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Low-Complexity Compute-and-Forward Techniques

for Multi-Source Multi-Relay Networks
Mehdi M. Molu, Kanapathippillai Cumanan, Alister Burr

Abstract—Compute-and-Forward (C&F) relaying in a multi-
source multi-relay network is studied in this paper and two novel
algorithms are proposed, addressing choice of integer matrix,
taking into account the effect of singularity. The first algorithm
assumes that there is no cooperation between the nodes for
choosing proper integer vectors in the relay nodes; this method is
referred to as “blind C&F” and an algorithm is proposed which
guarantees that each relay chooses the best integer vector that
contains information from at least m source nodes. In the second
algorithm that is described as “partially coordinated C&F”, we
assume partial cooperation between the relay nodes and propose
to exchange a single variable with which the relays are sorted
for transmission. The performance of the proposed algorithm is
nearly equivalent with optimal relaying which requires significant
overhead signalling.

Index Terms—Compute-and-Forward, Computation Rate,
Physical layer Network Coding

I. INTRODUCTION

Compute-and-Forward (C&F) [1] is a relatively new relay-

ing technique that relies on lattice codes through the linearity

property of lattices. Exploiting this property of a lattice

allows multiple source nodes in a network to transmit data

simultaneously using the same resources (time and frequency).

This method of relaying that is referred to as PLNC (Physical

Layer Network Coding) in the literature is in contrast with

conventional relaying methods (e.g., amplify-and-forward or

decode-and-forward [2], [5]) wherein the source nodes trans-

mit their data orthogonally using different resources. In the

context of C&Frelaying in fading channels, one challenging

task is to find corresponding integer vectors in the relay nodes

which is referred to as a network coding vector or an ~a vector

in the literature (e.g., [1]). There is intensive ongoing research

on finding the best network coding vector (~a vector), however,

so far, most of the focus of the literature is on obtaining an

integer vector ~a that maximizes the computation rate in the

relay regardless of the corresponding ~a vectors computed in

other relay nodes (i.e., local maximization). Moreover, one

necessary condition under which a destination node is capable

of unambiguously decoding transmitted information by the

source nodes is that the matrix (say ~A matrix) obtained using

the ~a vectors computed in the relay nodes must be non-

singular. Using conventional methods for computing network

coding vectors in the relays, although the rate is maximised
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Fig. 1. System Model

locally, the overall computation rate of the network is zero if
~A matrix is singular (i.e., if | ~A| = 0).

There are few paper that directly address the problem of

finding a proper ~A matrix that is not singular; in particular, [6],

[7] study a similar problem to the one that we address in this

paper, however, the problem is usually tackled assuming full

coordination between the nodes that indeed imposes significant

overhead signalling in practice.

Contribution: In this paper we study a multi-source

multi-relay network and aim to compute network coding vector

~a in the relay nodes that tries to avoid singular ~A. Based on

two different assumptions, we propose two new algorithms in

this paper:

• Non-coordinated (blind) C&F where the relay nodes com-

pute network coding vectors blindly, without knowledge

of the network coding vectors used in the other relay

nodes.

• Partially coordinated C&F where the relay nodes partially

communicate to specify the order of transmission and use

a network coding function that does not reduce the rank

of the ~A matrix.

The paper is organized as follows: In Section II system

model is introduced and the rate description of C&Frelaying

is provided. In Section III two novel relaying strategies are

proposed. In Section IV numerical simulations are provided

to validate the usefulness of the proposed methods and the

paper is finalized by some concluding remarks in Section V.

II. SYSTEM MODEL

As shown by Fig. 1, a cooperative network consisting of

K source nodes, K relay nodes and one destination node is

studied. The entire transmission from sources to the destination

is divided into K + 1 time slots: in the first time slot all the

source nodes transmit their data to the destination using a
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shared interference channel. In a second phase, that consists

of K time slots, the relay nodes each compute an equation

from the received superimposed signal and forward it to

the destination node. The relay nodes exploit C&F and so

in the second phase, relay nodes use orthogonal channels

for transmission because the source node requires at least

K equations to be capable of decoding all the messages

transmitted from the source nodes.The transmissions from the

source and relay nodes are summarized in the following:

Source: Each source node selects a message ~wl that is

drawn from a set of M messages with equal probability. Every

message is then mapped to a nested lattice codeword ~xl and

sent to the relay nodes in the first time slot.

