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Abstract

How long does a uniformly accelerated observer need to interact with a quantum
field in order to record thermality in the Unruh temperature? We address this
question for a pointlike Unruh-DeWitt detector, coupled linearly to a real Klein-
Gordon field of mass m ≥ 0 and treated within first order perturbation theory, in
the limit of large detector energy gap Egap. We first show that when the interaction
duration ∆T is fixed, thermality in the sense of detailed balance cannot hold as
Egap → ∞, and this property generalises from the Unruh effect to any Kubo-
Martin-Schwinger state satisfying certain technical conditions. We then specialise
to a massless field in four spacetime dimensions and show that detailed balance does
hold when ∆T grows as a power-law in Egap as Egap → ∞, provided the switch-
on and switch-off intervals are stretched proportionally to ∆T and the switching
function has sufficiently strong Fourier decay. By contrast, if ∆T grows by stretching
a plateau in which the interaction remains at constant strength but keeping the
duration of the switch-on and switch-off intervals fixed, detailed balance at Egap →
∞ requires ∆T to grow faster than any polynomial in Egap, under mild technical
conditions. These results also hold for a static detector in a Minkowski heat bath.

The results limit the utility of the large Egap regime as a probe of thermality
in time-dependent versions of the Hawking and Unruh effects, such as an observer
falling into a radiating black hole. They may also have implications on the design
of prospective experimental tests of the Unruh effect.

1 Introduction

In the Unruh and Hawking effects in quantum field theory, an observer responds to
a pure state of the quantum field as if the field were in a mixed, thermal state. In
the case of the Unruh effect [1], a uniformly linearly accelerated observer in Minkowski
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spacetime measures a temperature that is proportional to the acceleration when the
field is in the Poincaré invariant Minkowski vacuum state. In the case of the Hawking
effect [2], a stationary observer far from a black hole records thermal radiation coming
from the hole when the field is in the quantum state that evolved from an appropriate
no-particle state before the black hole was formed. Reviews of these phenomena and
their interrelations are given in [3, 4].

To characterise the thermality in the Hawking and Unruh effects in terms of local
measurements, we may consider an observer who carries a spatially localised quantum
system that is coupled to the field, a particle detector [1, 5], and we may ask the
observer to count the excitation and de-excitation transitions in the detector. The
detector’s response is considered thermal when the transition probabilities satisfy the
detailed balance form [6, 7] of the Kubo-Martin-Schwinger (KMS) condition [8, 9, 10]:
the ratio of the excitation and de-excitation probabilities of energy gap Egap is e−Egap/T ,
where the positive constant T is interpreted as the temperature. In this setting, there is
broad evidence that detailed balance in the Unruh and Hawking effects emerges for an
asymptotically stationary observer when the interaction time is long and the switching
effects are negligible but the back-reaction of the observer on the quantum field still
remains small [1, 3, 4, 11, 12, 13, 14, 15, 16, 17, 18].

The purpose of this paper is to obtain precise asymptotic results about the long
interaction time limit under which a detector records thermality in the Unruh effect,
and specifically to examine how this limit depends on the detector’s energy gap Egap. In
short, how long does a uniformly accelerated observer need to wait for Unruh thermality
to kick in at prescribed Egap, especially when Egap is large?

We focus on the Unruh (rather than Hawking) effect because of technical simplic-
ity [19, 20], but we note that the conceptual issues about the meaning of a “particle”
in a detector-field interaction are present already in the Unruh effect [21, 22, 23]. We
employ a pointlike two-level Unruh-DeWitt detector that is linearly coupled to a scalar
field [1, 5], a system that models the interaction between atoms and the electromagnetic
field when angular momentum interchange is negligible [24, 25]. Crucially, we assume
that the detector-field coupling is proportional to a switching function χ ∈ C∞

0 (R), a
real-valued smooth compactly supported function of the detector’s proper time. Finally,
we assume throughout that the magnitude of the detector-field coupling is so small that
first-order perturbation theory in the coupling remains applicable.

In summary, we combine in a novel way the following three pieces of input: (a) we ask
how the observation time required to record detailed balance depends on the energy scale
at which the measurements are made; (b) we formulate this question using switching
functions that are smooth and compactly supported; (c) our analysis is mathematically
rigorous, especially regarding the distributional singularity of the Wightman function.

We begin by considering not just the Unruh effect but any quantum state and de-
tector motion in which the field’s Wightman function, pulled back to the detector’s
worldline, satisfies the KMS condition [8, 9, 10] with respect to translations in the de-
tector’s proper time at some positive temperature. We consider two families of switching
functions, each of which involves a scaling parameter λ. In the first family, the overall
duration of the interaction is scaled by the factor λ, including the switch-on and switch-
off parts of the interaction: we refer to this as the adiabatic scaling. In the second family,
the interaction is constant over an interval whose duration is proportional to λ, while the
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preceding switch-on interval and the subsequent switch-off interval have λ-independent
durations: we refer to this as the plateau scaling. The long interaction limit is hence
obtained as λ→ ∞ within each family. For fixed energy gap, we verify that the λ→ ∞
limit does recover detailed balance in the KMS temperature, for both families. This
observation is fully within expectations, and it justifies the long time response formulas
that are standard in the literature [1, 3, 4, 5]. However, we also show that when the
switching function is fixed, the detailed balance condition fails to hold at large values
of the detector’s energy gap. Physically, when the total interaction time is fixed, the
detector does not have enough time to thermalise up to arbitrarily high energies.

We may hence ask how fast λ needs to increase as a function of Egap if the detector
is to record detailed balance in the limit of large Egap. A waiting time that grows
no faster than polynomially in Egap would presumably be realisable in experimental
situations, such as prospective experimental tests of the Unruh effect, whereas a waiting
time that needs to grow exponentially in Egap would presumably render an experimental
verification of detailed balance at high Egap impractical.

Our main result is to answer this question for the Unruh effect in four-dimensional
Minkowski spacetime with a massless scalar field. Specialising to four spacetime dimen-
sions is motivated by prospective applicability to future experiments, while setting the
field mass to zero has the consequence that the only dimensionful parameter in the prob-
lem is the detector’s proper acceleration a. The detector’s response then becomes identi-
cal to that of a static detector in a static Minkowski heat bath of temperature a/(2π) [6],
and all of our results will apply also there.

For the adiabatic scaling, we show that detailed balance at large Egap can be achieved
by letting λ grow as a power-law in Egap, provided the Fourier transform of the switching
function has sufficiently strong falloff properties. For the plateau scaling, by contrast,
we show that detailed balance at large Egap requires λ to grow faster than any strictly
increasing, differentiable and polynomially bounded function of Egap.

We conclude that in order to achieve detailed balance in the Unruh effect within an
interaction time that grows as a power-law of Egap when Egap is large, it is crucial to
stretch not just the overall duration of the interaction but also the intervals in which
the interaction is switched on and off.

We begin by introducing relevant mathematical notation and analytical preliminaries
in Section 2. The detector model is introduced in Section 3. Section 4 establishes
the precise connection between the KMS condition and detailed balance in the long
interaction limit at fixed energy gap, and shows that this connection cannot hold for fixed
interaction duration in the limit of large energy gap. We also give a technical formulation
of what it means for detailed balance to hold at large energy gap in interaction time
that grows as a power-law in the energy gap. The main results about the Unruh effect in
four spacetime dimensions are obtained in Section 5. Section 6 presents a summary and
brief concluding remarks. Proofs of a number of auxiliary technical results are deferred
to three appendices.
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2 Conventions and analytical preliminaries

Our metric signature is mostly plus, and we work in in units in which ~ = c = 1.
Complex conjugation is denoted by an overline. O(x) denotes a quantity such that
x−1O(x) is bounded as x → 0, and O∞(x) denotes a quantity that falls off faster than
any positive power of x as x→ 0. C∞

0 (R) denotes the space of smooth complex-valued
functions on R with compact support, i.e., vanishing identically outside a bounded set.

The Fourier transform of sufficiently regular f : R → C is defined by

f̂(ω) =

∫ ∞

−∞
ds f(s) e−iωs . (2.1)

As is well known (see e.g., [26, 27]) the transform of a Schwartz test function f ∈ S (R)
(i.e., a smooth function which, together with its derivatives, decays faster than any
inverse power at infinity) is also of the Schwartz class, while the transform of a smooth
compactly supported function extends to a holomorphic function on the whole complex
plane which obeys Paley–Wiener growth estimates and in particular decays faster than
any inverse power at infinity on the real axis.

