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Abstract: We construct perturbative quantum gravity in a generally covariant way. In particular
our construction is background independent. It is based on the locally covariant approach to
quantum field theory and the renormalized Batalin-Vilkovisky formalism. We do not touch the
problem of nonrenormalizability and interpret the theory as an effective theory at large length
scales.
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1. Introduction

The incorporation of gravity into quantum theory is one of the great challenges of physics. The
last decades were dominated by attempts to reach this goal by rather radical new concepts,
the best known being string theory and loop quantum gravity. A more conservative approach
via quantum field theory was originally considered to be hopeless because of severe conceptual
and technical problems. In the meantime it became clear that also the other attempts meet
enormous problems, and it might be worthwhile to reconsider the quantum field theoretical
approach. Actually, there are indications that the obstacles in this approach are less heavy than
originally expected.
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One of these obstacles is perturbative non-renormalizability [82,89] which actually means that
the counter-terms arising in higher order of perturbation theory cannot be taken into account
by readjusting the parameters in the Lagrangian. Nevertheless, theories with this property can
be considered as effective theories with the property that only finitely many parameters have to
be considered below a fixed energy scale [50]. Moreover, it may be that the theory is actually
asymptotically safe in the sense that there is an ultraviolet fixed point of the renormalisation
group flow with only finitely many relevant directions [91]. Results supporting this perspective
have been obtained by Reuter et al. [80,81].

Another obstacle is the incorporation of the principle of general covariance. Quantum field
theory is traditionally based on the symmetry group of Minkowski space, the Poincaré group. In
particular, the concept of particles with the associated notions of a vacuum (absence of parti-
cles) and scattering states heavily relies on Poincaré symmetry. Quantum field theory on curved
spacetime which might be considered as an intermediate step towards quantum gravity already
has no distinguished particle interpretation. In fact, one of the most spectacular results of quan-
tum field theory on curved spacetimes is Hawking’s prediction of black hole evaporation [55], a
result which may be understood as a consequence of different particle interpretations in different
regions of spacetime. (For a field theoretical derivation of the Hawking effect see [40].)

Quantum field theory on curved spacetime is nowadays well understood. This success is based
on a consequent use of appropriate concepts. First of all, one has to base the theory on the princi-
ples of algebraic quantum field theory since there does not exist a distinguished Hilbert space of
states. In particular, all structures are formulated in terms of local quantities. Global properties
of spacetime do not enter the construction of the algebra of observables. They become relevant
in the analysis of the space of states whose interpretation up to now is less well understood. It is
at this point where the concept of particles becomes important if the spacetime under consider-
ation has asymptotic regions similar to Minkowski space. Renormalization can be done without
invoking any regularization by the methods of causal perturbation theory [36]. Originally these
methods made use of properties of a Fock space representation, but could be generalized to a
formalism based on algebraic structures on a space of functionals of classical field configurations
where the problem of singularities can be treated by methods of microlocal analysis [19,17,58].
The lack of isometries in the generic case could be a problem for a comparison of renormalisation
conditions at different points of spacetime. But this problem could be overcome by requiring
local covariance, a principle, which relates theories at different spacetimes. The arising theory
is already generally covariant and includes all typical quantum field theoretical models with the
exception of supersymmetric theories (since supersymmetry implies the existence of a large group
of isometries (Poincaré group or Anti de Sitter group)). See [21,16] for more details.

It is the aim of this paper to extend this approach to gravity. But here there seems to be a
conceptual obstacle. As discussed above, a successful treatment of quantum field theory on generic
spacetimes requires the use of local observables, but unfortunately there are no diffeomorphism
invariant localized functionals of the dynamical degrees of freedom (the metric in pure gravity).
Actually, this creates in addition to technical complications also a problem for the interpretation.
Namely, Nakanishi [70,71] uses the distinguished background for a formal definition of an S-
matrix, and one could base an interpretation of the formalism in terms of the S-matrix provided it
exists. But an interpretation based on the S-matrix is no longer possible for generic backgrounds.
Often this difficulty is taken as an indication that a quantum field theoretical treatment of
quantum gravity is impossible. We propose a solution of this problem by the concept of relative
observables introduced by Rovelli in the framework of loop quantum gravity [83] and later used
and further developed in [28,86]. The way out is to replace the requirement of invariance by
covariance. We associate observables to spacetime subregions in a locally covariant way (compare
with [21,58]). Such observables transform equivariantly under diffeomorphism transformations,
but the relations between them are diffeomorphism invariant.

Because of its huge group of symmetries the quantization of gravity is plagued by problems
known from gauge theories, and a construction seems to require the introduction of redundant
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quantities which at the end have to be removed. In perturbation theory the Batalin-Vilkovisky
(BV) approach [4,5] has turned out to be the most systematic method, generalizing the BRST
approach [6,7,88]. In a previous paper [41] two of us performed this construction for classical
gravity, and in another paper [43] we developed a general scheme for a renormalized BV formalism
for quantum physics, based on previous work of Hollands on Yang-Mills theories on curved
spacetimes [57] and of Brennecke and Dütsch on a general treatment of anomalies [14]. In the
present paper it therefore suffices to check whether the assumptions used in the general formalism
are satisfied in gravity.

In the BV approach one constructs at the end the algebra of observables as a cohomology
of a certain differential. But here the absence of local observables shows up in the triviality of
the corresponding cohomology, as long as one restricts the formalism to local functionals of the
perturbation metric on a fixed spacetime. A nontrivial cohomology class arises on the level of
locally covariant fields which are defined simultaneously on all spacetimes. This is solved by
relaxing the locality assumption a bit, and considering the relational observables.

The paper is organized as follows. We first describe the functional framework for classical field
theory adapted to gravity. This framework was in detail developed in [20] but many ideas may
already be found in the work of DeWitt [27], and an earlier version is [34]. In this framework,
many aspects of quantum gravity can be studied, in particular the gauge symmetry induced by
general covariance.

As already discussed in [41], the candidates for local observables are locally covariant fields
which act simultaneously on all spacetimes in a coherent way. Mathematically, they can be defined
as natural transformations between suitable functors (see [21]). It seems, however, difficult to use
them directly as generators of an algebra of observables for quantum theory (for attempts see [37]
and [78,41]). Moreover, the action of the BV operator on such locally covariant quantum fields Φ
involves an additional term, which cannot be generated by the antibracket [41]. We therefore take
a different path here and, on a generic background spacetime M = (M, g0), we evaluate fields
ΦM on test functions of the form f = f ◦Xg0+h, where in the simplest situation f : R4 → R and
Xµ

g0+h, µ = 0, . . . , 3 are coordinate fields constructed as scalar curvature invariants depending
on the full metric g = g0 + h. We interpret the obtained diffeomorphism invariant quantities as
relative observables, similar to concepts developed in loop quantum gravity [83,28,86].

More generally, in the absence of an intrinsic choice of a coordinate system the physical
interpretation is based on the relations between different observables. In suitable cases some of
them could be thought of as coordinates but this is not necessary for a physical interpretation.
This variant of the proposed formalism is discussed in section 2.6.

The algebra generated by the relative observables is subsequently quantized with the use of the
BV formalism. For the purposes of perturbation theory we replace the diffeomorphism group by
the Lie algebra of vector fields, so the “gauge invariance” is in our framework the invariance under
infinitesimal diffeomorphisms realized through the Lie derivative. The quantization proceeds
following the paradigm proposed in [43]. Firstly, we extend the algebra of relative observables
with auxiliary objects like ghosts, antifields, etc. and add appropriate terms to the action (section
2.7). The final outcome of this procedure is a graded differential algebra (BV(M), s), where s is
the classical BV differential, and the extended action Sext such that s is locally generated by
the antibracket (the Schouten bracket on BV(M)). In section 3 we quantize the extended theory
using methods of perturbative algebraic quantum field theory (pAQFT). In the intermediate
steps we need to split the interaction (around the background metric g0) into the free part S0

and the interaction term SI . First, we quantize the free part by choosing a Hadamard solution of
the linearized Einstein equation. We then can apply the renormalized BV formalism as developed
in [43]. A crucial role is played by the Møller map which maps interacting fields to free ones. In
particular it also intertwines the free BV differential with that of the interacting theory.

We then show that the theory is background independent (section 4), in the sense that a
localized change in the background which formally yields an automorphism on the algebra of
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observables (called relative Cauchy evolution in [21]) is actually trivial, in agreement with the
proposal made in [18] (see also [42]).

We sketch how to construct states on the algebra of observables, using the perturbative ansatz
of [33]. In the first step one constructs a pre-Hilbert representation of linearized theory and the
subspace of vectors with positive inner product is distinguished as the cohomology of the free
BRST charge Q0. We refer to the literature where such construction was achieved on some special
classes of spacetimes [38,11]. In the next step we construct the representation of the full theory
on the space K of formal power series in ~ and the coupling constant λ with coefficients on K0.
The positive subspace is then recovered as the cohomology of the full interacting BRST charge
as proposed in [33]. The consistency of this approach with the BV formalism has been discussed
in [79].

2. Classical theory

2.1. Configuration space of the classical theory. We start with defining the kinematical structure
which we will use to describe the gravitational field. We follow [41], where the classical theory was
formulated in the locally covariant framework. To follow this approach we need to define some
categories. Let Loc be the category of time-oriented globally hyperbolic spacetimes with causal
isometric embeddings as morphisms. The configuration space of classical gravity is a subset of
the space of Lorentzian metrics, which can be equipped with an infinite dimensional manifold
structure. To formulate this in the locally covariant framework we need to introduce a category,
whose objects are infinite dimensional manifolds and whose arrows are smooth injective linear
maps. There are various possibilities to define this category. One can follow [54] and use the
category LcMfd of differentiable manifolds modeled on locally convex vector spaces or use the
more general setting of convenient calculus, proposed in [65]. The second of these possibilities
allows one to define a notion of smoothness, where a map is smooth if it maps smooth curves
into smooth curves. We will denote by CnMfd, the category of smooth manifolds that arises in
the convenient setting. Actually, as far as the definition of the configuration space goes, these
two approaches are equivalent. This was already discussed in details in [20], for the case of a
scalar field and the generalization to higher rank tensor is straightforward. Let Lor(M) denote
the space of Lorentzian metrics on M . We can equip it with a partial order relation ≺ defined
by:

g′ ≺ g if g′(X,X) ≥ 0 implies g(X,X) > 0 , (1)

i.e. the closed lightcone of g′ is contained in the lighcone of g. Note that, if g is globally hyperbolic,
then so is g′. We are now ready to define a functor E : Loc → LcMfd that assigns to a spacetime,
the classical configuration space. To an object M = (M, g0) ∈ Obj(Loc) we assign

E(M)
.
= {g ∈ Lor(M)| g ≺ g0} . (2)

Note that, if g0 is globally hyperbolic, then so is g ∈ E(M, g0). The spacetime (M, g) is also
an object of Loc, since it inherits the orientation and time-orientation from (M, g0). A subtle
point is the choice of a topology on E(M). Let Γ ((T ∗M)⊗2) be the space of smooth contravariant
2-tensors. We equip it with the topology τW , given by open neighborhoods of the form Ug,V =
{g + h, h ∈ V open in Γc((T

∗M)⊗2)}. It turns out that E(M) is an open subset of Γ ((T ∗M)⊗2)
with respect to τW (for details, see the Appendix A and [20]). The topology τW induces on
E(M) a structure of an infinite dimensional manifold modeled on the locally convex vector space
Γc((T

∗M)⊗2), of compactly supported contravariant 2-tensors. The coordinate chart associated
to Ug,V is given by κg(g + h) = h. Clearly, the coordinate change map between two charts is
affine, so E(M) is an affine manifold. It was shown in [20] that τW induces on the configuration
space also a smooth manifold structure, in the sense of the convenient calculus [65], so E becomes
a contravariant functor from Loc to CnMfd where morphisms χ are mapped to pullbacks χ∗.
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2.2. Functionals. Let us now proceed to the problem of defining observables of the theory. We
first introduce functionals F : E(M) → R, which are smooth in the sense of the calculus on
locally convex vector spaces [54,73] (see Appendix A for details). In particular, the definition of
smoothness which we use implies that for all g ∈ E(M), n ∈ N, F (n)(g) ∈ Γ ′((T ∗M)n), i.e. it is a
distributional section with compact support. Later, beside functionals, we will also need vector
fields on E(M). Since the manifold structure of E(M) is affine, the tangent and cotangent bundles
are trivial and are given by: TE(M) = E(M)× Γc((T

∗M)⊗2), T ∗E(M) = E(M)× Γ ′
c((T

∗M)⊗2).
By a slight abuse of notation we denote the space Γc((T

∗M)⊗2) by Ec(M). The assignment
of Ec(M) to M is a covariant functor from Loc to Vec where morphisms χ are mapped to
pushforwards χ∗. Another covariant functor between these categories is the functor D which
associates to a manifold the space D(M)

.
= C∞

0 (M,R) of compactly supported functions.
An important property of a functional F is its spacetime support. Here we introduce a more

general definition than the one used in our previous works, since we don’t want to rely on an
additive structure of the space of configurations. To this end we need to introduce the notion of
relative support. Let f1, f2 be arbitrary functions between two sets X and Y , then

rel supp(f1, f2)
.
= {x ∈ X|f1(x) 6= f2(x)} .