Relay: Since the relay nodes exploit C&Frelying, each

relay exploits lattice decoding and attempts to find a set

of equations and the rates corresponding to each particular

equation. Let us define the set Ar as a set of integer vectors

defining possible network coding functions at relay r as

follows:

Ar = {~ar,1,~ar,2, · · · ,~ar,n} . (1)

Each integer vector ~ar,i results in a computation rate that is

stored in set Rr as follows:

Rr = {Rr,1,Rr,2, · · · ,Rr,n} . (2)

It is assumed that Rr,1 ≥ Rr,2 ≥ · · · ≥ Rr,n. The relay

function will be discussed in further detail in the next sections,

however, note that it is proved in [1] that the computation rate

in relay node r is obtained using following expression:

Rr(~h,~a) = log+2

( γ

γ ‖ αr,l
~hr − ~ar,l ‖2 +α2

r,l

)

(3)

which depends on signal-to-noise ratio γ, inflation coefficient

αr,l, channel realisation ~hr and choice of the integer vector

~ar,l (see [1] for detailed description of the parameters).

It is clear that choosing ~ar,1 is the best option if the intention

is to maximize the computation rate locally in the relay nodes;

this is indeed the main optimization criterion in the original

C&Fpaper in [1]. However, in this paper, we are interested

in optimizing the overall transmission rate of the network,

defined as follows:

R( ~H, ~A) =

{

min (R1, · · · ,RK) , if | ~A| 6= 0

0, if | ~A| = 0
(4)

where ~H is the channel realization between the source and

the relay nodes and ~A is the matrix whose columns are the

~ar vectors exploited in the relay nodes as the network coding

vectors. We assume that each relay appends its chosen integer

vector to the equation and transmits it to the destination;

also we assume that the relays can overhear one another’s

transmissions.

III. RELAY STRATEGY

Upon reception of the source transmissions, each relay

node r needs to choose an integer coefficient ~ar and perform

lattice decoding before forwarding an equation towards the

destination. One can assume different criteria for computing

~ar vectors as described in following subsections.

A. Non Coordinated (Blind) Compute-and-Forward

Once the destination collects the relay transmissions, it will

be capable of decoding the messages from the source nodes if

the matrix ~A is a full rank matrix. In an attempt to reduce the

occasions which result in non full rank ~A, a blind C&Frelay

strategy is proposed in the following:

Proposition: Instead of computing an equation that cor-

responds to the highest computation rate in the relay r (i.e.,

locally optimizing rate), each relay computes a set of equations

corresponding to different computation rates as described in

(1) and (2). Moreover a new parameter is defined as

κr = {kr,1, kr,2, · · · , kr,n} (5)

which specifies the number of non-zero entries in ~ar vectors.

As an example, an integer vector ~ar,j = [1, 0, 0] consists of

information only from source 1, however an integer vector

~ar,j = [1, 0, 1] consists of information from two source nodes,

source 1 and source 3. We define kr,j as the number of non-

zero entries in the ~ar,j vector; i.e., kr,j = nnz(~ar,j). As a

relaying strategy, instead of forwarding ~ar,1, we propose to

transmit a function that includes information from, at least, m
sources, i.e., ~ar = ~ar,j where

Rr,j = max{Rr} given kr,j ≥ m. (6)

This strategy is helpful, especially at low SNR where the

integer vectors ~ar,j usually have only one non-zero entry;

therefore, once the integer vector from other relays has a non-

zero entry at the same position of ~ar,j , | ~A| becomes equal

to zero, hence, setting the overall transmission rate of the

network to zero; whereas, ensuring that at least m entries of

the integer vectors ~ar,j are non-zero, the probability of non-full

rank ~A matrix decreases, hence avoiding R( ~H, ~A) = 0 due to

| ~A| = 0. In Section IV computer simulations are provided to

validate the benefits of the proposed algorithm.