It will be important in what follows to be more quantitative about exactly how fast
the transform of a smooth compactly supported test function can decay. On one hand,
it is known that there are nontrivial smooth compactly supported g with transforms
obeying bounds of the form |ĝ(ω)| ≤ Ke−γ|ω|q for any 0 < q < 1 and positive constants
K and γ – see [28, 29] for constructions and examples. However, the transform of a
nontrivial smooth compactly supported function cannot decay exponentially fast: for if

|ĝ(ω)| ≤ Ke−γ|ω| (2.2)

for some positive constants γ and K, then the Fourier inversion formula permits us to
extend g(s) to a holomorphic function in the strip | Im s| < γ and the fact that g is
compactly supported on the real axis then implies that it vanishes identically. This line
of thought can be developed further: describing an open subset Ω ⊂ R as modest if
every bounded locally integrable function supported in Ω has a Fourier transform that
is holomorphic in an open strip containing the real axis, one has the following.

Lemma 2.1. If g is smooth and compactly supported, and (2.2) holds except on a modest
set Ω, then g vanishes identically.

Proof. Let ϕ be the characteristic function of Ω. Then F = ϕĝ has an inverse Fourier
transform that is holomorphic in some open strip S1 around the real axis. As

∣∣(1 −

ϕ(ǫ)
)
ĝ(ǫ)

∣∣ ≤ Ke−γ|ǫ| for all ǫ ∈ R, (1−ϕ)ĝ has an inverse transform that is holomorphic
in some open strip S2 around the real axis. Thus, g extends from the real axis to a
holomorphic function in the strip S1 ∩ S2. But since g has compact support on the real
axis, g has to vanish everywhere.

Turning to distributions, the Fourier transform of a tempered distribution U ∈
S ′(R) is defined so that Û(f) = U(f̂) for any test function f ∈ S (R) (note that f is a
frequency-domain function here), which implies the Plancherel formula Û(ĝ) = 2πU(g)
for (time-domain) test functions g.
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3 The field-detector model

In this section we specify the field-detector model which the rest of the paper will
analyse. The main point is the expression in (3.2) and (3.3) for the detector’s transition
probability in a first-order perturbation theory treatment.

Our detector is a pointlike quantum system that moves in a Lorentz-signature space-
time on the worldline x(τ), a smooth timelike curve parametrised by its proper time τ .
We take the detector to be a two-level system, with the Hilbert space HD ≃ C

2 spanned
by the orthonormal basis {|0〉, |1〉}, such that HD|0〉 = 0|0〉 and HD|1〉 = E|1〉, where HD

is the detector’s Hamiltonian with respect to τ and the constant E ∈ R is the detector’s
energy gap. For E > 0 we may call |0〉 the detector’s ground state and |1〉 the excited
state; for E < 0 the roles of |0〉 and |1〉 are reversed.

The quantum field is a real scalar field Φ. When there is no coupling to the detector,
we assume that the field is the free minimally coupled Klein–Gordon field of massm ≥ 0,
and we assume the Hilbert space HΦ contains Hadamard state vectors [30] and admits
a unitary time-evolution generated by a Hamiltonian. This is in particular the case
when the spacetime is globally hyperbolic and stationary and the Hilbert space is the
Fock space induced by the unique (sufficiently regular) ground or KMS states1 in the
m > 0 case (see parts (i,ii,iv) of Theorems 5.1 and 6.2 in [31]). Of course it also holds in
the familiar setting of four-dimensional Minkowski spacetime for m ≥ 0 in the vacuum
representation.

The Hilbert space of the total system is HΦ ⊗HD, and the Hamiltonian of the total
system is H = HΦ⊗11D+11Φ⊗HD+Hint, where HD is the Hamiltonian of the detector,
HΦ is the Hamiltonian of Φ, and Hint is the interaction Hamiltonian. We take Hint to
be

Hint(τ) = cχ(τ)Φ
(
x(τ)

)
⊗ µ(τ) , (3.1)

where c ∈ R is a coupling constant, µ is the detector’s monopole moment operator
and χ ∈ C∞

0 (R) is a real-valued switching function that specifies how the interaction is
turned on and off. We assume throughout that χ is nonvanishing somewhere.

Suppose now that before the interaction starts, the detector is in the state |0〉 and
Φ is in some Hadamard state |φi〉. After the interaction has ceased, the probablity to
find the detector in the state |1〉, regardless the final state of Φ, is given in first order
perturbation theory by [1, 3, 4, 5]

P = c2 |〈1|µ(0)|0〉|2F(E) , (3.2)

where

F(E) =

∫ ∞

−∞
dτ ′

∫ ∞

−∞
dτ ′′ χ(τ ′)χ(τ ′′) e−iE(τ ′−τ ′′)W(τ ′, τ ′′) , (3.3)

andW ∈ D ′(R×R) is the pull-back of the Wightman function of Φ in the state |φi〉 to the
detector’s worldline. F is called the response function of the detector, or the (smeared)
power spectrum of the field’s vacuum noise. As |φi〉 is by assumption Hadamard, W is
a well-defined distribution [26, 32] and F(E) is hence well defined pointwise for each E.

1The regularity required is minimal, but the states are then automatically quasifree and Hadamard.
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Note that F is real-valued since W(τ ′, τ ′′) = W(τ ′′, τ ′). Equation (3.3) is more formally
written as F(E) = W(χE , χE), where χE(τ

′) = eiEτ ′χ(τ ′). In this form it is clear that
F is non-negative because of the positivity property W(f, f) ≥ 0 for all test functions f ,
which ultimately arises from the positivity condition on states; here we also use the fact
that χ is real-valued.

In summary, the response function F (3.3) encodes how the transition probability
depends on the field’s initial state, the detector’s energy gap, the detector’s trajectory
and the detector’s switch-on and swich-off. The internal structure of the detector and
the overall coupling strength enter only via the constant overall factor in (3.2). We shall
from now on refer to the response function as the probability.

4 Stationary detector in a KMS state

In this section we first give two mathematically precise formulations of the observation
that the transition rate of a stationary detector in a KMS state satisfies the detailed
balance condition provided the detector operates for a long time and the switching
effects are negligible. We then show that the approach to detailed balance in the long
time limit cannot be uniform when the detector’s energy gap increases, under a set of
mild technical conditions on the switching. Finally, we formulate mathematically the
question of how long the interaction needs to last in order for for detailed balance to
hold at a given energy gap when the energy gap is large.

4.1 The KMS condition and detailed balance

We consider a pulled-back two-point function W that depends on its two arguments
only through their difference,

W(τ ′, τ ′′) = W(τ ′ − τ ′′) , (4.1)

and W will from now on denote the distribution on the right-hand side of (4.1). The
detector’s response is then invariant under translations in χ, and is now given by

F(E) = W(χE ⋆ χE) =
Ŵ (|χ̂E |

2)

2π
. (4.2)

This situation arises whenever the detector’s trajectory and the state of the field are
stationary with respect to the same notion of time translations, such as when they
are both invariant under a Killing vector that is timelike in a neighbourhood of the
trajectory. We refer to such trajectories as stationary. The only time dependence in the
detector’s response comes then from the switching function χ.

As W arises from a Wightman two-point function of a state, the distribution W ∈
D ′(R) is of positive type, in the sense that W(f ⋆ f̃) ≥ 0 for all test functions f ∈
C∞
0 (R), where ⋆ denotes convolution and f̃(s) = f(−s). By the Bochner–Schwartz

theorem [27], it follows that W is in fact a tempered distribution, W ∈ S ′(R), and that

its distributional Fourier transform Ŵ is a polynomially bounded (positive) measure.
For our purposes, it will be convenient (though in most cases not absolutely necessary)

to assume that Ŵ is in fact a continuous and polynomially bounded function, which is
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necessarily non-negative. This holds, for example, if W can be written as the sum of an
absolutely integrable function and a distribution with compact support (for the first has
a continuous transform, vanishing at infinity, while the second has a transform that is
analytic and polynomially bounded on the real axis). The latter is a fairly mild condition:
by general properties of Hadamard states, W can be decomposed (nonuniquely) as a sum
of a smooth function and a distribution of compact support, provided that no distinct
points on the detector’s worldline can be joined by a null geodesic. The condition that
the smooth part falls off sufficiently to be integrable will be satisfied in the concrete
cases that we study. From now on, therefore, our standing assumption is that W is
a tempered distribution with a continuous, non-negative, polynomially bounded Fourier
transform. In this case, the detector response can be written

F(E) =
1

2π

∫ ∞

−∞
dω |χ̂(ω)|2 Ŵ(E + ω) . (4.3)

The Kubo-Martin-Schwinger (KMS) definition of a thermal Wightman function [8,
9, 10, 33] is adapted to W by the following definition.