Now we can define the spacetime support of a functional on E(M):

suppF
.
= {x ∈M |∀ neighbourhoods U of x ∃h1, h2 ∈ E(M), (3)

rel supp(h1, h2) ⊂ U such that F (h1) 6= F (h2)} .

Another crucial property is additivity.

Definition 1. Let h1, h2, h3 ∈ E(M), such that rel supp(h1, h2) ∩ rel supp(h1, h3) = ∅. By
definition of the relative support we have h3 ↾U= h2 ↾U , where U

.
= (rel supp(h1, h2))

c ∩
(rel supp(h1, h3))

c and the superscript c denotes the complement in M . We can therefore de-
fine a function h by setting

h = h3 ↾(rel supp(h1,h2))c , h = h2 ↾(rel supp(h1,h3))c ,

We say that F is additive if

F (h1) = F (h2) + F (h3)− F (h) holds. (4)

A smooth compactly supported functional is called local if it is additive and, for each n, the
wavefront set of F (n)(g) satisfies: WF(F (k)(g)) ⊥ TDiagk(M) with the thin diagonal Diagk(M)

.
={

(x, . . . , x) ∈Mk : x ∈M
}
. In particular F (1)(g) has to be a smooth section for each fixed g.

From the additivity property follows that F (n)(g) is supported on the thin diagonal. The space of
compactly supported smooth local functions F : E(M) → R is denoted by Floc(M). The algebraic
completion of Floc(M) with respect to the pointwise product

F ·G(g) = F (g)G(g) (5)

is a commutative algebra F(M) consisting of sums of finite products of local functionals. We call it
the algebra of multilocal functionals. F becomes a (covariant) functor by setting Fχ(F ) = F ◦Eχ,
i.e. Fχ(F )(g) = F (χ∗g).
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2.3. Dynamics. Dynamics is introduced by means of a generalized Lagrangian L which is a nat-
ural transformation between the functor of test function spaces D and the functor Floc satisfying

supp(LM(f)) ⊆ supp(f) , ∀M ∈ Obj(Loc), f ∈ D(M) , (6)

and the additivity rule

LM(f1 + f2 + f3) = LM(f1 + f2)− LM(f2) + LM(f2 + f3) , (7)

for f1, f2, f3 ∈ D(M) and supp f1 ∩ supp f3 = ∅. The action S(L) is defined as an equivalence
class of Lagrangians [16], where two Lagrangians L1, L2 are called equivalent L1 ∼ L2 if

supp(L1,M − L2,M)(f) ⊂ supp df , (8)

for all spacetimes M and all f ∈ D(M). In general relativity the dynamics is given by the
Einstein-Hilbert Lagrangian:

LEH

M (f)(g)
.
=

∫
R[g]f dµg, g ∈ E(M) , (9)

where we use the Planck units, so in particular the gravitational constant G is set to 1.

2.4. Diffeomorphism invariance. In this subsection we discuss the symmetries of (9). As a nat-

ural transformation LEH is an element of Nat(Tensc,F),
1 where Tensc(M)

.
=
⊕

k Tens
k
c (M)

and Tensc(M) is the space of smooth compactly supported sections of the vector bundle⊕
m,l(TM)⊗m⊗ (T ∗M)⊗l. The space Nat(Tensc,F) is quite large, so, to understand the motiva-

tion for such an abstract setting, let us now discuss the physical interpretation of Nat(Tensc,F).
In [41] we argued that this space contains quantities which are identified with diffeomorphism
invariant partial observables of general relativity, similar to the approach of [83,28,86]. Let
Φ ∈ Nat(Tensc,F). A test tensor f ∈ Tensc(M) corresponds to a concrete geometrical setting of
an experiment, so we obtain a functional ΦM(f), which depends covariantly on the geometrical
data provided by f . We allow arbitrary tensors to be test objects, because we don’t want to
restrict a priori possible experimental settings. A simple example of an experiment is the length
measurement, studied in detail in [75].

Example 1. Let S : [0, 1] → R
4, λ 7→ s(λ) be a spacelike curve in Minkowski space M = (R4, η).

For g = η + h ∈ E(M) the curve is still spacelike, and its length is

Λg(S)
.
=

∫ 1

0

√
|gµν(s)ṡµṡν |dλ .

Here ṡµ is the tangent vector of s. We write it as ṡµ = ṡeµ, with ηµνe
µeν = −1. Expanding the

formula above in powers of h results in

Λg(S) =

∞∑

n=0

(−1)n
( 1

2

n

)∫ 1

0

hµ1ν1
(s) . . . hµnνn

(s)ṡeµ1eν1 . . . eµneνndλ .

Now, if we want to measure the length up to the k-th order, we have to consider a field

ΛM(fS)(h) =

∫
fµνS,0ηµνd

4x+

∫
fµνS,1hµνd

4x+ . . .+

∫
fµ1ν1...µkνk

S,k hµ1ν1
. . . hµkνk

d4x ,

1 Both Tensc and F have to be treated as functors into the same category. In [21] this category is chosen to be
Top, the category of topological spaces, but in the present context it is more natural to include some notion of
smoothness. A possible choice is the category of convenient vector spaces [65].



Contents 7

where the curve, whose length we measure, is specified by the test tensor fS = (fS,0, . . . , fS,k) ∈
Tensc(M), which depends on the parameters of the curve in the following way:

fµ1ν1...µkνk

S,k (x) = (−1)k
( 1

2

k

)∫ 1

0

δ(x− s(λ))ṡeµ1eν1 . . . eµkeνkdλ, k ≥ 1 ,

fµνS,0(x) = −
∫ 1

0

δ(x− s(λ))ṡeµeνdλ .

The framework of category theory, which we are using, allows us also to formulate the notion of
locality in a simple manner. It was shown in [20] that natural transformations Φ ∈ Nat(Tensc,F),
which are additive in test tensors (condition (7)) and satisfy the support condition (6), correspond
to local measurements, i.e. ΦM(f) ∈ Floc(M). The condition for a family (ΦM)M∈Obj(Loc) to be
a natural transformation reads

ΦM′(χ∗f)(h) = ΦM(f)(χ∗h) ,

where f ∈ Tensc(M), h ∈ E(M′), χ : M → M′. Now we want to introduce a BV structure on
natural transformations defined above. One possibility was proposed in [41], where an associative,
commutative product was defined as follows:

(ΦΨ)M(f1, ..., fp+q) =
1

p!q!

∑

π∈Pp+q

ΦM(fπ(1), ..., fπ(p))ΨM(fπ(p+1), ..., fπ(p+q)) . (10)

Note, however, that the dependence on test tensors fi physically corresponds to a geometrical
setup of an experiment, so ΦM(f1)ΨM(f2) means that, on a spacetime M, we measure the ob-
servable Φ in a region defined by f1 and Ψ in the region defined by f2. From this point of view,
there is no a priori reason to consider products of fields which are symmetric in test functions.
Therefore, we take here a different approach and replace the collection of natural transformations
with another structure. Let us fix M. We have already mentioned that the test function specifies
the geometrical setup for an experiment, but a concrete choice of f ∈ D(M) can be made only if
we fix some coordinate system2. This is related to the fact that, physically, points of spacetime
have no meaning. To realize this in our formalism we have to allow for a freedom of changing the
labeling of the points of spacetime. From now on we restrict the class of objects of Loc to space-
times which admit a global coordinate system. Following ideas of Nakanishi [70,71] we realize
the choice of a coordinate system by introducing four scalar fields Xµ, which will parametrize
points of spacetime. We can now consider the metric as a function of Xµ, µ = 0, . . . , 3, i.e. we
write

g(x) =
∑

ν,µ

gµν(X(x))(dXµ ⊗s dX
ν)(x) ,

where g is a function g : R4 → R
10, which represents g ∈ E(M)

.
= Γ ((T ∗M)⊗2) in the coordinate

system induced by X, and we use the notation g = X∗g. Let C(M) denote the space of global
coordinate systems. We can write any test tensor f ∈ Tensc(M) in the coordinate basis induced
by X ∈ C(M), so if we fix f ∈ R

k → R
l for appropriate dimensions k and l, then the change

of f = X∗f due to the change of the coordinate system is realized through the change of scalar
fields Xµ. For a natural transformation Φ ∈ Nat(Tensc,F) we obtain a map

ΦMf (g,X)
.
= ΦM(X∗f)(g) ,

2 In general, it is more natural to work with a frame instead of a coordinate system, but we leave this problem
for future study.
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As long as M is fixed, we will drop M in ΦMf and use the notation Φf instead. The Einstein-
Hilbert action induces a map

LEH

f (g,X) =

∫

M

R[g](x)f(X(x))dµg(x).

For now we treat g as a dynamical variable and Xµ are treated as external fields. Note that in
the fixed coordinate system X the components of g satisfy the condition:

1√−g
∂

∂Xµ (
√−ggµν) ◦X = �gX

µ , (11)

Let us now consider the transformation of g and X under diffeomorphisms. Let α ∈ Diff(M),
then the transformed coordinate system is given by X ′(x) = X(α(x)) and the transformed g is
the pullback α∗g. Infinitesimally, the transformation of the metric is given by the Lie derivative,
so we define the action ρ of the algebra Xc(M)

.
= Γc(TM) by

(ρ(ξ)Φf ) =

〈
δΦf

δg

∣∣∣
X
, ρ(ξ)g

〉
+

〈
δΦf

δXµ

∣∣∣
g
,£ξX

µ

〉
. (12)

Note that in the coordinate system induced by X we have £ξX
β = ξβ ◦ X, where ξβ ◦ X is

understood as a scalar field. Diffeomorphism invariance of the Einstein-Hilbert Lagrangian means
that

ρ(ξ)LEH

f = 0 ,

for X∗f ≡ 1 on supp ξ. Moreover, with this choice of f , also

〈
δLEH

f

δX

∣∣∣
g
,£ξX

〉
= 0, so we have

two symmetries of the action:

ρ1(ξ) =

〈
δ

δg

∣∣∣
X
, ρ(ξ)g

〉
, (13)

ρ2(ξ) =

〈
δ

δX

∣∣∣
g
,£ξX

〉
. (14)

The first of these symmetries is a dynamical local symmetry and we will see later on that it
causes the failure of the field equations to be normally hyperbolic. The other symmetry is non-
dynamical and it involves variation with respect to the external fields Xµ. Although the action
is invariant under both of these symmetries, the diffeomorphism invariance of observables is the
weaker requirement that functionals are invariant under the sum of these symmetries, i.e. they
satisfy

ρ(ξ)Φf = 0 . (15)

This corresponds exactly to the invariance condition for natural transformations, proposed in [41],
since the second term implements the action of infinitesimal diffeomorphisms on the test function.
Our notion of diffeomorphism invariant objects is similar to the notion of gauge BRS invariant
observables of gravity proposed by Nakanishi in [70,71] (see also [72]). The author makes there
a distinction between the intrinsic BRS transformation and the total BRS transformation. The
latter corresponds to our ρ1, whereas the former corresponds to ρ = ρ1+ρ2, if one restricts oneself
to test objects, which are scalar densities. In general the intrinsic BRS operator, as proposed by
Nakanishi, has no geometrical meaning on the classical level and on the quantum level cannot
be implemented by commutator with a local charge. Therefore, we do not follow this approach,
but instead we make the coordinates X dynamical. This is discussed in the next section.
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2.5. Metric-dependent coordinates. Up to now we have considered the coordinates X to be exter-
nal fields independent of the metric. As a consequence, the diffeomorphism transformation (12)
involves the term where variation with respect to Xµ is present. To avoid this, we can replace Xµ

with some scalars Xµ
g , µ = 0, . . . , 3, which depend locally on the metric. The particular choice

of these fields is not relevant for the present discussion. They could be, for example, scalars
constructed from the Riemann curvature tensor and its covariant derivatives (see [64], which
uses the earlier work of [9,10]). The caveat is that some particularly symmetric spacetimes do
not admit such metric dependent coordinates, since in such cases the curvature might vanish
(for a detailed discussion see [24,56]). This is however a non-generic case and in the situation
where we are interested in, pure gravity without matter fields, such spacetimes are physically not
observable. If matter fields are present, one can construct Xµ’s using them. A known example is
the Brown-Kuchař model [15], which uses dust fields. Here we briefly discuss a similar Ansatz,
where the gravitational field is coupled to 4 scalar massless fields. We add to the Einstein-Hilbert
action a term of the form

LKG(f)(g, φ0, . . . , φ3) =

3∑

α=0

∫

M

(∇gφ
α)2dµg.