B. Partially Coordinated Compute-and-Forward

In Blind C&Falgorithms, the relay nodes are indexed arbi-

trarily and so there is no rule to decide the order with which the

relays transmit their equations. In other words, it is implicitly

assumed that relay R1 transmits first, and then the relay R2

and etc. However, for a partially coordinated C&Falgorithm

as proposed in this section we define a parameter referred to

as rate-difference as follows:

dr = Rr,1 −Rr,2, (7)

that is the rate-difference between two largest rates in each

relay. In the following, it will be proposed to give the priority

for transmission to the relay nodes with larger dr; for instance,

in a two relay scenario, if d2 > d1, the relay R2 transmits its

computed equation first and then the relay R1 transmits an

equation.

Proposition: Partially coordinated C&Fprotocol proposed

in this section consists of two parts: i) sorting relays and

specifying the priority of the transmission and ii) choosing

the best equation in the relays (i.e., choosing proper integer

vector ~a) which simultaneously guarantees local optimization



3

0 5 10 15
0.5

1

1.5

2

2.5

3

3.5

4

SNR(dB)

R
a
te

 

 

Proposed− Blind

Locally optimal − Blind

Proposed − Partially Co.

Fully Coordinated

Fig. 2. Computation rate: 3 user (K = 3).

of the computation rate as well as preserving the rank of the
~A matrix. The algorithm is described in the following:

• Upon reception, every relay computes a set of best

equations, leading to largest rates and corresponding rates

with which the relays calculate the rate-difference and

broadcast it. Since we assume the relays can overhear

each other, each relay receives the rate-difference of other

relays and based on the rate-differences, the relays are

ordered for transmission as described earlier; i.e., the

relays with larger rate-difference dr get priority for trans-

mission. The motivation for this is described throughout

this section.

• For simplicity of notation, let us assume that the relay

indices specify the order of transmission. In other words,

we assume that d1 > d2 > · · · > dn and so, R1 is the

first relay to transmit an equation, R2 is the second

relay and similarly, Rn is the last relay that transmits.

Each relay appends the exploited integer vector to the

frame and sends it to the destination. For instance, R1

sends its integer vector ~a1 along with the equation; the

R2 overhears the ~a1 and exploits an integer vector ~a2
that does not reduce the rank of [~a1;~a2] matrix. Relay

R3 overhears and decodes ~a1 and ~a2 from R1 and R2

transmissions and exploits a proper ~a3 that does not

reduce the rank of [~a1;~a2;~a3]. The transmission continues

until all the relays transmit their corresponding data while

ensuring that choosing an integer vector ~ar does not lead

to a non full-rank ~A matrix.

In order to better understand the algorithm, an example is

provided in the following.

Example: Assume a network with three source and

three relay nodes, operating at SNR= 10 dB, with channel

realizations between the source and the relay nodes as follows:

~h1 = [0.85, 3.63, 1.91]
T

~h2 = [0.14, 13.7, 7.52]
T

(8)

~h3 = [2.37, 0.92, 4.51]
T
.
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Fig. 3. Outage rate: 3 user (K = 3) and threshold rate Rth = 1.

For each relay, one can compute a set of integer vectors

Ar = {~ar,1,~ar,2,~ar,3, · · · } with which the rates of Rr =
{Rr,1,Rr,2,Rr,3, · · · } can be achieved (note that we assume

the entries of Rr are ordered in descending order). For instance

for relay R1, we have computed A1 and R1, with two entries,

as follows:

A1 = {~a1,1,~a1,2} and R1 = {R1,1,R1,2}

where

~a1,1 = [0, 0, 1], ~a1,2 = [1, 2, 5] (9)

R1,1 = 0.971, R1,2 = 0.943 (10)

Likewise, one can compute the entries of A2 and A3 as

follows:

~a2,1 = [0, 0, 1], ~a2,2 = [2,−5, 5] (11)

~a3,1 = [1, 0, 0], ~a3,2 = [0, 0, 1] (12)

and R2 and R3 as follows

R2 = {3.15, 1.77} and R3 = {1.15, 1.01} .