Definition 4.1 (KMS condition). Suppose there is a positive constant β and a holo-
morphic function WC in the strip S = {s ∈ C | −β < Im s < 0} such that

(i) W is the distributional boundary value of WC on the real axis;2

(ii) WC has a distributional boundary value on the line Im s = −iβ;

(iii) The two boundary values of WC are linked by

WC(s− i0) = WC(−s− iβ + i0) (4.4)

in ‘kernel notation’ for s ∈ R;

(iv) For any 0 < a < b < β there is a polynomial P so that |W(s)| < P (|Re s|) for all
s ∈ S with −b ≤ Im s ≤ −a.

Then we say that W obeys the KMS condition at temperature 1/β.

Definition 4.1 is consistent with the KMS property as defined for the full Wightman
function in [8, 9, 10, 33]. In particular, if a state in Minkowski spacetime is KMS in the
sense of [8, 9, 10, 33], the W of a static detector is KMS in the sense of Definition 4.1.

We recall next what is meant by detailed balance.

Definition 4.2 (Detailed balance). A function G : R → R that satisfies

G(−ω) = eβωG(ω) (4.5)

for a constant β > 0 is said to satisfy the detailed balance condition at temperature 1/β.

The connection between KMS and detailed balance is that if W is KMS, its Fourier
transform satisfies detailed balance and vice versa.

2That is, for each η ∈ (0, β), there is a tempered distribution defined by Wη(f) =
∫
dsWC(s−iη)f(s)

and Wη(f) → W(f) as η → 0+ for all f ∈ S
′(R).
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Proposition 4.3. Under the standing assumptions stated above, W satisfies the KMS
condition at temperature 1/β iff Ŵ satisfies the detailed balance condition (4.5) at tem-
perature 1/β.

Proof. The standing assumptions require that Ŵ(ω) ≤ P (ω) some polynomial P . If

detailed balance holds then, in fact, Ŵ(ω) ≤ e−βωP (−ω) for ω > 0 and

WC(s)
.
=

∫ ∞

−∞

dω

2π
eiωs Ŵ(ω) (4.6)

defines a holomorphic function in the strip S, obeying the growth estimates required
in the KMS condition. By direct calculation using detailed balance, one finds that
WC(s− iǫ) = WC(−s− iβ + iǫ) for any s ∈ R and 0 < ǫ < β, and so the KMS condition
(4.4) holds in the sense of distributional boundary values on taking ǫ→ 0+.

Conversely, suppose that the KMS condition holds. For any f ∈ C∞
0 (R), and 0 <

δ, ǫ < β/2 then F (s) = WC(s)f̂(s + iǫ) is holomorphic in S and |F (s)| → 0 faster than
any inverse power as |s| → ∞ in −β + δ ≤ Im s ≤ −ǫ. It is thus legitimate to deform
an integration contour to obtain

∫ ∞

−∞
dsWC(s− iǫ)f̂(s) =

∫ ∞

−∞
dsWC(s− iβ + iδ)f̂(s− iβ + iǫ+ iδ) . (4.7)

Taking the limit ǫ → 0+ and then δ → 0+, using the KMS condition, gives Ŵ (f) =

W(f̂) = W̃(f̂β) = Ŵ(f̃β) where fβ(ω) = e−βωf(ω). Detailed balance follows because f

was arbitrary in C∞
0 (R) and Ŵ is continuous by the standing assumptions.

4.2 Long interaction limit

If the interaction lasts for a long time and the switching effects remain small, (4.3) sug-

gests that F(E) should be approximately proportional to Ŵ(E), in which case Propo-
sition 4.3 shows that the detector’s response has approximately detailed balance if W
obeys the KMS condition [1, 3, 4, 5, 6]. We shall present two implementations of a long
time limit in which these expectations do hold in the sense of a long time limit with
fixed E.

4.2.1 Adiabatic scaling

We first consider the one-parameter family of switching functions

χλ(τ)
.
= χ(τ/λ) , (4.8)

where χ is a fixed switching function and λ is a positive parameter. We refer to this
family as the adiabatically scaled switching. The effective duration of the interaction is
λ times the width of the support of χ, and the long time limit is λ→ ∞.

As λ → ∞, we may expect the response to diverge proportionally to λ because of
the growing duration of the interaction. A more useful quantity is hence 1/λ times the
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response function, which we denote by F̃λ, and for which (4.3) and (4.8) give the formula

F̃λ(E) =
1

2π

∫ ∞

−∞
dω |χ̂(ω)|2 Ŵ(E + ω/λ) . (4.9)

The long time limit is given by the following proposition. We denote by || · || the L2

norm in L2(R, dω).

Proposition 4.4. For each fixed E ∈ R, F̃λ(E) → F̃∞(E) as λ→ ∞, where

F̃∞(E)
.
=

1

2π
||χ̂||2 Ŵ(E) . (4.10)

Proof. Let E ∈ R be fixed. By the polynomial bound on
∣∣Ŵ(ω)

∣∣, there then exist

constants A > 0, B > 0 and n ∈ Z+ such that for λ ≥ 1 we have
∣∣Ŵ(E + ω/λ)

∣∣ <
A + B(E + ω/λ)2n ≤ A + B(|E| + |ω|/λ)2n ≤ A + B(|E| + |ω|)2n. As χ̂(ω) decays at
ω → ±∞ faster than any inverse power of ω, the integrand in (4.9) is hence bounded
for λ ≥ 1 by a λ-independent integrable function, and the λ→ ∞ limit in (4.9) may be
taken under the integral by dominated convergence.

4.2.2 Plateau scaling

We next consider a one-parameter family of switching functions that take a nonvanishing
constant value over an interval of adjustable duration, but the switch-on interval and the
switch-off intervals have fixed duration. We refer to this family as the plateau switching.

To construct the family, we choose a bump function ψ ∈ C∞
0 (R), a non-negative

smooth function with the support [0, τs], where the positive constant τs will be the
duration of the switch-on and switch-off periods. Let τp be another positive constant,
and define

χλ(τ) =

∫ τ

−∞
dτ ′
[
ψ(τ ′)− ψ(τ ′ − τs − λτp)

]
, (4.11)

where λ is a positive parameter. As ψ is smooth, it follows from (4.11) that χλ is
smooth. As ψ is non-negative and has support [0, τs], it follows from (4.11) that χλ has
support [0, 2τs+λτp], consisting of the switch-on interval [0, τs], the plateau [τs, τs+λτp]
of duration λτp, and the switch-off interval [τs + λτp, 2τs + λτp]. The long time limit is
λ→ ∞. Note that the long time limit scales only the duration of the plateau but leaves
the durations of the switch-on and switch-off periods fixed.

The useful quantity to consider is again 1/λ times the response function, which we
now denote by F̆λ, and for which (4.3) and (4.11) give the formula

F̆λ(E) =
1

πλ

∫ ∞

−∞
dω

1− cos
[
(λτp + τs)ω

]

ω2

∣∣ψ̂(ω)
∣∣2 Ŵ(E + ω) , (4.12)

using the relation f̂ ′(ω) = iωf̂(ω) that holds for any f ∈ C∞
0 (R). The long time limit is

given by the following proposition.
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Proposition 4.5. For each fixed E ∈ R, F̆λ(E) → F̆∞(E) as λ→ ∞, where

F̆∞(E) = τp
∣∣ψ̂(0)

∣∣2 Ŵ(E) . (4.13)

Remark. As ψ̂(0) 6= 0 by the assumptions on ψ, F̆∞ (4.13) is not identically vanishing.

Proof. Let E ∈ R be fixed. Writing gE(ω)
.
=
∣∣ψ̂(ω)

∣∣2 Ŵ(ω + E) and changing the
integration variable in (4.12) by (λτp + τs)ω = u, we have

F̆λ(E) =
1

π

∫ ∞

−∞
du (τp + τs/λ)

(
1− cosu

u2

)
gE

(
u

λτp + τs

)
. (4.14)

Since ψ ∈ C∞
0 (R) and

∣∣Ŵ(ω)
∣∣ is polynomially bounded, |gE(ω)| is bounded. For λ ≥ 1,

the integrand in (4.14) is hence bounded in absolute value by a multiple of the integrable
function (1 − cosu)/u2, and the limit λ → ∞ may be taken under the integral by
dominated convergence, yielding (4.13).

4.2.3 Detailed balance in the long interaction limit

We may collect the observations in Propositions 4.3, 4.4 and 4.5 into the following
theorem, which establishes the equivalence of detailed balance and the KMS condition
in the long interaction time limit within our switching functions.