The additional scalar fields satisfy the equations of motion

�gφ
α = 0, α = 0, . . . , 3 .

Classically, we can now identify the coordinate fields with the matter fields φα, i.e. we set Xµ
g,φ =

φµ, µ = 0, . . . , 3. With quantization in mind, we make the split of g and φα into background and
perturbations, which will subsequently be treated as quantum fields. We set g = g0 + λh and
φα = ϕα

0 + λϕα. Our gauge-invariant observables are of the form

Φf (h, ϕ
0, . . . , ϕ3) = Φ(M,g0)(φ

∗f)(λh) ,

where φ∗f(x)
.
= f(φ0(x), . . . , φ3(x)). As a concrete example consider

Φf (h, ϕ
0, . . . , ϕ3) =

∫

M

RµναβR
µναβ [g0 + λh]f((ϕ0

0 + λϕ0)(x), . . . , (ϕ3
0 + λϕ3)(x))dµg0+λh ,

where ϕα
0 define harmonic coordinates with respect to the background metric, i.e. �g0ϕ

α
0 = 0,

α = 0, . . . 3 and we choose f such that ϕ∗
0f is compactly supported. The physical interpretation

of the scalar fields φα has to be made clear in concrete examples. We will come back to this
problem in our future works.

On generic spacetimes matter fields are not necessary and it is enough to use the curvature
scalars. Let us denote by β the map g 7→ (X0

g , . . . , X
3
g ) and we define

Φβ
f (g)

.
= Φf (g,Xg) . (16)

Here we do not need to worry anymore if Xµ
g define an actual coordinate system or not, but we

have to make sure that the support of f is contained in the interior of the image of M inside
M under the quadruple of maps Xµ

g , for all g of interest. To ensure that, we restrict ourselves
to a sufficiently small neighborhood O ⊂ E(M) of the reference metric g0. This restriction is not
going to be relevant later on, as quantisation is done perturbatively anyway.

Let F(M) denote the algebra generated by functionals Φβ
f where f has compact support

contained in the interior of
⋂

g∈O
Xg(M). Note that elements of this space are no longer compactly

supported in the sense of definition (3), since the support of the functional derivative (Φβ
f )

(1)(g)

can be different for different points g ∈ O, even though each (Φβ
f )

(1)(g) is a compactly supported
distribution. They are also not local, because X∗

gf can depend on arbitrary high derivatives of
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the metric g. An advantage of using F(M) is that the transformation law under diffeomorphisms
takes a simpler form, namely

ρ1(ξ)Φ
β
f = (ρ(ξ)Φ)βf

where ρ = ρ1 + ρ2, as defined in (13) and (14). To see this, note that

(ρ1(ξ)(Φ
β
f ))(g) =

〈
δΦβ

f (g)

δg

∣∣∣
X
,£cg

〉
+

〈
δΦβ

f (g)

δXµ

∣∣∣
g
,£cX

µ
g

〉
=

= (ρ(ξ)Φf )(Xg, g) = (ρ(ξ)Φ)βf

This becomes particularly relevant for the construction of the BV differential s, which we will
perform in the next section. In particular, as ρ2 is not a dynamical symmetry, it cannot be
implemented consistently within the BV formalism by means of the antibracket. From this reason,
it is better to work on F(M), where only ρ1 is necessary.

The downside is the non-locality which we introduced by introducing the field dependent
coordinates. This, however, is well under control, since the new complex is isomorphic to the old
one. Besides, a non-local dependence on field configurations is necessary to obtain meaningful
diffeomorphism invariant quantities, as we know that there are no local diffeomorphism invariant
observables in general relativity.

2.6. An abstract point of view on field dependent coordinates. More generally, there is no reason
to distinguish between the curvature invariants that enter the definition of Xg’s and those which

constitute the density Φx in Φβ
f (g) =

∫
M
Φx(g)f(Xg(x)). Abstractly speaking, one can consider a

family of N scalar curvature invariants R1, . . . , RN and a class of globally hyperbolic spacetimes
characterized by the 4-dimensional images under this N -tuple of maps. It was shown in [69]
that any globally hyperbolic spacetime with a time function τ such that |∇τ | ≥ 1, can be
isometrically embedded into the N -dimensional Minkowski spacetime M

N for a sufficiently large
N (fixed by the spacetime dimension). This suggests that, depending on the physical situation,
one can always choose N and construct R1, . . . , RN in such a way that all spacetimes of interest
are characterized uniquely in this framework. One can then consider observables of the form

∫

M

f(R1(x), . . . , RN (x)) ,

where f : M
N → Ω4(M) is a density-valued function, which we assume to be compactly

supported inside the image of M under the embedding ϕ : M → M
N defined by the family

R1, . . . , RN . One could then quantize the metric perturbation, in the same way as we do it in
the present work. An alternative approach would be to quantize the embedding ϕ itself, as it
was done for the bosonic string quantization in [2]. We hope to explore these possibilities in our
future works.

2.7. BV complex. In this section and in the following ones we fix the spacetime M and the

map β, so we can simplify the notation and write Φf istead of Φβ
Mf if no confusion arises. In

the first step we construct the Chevalley-Eilenberg complex corresponding to the action ρ of
Xc(M) on F(M). The Chevalley-Eilenberg differential is constructed by replacing components of
the infinitesimal diffeomorphism in (15) by ghosts, i.e. evaluation functionals on Xc(M) defined
by cµ(x)(ξ)

.
= ξµ(x). CE(M), the underlying algebra of the Chevalley-Eilenberg complex, is

the graded subalgebra of C∞(E(M), ΛX′(M)), generated by elements of the form Φf , where
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Φ ∈ Nat(Tensc,CE) and CE(M)
.
= C∞

ml(E(M), ΛX′(M)). The Chevalley-Eilenberg differential γCE

is defined by

γCE : CEq(M) → CE
q+1(M) ,

(γCE ω)(ξ0, . . . , ξq)
.
=

q∑

i=0

(−1)i+q
〈

δ
δg

∣∣
X
(ω(ξ0, . . . , ξ̂i, . . . , ξq)),£ξig

〉
+

+
∑

i<j

(−1)i+j+q(ω(−[ξi, ξj ], . . . , ξ̂i, . . . , ξ̂j , . . . , ξq) , (17)

where ξ0, . . . , ξq ∈ X(M). To see that γCE maps CE(M) to itself, we have to use the fact that
symmetries act locally, so γCE maps local functionals into local functionals and can be also lifted
to a map on natural transformations and hence is also well defined on CE(M). By construction
γCE is nilpotent and, comparing with (15), we see that the 0-th cohomology of γCE is the space
of diffeomorphism invariant elements of F(M).

Now we construct the Batalin-Vilkovisky complex, following the ideas of [41]. Note that CE(M)
can be formally seen as the space of multilocal, compactly supported functions on a graded
manifold E(M) = E(M)[0] ⊕ X(M)[1]. The underlying graded algebra of the BV complex, is
formally C∞

ml(ΠT
∗E(M)) the graded algebra of multilocal functions on the odd cotangent bundle3

of E(M). We define BV(M) to be its graded subalgebra generated by covariant fields which arise
as Φf for Φ ∈ Nat(Tensc,BV) with

BV
.
= C∞

ml

(
E, ΛEc⊗̂ΛCc⊗̂Λg′⊗̂S•gc

)
. (18)

The sequential completion ⊗̂ of the algebraic tensor product is explained in details in [41] . We
denote a field multiplet in E(M) by ϕ and its components by ϕα, where the index α runs through
all the metric and ghost indices. “Monomial” elements4 of BV(M) can be written formally as

F =

∫
fF (x1, . . . , xm)Φx1

. . . Φxk

δr

δϕ(xk+1)
. . . δr

δϕ(xm) , (19)

where Φxi
are evaluation functionals, the product denoted by the juxtaposition is the graded

symmetric product of BV(M), δr

δϕ(xi)
are right derivatives and we keep the summation over the

indices α implicit. Polynomials are sums of elements of the form (19), where fF is a distributional
density with compact support contained in the product of partial diagonals. The WF set of fF
has to be chosen in such a way, that F is multilocal. In the appropriate topology (more details
may be found in [41]) polynomials (19) are dense in BV(M). We identify the right functional

derivatives δr

δϕα(x) , which differ from the left derivatives by the appropriate sign, with the so

called antifields, Φ‡

α(x)
5. Functional derivatives with respect to odd variables and antifields are

defined on polynomials as left derivatives and are extended to BV(M) by continuity. In what
follows, δ

δϕα(x) ,
δ

δϕ‡
α(x)

denotes left derivatives.

BV(M) is a graded algebra with two gradings: the pure ghost number #pg and the antifield
number #af. Functionals on E(M) have #pg = 0, #af = 0; ghosts have #pg = 1 and #af = 0.
Vector fields on E(M) have the antifield number assigned according to the rule #af(Φ‡

α(x)) =

3 By ΠT ∗E(M) we mean the graded manifold E(M)[0]⊕ X(M)[1]⊕ E′

c(M)[−1]⊕ X′

c(M)[−2]. The fact that the
fiber consists of duals of spaces of compactly supported sections is consistent with our choice of the manifold
structure on E(M)[0]⊕ g(M)[1], which is induced by the topology τW introduced in section 2.1.

4 The name monomial, used after [34], highlights the fact that these functions are homogeneous functions of
field configurations.

5 The choice of right derivatives at this point is just a convention and we use it in this work to simplify the
signs.
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#pg(Φα(x)) + 1. We define the total grading of BV(M), the so called total ghost number by
setting #gh = #pg −#af.

Since BV(M) is the subalgebra of the algebra of functions on the odd cotangent bundle
ΠT ∗E(M), its elements are graded multivector fields and BV(M) carries a natural graded bracket
{., .} (called the antibracket), which is defined as minus the usual Schouten bracket, i.e.

{F,G} =

〈
δrF

δϕα
,
δlG

δϕ‡
α

〉
−
〈
δrF

δϕ‡
α

,
δlG

δϕα

〉
.

Let us now discuss the field equations. Taking
〈

δ
δgL

EH

f (g), h
〉

and choosing f such that f(Xg) ≡ 1

on the support of h, we arrive at Einstein’s equation in the vacuum:

Rµν [g] = 0 . (20)

Let ES(M) be the space of solutions to (20). We are interested in characterizing the space of
covariant fields on ES(M), which can be characterized as the quotient FS(M) = F(M)/F0(M),
where F0(M) ⊂ F(M) is the ideal of F(M) generated by the equations of motion, i.e. it is the
image of the Koszul operator δEH defined by

δEHΦf ′ = {Φf ′ , LEH

f }, Φf ′ ∈ BV(M), f ≡ 1 on suppf ′ , (21)

To simplify the notation, we write from now on δEHΦf ′ = {Φf ′ , SEH} instead of (21). In a similar
manner, one can find a natural transformation θCE, that implements γ∗

CE
, i.e. γ∗

CE
= { · , θCE}.

For future convenience, we choose θCE as

θCE

f (g, c) =

〈
δ

δg
,£fcg

〉
+

〈
δr

δc
, cµ∂µ(fc)

〉
, (22)

where f = X∗
gf . The motivation for the above form of θCE

M
(f) is to introduce the cutoff for

the gauge transformation by multiplying the gauge parameters with a compactly supported
function f . The total BV differential is the sum of the Koszul-Tate and the Chevalley-Eilenberg
differentials:

sBV

.
= { · , SEH + θCE} .

The nilpotency of sBV is guaranteed by the so called classical master equation (CME). In [41]
it was formulated as a condition on the level of natural transformations. Here we can impose
a stronger condition, with an appropriate choice of test functions. Let f

.
= (f1,f2) be a tuple

of test functions chosen in such a way that f i(Xg), i = 1, 2 is compactly supported for all
g ∈ O ⊂ E(M) for an appropriately chosen small neighborhood O of g0. A pair of Lagrangians
(LEH , θCE), acts on the test functions according to

Lext
f

.
= LEH

f1
+ θCE

f2
, (23)

For simplicity we will write just LEH instead of (LEH , 0), so LEH

f ≡ LEH

f1
, similarly for the other

terms.
The choice of different test functions is motivated by the fact that they have slightly different

meaning in our formalism and a different physical interpretation. The test function f1 is the cutoff
for the Einstein-Hilbert interaction Lagrangian and f2 is used to multiply the gauge parameters
in order to make the gauge transformations compactly supported. From this perspective, it is
natural to require that f1 ≡ 1 on the support of f2. This way, the gauge transformations doesn’t
see the cutoff of the theory.

