 1-16. ACM, 2005.

openArchitectureWare. openArchitectureWare Project Website. http://
www.eclipse.org/gmt/oaw/, 2008.

Richard F. Paige, Dimitrios S. Kolovos, and Fiona A.C. Polack. A tutorial
on metamodelling for grammar researchers. Science of Computer Program-
ming, to appear, 2014.

Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nikolas Drivalos
Matragkas, and James R. Williams. Model management in the wild. In
GTTSE, pages 197218, 2011.

Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4):334-350, 2001.

John F. Roddick. A survey of schema versioning issues for database sys-
tems. Information and Software Technology, 37(7), 1995.

Louis Rose. Structures and processes for managing model-metamodel co-
evolution. PhD thesis, University of York, 2011.

Louis M. Rose, Esther Guerra, Juan de Lara, Anne Etien, Dimitris S.
Kolovos, and Richard F. Paige. Genericity for model management opera-
tions. Software and System Modeling, 12(1):201-219, 2013.

21



[48]

Louis M. Rose, Markus Herrmannsdoerfer, James R. Williams, Dimitrios S.
Kolovos, Kelly Garcés, Richard F. Paige, and Fiona A. C. Polack. A com-
parison of model migration tools. In MoDELS (1), pages 61-75, 2010.

Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C.
Polack. Model migration with epsilon flock. In Proceedings of the Third In-
ternational Conference on Theory and Practice of Model Transformations,
ICMT’10, pages 184-198, Berlin, Heidelberg, 2010. Springer-Verlag.

Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, Fiona A.C. Polack,
and Simon Poulding. Epsilon Flock: a model migration language. Software
and Systems Modeling, 13(2):735-755, 2014.

Stephan Roser and Bernhard Bauer. Automatic generation and evolution
of model transformations using ontology engineering space. Journal on
Data Semantics XI, 11:321764, 2008.

James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling
Language Reference Manual, The. Pearson Higher Education, 2004.

Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. Model trans-
formations. In Formal Methods for Model-Driven Engineering - 12th Inter-
national School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23,
2012. Advanced Lectures, pages 91-136, 2012.

Davide Di Ruscio, Ludovico Tovino, and Alfonso Pierantonio. A method-
ological approach for the coupled evolution of metamodels and atl trans-
formations. In ICMT, pages 60-75, 2013.

Davide Di Ruscio, Ralf Lammel, and Alfonso Pierantonio. Automated co-
evolution of gmf editor models. In SLE, pages 143-162, 2010.

Douglas C. Schmidt. Guest editor’s introduction: Model-driven Engineer-
ing. IEEE Computer, 39(2):25-31, 2006.

Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

Perdita Stevens, Jon Whittle, and Grady Booch, editors. UML 2003 -
The Unified Modeling Language, Modeling Languages and Applications, 6th
International Conference, San Francisco, CA, USA, October 20-24, 2003,
Proceedings, volume 2863 of Lecture Notes in Computer Science. Springer,
2003.

Gabriele Taentzer, Florian Mantz, Thorsten Arendt, and Yngve Lamo.
Customizable model migration schemes for meta-model evolutions with
multiplicity changes. In MoDELS, pages 254-270, 2013.

22



[60] The Eclipse Foundation. ~MDT/OCL Project. http://projects.
eclipse.org/projects/modeling.mdt.ocl. [Online; accessed 04-July-
2014].

[61] James R. Williams, Richard F. Paige, and Fiona A. C. Polack. Searching
for model migration strategies. In Proceedings of the 6th International
Workshop on Models and Evolution, ME 12, pages 39-44, New York, NY,
USA, 2012. ACM.

23



	Introduction
	Context: Evolution in MDE
	Key characteristics of evolution solutions in MDE

	State-of-the-art
	Co-evolution of model and metamodel
	Co-evolution of operation and metamodel
	Other approaches
	Round-trip engineering
	Model evolution as a transformation problem
	Schema evolution
	Model Versioning


	Challenges
	Scalability
	Managing automation
	Dependency heterogeneity
	Empirical studies
	Usability of tools
	Concrete syntax
	Run-time
	Hybrid migration approaches
	External interfaces
	Language semantics
	Metamodels

	Conclusions