Theorem 4.6. Under the standing assumptions on W:

(i) For each fixed E ∈ R, F̃∞(E)
.
= limλ→∞ F̃λ(E) and F̆∞(E)

.
= limλ→∞ F̆λ(E)

exist and are proportional to Ŵ(E) as given in (4.10) and (4.13);

(ii) F̃∞ and F̆∞ satisfy the detailed balance condition (4.5) iff W satisfies the KMS
condition of Definition 4.1.

4.3 Non-uniformity in E of the long interaction limit

Theorem 4.6 shows that in a KMS state the long time limits of the response functions
F̃λ(E) and F̆λ(E) exist and satisfy the detailed balance condition (4.5). The sense of
the long time limit in Theorem 4.6 is λ→ ∞ with fixed E. We now show that the sense
in which F̃λ(E) and F̆λ approach the detailed balance condition as λ increases cannot
be uniform in E.

It is helpful to rewrite the detailed balance condition (4.5) as

β =
1

ω
ln

(
G(−ω)

G(ω)

)
; (4.15)

at ω = 0 (4.15) is understood in the limiting sense. This shows that if G is positive
and G(ω) is bounded above by a polynomial in ω, G(ω) can satisfy the detailed balance
condition at |ω| → ∞ only if G(ω) is bounded by an exponentially decreasing function
of ω at ω → ∞. The following proposition shows that F (4.3) cannot decrease this fast

under mild technical conditions on Ŵ. As F̃λ (4.9) and F̆λ (4.12) are obtained from
(4.3) with a specific choice for χ, the same holds for F̃λ and F̆λ with with any fixed λ.
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Proposition 4.7. Suppose that, in addition to the standing assumptions on W, there
exist positive constants b and C such that Ŵ(ω) ≥ C for −b ≤ ω ≤ b. Then F(E) (4.3)
cannot fall off exponentially fast as E → ∞.

Proof. We use proof by contradiction, showing that an exponential falloff of F(E) at
E → ∞ implies that χ is identically vanishing.

As Ŵ(ω) is positive and polynomially bounded from above, F(E) is well defined for

all E. By the bound on Ŵ(ω) from below, we have

F(E) =
1

2π

∫ ∞

−∞
dv |χ̂(v − E)|2 Ŵ(v)

≥
1

2π

∫ b

−b
dv |χ̂(v − E)|2 Ŵ(v)

≥
C

2π

∫ b

−b
dv |χ̂(v − E)|2 , (4.16)

where we have first changed the integration variable by ω = v − E, then restricted the
integration range to −b ≤ v ≤ b, and finally used the strictly positive bound below
on Ŵ(v).

Suppose now that E > 0, and suppose there are positive constants A and γ such
that F(E) < A e−γE . From (4.16) we then have

∫ b

−b
dv |χ̂(v − E)|2 < A′ e−γE , (4.17)

where A′ = 2πAC−1 > 0. Inserting the factor eγ(E−v)/2 under the integral in (4.17)
gives

∫ b

−b
dv eγ(E−v)/2 |χ̂(v − E)|2 < A′ eγb/2 e−γE/2 . (4.18)

Setting in (4.18) E = (2k + 1)b, k = 0, 1, . . ., and summing over k, we obtain

∫ 0

−∞
dω e−γω/2 |χ̂(ω)|2 <∞ , (4.19)

and since |χ̂(ω)| is even in ω, it follows that

∫ ∞

−∞
dω eγ|ω|/2 |χ̂(ω)|2 <∞ . (4.20)

This implies that eγ|ω|/4χ̂(ω) is in L2(R, dω).
Let now

Ξ(ω)
.
= χ̂(ω)

(
1 + eγ|ω|/4

)
, (4.21a)

Φz(ω)
.
=

eizω

1 + eγ|ω|/4
, (4.21b)

11



where −γ/4 < Im z < γ/4. Both Ξ and Φz are in L2(R, dω). We may hence define in
the strip −γ/4 < Im z < γ/4 the function

χ̃(z)
.
= (2π)−1(Ξ,Φz) , (4.22)

where (·, ·) denotes the inner product in L2(R, dω). A straightforward computation
shows that χ̃(z) is holomorphic in the strip.

Formulas (4.21) and (4.22) show that χ̃(τ) = χ(τ) for τ ∈ R. Since χ is by as-
sumption compactly supported on R, the holomorphicity of χ̃ implies that χ̃ vanishes
everywhere. As χ is by assumption nonvanishing somewhere, this provides the sought
contradiction.

4.4 Asymptotic thermality with power-law waiting time

We have seen that while the response of a stationary detector in a KMS state satisfies
detailed balance in the long detection time limit, both with the adiabatic scaling and
the plateau scaling of the detection time, detailed balance with any fixed detection time
will not be satisfied when the detector’s energy gap is sufficiently large. This leads to
the main question of the paper: if we wish detailed balance to hold as the energy gap
increases, how fast does the interaction time need to grow?

This question is motivated by experimental considerations. If the required waiting
time increases (say) exponentially in the energy gap, we may expect experimental testing
of detailed balance to become rapidly impractical at large energies. A waiting time that
increases only as a power of the energy gap is however experimentally more promising
even at large energies.

We formalise a waiting time that increases as a power-law in the following definition.

Definition 4.8. For a stationary detector, let λ be a positive parameter that is propor-
tional to the effective duration of the interaction time, and let Fλ be the corresponding
response function. Suppose there exists a positive function λ(E) such that λ(E) → ∞
as |E| → ∞, λ(E) is bounded from above by a polynomial, and for all sufficiently large
|E| one has

Eβ − B−
(
E, λ(E)

)
≤ ln

(
Fλ(E)(−E)

Fλ(E)(E)

)
≤ Eβ + B+

(
E, λ(E)

)
, (4.23)

where β is a positive constant and B±
(
E, λ(E)

)
/E → 0 as a power-law in E as |E| → ∞.

We then say that the response is asymptotically thermal at temperature 1/β with power-
law waiting time.

In Section 5 we shall examine whether asymptotic thermality with power-law wait-
ing time holds for the Unruh effect with our adiabatic scaling (4.8) and plateau scal-
ing (4.11).

5 Unruh effect

In this section we specialise to the Unruh effect for a massless scalar field in four space-
time dimensions. We first show that detailed balance in the long interaction time
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limit holds for fixed energy gap both with our adiabatic scaling (4.8) and plateau scal-
ing (4.11), but detailed balance cannot hold for any fixed interaction time in the limit
of large energy gap. We then show that asymptotic thermality with power-law waiting
time holds for the adiabatic scaling but does not hold for the plateau scaling.

5.1 Long interaction limit at fixed E

We consider four-dimensional Minkowski spacetime, a massless scalar field in the
Minkowski vacuum state, and a detector on the Rindler trajectory of uniform linear
acceleration. In global Minkowski coordinates (t, x, y, z), the trajectory reads

t = a−1 sinh(aτ) , x = a−1 cosh(aτ) , y = y0 , z = z0 , (5.1)

where the positive constant a is the proper acceleration and y0 and z0 are constants.
We then have [1, 3, 4, 5]

W(s) = lim
ǫ→0+

(
−

a2

16π2 sinh2
(
a(s− iǫ)/2

)
)
, (5.2)

where the limit indicates the boundary value in the sense of Definition 4.1. As is well
known, W (5.2) coincides with what is obtained by starting with the Wightman function
of the quasifree thermal state of temperature a/(2π) and pulling it back to a worldline
that is static in the corresponding inertial frame [6].

W (5.2) satisfies the KMS condition of Definition 4.1 with β = 2π/a. The Fourier
transform of W is given by [1, 3, 5]

Ŵ(ω) =
ω

2π
(
e2πω/a − 1

) , (5.3)

understood at ω = 0 in the limiting sense. It is clear from (5.3) that Ŵ satisfies the
detailed balance condition (4.5) with β = 2π/a: this had to happen by Proposition 4.3
since W satisfies the standing assumptions introduced in Section 4.

The response of a detector in the long interaction time limit with the adiabatic
scaling (4.8) and the plateau scaling (4.11) is obtained from Theorem 4.6. F̃∞(E) and

F̆∞(E) are hence multiples of Ŵ(E), and they satisfy the detailed balance condition in
the Unruh temperature TU = a/(2π). This is the Unruh effect [1].

However, F̃λ(E) and F̆λ(E) cannot satisfy detailed balance at large |E| for any
fixed λ. This follows from Proposition 4.7 and the observation that F(E) (4.3) is
bounded from above by a polynomial in E, which we verify in Appendix A.