With an appropriate choice of a natural Lagrangian θCE which generates γCE (as for example
the one made in (22)), a stronger version of the cme is fulfilled, namely

1
2{LEH

f + θCE

f , LEH

f + θCE

f } = 0 , (24)



Contents 13

for any compactly supported f , constructed as above.
Now, the fact the δEH (graded-)commutes with γCE is the consequence of the invariance of the

field equations under infinitesimal diffeomorphism. As δ2
EH

= 0 = γ2
CE

, we conclude that s2
BV

= 0.
A crucial feature of the BV formalism is the fact that the cohomology of the total differential can
be expressed with the cohomology of γCE and the homology δEH . For this to hold (BV(M), δEH)
has to be a resolution (i.e. the Hk’s are trivial for k < 0). To see this, we can look at the first
row of the BV bicomplex with #pg = 0. We have

. . .→ Λ2V⊕ G
δEH⊕ρ−−−−→ V

δEH−−−→ F → 0 ,

where V(M) is the subalgebra of BV(M) consisting of vector fields on E(M) and G(M) is generated
by elements of the form Φf for Φ ∈ Nat(Tensc,G), where G(M)

.
= C∞

ml(E(M),Xc(M)). Here ρ
is the map defined in (12), so its image exhausts the kernel of δEH and the sequence is exact in
degree 1. This reasoning extends also to higher degrees, so one shows that the complex above is
a resolution. The same argument can be repeated for all the rows of the BV bicomplex. Using
standard methods of homological algebra, we can now conclude that the 0-th cohomology of sBV

on BV(M) is given by

H0(BV(M), sBV ) = H0((BV(M), δEH), γCE) ,

and can be interpreted as BV
ph(M), the space of gauge invariant on-shell observables.

In the next step we introduce the gauge fixing along the lines of [41]. For the specific choice
of gauge we need, we have to extend the BV complex by adding auxiliary scalar fields: 4 scalar
antighosts c̄µ in degree −1 and 4 scalar Nakanishi-Lautrup fields bµ, µ = 0, ..., 3 in degree 0. The

new extended configuration space is again denoted by E(M) and the extended space of covariant
fields on the new configuration space by BV(M). We define

s(cµ) = ibµ −£ccµ ,

s(bµ) = £cbµ .

To implement these new transformation laws we need to add to the Lagrangian a term

〈
δr

δcµ
, if2bµ −£f2ccµ,

〉
+

〈
δr

δbµ
,£f2cbµ,

〉
,

where f2 = f2 ◦Xg

Next, we perform an automorphism αΨ of (BV(M), {., .}) such that the part of the transformed
action which doesn’t contain antifields has a well posed Cauchy problem. We define

αΨ (F )
.
=

∞∑

n=0

1

n!
{Ψf ′ , . . . , {Ψf ′

︸ ︷︷ ︸
n

, F} . . . } , (25)

where X∗
gf

′ ≡ 1 on suppF and

Ψf ′ = i
∑

µ,ν

∫
((∂µc̄νg

µν − 1
2bµc̄νκ

µν)f ′)(Xg(x))dµg(x) , (26)

where κ is a non-degenerate 2-form on R
4. The explicit appearance of this form in the gauge

fixing Fermion is related to the choice of a dual pairing for Nakanishi-Lautrup fields. This pairing
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is also used to define the embedding of Ec into E
′
. We will see in the next section that, as long

as one uses consistently the same pairing, all essential structures are independent of this choice.

{Ψf ′ , Lext
f } = −

∫
(∂µ(f2bν)g

µν − 1
2f2bµbνκ

µν)
√

− det g)(Xg)d
4X+

+ i

∫
(∂µcν

√
− det ggµα∂α(f2c

ν))(Xg(x))d
4X ,

which can be rewritten as
∫
(−∂µ(f2bν)g

µν) (Xg)dµg +

∫ (
1
2f2bµbν

)
(Xg)κ

µνdµg + i

∫
f2�g̃ c̄νC

νdµg ,

where Cµ .
= £cXgg

µ, and κµν is now a non-degenrate 2-form on M . In the coordinate system
defined by X we have Cµ = cµ ◦Xg ≡ cµ, so the scalar fields Cµ coincide with the components of
the ghost field c ∈ X(M). We denote the first term in the above formula by LGF

f2
and the second

by LFP

f2
(gauge-fixing and Fadeev-Popov terms, respectively). The full transformed Lagrangian

is given by:
Lext
f = LEH

f1
+ LGF

f2
+ LFP

f2
+ LAF

f2
, (27)

where LAF

f2
is the term containing antifields. The re-defined Lext

f also satisfies (24).

The variables of the theory (i.e. the components ϕα of the multiplet ϕ ∈ E(M)) are now: the
metric g ∈ E(M), the Nakanishi-Lautrup fields bµ and the antighosts c̄µ, µ = 0, . . . , 3 (scalar
fields), ghosts c ∈ X(M). We introduce a new grading, called the total antifields number #ta. It
is equal to 0 for functions on E(M) and equal to 1 for all the vector fields on E(M). New field
equations are now equations for the full multiplet ϕ = (g, bµ, c, c̄µ), µ = 0, . . . , 3 and are derived
from the #ta = 0 term of Lext, denoted by L. The corresponding action S(L) is called the gauge

fixed action. The αΨ -transformed BV differential s = αΨ ◦ sBV ◦ α−1
Ψ is given by:

s = {·, Sext} = γ + δ .

The differential δ is the Koszul operator for the field equations derived from S and γ is the
gauge-fixed BRST operator γ. The action of γ on F(M) and the evaluation functionals bµ, c, c̄µ
is summarized in the table below:

γ

Φf ∈ F

〈
δΦf

δg ,£cg
〉

c − 1
2 [c, c]

bµ £cbµ
c̄µ ib−£ccµ

The equations of motion expressed in the Xg coordinate system are:

Rλν [g] = −i∂λcα ∂νcα − ∂(λbν) (28)

�gc
µ = 0 (29)

�gcµ = 0 (30)

1√
− det g

∂µ(
√
− det ggµν)(Xg) = bµ(Xg)κ

µν (31)

where g, bµ, cµ, cµ have to be understood as evaluation functionals and not as field configurations.
The last equation implies that

�gX
ν
g = bν , (32)
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where bν
.
= (bµκ

µν) ◦Xg. The equation for bµ is obtained by using the Bianchi identity satisfied
by Rλν [g] in equation (28) and takes the form

�gbµ = 0 . (33)

The gauge condition (31) is the generalized harmonic gauge, studied in detail in [46] (see also [45]
for a review). With this choice of a gauge the initial value problem for the multiplet (g, bµ, c, cµ)
is well posed and the linearized equations become hyperbolic. It turns out that for M = (M, g0),
the choice κµν = gµν0 is particularly convenient, so from now on we will continue with this choice.
Since s = δ + γ and (BV(M), δ) is a resolution, the space of gauge invariant on-shell fields is
recovered as the cohomology F inv

S (M) = H0(s,BV(M)) = H0(γ,H0(δ,BV(M))).

2.8. Peierls bracket. We are finally ready to define the Peierls bracket. The system of equations
considered in the previous section can be linearized by computing the second derivative of Lf

and defining the Euler-Lagrange derivative S′′
M

as a map from the extended configuration space
to the space of vector-valued distrubutions (details about the functional analytic aspects of this
construction can be found in [77]) given by

〈
(S′′

M)βα, ψ
α
1 ⊗ ψβ

2

〉
.
=

〈
δl

δϕβ

δr

δϕα
Lf , ψ

α
1 ⊗ ψβ

2

〉
,

where ψ1 ∈ E(M), ψ2 ∈ E
′
c(M) are field configuration multiplets and X∗f ≡ 1 on the support

of ψ2. To simplify the sign convention, we use both the right and the left derivative. For κ =
g0, an explicit construction shows that the retarded and advanced propagators exist. We give
formulas for these propagators in the next section, for the case of linearization around a particular

background. Let ∆
R/A
g denote the propagators obtained by linearizing around the metric g. We

define a Poisson (Peierls) bracket on BV(M) by:

⌊A,B⌋(g, bµ, c, cµ) .=
∑

α,β

〈
δlA

δϕα
, ∆αβ

g

δrB

δϕβ

〉
(g, bµ, c, cµ), ∆g = ∆A

g −∆R
g .

Note that the support of ⌊A,B⌋g is contained in the support of ⌊A,B⌋g0 , where g0 is the reference
metric in M = (M, g0). Hence, ⌊., .⌋ is a well defined operation on BV(M), taking values in the
space of smooth functionals on E(M). However, BV(M) is closed under ⌊., .⌋. In order to obtain

a Poisson algebra, one needs a suitable completion BV(M), which we define in Appendix A. Now
we want to see if ⌊., .⌋ is compatible with s. First, note that the image of δ is a Poisson ideal,

so ⌊., .⌋g is well defined on H0(δ,BV(M)). It remains to show that, on H0(δ,BV(M)), γ is a
derivation with respect to ⌊., .⌋g. To prove it, we have to show that

m ◦ (γ ⊗ 1 + 1⊗ γ) ◦ Γ ′
∆g

= m ◦ Γ ′
∆g

◦ (γ ⊗ 1 + 1⊗ γ) ,

where

Γ ′
∆g

.
=
∑

α,β

〈
∆g

αβ ,
δl

δϕα
⊗ δr

ϕβ

〉
,

After a short calculation, we obtain the following condition (compare with Prop. 2.3. of [79]):

(−1)|σ|Kg
σ
β(x)∆

βα
g (x, y) +Kg

α
β(y)∆

σβ
g (x, y) = γ(∆σα

g ) , (34)

where |σ| denotes #gh(ϕσ), while Kg is defined by

γ0gΦ
α
x =

∑

σ

Kg
α
σ(x)Φ

σ
x ≡ (KgΦ)

α ,
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and γ0g is the linearization of γ around g. In a more compact notation we can write this condition
as

(−1)|σ|(Kg ◦∆g)
σα + (∆g ◦K†

g)
σα = γ(∆σα

g ) ,

where K†
g means taking the transpose of the operator-valued matrix and adjoints of its entries.

In [79] it was shown that this condition holds when K is linear and the causal propagator
doesn’t depend on the fields. Here we give the proof of the general case. The gauge invariance of
the action in the stronger form used in (24) implies that

〈
δlLf ′

δϕα
, θαf

〉
= 0 ,

where θαf is the term in θf which multiplies Φ‡
α. We can now apply on the both sides the

differential operator
〈
(∆R

g )
µβ ◦ δl

δϕβ
δr

δϕκ , (∆
R
g )

κν
〉

and obtain

〈
(∆R

g )
µβ ◦

〈
δl

δϕβ

δl

δϕα

δr

δϕκ
Lf ′ , θαf

〉
, (∆R

g )
κν

〉

+

〈
(∆R

g )
µβ ◦

〈
δl

δϕβ

δl

δϕα
Lf ′ ,

δθαf
δϕκ

〉
, (∆R

g )
κν

〉

+

〈
(∆R

g )
µβ ◦

〈
δl

δϕα

δr

δϕκ
Lf ′ ,

δθαf
δϕβ

〉
, (∆R

g )
κν

〉

+

〈
(∆R

g )
µβ ◦

〈
δLf ′

δϕα
,
δr

δϕκ

δl

δϕβ
θαf

〉
, (∆R

g )
κν

〉
= 0 .

Setting f ′ ≡ 1 on the support of f we see that the last term is proportional to equations of
motion, so we can ignore it. In the remaining terms we can make use of the fact that ∆R

g is the
Green’s function for S′′

M
, so we finally obtain

−
〈
δ∆R

g

δϕα
, θαf

〉
+ (−1)|µ|

δθµf
δϕκ

◦ (∆R
g )

κν + (∆R
g )

µβ ◦
δθνf
δϕβ

o.s.
= 0 ,

where “
o.s.
= ” means “modulo the terms that vanish on-shell”, i.e. modulo the image of δ. The extra

sign appears because we had to change one left derivative into a right derivative. The expression
above is treated as an operator on Ec(M) and if we choose X∗f ≡ 1 on the support of the
argument, we arrive at

γ(∆R
g )

o.s.
= (−1)|σ|(Kg ◦∆g)

σα + (∆g ◦K†
g)

σα .

The same argument can be applied to ∆A
g , so the identity (34) follows. We conclude that γ is

a derivation with respect to ⌊., .⌋g modulo terms that vanish on the ideal generated by the full

equations of motion, i.e. modulo the image of δ. It follows that γ is a derivation on H0(δ,BV(M)),

hence ⌊., .⌋g induces a Poisson bracket on F
inv

S (M)
.
= H0(s,BV(M)) = H0(γ, (H0(δ,BV(M))).