Consequently, the rate-difference dr defined in (7) for the three

relays can be defined as

d1 = 0.028, d2 = 1.38 and d3 = 0.14. (13)

Since d2 > d3 > d1 in (13), we propose to order relay

transmission based on the rate loss. In this example, second

relay R2 transmits as the first relay because the largest rate

loss occurs in R2; therefore, it selects the best ~a vector

corresponding to largest rate; i.e., the second relay chooses

~a2 = [0, 0, 1] that corresponds to R2 = 3.15. Along with the

transmission of the equation based on ~a2, the relays transmit ~a
vector too. Upon reception of the ~a vector by the other relays,

they decode it and store for future use. Now there are two more

relays to transmit their equations, however, since d3 > d1, the

third relay transmits first. The best option for third relay is

to choose ~a3 = [1, 0, 0] and note that this choice does not

reduce the rank of ~A matrix. Relay R3 sends its equation
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Fig. 4. Computation rate: 5 user (K = 5).

along with the chosen ~a3 that is overheard and decoded by

relay R1. The first relay is the last relay to send its equation,

however, although the best option for relay R1 is ~a1 = [0, 0, 1],
this choice reduces the rank of ~A matrix and sets | ~A| = 0;

therefore it selects second integer vector from set A1, i.e.,

~a1 = [1, 2, 5]. Note that although the first relay selects its

second best ~a vector, it leads to insignificant rate loss because

the corresponding rate-difference is low (d1 = 0.028). This is

indeed the main motivation for the partially coordinated C&F.

Note that if an integer vector corresponding to the best rate in

a relay lead to a singular ~A, the relay selects another integer

vector with lower rate but full rank ~A. Therefore, if a relay

with larger dr is forced to choose its second integer vector,

this will lead to large rate loss in the relay nodes locally, and

so we propose to give priority for transmission for the relays

with larger dr.

IV. NUMERICAL RESULTS

In this section numerical results for two relay networks with

three and five source/relay nodes are provided (i.e., K = 3
and K = 5 in Fig. 1). In Fig. 1 we assume that the distance

between any two neighbouring nodes is one meter and the path

loss coefficient is α = 3. We assume block Rayleigh fading

channels that are obtained through hij = (
dij

d0

)−αh̃ij where

h̃ij represent fading realisation between Si and Rj . d0 is the

largest distance between a source node and a relay node.

Fig. 2 illustrates the computation rate (defined in (4)) using

the proposed blind C&Falgorithm; each relay makes sure that

network coding function includes data from at least two trans-

mitters, i.e. kr,j ≥ 2 in (6). For comparison, the computation

rate of the conventional blind C&Falgorithm is also provided;

it is clear that the proposed blind C&Fachieves higher rates.

Fig. 3 illustrates the outage rate assuming threshold rate Rth =
1.5. Clearly, the outage rate of the proposed blind algorithm

is lower than that of the conventional blind algorithm; this

validates the usefulness of the blind C&Falgorithm proposed

in this paper. In Fig. 2 and 3, the computation rate and outage

are also shown for the partially coordinated C&Falgorithm.

It is clear that the proposed algorithm that is developed by
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Fig. 5. Outage rate: 5 user (K = 5) and threshold rate Rth = 1.5.

exchanging a few parameters among the relays approaches

the fully coordinated C&Fthat requires significant signalling.

Fig. 4 and Fig. 5 illustrate computation rate and outage for

a system with five source and relay nodes. The superior

performance of the proposed algorithms is evident.

V. CONCLUSION

Compute-and-Forward (C&F) relaying in a multi-source

multi-relay network is studied in this paper and two novel al-

gorithms are proposed. Assuming no coordination between the

nodes, a blind C&Ftechnique is developed. Another algorithm

is proposed that requires the exchange of a few parameters

between the nodes. This algorithm is called partially coordi-

nated C&Fand it is demonstrated to perform nearly as well as

a fully coordinated C&Fsystem.
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