We shall now examine whether F̃λ(E) and F̆λ(E) approach detailed balance at large
|E| in waiting time that grows as a power-law in E, in the sense of Definition 4.8.
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5.2 Waiting for Unruh with adiabatic scaling

For the switching functions (4.8) with adiabatic scaling, (4.9) and (5.3) give

F̃λ(E) =
1

(2π)2

∫ ∞

−∞
dω |χ̂(ω)|2

(
E + ω/λ

e2π(E+ω/λ)/a − 1

)
, (5.4)

while (4.10) and (5.3) give

F̃∞(E) =
||χ̂||2

(2π)2
E(

e2πE/a − 1
) . (5.5)

Can F̃λ(E) approach detailed balance at large |E| in waiting time that grows as a
power-law in E?

As a first step, we note that (5.5) and Lemma B.2 in Appendix B give the inequalities

E

TU
− B(E, λ) ≤ ln

(
F̃λ(−E)

F̃λ(E)

)
≤

E

TU
+ B(−E, λ) , (5.6)

where

B(E, λ) = ln

(
1 +

||ωχ̂||2

||χ̂||2

(
e2πE/a − 1

)

(6aE/π)λ2

)
. (5.7)

These estimates are not sufficient to establish asymptotic thermality in power-law wait-
ing time: from (5.7) we see that a power-law λ(E) implies B

(
E, λ(E)

)
/E → 0 as

E → −∞, but achieving B
(
E, λ(E)

)
/E → 0 as E → ∞ would require λ(E) to grow

exponentially in E. However, in the following definition and theorem we show that there
exists a class of switching functions for which the estimate in (5.7) can be improved and
asymptotic thermality in power-law waiting time achieved.

Definition 5.1. If ψ ∈ C∞
0 (R) satisfies

|ψ̂(ω)| ≤ C(B + |ω|)r exp(−A|ω|q) (5.8)

for some constant q ∈ (0, 1) and some some positive constants A, B and C, we say that
ψ has strong Fourier decay.

Remark. For any q ∈ (0, 1), C∞
0 (R) contains non-negative functions that are not iden-

tically vanishing and have strong Fourier decay with (5.8) [28, 29].

Theorem 5.2. Suppose the switching function χ has strong Fourier decay, satisfying

|χ̂(ω)| ≤ Cκ−1(B + |ω/κ|)r exp(−A|ω/κ|q) (5.9)

for positive constants A, B, C, r and κ and a constant q ∈ (0, 1). Then F̃λ (5.4)
is asymptotically thermal with power-law waiting time, and we may choose λ(E) =
(2π|E|/a)1+p where p > q−1 − 1.
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Remark. The constant κ has been included in (5.9) for dimensional convenience: κ has
the physical dimension of inverse length whereas the other constants are dimensionless.

Proof. By the remarks below (5.7), it suffices to find B−
(
E, λ(E)

)
for (4.23) as E → ∞.

Let λ(E) be as stated in the Theorem, let E > 0, and let

Gest(E)
.
=

2a||χ̂||2

(2π)3

(
2πE

a

)−(1+p−q−1)/2

. (5.10)

We show in Lemma B.4 in Appendix B that

F̃λ(E)(E) ≤ F̃∞(E) +
2πE

a
exp(−2πE/a)Gest(E) (5.11)

holds for sufficiently large E. Combining this with the inequality F̃∞(−E) ≤ F̃λ(E)(−E)

from Lemma B.2, and using F̃∞(E) = eE/TUF̃∞(−E), we find that for sufficiently
large E,

ln

(
F̃λ(E)(−E)

F̃λ(E)(E)

)
≥

E

TU
− B−(E) , (5.12)

where

B−(E) = ln

(
1 +

(2π)3
(
1− e−2πE/a

)
Gest(E)

a||χ̂||2

)

= 2

(
2πE

a

)−(1+p−q−1)/2

+O
(
(E/a)−(1+p−q−1)

)
. (5.13)

Since B−(E)/E has a power-law falloff at E → ∞, (5.12) provides the sought lower
bound in (4.23).

5.3 Waiting for Unruh with plateau scaling

For the switching functions (4.11) with plateau scaling, (4.12) and (5.3) give

F̆λ(E) =
1

2π2λ

∫ ∞

−∞
dω

1− cos
[
(λτp + τs)ω

]

ω2

∣∣ψ̂(ω)
∣∣2
(

E + ω

e2π(E+ω)/a − 1

)
, (5.14)

while (4.13) and (5.3) give

F̆∞(E) =
τp
2π

∣∣ψ̂(0)
∣∣2 E(

e2πE/a − 1
) . (5.15)

In the following theorem we provide a sense in which F̆λ(E) cannot approach detailed
balance at large |E| in waiting time that grows as a power-law in E.

Theorem 5.3. Let P : R+ → R
+ be differentiable, strictly increasing and polynomially

bounded, and let P (E) → ∞ as E → ∞. Then F̆P (|E|)(E) is not asymptotically thermal
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with power-law waiting time in the sense of Definition 4.8.

Proof. Adapting the proof of Lemma B.2, we see that F̆P (|E|)(E) ≥ F̆∞(E) > 0 for all E.

We shall show that E−1F̆P (|E|)(−E) is bounded as E → ∞ but E−1e2πE/aF̆P (|E|)(E) is

not bounded as E → ∞. From this it follows that e2πE/aF̆P (|E|)(E)/F̆P (|E|)(−E) is not

bounded as E → ∞, and F̆P (|E|)(E) hence does not have the property of Definition 4.8.
As preparation, we define the function g ∈ C∞

0 (R) by

g(τ)
.
=

∫ ∞

−∞
dt ψ(τ − t)ψ(−t) . (5.16)

By the convolution theorem, ĝ(ω) = ψ̂(ω)ψ̂(−ω) =
∣∣ψ̂(ω)

∣∣2. It follows that ĝ is non-
negative and even and has rapid decrease.

Suppose now E > 0. From (5.14) we have

F̆P (E)(−E)

2πE/a
=

2a

(2π)3

(
τp +

τs
P (E)

)
H(2πE/a) , (5.17a)

exp(2πE/a)

2πE/a
F̆P (E)(E) =

2a

(2π)3

(
τp +

τs
P (E)

)
I(2πE/a) , (5.17b)

where

H(E)
.
=

1

E

∫ ∞

−∞
du

1− cosu

u2
ĝ

(
au

2πΛ(E)

)(
u/
(
Λ(E)

)
− E

eu/(Λ(E))−E − 1

)
, (5.18a)

I(E)
.
=

eE

EΛ(E)

∫ ∞

−∞
dΩ

1− cos
(
Λ(E)Ω

)

Ω2
ĝ

(
aΩ

2π

)(
Ω+ E

eΩ+E − 1

)
, (5.18b)

and

Λ(E)
.
= a(2π)−1

[
P
(
(aE/(2π)

)
τp + τs

]
. (5.19)

In (5.18a) we have changed the integration variable by ω = au/
(
2πΛ(E)

)
and in (5.18b)

by ω = aΩ/(2π). Note that Λ : R
+ → R

+ is differentiable, strictly increasing and
polynomially bounded, and Λ(E) → ∞ as E → ∞.

By (5.17) and (5.18), it suffices to show that H(E) is bounded as E → ∞ and I(E)
is unbounded as E → ∞.

Consider H(E) for E > 0. Symmetrising the integrand in (5.18a), we find

H(E) =
1

2E

∫ ∞

−∞
du

1− cosu

u2
ĝ

(
au

2πΛ(E)

)
f
(
−E , u/

(
Λ(E)

))

+
1

1− e−E

∫ ∞

−∞
du

1− cosu

u2
ĝ

(
au

2πΛ(E)

)
, (5.20)

where the function f is given by (B.1) in Appendix B. Since the function (1− cosu)/u2

is integrable, each term in (5.20) is bounded as E → ∞: in the second term this follows
observing that ĝ(ω) is bounded, and in the first term this follows using Lemma B.1 and
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observing that ω2ĝ(ω) is bounded. Hence H(E) is bounded as E → ∞.
Consider then I(E) for E > 0. The strategy is to show that if I(E) were bounded

as E → ∞, this would imply for ĝ a stronger falloff than the compact support of g
allows [28]. A technical subtlety is that the factor

[
1 − cos

(
Λ(E)Ω

)]
/Ω2 in (5.18b) has

zeroes, and the contributions to I(E) from neighbourhoods of these zeroes will need a
careful estimate from below.

Suppose hence that Imax and Emin are positive constants such that I(E) ≤ Imax for
all E ≥ Emin. We shall show that this leads to a contradiction.