This way we obtain a Poisson algebra (F
inv

S (M), ⌊., .⌋g), which we interpret as a classical algebra
of observables in general relativity, for a particular choice of coordinates (16).
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3. Quantization

3.1. Outline of the approach. In the previous section we defined the classical theory, now we want
to quantize this structure. The usual prescription involving the star product cannot be applied

to {., .}g, because acting iteratively with the functional differential operator
〈
∆g

αβ , δl

δϕα ⊗ δr

ϕβ

〉

involves also derivatives of ∆g. Therefore, from the point of view of quantization, it is convenient
to split the gauge fixed action S into a free part and the rest and quantize the free theory first.
One can make this split by writing the Taylor expansion of Lf around a reference metric g0, so
h = g − g0 is the perturbation. Later on, h will be interpreted as a quantum fluctuation around
a classical background. Interaction is introduced in the second step, with the use of time-ordered
products.

To keep track of the order in h, it is convenient to introduce a formal parameter λ (identified
with the square root of the gravitational coupling constant, i.e. λ =

√
κ) and the field multi-

plet (g0 + λh, λb, λc, λc̄), together with corresponding antifields (λh†, λb†, λc†, λc̄†). We denote
(h, b, c, c̄) collectively by ϕ. We also redefine the antifields using the prescription ϕ‡

α 7→ λϕ‡
α. It

is convenient to use the natural units, where κ is not put to 1, but has a dimension of length
squared, so h has a dimension of 1/length. The action used in quantization must be dimension-
less, so, as in the path integral approach, we use L/λ2, where L is the full extended action defined
before. We denote

L0
.
= λL

(1)
(M,g0)(g0, 0, 0, 0) +

λ2

2
L(2)

(M,g0)(g0, 0, 0, 0))

and consider it to be the free action. If g0 is not a solution to Einstein’s equations, the linear
term doesn’t vanish and the free equation of motion becomes a differential equation with a
source term. Also, negative powers of λ appear in the action. Formally, we can solve this problem

by introducing another parameter µ, so that 1
λL

(1)
(M,g0)(g0, 0, 0, 0) ≡ µJg0 , where Jg0 is the source

term, linear in h. Our observables will now be formal power series in both λ and µ. For the physical
interpretation we will restrict ourselves to spacetimes where g0 is a solution and put µ = 0, but
algebraically we can perform our construction of quantum theory on arbitrary backgrounds.

We introduce the notation SI = Sext − S0 and θ = Sext − S. We also expand θ around g0.
The first nontrivial term in the expansion is linear in configuration fields and we denote it by
θ0. It generates the free gauge-fixed BRST differential γ0. The Taylor expansion of the classical
master equation (24) yields in particular:

{θ0, S(2)(0)}+ {θ0, θ0}+ {θ1, S(1)(0)} ∼ 0 .

The first two terms of this identity correspond to the classical master equation for the free La-
grangian S(2)(0)+θ0. The third term vanishes only for on-shell backgrounds, so γ0 is a symmetry
of S0 only if g0 is a solution of Einstein’s equations. Consequences of this fact are discussed in
detail in [79].

Observables are formal power series in λ obtained by expanding elements of BV(M) around
(g0, 0, 0, 0). From now on BV(M) is implicitly understood as the space of formal power series in λ
and µ. As a simple example consider the scalar curvature R on an on-shell background (M, g0).

Φf (g) =

∫

M

R[g0]f(Xg0)dµg0

+ λ

(∫

M

f(Xg0)
δ

δg
(Rdµ)

∣∣∣∣
g0

(h) +

∫

M

R[g0]∂µf(Xg0)
δXµ

g

δg

∣∣∣∣
g0

(h)

)
+ O(λ2) ,

where f is a compactly supported function on R
4, with the support inside the interior of the image

of M under Xg. Note that we do not need to make any restrictions on h now, as our construction
is perturbative and the choice of f refers only to the background metric g0. Therefore, from now
on we will consider the configuration space to be E(M) = Γ ((T ∗M)⊗2).
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Let us now summarize the general strategy for the perturbative quantization of gravity, which
we will follow in this work. We start with the full classical theory, described by the gauge-fixed
action S which is invariant under the BRST operator γ. Then, we linearize the action and the
BRST differential around a fixed background metric g0. This way, the “gauge” invariance of the
theory is broken and the linearized classical theory doesn’t posses the full symmetry anymore.
If we linearize around g0 which is a solution of the full Einstein’s equations, then part of the
symmetry remains and S0 is invariant under γ0. This, however, is not needed for performing a
deformation quantization of the linearized theory along the lines of [43], which works for arbitrary
(M, g0) ∈ Obj(Loc). The free theory, quantized this way, still contains non-physical fields and is
not invariant under the full BRST symmetry. This is to be expected, since the linearization breaks
this symmetry in an explicit way. To restore the symmetry we have to include the interaction. This
can be done with the use of time-ordered products and relative S-matrices. The full interacting
theory is again invariant under the full BRST symmetry γ. This is guaranteed by the so called
quantum master equation (QME), which is a renormalization condition for the time-ordered
products (see [43] for more details). A crucial step in our construction is to prove that the
quantized interacting theory which we obtain in the end doesn’t depend on the choice of the
background g0. This will be done in section 4.

3.2. Perturbative formulation of the classical theory. The starting point for the construction
of the linearized classical theory is the gauge-fixed free action S0. For simplicity we choose
from now on the gauge with κ = g0. To write S0 in a more convenient way, we introduce
some notation. Let us define the divergence operator, which acts on symmetric covariant tensors
div : Γ (S2T ∗M) → Γ (T ∗M) by

(div t)α
.
=

1√− det g0
gβµ0 ∂µ(tβα

√
− det g0) .

Let us also introduce a product

〈u, v〉g0 =

∫

M

〈
u#, v

〉
dµg0 ,

where u, v are tensors of the same rank and # is the isomorphism between T ∗M and TM
induced by g0. The formal adjoint of div with respect to the product 〈., .〉g0 is denoted by

div∗ : Γ (T ∗M) → Γ (S2T ∗M). In local coordinates (in our case fixed by the choice of Xµ
g0 ) we

obtain:

(div∗v)αβ =
1

2
(∂βvα + ∂αvβ) .

Another important operation is the trace reversal operator G : (TM)⊗2 → (TM)⊗2, defined by

Gt = t− 1

2
(trt)g0 . (35)

We have tr(Gt) = −trt and G2 = id. Using this notation we can write the quadratic part of the
gauge fixed Lagrangian on a generic background M = (M, g) ∈ Obj(Loc) in the form:

L0f =

∫

M

δ

δg
(Rfdµ)

∣∣∣∣
g0

(h) + 2i

3∑

ν=0

〈
dc̄ν , d(fc

ν)
〉
g0

+
〈
fb, div(Gh)− 1

2b
〉
g0
,

where δ
δg (Rdµ)

∣∣∣
g0
(h) denotes the linearization of the Einstein-Hilbert Lagrangian density around

the background g0 and b is a 1-form on M defined by b
.
=
∑

ν bν(Xg0)dX
ν
g0 . Now we calculate



Contents 19

the variation of L0f , to obtain S′′
M
(x, y). We write it here in a block matrix form:

S′′
M
(z, x) = δ(z, x)




− 1
2 (�LG+ 2Gdiv∗ ◦ div ◦G) G ◦ div∗ 0 0

div ◦G −1 0 0
0 0 0 −i�H

0 0 i�H 0


 (x) , (36)

where the variables are (h, b, c0, ..., c3, c0, ..., c3). In the formula above �H = δd is the Hodge
Laplacian, δ

.
= ∗−1d∗ is the codifferential and �L is given in local coordinates by

(�Lh)αβ = ∇µ∇µhαβ − 2(R
µ

(α hβ)µ +R
µν

(α β)hµν) . (37)

In the literature, �L it is called the Lichnerowicz Laplacian [63] and it provides a generalization of
the Hodge Laplacian to the space of symmetric contravariant 2 tensors. Note that �L commutes
with G on E(M). It is now easy to check that the retarded and advanced propagators for S0 are
given by:

∆A/R(x, y) = −2




G∆
A/R
t G∆

A/R
t G ◦ div∗

y 0 0

divx ◦∆A/R
t divx ◦∆A/R

t G ◦ div∗
y +

1
2δ4 0 0

0 0 0 −i∆A/R
s

0 0 i∆
A/R
s 0


 ,

where δ4 denotes the Dirac delta in 4 dimensions and subscripts in divx and div∗
y mean that the

operator should be applied to the first, respectively, to the second variable. In the above formula

∆
A/R
t are the advanced/retarded propagators for the operator �L acting on symmetric tensor

fields with compact support Ec(M) = Γc(S
2T ∗M). Analogously, ∆

A/R
s are the propagators for

�H on 0-forms (scalar functions). Using the above formula we can write down the expression
for the causal propagator and use this propagator to define the classical linearized theory, by
introducing the Peierls bracket:

⌊F,G⌋g0 =
∑

α,β

〈
δlF

δϕα
, ∆αβ δ

rG

δϕβ

〉
,

where ∆ = ∆R − ∆A. Let us define microcausal functionals as smooth, compactly supported
functionals whose derivatives (with respect to both ϕ and ϕ‡) satisfy the WF set condition:

WF(F (n)(ϕ,ϕ‡)) ⊂ Ξn, ∀n ∈ N, ∀ϕ ∈ E(M) , (38)

where Ξn is an open cone defined as

Ξn
.
= T ∗Mn \ {(x1, . . . , xn; k1, . . . , kn)|(k1, . . . , kn) ∈ (V

n

+ ∪ V n

−)(x1,...,xn)} , (39)

where V ± is the closed future/past lightcone with respect to the metric g0. Let BVµc(M) denote
the space of microcausal functionals. It is equipped with the Hörmander topology τΞ , which
allows to control properties of functional derivatives (see [41] for a precise definition). We extend
the space of covariant fields to ones induced by natural transformations in Φ ∈ Nat(Tensc,BVµc)

and the algebra generated by the corresponding functionals Φβ
f is denoted by BVµc(M).
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3.3. Free quantum theory. In the next step we want to construct the quantized algebra of free
fields by means of deformation quantization of the classical algebra (BVµc(M), ⌊., .⌋g0). To this
end, we equip the space of formal power series BVµc(M)[[~]] with a noncommutative star product.
In this construction one needs Hadamard parametrices, i.e. a set of distributions in D′(M2) which
fulfill

ωαβ(x, y)− (−1)|ϕ
α||ϕβ |ωβα(y, x) = i⌊ϕα(x), ϕβ(y)⌋g0 , (39a)∑

β
Oα

βω
βγ = 0 mod C∞ function, (39b)

WF(ωαβ) ⊂ C+, (39c)

ωαβ(x, y) = ωβα(y, x). (39d)

Here Oα
β are the coefficients of the differential operator induced by S′′

M
, written in the basis {ϕα}.

They can be easily read off from (36). By C+ we denoted the following subset of the cotangent
bundle T ∗M2:

C+ = {(x1, x2; k1,−k2) ∈ T ∗M2 \ {0}|(x1; k1) ∼ (x2; k2), k1 ∈ V
+

x1
},

where (x1; k1) ∼ (x2; k2) if there is a lightlike geodesic from x1 to x2 and k2 is a parallel
transport of k1 along this geodesics. These are the properties which we will require for a Hadamard
parametrix on the general background M ∈ Obj(Loc). If we replace the condition (39b) by a
stronger one ∑

β

Oα
βω

βγ = 0 , (40)

then the Hadamard parametrix becomes a Hadamard 2-point function. We will now show that
such a distribution can be constructed on generic backgrounds. Assume that ω is of the form:

ω = −2




Gωt ωT
t div∗

y 0 0
divx ωt divxGω

T div∗
y 0 0

0 0 0 −iωv

0 0 iωv 0


 , (41)

In this case, the conditions for ω to be a Hadamard 2-point function reduce to:

ωv/t(x, y)− ωv/t(y, x) = i∆v/t(x, y), (41a)

�L ωt = 0, �H ωv = 0, (41b)

WF(ωv/t) ⊂ C+, (41c)

ωv/t(x, y) = ωv/t(y, x). (41d)

The existence of a Hadamard parametrix is already clear, since one just needs to pick arbitrary
parametrices ωt, ωv of �L and �H respectively. Their existence was already proven in [84] (the
paper actually discusses general wave operators acting on vector-valued field configurations).
Now, from a parametrix, one can construct a bisolution using a following argument: let ω be
a Hadamard parametrix and by O we denote the hyperbolic operator from (39b), so Oxω =
h, Oyω = k, hold for some smooth functions h and k. Let χ be a smooth function such that
suppχ is past-compact and supp(1− χ) is future-compact. Define

Gχ
.
= ∆Rχ+∆A(1− χ) .

Clearly Gχ is a right inverse for O. A Hadamard bisolution ωχ can be now obtained as

ωχ
.
= (1−GχO) ◦ ω ◦ (1−OGT

χ ) .
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With the use of Hadamard 2-point functions and parametrices one can define on BVµc(M)[~]] a
noncommutative star product. To separate the functional analytic aspects of the framework from
the algebraic structure, it is convenient to introduce the space of regular functionals BVreg(M),

which is defined as the space of smooth functionals satisfying WF(F (n)(ϕ,ϕ‡)) = ∅ for all ϕ, ϕ‡,
so their derivatives are compactly supported smooth functions. Here, in contrast to our previous
works, we do not assume that these functionals are compactly supported.

We can define on BVreg(M) the star product ⋆, which provides the deformation quantization
of (BVreg(M), ⌊., .⌋g0) as:

F ⋆ G
.
= m ◦ exp(i~Γ ′

∆)(F ⊗G),

where Γ ′
∆ is the functional differential operator

Γ ′
∆
.
=
∑

α,β

〈
∆αβ ,

δl

δϕα
⊗ δr

δϕβ

〉
.

There is however, a problem with extending this structure to BVµc(M), due to the singularity
structure of the causal propagator. To solve this problem, we replace ∆ by a Hadamard 2-point
function ω = i

2∆+H. The resulting star product is given by

F ⋆H G
.
= m ◦ exp(i~Γ ′

ω)(F ⊗G) .

The two star products introduced above provide isomorphic structures on BVreg(M)[[~]] and

this isomorphism is given by the map αH
.
= e

~

2 ΓH : BVreg(M)[[~]] → BVreg(M)[[~]], where

ΓH
.
=
∑

α,β

〈
Hαβ ,

δl

δϕα

δr

ϕβ

〉
.

Now, the star product ⋆H can be extended to BVµc(M[[~]]) and the resulting algebra is denoted
by AH(M). Note that BVreg(M)[[~]] is dense in BVµc(M[[~]]), if we equip it with the Hörmander
topology. We can, therefore, use the intertwining map αH : BVreg(M)[[~]] → BVµc(M)[[~]] to
define a certain “completion” of the source space BVreg(M) by extending BVreg(M) with all

elements of the form limn→∞ α−1
H (Fn), where (Fn) is a convergent sequence in BVµc(M) with

respect to the Hörmander topology. The resulting space, denoted by α−1
H (BVµc(M)), is equipped

with a unique continuous star product equivalent to ⋆H ,

α−1
H F ⋆ α−1

H G
.
= α−1

H (F ⋆H G) .

Different choices of H differ only by a smooth function, hence all the algebras
(α−1

H (BVµc(M)[[~]]), ⋆) are isomorphic and define an abstract algebra A(M). For F ∈ A(M),
we have αHF ∈ AH(M), hence we can realize A(M) more concretely as the space of families
{GH}H , labeled by possible choices of H, fulfilling the relation

GH′ = exp(~ΓH′−H)GH ,

equipped with the product
(F ⋆ G)H = FH ⋆H GH .

The support of F ∈ A(M) is defined as supp(F ) = supp(αHF ). Again, this is indepedent of H.

Functional derivatives are understood as
〈

δF
δϕ , ψ

〉
= α−1

H

〈
δαHF
δϕ , ψ

〉
, which is well defined as

ΓH′−H commutes with functional derivatives.
Polynomial functionals in AH(M) are interpreted as Wick powers. Corresponding elements of

A(M) are obtained by applying α−1
H . The resulting object is denoted by

∫
: Φx1 . . . Φxn

:H f(x1, . . . , xn)
.
= α−1

H

(∫
Φx1 . . . Φxn

f(x1, . . . , xn)
)
, (42)
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where f ∈ E′
Ξn

(Mn, V ) and we suppress all the indices. Let us now discuss the covariance
properties of Wick powers. The assignment of A(M) to a spacetime M can be made into a
functor A from the category Loc of spacetimes to the category of topological *-algebras Obs

and, by composing with a forgetful functor, to the category Vec of topological vector spaces.
Admissible embeddings are mapped to pullbacks, i.e. for χ : M → M′ we set AχF (ϕ)

.
= F (χ∗ϕ).

Locally covariant quantum fields are natural transformations between D and A. We require
Wick products to be locally covariant in the above sense. Let BVloc(M) denote the subspace of
BVµc(M) generated (as a vector space) by natural transformations Nat(Tensc,Floc). Note that
elements are local in a weaker sense, as the coordinates in ΦM(X∗

gf) depend on the metric (albeit
locally).

Let us now define covariant Wick products. On each object M we have to construct the map
T1M from BVloc(M) (the “classical world”) to the quantum algebra A(M) in such a way that

T1M(Φβ
Mf )(χ

∗g) = T1M′(Φβ
M′f )(g) , (43)

As we have noted before, classical functionals can be mapped to AH(M) by identification (42).
This, however, doesn’t have the right covariance properties and (43) would not be fulfilled. A
detailed discussion of the analogous problem in the scalar field theory is presented in the section 5
of [21], where it is shown that redefining Wick products to become covariant amounts to solving a
certain cohomological problem. The result reproduces the solution, which was proposed earlier in
[58]. One has to define T1 as α−1

H−w, where w is the smooth part of the Hadamard 2-point function
ω = u

σ +v lnσ+w with σ(x, y) denoting the square of the length of the geodesic connecting x and
y and with geometrically determined smooth functions u and v. A more explicit construction of
Wick products was provided in a recent review [44]. In the present case the only difference lies in
the fact that elements of BVloc(M) are typically formal power series in λ, with coefficients that
are local polynomials of arbitrary. As an example, we consider the Wick ordered scalar curvature
on a background g0.

T1M(Φf ) =

∫

M

R[g0]f(Xg0)dµg0+

+ λα−1
H−w

(∫

M

f(Xg0)
δ

δg
(Rdµ)

∣∣∣∣
g0

(h) +

∫

M

R[g0]∂µf(xg)
δXµ

g

δg

∣∣∣∣
g0

(h)

)
+ O(~2) .

For the simplicity of notation we will drop the subscript M if we keep the background M fixed
and use the notation T1 instead of T1M for the Wick ordering operator.

3.4. Interacting theory. Following [43], we introduce the interaction by means of renormalized
time-ordered products. Let ∆D

.
= 1

2 (∆
R+∆A) denote the Dirac propagator. By Aloc(M) denote

the space T1(BVloc(M)[[~]]) of Wick ordered local functionals and we define operators Tn :
Aloc(M)⊗n → A(M), n > 1 by means of

Tn(F1, . . . , Fn) = α−1

H−w(F1) ·T . . . ·T α−1

H−w(Fn) ,

for Fi ∈ Aloc(M) with disjoint supports6, where

F ·T G .
= m ◦ exp(i~Γ ′

∆D
)(F ⊗G),

and we set T0 = 1, T1 = α−1
H+w. Maps Tn have to be extended to functionals with coinciding

supports and are required to satisfy the standard conditions given in [16,57]. In particular, we re-
quire graded symmetry, unitarity, scaling properties, suppTn(F1, . . . , Fn) ⊂

⋃
suppFi and causal

6 Note that Fi, i = 1, . . . , n are of the form Φi

fi
for some locally covariant quantum field Φ. By pairwise disjoint

supports we therefore mean that the supports of f i are pairwise disjoint.
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factorization property: if the supports of F1 . . . Fi are later than the supports of Fi+1, . . . Fn, then
we have

Tn(F1 ⊗ · · · ⊗ Fn) = Ti(F1 ⊗ · · · ⊗ Fi) ⋆ Tn−i(Fi+1 ⊗ · · · ⊗ Fn) . (44)

Maps satisfying the conditions above are constructed inductively, and Tn is uniquely fixed by the
lower order maps Tk, k < n, up to the addition of an n-linear map

Zn : Aloc(M)n → α−1
H+w(Aloc(M)) =: Aloc(M) , (45)

which describes possible finite renormalizations. In [43] it was shown that the renormalized time
ordered product can be extended to an associative, commutative binary product defined on the

domain DT(M)
.
= T(BV(M)), where T

.
= ⊕nTn ◦ m−1. Here m−1 : BV(M) → S•BV

(0)
loc(M)

is the inverse of the multiplication, as defined in [43,78]. The only difference is that now we
consider functionals that are formal power series in λ. DT(M) contains in particular Aloc(M)
and is invariant under the renormalization group action. Renormalized time ordered products
are defined by

F ·T G .
= T(T−1F · T−1G) , (46)

and we use the notation :F :
.
= T(F ). Time ordered products on different spacetimes have to be

defined in a covariant way. To show that this can be done, one uses a straightforward general-
ization of the result of [57] on the existence of covariant time-ordered products for Yang-Mills
theories.

Using covariant time-ordered products we can now introduce the interaction. As indicated
in section 3.2, we split the action into Lext = L0 + LI , where LI is the interaction term. Let
f
.
= (f0,f1) be a tuple of test functions chosen in such a way that f i(Xg0), i = 0, 1 are compactly

supported. We require that f0 ≡ 1 on suppf1 (compare with the condition preceding (23)) and
we have a pairing Lext

f = L0f0
+ LIf1

.

The formal S-matrix S is a map from Aloc(M) to A(M) defined as the time-ordered exponential.
In particular, we have

S(:LIf :) = e
iTLIf/~
T . (47)

Now we want to construct a local net of ∗-algebras corresponding to the interacting theory on
a fixed spacetime M. This is done along the lines of [16], by means of relative S-matrices. For
V, F ∈ Aloc(M) the relative S-matrix is defined by the Bogoliubov formula

SV (F )
.
= S(V )−1 ⋆ S(V + F ) . (48)

The infinitesimal version of the above formula allows to define an interacting field corresponding
to an observable F under the influence of the interaction V :

RV (F )
.
= −i~ d

ds
SV (sF )|s=0 =

(
e
iTV/~
T

)⋆−1

⋆
(
e
iTV/~
T ·T TF

)
. (49)

Unfortunately, we cannot insert directly :LIf : as V , since the resulting interacting fields would
in general depend on the choice of the cutoff function f . One way to do it would be to take the
limit f → 1 directly, in some appropriate topology. This, however, is typically not well under
control. Instead we construct the so called “algebraic adiabatic limit”.

Let O be a relatively compact open subregion of the spacetime M. From the support properties
of the retarded Møller operator follows that for F ∈ Aloc(O), the S-matrix SL

If′
(F ) depends only

on the behavior of f ′
.
= f ′◦Xg0 within J−(O). Moreover, the dependence on f ′ in that part of the

past which is outside of J+(O) is described by a unitary transformation which is independent of
F . Concretely, if f ′′ = f ′′ ◦Xg0 coincides with f ′ on a neighborhood of J⋄(O) := J+(O)∩J−(O),
then there exists a unitary U(f ′′, f ′) ∈ A[[~]] (formal power series in ~, λ and possibly µ) such
that

SL
If′′

(F ) = U(f ′′, f ′)SLIf′ (F )U(f ′′, f ′)−1 ,
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for all F ∈ Aloc(O). Hence the algebra generated by the elements of the form SLIf′ (F ) is, up

to isomorphy, uniquely determined by the restriction of f ′ to the causal completion J⋄(O). This
defines an abstract algebra ALI [f ′](O), where [f ′] ≡ [f ′]O denotes the class of all test functions
which coincide with f ′ on a neighborhood of J⋄(O). In fact, f ′ can be chosen as a smooth function
without the restriction on the support. The algebra ALI [f ′](O), is generated by maps

RLI [f ′](F ) : [f
′]O → A(M), f ′ 7→ RLIf′ (F ) = i~

d

dλ
SLIf′ (λF )

∣∣∣
λ=0

.

Now if O1 ⊂ O2, we can then define a map ALI [f ′](O1) to ALI [f ′](O2) by taking the restriction
of maps RLI [f ′]O1

(F ) to [f ′]O2
. For f ′ = 1 we denote ALI [1](O) ≡ ASI

(O) and analogously

RLI [1](F ) ≡ RSI
(F ) for F ∈ Aloc(O). We can now construct the inductive limit ASI

(M) of the
net of local algebras (ASI

(O))O⊂M. We call this the algebraic adiabatic limit.
Note that for V ∈ BVreg(M) we can define on BVreg(M) a product ⋆V as

F ⋆V G
.
= R−1

V (RV (F ) ⋆ RV (G)) . (50)

This doesn’t work for local arguments, as R−1
V would not be well defined. Instead, we can define

⋆SI
formally, by setting

RSI
(F ⋆SI

G)
.
= RSI

(F ) ⋆ RSI
(G) . (51)

Let us now come back to quantization of structures appearing in the BV formalism. Following
the approach proposed in [43], we define the renormalized time-ordered antibracket on T(BV(M))
by

{X,Y }T = T{T−1X,T−1Y } .
We can also write it as:

{X,Y }T =
∑

α

∫ (
δrX

δϕα
·T δlY

δϕ‡
α
− (−1)|ϕ

‡
α| δ

rX

δϕ‡
α
·T δlY

δϕα

)
dµ . (52)

The above formula has to be understood as:

{F,G}T .
= T

(
D∗
(
T−1 δF

δϕ
⊗ T−1 δG

δϕ‡

))
, (53)

where D∗ denotes the pullback by the diagonal map and
(
T−1 δF

δϕ

)
(ϕ) is a compactly supported

distribution (i.e. an element of E′(M)) defined by

〈(
T−1 δF

δϕ

)
(ϕ), f

〉
.
=
(
T−1

〈δF
δϕ

, f
〉)

(ϕ) =
〈 δ

δϕ
T−1F, f

〉
(ϕ) , f ∈ E(M) .