To begin, let JE
.
=
[
−E − e−E/2,−E

]
. Restricting the integral in (5.18b) to the

interval JE gives the estimate

I(E) ≥
2eE

EΛ(E)

∫ −E

−E−e−E/2

dΩ
sin2

(
Λ(E)Ω/2

)

Ω2

(
Ω+ E

eΩ+E − 1

)
ĝ

(
aΩ

2π

)

≥
2eE/2Q(E)

EΛ(E)
(
E + e−E/2

)2 inf
Ω∈JE

ĝ

(
aΩ

2π

)
, (5.21)

where

Q(E)
.
= inf

Ω∈JE
sin2

(
Λ(E)Ω

2

)
, (5.22)

and we have used the fact that y/(ey − 1) ≥ 1 for y ≤ 0.
Next, let T =

{
E ∈ [Emin,∞) : Q(E) ≥ e−E/4

}
. T is clearly non-empty and un-

bounded from above. For E ∈ T , (5.21) implies

inf
Ω∈JE

ĝ

(
aΩ

2π

)
≤ R(E) e−E/4 , (5.23)

where R(E)
.
= 1

2ImaxΛ(E)E(E + 1)2. For E ∈ T we hence have

ĝ

(
−aE

2π

)
≤ R(E)e−E/4 + Ce−E/2 ≤

(
R(E) + C

)
e−E/4 , (5.24)

where C
.
= a(2π)−1 supR+

∣∣ĝ ′
∣∣ is a positive constant. Recalling that ĝ is even, we deduce

that for any γ ∈ (0, 1/4), there exists a positive constant K such that ĝ
(
aE/(2π)

)
≤

Ke−γ|E| for |E| ∈ T .
If T comprised all of [Emin,∞

)
, the exponential falloff of ĝ in T would now provide a

contradiction with the compact support of g [26, 27]. We shall show that the complement
of T in

[
Emin,∞

)
, T c =

{
E ∈ [Emin,∞) : Q(E) < e−E/4

}
, is sufficiently sparse for a

contradiction with the compact support of g still to ensue by Lemma 2.1.
As a first step, we note that Q(E) has the lower bound

Q(E) ≥ π−2 inf
Ω∈JE

min
k∈N0

|Λ(E)Ω + 2πk|2 , (5.25)

using (5.22), recalling that Ω < 0 for Ω ∈ JE , and using the inequality | sin(θ)| ≥ 2|θ|/π,
valid for |θ| ≤ π/2. Since |Λ(E)(Ω + E)| ≤ Λ(E) e−E/2 for Ω ∈ JE , it follows using the
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reverse triangle inequality that

πQ(E)1/2 ≥ min
k∈N0

|Λ(E)E − 2πk| − Λ(E) e−E/2 . (5.26)

From (5.26) and the definition of T it then follows that if E ∈ T c, there exists a k ∈ N0

such that |Λ(E)E − 2πk| < Λ(E) e−E/2 + πe−E/8, and hence further that for this k

|Λ(E)E − 2πk| ≤ C ′e−E/8 , (5.27)

where C ′ .= π + supE>0 Λ(E) e
−3E/8 is a positive constant.

We extend the domain of Λ to include the origin by setting Λ(0)
.
= limE→0+ Λ(E).

Note that Λ(0) > 0 by (5.19). Let Ξ : [0,∞) → [0,∞) be defined by Ξ(E)
.
= EΛ(E).

For each k ∈ N0, let Ek be the unique solution to Ξ(Ek) = 2πk. (Ek exists and is unique
because Ξ is strictly increasing, Ξ(0) = 0, and Ξ(E) → ∞ as E → ∞.) If E ∈ T c, we
hence see from (5.27) that there exists a k ∈ N0 such that |Ξ(E)− Ξ(Ek)| ≤ C ′e−E/8.
Since Ξ′(v) ≥ Λ(0) for v ≥ 0, this implies

|E − Ek| ≤
C ′

Λ(0)
e−E/8 , (5.28)

from which we see that E ≥ Ek − C ′/Λ(0), and using this in the exponential in (5.28)
gives

|E − Ek| ≤
C ′eC

′/(8Λ(0))

Λ(0)
e−Ek/8 . (5.29)

Collecting, we see that

T c ⊂
⋃

k∈N0

{
E ∈ [0,∞) : |E − Ek| ≤

C ′eC
′/(8Λ(0))

Λ(0)
e−Ek/8

}
. (5.30)

This provides for T c the sparseness that we need.
Let S consist of the union on the right-hand side of (5.30), together with its re-

flection about the origin, and the interval (−Emin, Emin). Lemma C.1 of Appendix C
can now be applied to show that S is a modest set in the sense of Lemma 2.1,
the parameters in Lemma C.1 being chosen so that α = 1/8, β ∈ (0, 1/8), and
C = δ0 = 2C ′eC

′/(8Λ(0))/Λ(0). Since Λ(E) ≤ D(E + 1)N for some D > 0 and N > 0, we
have Ek + 1 ≥ (2πk/D)1/(N+1), and the sequence (Ek)k∈N satisfies the condition (C.1)
in Lemma C.1. The function g then satisfies the conditions of Lemma 2.1, by which g
must be identically vanishing. This contradicts the construction of g.

Hence the pair of constants (Imax, Emin) does not exist: I(E) is not bounded as
E → ∞.

6 Summary and discussion

We have asked how long one needs to wait for the thermality of the Unruh effect to
become manifest in the response of an Unruh-DeWitt particle detector that is coupled
linearly to a scalar field, assuming that the interaction is sufficiently weak for linear
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perturbation theory to be applicable.
We considered two implementations of the long interaction limit: an adiabatic scal-

ing, which stretches the whole profile of the interaction, including the initial switch-on
interval and the final switch-off interval, and a plateau scaling, which leaves the dura-
tions of the switch-on and switch-off intervals unchanged but stretches an intermediate
interval during which the interaction has constant strength.

We first showed that the long interaction limit with either scaling leads to the well-
known thermality results, in the sense of the detailed balance condition, when the de-
tector’s energy gap Egap is fixed. However, we also showed that when the interaction
duration is fixed, detailed balance cannot hold in the limit of large Egap. This raised
the question of how long one needs to wait for detailed balance to hold at a given Egap

when Egap is large. Our main results addressed this question for a massless scalar field
in four spacetime dimensions, in which case the detector’s response is identical to that
of a static detector in a static heat bath. We showed that detailed balance at large Egap

can be achieved in interaction time that grows as a power-law of Egap with the adiabatic
scaling but, under mild technical conditions, not with the plateau scaling. The upshot is
that to achieve detailed balance in power-law interaction time, one needs to stretch not
just the overall duration of the interaction but also the intervals in which the interaction
is switched on and off.

Our analysis was motivated in part by experimental considerations: a waiting time
that grows no faster than a power-law in Egap would presumably be a physically sensible
requirement in prospective experimental tests of the Unruh effect. However, a deeper
motivation was to develop mathematical insight into what one might mean by thermality
in the detector’s response when the Wightman function is not invariant under time
translations along the detector’s worldline. In such situations the time dependence in the
detector’s response comes not just from the switching function that is specified by hand
but from the genuine time dependence in the quantum field’s state or in the detector’s
motion. Examples are a detector in the spacetime of a collapsing star during the onset
of Hawking radiation [18], a detector that falls into a black hole [18, 34], and a detector
in an expanding cosmology [35]. Our results show that to characterise the response as
approximately thermal over some limited interval of time, perhaps in a time-dependent
local temperature, considering the large energy gap limit will not help. In particular, a
time-dependent temperature defined in an adiabatic regime [36, 37, 38, 39, 40, 41] cannot
remain valid to arbitrarily high energies when the finite duration of the interaction is
accounted for.
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A Polynomial boundedness of Unruh F(E)

In this appendix we verify that F(E) (3.3) is polynomially bounded for the Unruh effect
in the setting of Section 5. This follows by applying to the Unruh effect Wightman
function (5.2) the following proposition.

Proposition A.1. In four spacetime dimensions, suppose

W(s) = lim
ǫ→0+

(
−

1

4π2(s− iǫ)2

)
+ f(s) , (A.1)

where the limit indicates the boundary value in the sense of Definition 4.1 and f is a
smooth function. Then F(E) (3.3) satisfies

F(E) = −
EΘ(−E)

2π

∫ ∞

−∞
dτ [χ(τ)]2 +O∞(1/E) (A.2)

as |E| → ∞, where Θ is the Heaviside step function.