In the second step we used the field independence of time ordered products. Since F ∈ T(BV(M)),
the distribution

(
T−1 δF

δϕ

)
(ϕ) defined by the above equation is actually a smooth function and

the pullback in (53) is well defined. Similarly, we define the antibracket with the ⋆-product:

{X,Y }⋆ =
∑

α

∫ (
δrX

δϕα
⋆
δlY

δϕ‡
α
− (−1)|ϕ

‡
α| δ

rX

δϕ‡
α
⋆
δlY

δϕα

)
dµ , (54)

whenever it exists. Clearly, it is well defined if one of the arguments is regular or equal to S0.
The antibracket {., S0}⋆ with the free action defines a ⋆-derivation and, similarly, {., S0}T is a
·T -derivation. A relation between these two is provided by the Master Ward Identity [14,57]:

{eiV/~
T ·T X,S0}⋆ = {eiV/~

T ·T X,S0}T + e
iV/~
T ·TH (i~△V (X) + {X,V }T) . (55)
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Now we can use the BV formalism to discuss the gauge invariance in the quantum theory. In the
framework of [43], the S-matrix is independent of the gauge fixing-fermion if the quantum master
equation (QME) is fulfilled on the level of natural transformations. In terms of the relational
observables we use in the present work, this condition means that at each order in λ and ~,

supp
(
e
−iTLIf1

/~
T ·T

{
e
iTLIf1

/~
T , L0f0

}
⋆

)
⊂ supp(df1) , (56)

where f1
.
= f1 ◦Xg0 . Using the Master Ward Identity [14,57] and our choice of f1, f0, we can

rewrite the above condition as:

supp
(
{Lext

f , Lext
f }+△(LIf )

)
⊂ supp(df1) , (57)

where ∆(LIf ) is the anomaly term, which in the formalism of [43], is interpreted as the renor-
malized version of the BV Laplacian. The condition (57) is called the quantum master equation.
If we redefine time-ordered products in such a way that the anomaly is equal to 0, the above
condition is fulfilled. To show that such a redefinition of time-ordered products is possible, one
uses a cohomological argument similar to that of [57,43], which reduces the problem of removing
the anomaly term to the problem of analyzing the cohomology of s modulo d on local forms
(forms constructed locally from the fields of the theory). For the case of gravity in the metric
formulation, the relevant cohomology (i.e. H1(s|d) on top forms) was computed in [3] (see also
earlier work [22], without antifields). In 4 dimensions for pure gravity this cohomology is trivial,
so the anomaly can be removed, i.e. one can redefine the time-order products in such a way that
(57) holds for the new definition of T.

Let us now define the quantum BV operator ŝ, as a map on BV(M) given by

ŝ(X) = e
−iTLIf/~
T ·T

({
e
iTLIf/~
T ·T TX,L0f )

}
⋆

)
− {Lext

f , Lext
f }T ·T TX , (58)

where the second term is a correction for the fact that {Lext
f , Lext

f }T vanishes only for f → 1.
The nilpotency of ŝ is easily checked by direct computation, with the use of the Jacobi identity
for the antibracket and the fact that {Lext

f , Lext
f }T is odd. From the mwi follows that ŝ can be

rewritten as
ŝ(X) = {X,Sext}+∆SI

(X) ,

so it is local and doesn’t depend on the choice of f . As in [43] we have an intertwining property

{., S0}⋆ ◦RLIf
= RLIf

◦ ŝ+ (terms that vanish for df = 0) , (59)

hence we can formally state that

ŝ = R−1
LIf

◦ {., S0}⋆ ◦RLIf

∣∣∣
df=0

.

Note that ŝ doesn’t depend on the choice of f and the intertwining property above suggests that
ŝ should (at least formally) be a derivation with respect to ⋆SI

. To make this statement precise,
we can use the fact that ŝ is locally implemented by the BRST charge Q [79]. It is defined as
the Noether charge corresponding to the BRST transformation. A concrete formula is provided
in Appendix B. Let us assume that M has a compact Cauchy surface. Using the result of [79] we
can conclude that

RLIf
(ŝΦf ′) =

i

~
[RLIf

(Φf ′), RLIf
(Q)]⋆ (60)

holds on-shell for Φf ′ ∈ B̃V(O), where f ′
.
= f ′ ◦ Xg0 is supported in O and f

.
= f ◦ Xg0 is

identically 1 on O. Formally, this can be written as

ŝΦf ′ = [Φf ′ , Q]⋆LIf
.
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As we are interested in constructing only the local algebras associated to bounded regions O ⊂ M,
we can always embed such a region in a spacetime with compact Cauchy surfaces. Since the ⋆LIf

–
commutator is local, it doesn’t depend on the behavior of Q in the region spacelike to the support
of f ′, so the formula (60) holds also for spacetimes with non-compact Cauchy surfaces, although
Q alone is not well defined (see the remarks in [57] at the end of section 4.1.1).

We can now define the space of gauge invariant fields as the 0th cohomology of (ŝ,BV(M)).
This concludes the construction of the algebra of diffeomorphism invariant quantum fields for
general relativity.

4. Background independence

In the previous section we constructed the algebra of interacting observables of effective quantum
gravity, by choosing a background and splitting the action into a free and interacting part. Now
we prove that the result is independent of that split. In [18] it was proposed that a condition
of background independence can be formulated by means of the relative Cauchy evolution. Let
us fix a spacetime M1 = (M, g1) ∈ Obj(Loc) and choose Σ− and Σ+, two Cauchy surfaces in
M1, such that Σ+ is in the future of Σ−. Consider another globally hyperbolic metric g2 on
M , such that k

.
= g2 − g1 is compactly supported and its support K lies between Σ− and Σ+.

Let us take N± ∈ Obj(Loc) that embed into M1, M2, via χ1±, χ2± and χi±(N±), i = 1, 2 are
causally convex neighborhoods of Σ± in Mi. We can then use the time-slice axiom to define
isomorphisms αχi±

.
= Aχi± and the free relative Cauchy evolution is an automorphism of A(M1)

given by β0g = α0χ1−
◦ α−1

0χ2−
◦ α0χ2+

◦ α−1
0χ1+

. It was shown in [21] that the functional derivative
of β with respect to g is the commutator with the free stress-energy tensor. Let us recall briefly
that argument, using a different formulation. We can apply β to the S-matrix, which works as
the generating function for free fields, and calculate the functional derivative using an explicit
formula for relative Cauchy evolution. To this end we use the perturbative agreement condition
introduced by Hollands and Wald in [59]. Recently a more general result in this direction was
proven in [31]. Following these ideas, we use a map τ ret : A(M2) → A(M1), such that τ ret maps
ΦM2

(f) to ΦM1
(f) (modulo the image of δ0), f ≡ f ◦ Xg0 , if the support of f lies outside the

causal future of K. Physically it means that free algebras A(M1) and A(M2) are identified in the
past of K. Analogously, one defines a map τadv, which identifies the free algebras in the future.
The free relative Cauchy evolution is then given by

β0g
.
= τ ret

g1g2 ◦ (τadv

g1g2)
−1 , (61)

As we choose to work off-shell, we define τ ret as the classical retarded Møller operator constructed
in [35]. This definition can be understood as an off-shell extension of the definition given in [59].
The perturbative agreement is a condition that, on shell,

τ ret

g1g2 ◦ S2 = SS0M2
−S0M1

holds. (62)

Here SS0M1
−S0M2

denotes the relative S-matrix constructed with the interaction S0M1
−S0M2

and
the background metric g1, while S2 is the S-matrix constructed on M2 with the TM2 product.
More explicitly, we have

τ ret

g1g2

(
e
iΦ

M2f′/~

T
M2

)
o.s.
=
(
e
i(L0M2

−L0M1
)f/~

T
M1

)−1

⋆g1

(
e
i(L0M2

−L0M1
)f/~+iΦ

M2f′/~

T
M1

)
, (63)

where
o.s.
= means “holds on-shell with respect to free equations of motion” (i.e. modulo the image

of δ0) and, using the notation introduced in the previous section, (L0M1
)f = (L0M1

)f0
, where

f = (f0,f1) is a tuple of test functions such that f0 ≡ 1 on suppf1. We also choose f to be
identically (1, 1) on suppf ′.
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The perturbative agreement condition for τadv
g1g2 is analogous to (63) and reads:

τadv

g1g2

(
e
iΦ

M2f′/~

T
M2

)
o.s.
=

(
e
i(L0M2

−L0M1
)f/~+iΦ

M2f′/~

T
M1

)
⋆g1

(
e
i(L0M2

−L0M1
)f/~

T
M1

)−1

, (64)

Conditions (63) and (64) were proven in [59] for the case of the free scalar field, but the same
argument can be used also for pure gravity.

To fulfill the perturbative agreement condition, one fixes the time-ordered product TM1 and
shows that there exists a definition of TM2

on the background M2 compatible with other axioms,
such that also (62) can be fulfilled. In particular, the quantum master equation holds automati-
cally for TM2

if it holds for TM1
. To prove this, we use the off-shell definition of τ ret

g1g2 , given in

[35], and from (62) it follows that τ ret
g1g2 ◦ S2(ΦM2f

′) = SS0M2
−S0M1

(ΦM2f
′) + I, where I belongs

to the image of {., S0M1}⋆g1
. Let

Vi
.
= TMi

(LMi
− L0Mi

)f .

Since τ ret
g1g2 is an algebra morphism and it maps

δS0M2

δϕ(x) to
δS0M1

δϕ(x) , it follows that

τ ret

g1g2

({
e
iV2/~
TM2

, S0M2

}
⋆g2

)
=
{
τ ret

g1g2

(
e
iV2/~
TM2

)
, S0M1

}
⋆g1

=

=

{(
e
i(L0M2

−L0M1
)f/~

T
M1

)−1

⋆g1

(
e
i((L0M2

−L0M1
)f+V2)/~

T
M1

)
, S0M1

}

⋆g1

Now we use the fact that (L0M2
−L0M1

)f doesn’t depend on antifields and that (L0M2
−L0M1

)f +
V2 = V1. This yields

τ ret

g1g2

({
e
iV2/~
TM2

, S0M2

}
⋆g2

)
=
(
e
i(L0M2

−L0M1
)f/~

T
M1

)−1

⋆g1

{
e
iV1/~
TM1

, S0M1

}
⋆g1

= 0 ,

so the qme holds for TM2
.

Let us go back to the relative Cauchy evolution. The functional derivative of β0g with respect
to k

.
= g2 − g1 can now be easily calculated, yielding Sign error

corrected
hereδ

δkµν
β0g

(
e
iΦ

M1f′/~
T
M1

) ∣∣∣
g1

o.s.
=

i

~

(
−
(
δ(L0M2

)f
δkµν

∣∣∣
g1

)
⋆g1 e

iΦ
M1f′/~

T
M1

+ e
iΦ

M1f′/~
T
M1

⋆g1

(
δ(L0M2

)f
δkµν

∣∣∣
g1

))

= − i

~

[
T0µν , e

iΦ
M1f′/~

T
M1

]
⋆
,

where T0µν is the stress-energy tensor of the linearized theory.
Let us now discuss a corresponding construction in the interacting theory. It was conjectured

in [18] that, for the full interacting theory of quantum gravity, the relative Cauchy evolution
should be trivial (equal to the identity map), hence the derivative with respect to g should
vanish. Using the quantum Møller maps RVi

, AVi
, i = 1, 2, we can write the interacting relative

Cauchy evolution as:

β = R−1
V1

◦ τ ret

g1g2 ◦RV2
◦A−1

V2
◦ (τadv

g1g2)
−1 ◦AV1

.

We can now formulate the condition of background independence as:

R−1
V1

◦ τ ret

g1g2 ◦RV2
= A−1

V1
◦ τadv

g1g2 ◦AV2
.
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Note that we can avoid potential problems with domains of definition of R−1
V1

and A−1
V1

, by
rewriting the above condition as

e
iV1/~
T
M1

⋆g1 (τ
ret

g1g2 ◦RV2(ΦM2f
′)) = (τadv

g1g2 ◦AV2(ΦM2f
′)) ⋆g1 e

iV1/~
T
M1

.