Proof. Starting from equation (3.10) in [16] and proceeding as in Section 2 and Appendix
A of [18], we can write F(E) (3.3) as

F(E) = −
EΘ(−E)

2π

∫ ∞

−∞
dτ [χ(τ)]2 +

1

2π2

∫ ∞

0
ds

cos(Es)

s2

∫ ∞

−∞
dτ χ(τ)[χ(τ)− χ(τ − s)]

+ 2

∫ ∞

−∞
dτ χ(τ)

∫ ∞

0
dsχ(τ − s)Re

[
e−iEs

(
W(τ, τ − s) +

1

4π2s2

)]
. (A.3)

In the last term of (A.3), we first use the stationarity condition (4.1) and (A.1) to replace
the parentheses by f(s), and we then interchange the integrals over s and τ . We note
that W(−s) = W(s) implies f(−s) = f(s), the function s 7→

∫∞
−∞dτ χ(τ)χ(τ − s) is an

even smooth function of compact support, and the function s 7→ s−2
∫∞
−∞dτ χ(τ)[χ(τ)−

χ(τ − s)] is an even smooth function with falloff O
(
s−2
)
at s→ ±∞. This allows us to

write

F(E) = −
EΘ(−E)

2π

∫ ∞

−∞
dτ [χ(τ)]2 +

1

4π2

∫ ∞

−∞
ds

cos(Es)

s2

∫ ∞

−∞
dτ χ(τ)[χ(τ)− χ(τ − s)]

+

∫ ∞

−∞
ds e−iEs f(s)

∫ ∞

−∞
dτ χ(τ)χ(τ − s) . (A.4)

The third term in (A.4) is the Fourier transform of a smooth compactly supported
function, and hence O∞(1/E) as |E| → ∞ [26, 27]. The second term is the real part of
the Fourier transform of a smooth function that is a multiple of s−2 outside a compact
interval, and may be shown to be O∞(1/E) as |E| → ∞ by repeated integration by
parts [42].
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B Auxiliary results for Theorem 5.2

Lemma B.1. Let f : R2 → R be defined by

f(u, v)
.
=

u+ v

eu+v − 1
+

u− v

eu−v − 1
−

2u

eu − 1
, (B.1)

where the formula is understood in the limiting sense at u = v and u = −v. Then
0 ≤ f(u, v) ≤ v2/6.

Proof. A direct computation shows that f is even in each of its arguments. Since
f(u, 0) = 0 for all u, it suffices to consider the case u ≥ 0 and v > 0. We then have
f(0, v) = 2

[
(v/2) coth(v/2) − 1

]
> 0 and limu→∞ f(u, v) = 0, and it may be shown

by an elementary analysis that ∂uf(u, v) < 0 for u > 0. This implies 0 ≤ f(u, v) ≤
f(0, v). Finally, f(0, v) ≤ v2/6 may be verified by an elementary analysis of the sign of
(x2 + 3) sinhx− 3x coshx.

Lemma B.2. The Unruh effect response function F̃λ(E) (5.4) and its λ → ∞ limit
F̃∞(E) (5.5) satisfy F̃∞(E) ≤ F̃λ(E) ≤ F̃∞(E) + (24πa)−1λ−2||ωχ̂||2.

Proof. Since |χ̂(ω)| is even in ω, symmetrising the integrands in (5.4) and (5.5) gives

F̃λ(E)− F̃∞(E) =
a

2(2π)3

∫ ∞

−∞
dω |χ̂(ω)|2 f

(
2πE/a, 2πω/(λa)

)
, (B.2)

where f is given by (B.1). By Lemma B.1, 0 ≤ f
(
2πE/a, 2πω/(λa)

)
≤ 1

6

(
2π
λa

)2
ω2, and

inserting this in (B.2) completes the proof.

Lemma B.3. Let h : R+ × R
+ → R be defined by h(u, v) = (u − v)/(coshu − cosh v),

where the formula is understood in the limiting sense at u = v. h is strictly positive,
and it is strictly decreasing in each of its arguments.

Proof. It is immediate that h is strictly positive, and h(u, v) = h(v, u). An elementary
analysis shows that ∂vh(u, v) < 0.

Lemma B.4. Under the assumptions of Theorem 5.2, with λ(E) = (2πE/a)1+p and
Gest(E) given by (5.10), the inequality (5.11) holds for sufficiently large E.

Proof. Let E > 0 and let

G(E)
.
=

exp(2πE/a)

2πE/a

(
F̃λ(E)(E)− F̃∞(E)

)
. (B.3)

We need to show that G(E) ≤ Gest(E) for sufficiently large E.
Let g : R2 → R be defined by

g(u, v)
.
= euf(u, v)

=
u+ v

ev − e−u
+

u− v

e−v − e−u
−

2u

1− e−u
, (B.4)
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where f was defined in (B.1), and the last formula in (B.4) is understood in the limiting
sense at u = v and u = −v. Symmetrising the integrands in (5.4) and (5.5) as in the
proof of Lemma B.2, we may decompose (B.3) as

G(E) = G1 + G2 + G3 , (B.5)

where

G1
.
=

a

(2π)4(E/a)

∫ κ

0
dω |χ̂(ω)|2 g

(
2πE/a, 2πω/(λa)

)
, (B.6a)

G2
.
=

a

(2π)4(E/a)

∫ Eλ

κ
dω |χ̂(ω)|2 g

(
2πE/a, 2πω/(λa)

)
, (B.6b)

G3
.
=

a

(2π)4(E/a)

∫ ∞

Eλ
dω |χ̂(ω)|2 g

(
2πE/a, 2πω/(λa)

)
, (B.6c)

and we have denoted λ(E) = (2πE/a)1+p by just λ. We may assume E to be so large
that Eλ > κ. From Lemma B.1 we then see that G1, G2 and G3 are strictly positive. We
need to bound G1, G2 and G3 from above.

G1

Consider G1 (B.6a). We write u = 2πE/a and v = 2πω/a, and note that v ≤ 2πκ/a and
u > v/u1+p since by assumption 0 ≤ ω ≤ κ and Eλ > κ. In the integrand in (B.6a), we
then have, using (B.4),

g
(
u, v/u1+p

)
≤
u+ v/u1+p

1− e−u
+

u− v/u1+p

e−v/u1+p − e−u
−

2u

1− e−u

=
(
u−

v

u1+p

)( 1

e−v/u1+p − e−u
−

1

1− e−u

)

≤ u

(
1

e−(2πκ/a)/u1+p − e−u
−

1

1− e−u

)

= u

(
2πκ/a

u1+p
+O

(
u−2(1+p)

))

=
2πκ/a

up
+O

(
u−(1+2p)

)
. (B.7)

Using this in (B.6a), and using the evenness of |χ̂(ω)|, we find

G1 ≤
κ

2(2π)2

[
(2πE/a)−(p+1) +O

(
(E/a)−2(1+p)

)]
||χ̂||2 . (B.8)
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G2

Consider G2 (B.6b). Writing again u = 2πE/a and v = 2πω/a, we now have 2πκ/a ≤
v ≤ u2+p. In the integrand in (B.6b), we have

g
(
u, v/(u1+p)

)
=
(
u−

v

u1+p

)( 1

e−v/u1+p − e−u
−

1

ev/u1+p − e−u

)

+ 2u

(
1

ev/u1+p − e−u
−

1

1− e−u

)

≤
(
u−

v

u1+p

) eu sinh
(
v/u1+p

)

coshu− cosh
(
v/u1+p

)

≤
ueu sinh

(
v/u1+p

)

coshu− 1
, (B.9)

where the first inequality comes by observing that the last term preceding the “≤” sign
is negative, and the second inequality follows from Lemma B.3. From (B.6b) we hence
have

G2 ≤
a e2πE/a

(2π)3 [cosh(2πE/a)− 1]

∫ Eλ

κ
dω |χ̂(ω)|2 sinh

(
2πω/(λa)

)
. (B.10)

Note that the factor in front of the integral in (B.10) is (2a)(2π)−3 [1 +O
(
e−2πE/a

)]
.

Let ω0
.
= (a/2π)(2πE/a)(1+p+q−1)/2. Since p > q−1−1 by assumption, it follows that

κ < ω0 < Eλ for sufficiently large E, and we now assume E to be this large. We shall
bound separately the contributions to (B.10) from κ ≤ ω ≤ ω0 and from ω0 ≤ ω ≤ Eλ.

In the contribution from κ ≤ ω ≤ ω0, we have sinh
(
2πω/(λa)

)
≤ sinh

(
2πω0/(λa)

)
,

and hence
∫ ω0

κ
dω |χ̂(ω)|2 sinh

(
2πω/(λa)

)
≤ 1

2 ||χ̂||
2 sinh

(
2πω0/(λa)

)

= 1
2 ||χ̂||

2 sinh
(
(2πE/a)−(1+p−q−1)/2

)

= 1
2 ||χ̂||

2(2πE/a)−(1+p−q−1)/2

×
[
1 +O

(
(E/a)−(1+p−q−1)

)]
, (B.11)

using the evennes of |χ̂(ω)|.
In the contribution from ω0 ≤ ω ≤ Eλ, we use sinh

(
2πω/(λa)

)
≤ 1

2 exp
(
2πω/(λa)

)
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and the strong Fourier decay property (5.9), obtaining

|χ̂(ω)|2 sinh

(
2πω

λa

)
≤

C2

2κ2

(
B +

ω

κ

)2r
exp

[
−2A

(ω
κ

)q
+

2πω

aλ

]

≤
C2

2κ2

(
B +

ω

κ

)2r
exp

[
−2A

(ω0

κ

)q
+

2πE

a

]

=
C2

2κ2

(
B +

ω

κ

)2r
exp

[
−2A

( a

2πκ

)q (2πE

a

)(1+q(1+p))/2

+
2πE

a

]
.

(B.12)

Since q(1 + p) > 1 by assumption, the exponential factor in (B.12) falls off as E → ∞

faster than any power of E, while the integral
∫ Eλ
ω0

dω [B + (ω/κ)]2r has only power-law
growth in E as E → ∞. Hence the contribution to (B.10) from ω0 ≤ ω ≤ Eλ falls off
faster than any power as E → ∞.

Collecting these estimates, we have

G2 ≤
a||χ̂||2

(2π)3

(
2πE

a

)−(1+p−q−1)/2 [
1 +O

(
(E/a)−(1+p−q−1)

)]
. (B.13)

G3

Consider G3 (B.6c). Writing again u = 2πE/a and v = 2πω/a, we now have u2+p ≤ v.
Using the penultimate expression in (B.9) to bound the integrand in (B.6c), we obtain

G(Eλ,∞) ≤
e2πE/a

(2π)3(E/a)

∫ ∞

Eλ
dω |χ̂(ω)|2

(
E −

ω

λ

) sinh
(
2πω/(aλ)

)

cosh(2πE/a)− cosh
(
2πω/(aλ)

) .

(B.14)
Since q(p+ 1) > 1 by assumption, we have 1 + p < q(2 + p) + p, and we may choose

s such that 1 + p < s < q(2 + p) + p. Let ω1
.
= E(2πE/a)s. Assuming 2πE/a > 1,

we then have Eλ < ω1. In (B.14), we denote the contributions from Eλ ≤ ω ≤ ω1 and
ω1 ≤ ω < ∞ by respectively H1 and H2. We shall show that both H1 and H2 fall off
faster than any power of E as E → ∞.

For H1, Lemma B.3 gives

H1 ≤
ae2πE/a

(2π)4(E/a) sinh(2πE/a)

∫ ω1

Eλ
dω |χ̂(ω)|2 sinh

(
2πω/(aλ)

)
, (B.15)

and for the integrand in (B.15) we may proceed as in (B.12) to obtain

|χ̂(ω)|2 sinh

(
2πω

aλ

)
≤

C2

2κ2

(
B +

ω

κ

)2r
exp

[
−2A

(ω
κ

)q
+

2πω

aλ

]

≤
C2

2κ2

(
B +

ω

κ

)2r
exp

[
−2A

(
Eλ

κ

)q

+
2πω1

aλ

]

=
C2

2κ2

(
B +

ω

κ

)2r
exp

[
−2A

( a

2πκ

)q (2πE

a

)q(2+p)

+

(
2πE

a

)s−p
]
. (B.16)
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Since 1 < s−p < q(2+p), the exponential factor in (B.16) shows that H1 falls off faster
than any power of E as E → ∞.

For H2, we have

(E − ω/λ) sinh
(
2πω/(aλ)

)

cosh(2πE/a)− cosh
(
2πω/(aλ)

) =
(ω
λ
− E

)
tanh

(
2πω

aλ

)(
1−

cosh(2πE/a)

cosh
(
2πω/(aλ)

)
)−1

≤
ω

λ

(
1−

cosh(2πE/a)

cosh
(
2πω1/(aλ)

)
)−1

=
ω

(2πE/a)1+p

(
1−

cosh(2πE/a)

cosh
(
(2πE/a)s−p)

)−1

≤
2ω

(2πE/a)1+p
, (B.17)

where the last inequality holds for sufficiently large E because s − p > 1. For E this
large, we hence have

H2 ≤
2e2πE/a

(2π)2(2πE/a)2+p

∫ ∞

ω1

dω ω |χ̂(ω)|2 . (B.18)

Since q(s + 1) > 1, for sufficiently large E we have A(ω1/κ)
q ≥ 2πE/a. For E

this large, the strong Fourier decay property (5.9) gives for the integrand in (B.18) the
estimate

ω |χ̂(ω)|2 ≤
C2

κ2

(
B +

ω

κ

)2r
ω exp

[
−2A

(ω
κ

)q]

≤
C2

κ2

(
B +

ω

κ

)2r
ω exp

[
−A

(ω
κ

)q
−A

(ω1

κ

)q]

≤ e−2πE/aC
2

κ2

(
B +

ω

κ

)2r
ω exp

[
−A

(ω
κ

)q]
. (B.19)

From (B.18) and (B.19) we see that H2 falls off faster than any power of E as E → ∞.

Collect

Collecting the power-law estimates (B.8) and (B.13) for G1 and G2, and the faster than
power-law falloff of G3, we see that the weakest estimate for G(E) is (B.13). Hence

G(E) ≤
2a||χ̂||2

(2π)3

(
2πE

a

)−(1+p−q−1)/2

(B.20)

for sufficiently large E.
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C Auxiliary result for Theorem 5.3

Lemma C.1. Let (ǫk)k∈N be a strictly positive sequence such that

∞∑

k=1

e−βǫk <∞ (C.1)

with β > 0 and let δk = C e−αǫk for some C > 0 and α > β. Define ǫ−k = −ǫk and
δk = δ−k for k ∈ N, and let

S =
⋃

k∈Z\0

{ǫ : |ǫ− ǫk| < δk} ∪ (−δ0, δ0). (C.2)

If F : R → C is a locally integrable polynomially bounded function with supp(F ) ⊂ S
then the inverse Fourier transform of F ,

F−1[F ](z) =
1

2π

∫ ∞

−∞
dǫ eizǫF (ǫ) , (C.3)

is analytic in the strip | Im(z)| < α − β. In particular, S is a modest set in the sense
introduced in Section 2.

Proof. Since F is polynomially bounded, there exist D > 0 and N > 0 such that
|F (ǫ)| ≤ D(1 + |ǫ|N ). We therefore have the estimates

2π
∣∣F−1[F ](z)

∣∣ ≤
∫ ∞

−∞
dǫ
∣∣eiǫzF (ǫ)

∣∣ ≤ 2D

∫ ∞

0
dǫ e| Im(z)||ǫ|

(
1 + |ǫ|N

)

≤ 2D
∞∑

k=1

(2δk)e
| Im(z)|(ǫk+δk)

(
1 + (ǫk + δk)

N
)

≤ 4CD
∞∑

k=1

(
1 + (ǫk + δk)

N
)
e| Im(z)|(ǫk+δk)−αǫk . (C.4)

From (C.1) it follows that ǫk → ∞ as k → ∞, and hence δk → 0 as k → ∞. If
| Im(z)| < α− β, for sufficiently large k we may hence estimate the terms in (C.4) by

(
1 + (ǫk + δk)

N
)
e| Im(z)|(ǫk+δk)−αǫk

≤
(
1 + (ǫk + 1)N

)
e| Im(z)|(ǫk+1)−αǫk

= e| Im(z)|
(
1 + (ǫk + 1)N

)
e−(α−β−| Im(z)|)ǫk e−βǫk

≤ eα−β e−βǫk . (C.5)

This shows that F−1[F ](z) exists in the strip | Im(z)| < α− β.
To show that F−1[F ](z) is analytic in the strip | Im(z)| < α − β, we may use the
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inequality

∣∣∣∣∣
ei(z+h)ǫ − eizǫ

h
− iǫ eizǫ

∣∣∣∣∣ ≤
1
2 |ǫ|e

(| Im(z)|+|h|)ǫ , (C.6)

valid for h ∈ C \ {0}, together with estimates similar to those above, to provide a
dominated convergence argument that justifies differentiating (C.3) under the integral
sign, with the outcome

d

dz
F−1[F ](z) =

i

2π

∫ ∞

−∞
dǫ ǫ eizǫF (ǫ) . (C.7)
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