Using formulas for τ ret
g1g2 and τadv

g1g2 and the fact that (L0M2
)f + V2 = Lext

M2f
, we obtain:

e
iV1/~
T
M1

⋆g1

(
e
i(Lext

M2
−L0M1

)f/~
T
M1

)−1

⋆g1 e
i(Lext

M2
−L0M1

)f/~+iΦ
M2f′/~

T
M1

o.s.
=

o.s.
= e

i(Lext
M2

−L0M1
)f/~+iΦ

M2f′/~
T
M1

⋆g1

(
e
i(Lext

M2
−L0M1

)f/~
T
M1

)−1

⋆g1 e
iV1/~
T
M1

Differentiating with respect to kµν yields a condition

[RV1
(ΦM1f

′), RV1
(T (η))]⋆

o.s.
= 0 ,

where

T (η)
.
=
〈
Tµνf , η

µν
〉
=

〈
δLext

M2f

δkµν

∣∣∣
g1
, ηµν

〉

is the full stress-energy tensor smeared with a test section η and we chose f ≡ 1 on suppη. We
can write the above condition in a more elegant way, using the formal notation with ⋆V1

, namely

[ΦM1f
′ , T (η)]⋆V1

o.s.V1= 0 ,

where
o.s.V1= means “holds on-shell with respect to the equations of motion of the full interacting

theory”. To prove that the infinitesimal background independence is fulfilled, we have to show
that T (η) = 0 in the cohomology of ŝ. This is easily done, as

T (η) =

〈
δSext

M2

δkµν

∣∣∣
g1
, ηµν

〉
=

〈
δSext

M2

δhµν

∣∣∣
g1
, ηµν

〉
= s

〈
h‡, η

〉
= ŝ

〈
h‡, η

〉
,

where h is the perturbation metric. The last equality follows from the fact that the anomaly
can always be removed for linear functionals [14]. This concludes the argument, so the theory is
perturbatively background independent.

5. States

Finally we come to the discussion of states. We start with outlining the construction of a state
for the full interacting theory for on-shell backgrounds (i.e. backgrounds for which the metric is a
solution to Einstein’s equations), given a state for the linearised theory. We will use the method
proposed in [33] which relies on the gauge invariance of the linearized theory under the free BV
transformation s0. We have already indicated that this requires the background metric g0 to be
a solution of the Einstein’s equation, so throughout this subsection we assume that this is indeed
the case. The construction we perform is only formal, since we don’t control the convergence of
interacting fields and we treat them as formal power series in ~ and λ.

For a fixed spacetime M = (M, g0), we define the quantum algebra A(M) of the free theory
as in section 3.2. Since we assumed in this subsection that g0 is a solution of Einstein’s equation,
the free action L0 contains only the term quadratic in h.

Let us assume that we have a representation π0 of A(M) on an indefinite product space K0(M)
and we denote K(M)

.
= K0(M)[[~, λ]]. The scalar product 〈., .〉

K(M) on K(M) is defined in terms

of formal power series in ~ and λ. In order to distinguish a subspace of K(M) that corresponds to
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physical states, we will apply the Kugo-Ojima formalism [67,68] that makes use of the interacting
BRST charge Qint ≡ RSI

(Q) to characterize the physical states in K. The nilpotency of Q (as
an operator on K(M)) can be shown by arguments analogous to [57], postulating appropriate
Ward identities. It follows that the 0-th cohomology of Q defines a space closed under the action
of physical observables (i.e. under H0(BV(M), ŝ)). To see that this is consistent, let us take
Ψ ∈ ker(Qint) and F ∈ BV(M). Then

RLIf
(ŝF )Ψ = [RLIf

(Q), RLIf
(F )]⋆Ψ = RLIf

(Q)FΨ

holds, i.e. RLIf
(ŝF )Ψ ∈ Im(Qint), so it vanishes in the cohomology. Vectors belonging to ker(Qint)

are constructed perturbatively from the elements of ker(Q0) ⊂ K0(M) by the recursive method
introduced in [33]. The assumptions on Q0 and K0(M) necessary for this method to work are
the following:

1. 〈ψ, ψ〉
K0(M) ≥ 0, ∀ψ ∈ K0(M),

2. If ψ ∈ K0(M) satisfies 〈ψ, ψ〉
K0(M) = 0, then ψ ∈ K00(M) ≡ kerQ0.

It was shown in [33] that under these assumptions 〈., .〉
K(M) is positive definite on kerQint ⊂

K(M), so H0(Q,K(M)) provides formally a Hilbert space representation of H0(BV(M), ŝ).
It remains to show that for a given on-shell background M = (M, g0) there exists a pre-Hilbert

space representation K0(M) of the quantum linearized theory satisfying the conditions above.
This problem hasn’t been solved yet in a full generality, but there has been a lot of progress
made in the recent years, see for example [38,11]. A technical problem which we have to face
is that construction of Hadamard states is difficult in generic spacetimes. On the other hand, if
a background M has symmetries, it might happen that there is no sensible choice of curvature
scalars Xµ

g0 . Therefore, instead of looking at pure gravity, in concrete models it might be better
to consider coupling to matter fields and make the coordinates Xµ dependent on these fields. A
natural candidate is the Brown-Kuchař model [15], where the coordinates are fixed by four scalar
“dust fields”. The construction of the algebra of observables in such a model proceeds analogous
to the one presented in this work. We plan to investigate such models in our future work and
compare the results to the other approaches to quantum gravity [29].

6. Conclusions and Outlook

We showed in this paper how the conceptual problems of a theory of quantum gravity can be
solved, on the level of formal power series. The crucial new ingredient was the concept of local
covariance [21] by which a theory is formulated simultaneously on a large class of spacetimes.
Based on this concept, older ideas could be extended and made rigorous. The construction uses
the renormalized Batalin Vilkovisky formalism as recently developed in [43].

In the spirit of algebraic quantum field theory [52] we first constructed the algebras of local
observables. In a theory of gravity, this is a subtle point, since on a first sight one might think
that in view of general covariance local observables do not exist. We approached this problem
in the following way. Locally covariant fields are, by definition, simultaneously declared on all
spacetimes. These objects then give rise to partial (relational) observables used by Rovelli [83],
Dittrich [28] and Thiemann [86]. The algebra of observables is defined as being generated by such
objects.

The states in the algebraic approach are linear functionals on the algebra of observables in-
terpreted as expectation values. In gauge theories the algebra of observables is obtained as the
cohomology of the BRST differential on an extended algebra. The usual construction first de-
scribed by Kugo and Ojima [66–68] (for an earlier attempt see [25]) starts from a representation
of the extended algebra on some Krein space and an implementation of the BRST differen-
tial as the graded commutator with a nilpotent (of order 2) operator (the BRST charge). The
cohomology of this operator is then a representation space for the algebra of observables. We
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followed this approach also here, assuming there exists a representation of the linearized theory,
and constructed as in [34] the full interacting theory as a formal power series in ~ and λ.

In this paper we treated pure gravity. It is, however, to be expected that the procedure can be
easily extended to include matter fields (scalar, Dirac, Majorana, gauge). It is less clear whether
supergravity can be treated in an analogous way. Introducing matter fields will make it easier to
construct the dynamical coordinates Xµ, for example like in the Brown-Kuchař models [15].

On the basis of the formalism developed in this paper one should be able to perform reliable
calculations for quantum corrections to classical gravity, under the assumption that these cor-
rections are small and allow a perturbative treatment. There exist already some calculations of
corrections, e.g. for the Newton potential [12] with which these calculations could be compared.
It would also be of great interest to adapt the renormalization approach of Reuter et al. (see,
e.g., [80,81]) to our framework. Further interesting problems are the validity of the semiclassical
Einstein equation (for an older discussion see [90]) and the possible noncommutativity of the
physical spacetime [30].

Another possible direction of further study would be to reformulate everything in terms of
frames instead of a coordinate systems. The advantage of that is the existence of global frames
in a large class of spacetimes, where global coordinate systems do not exist.
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A. Aspects of classical relativity seen as a locally covariant field theory

In this appendix we discuss some details concerning the formulation of classical relativity in
the framework of locally covariant quantum field theory. The first issue concerns the choice of
a topology on the configuration space E(M). In section 2.1 we already indicated that a natural
choice of such a topology is τW , given by open neighborhoods of the form Ug0,V = {g0 + h, h ∈
V open in Γc((T

∗M)⊗2)}, where Γc((T
∗M)⊗2) is equipped with the standard inductive limit

topology. In our case, τW coincides with the Whitney C∞ topology, WO∞, hence the notation.
After [62], Whitney C∞ topology is the initial topology on C∞(M, (T ∗M)⊗2) induced by the
graph topology on C∞(M,J∞(M, (T ∗M)⊗2) through maps Γ ((T ∗M)⊗2) ∋ h 7→ j∞h, where
J∞(M, (T ∗M)⊗2) is the jet space and j∞h is the infinite jet of h. On the space of all Lorentzian
metrics we have also another natural topology, namely the interval topology τI introduced by
Geroch [49], which is given by intervals {g|g1 ≺ g ≺ g2}, where the partial order relation ≺ is
defined by (1), i.e.

g′ ≺ g if g′(X,X) ≥ 0 implies g(X,X) > 0 .

The configuration space E(M), defined in (2) is, by definition, an open subset of Lor(M), with
respect to τI . Moreover, if g′ ∈ E(M), then we know that there exists λ ∈ R such that λg − g′ is
positive definite, so we can find a neighborhood V ⊂ Γc((T

∗M)⊗2) of 0, such that g′+h ∈ Lor(M)
and λg − g′ − h is also positive definite. It follows that g′ + h < λg and g′ + V ⊂ E(M). This
shows that E(M) is open also with respect to τW . More generally, it was shown in [62] that the
C0 Whitney topology, WO0, on Lor(M) conincides with the interval topology on the space of
continuous Lorentz metrics. This result was than used in [20] to show that the space of smooth,
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time-oriented and globally hyperbolic Lorentzian metrics on M is an open subset of Lor(M),
with respect to WO∞.

Functionals on E(M) are required to be smooth in the sense of calculus on locally convex
vector spaces, but the relevant topology is the compact open topology τCO not the Whitney
topology τW . More precisely, let U be an open neighborhood of h0 in the compact open topology
τCO. The derivative of F at h0 in the direction of h1 ∈ Γ ((T ∗M)⊗2) is defined as

〈
F (1)(h0), h1

〉
.
= lim

t→0

1

t
(F (h0 + th1)− F (h0)) (65)

whenever the limit exists. The function F is called differentiable at h0 if
〈
F (1)(h0), h1

〉
exists for

all h1 ∈ E(M). It is called continuously differentiable if it is differentiable at all points of E(M)
and dF : U × E(M) → R, (h0, h1) 7→

〈
F (1)(h0), h1

〉
is a continuous map. It is called a C1-map

if it is continuous and continuously differentiable. Higher derivatives are defined in a similar
way. Note that the above definition means that F is smooth, in the sense of calculus on locally
convex vector spaces, as a map U → R. It was shown in [20, Remark 2.3.9] that this fits also into
the manifold structure on E(M) induced by τW . To see this, note that a compactly supported
functional F , defined on a τW -open set Ug0,V can be extended to a functional F ◦ ιχ defined on
an τCO-open neighborhood ι−1

χ (Ug0,V ) by means of a continuous map ιχ : (Γ ((T ∗M)⊗2), τCO) →
(Γ ((T ∗M)⊗2), τW ), defined by ιχ(g

′)
.
= g0+(g′− g0)χ. From the support properties of F follows

that F ◦ ιχ is independent of χ.

In particular, F (1) defines a kinematical vector field on E(M) in the sense of [65]. Moreover,
since Ec(M) is reflexive and has the approximation property, it follows (theorem 28.7 of [65])
that kinematical vector fields are also operational i.e., they are derivations of the space of smooth
functionals on E(M).

At the end of section 2.7 we have indicated that the space of multilocal functionals can be
extended to a space BV(M) which is closed under ⌊., .⌋g̃. Here we give a possible choice for this

space. We define BV(M) to be a subspace of BVµc(M) (defined in section 3.2) consisting of

functionals F , such that the first derivative F (1)(ϕ) is a smooth section for all ϕ ∈ E(M) and
ϕ 7→ F (1)(ϕ) is smooth as a map E(M) → E(M), where E(M) is equipped with its standard
Fréchet topology. Since the lightcone of g̃ is contained in the interior of the lightcone of g, the
WF set condition (38) guarantees that ⌊., .⌋g̃ is well defined on BV(M). Using arguments similar
to [20] we can prove the following proposition:

Proposition 1. The space BV(M) together with ⌊., .⌋g̃ is a Poisson algebra.

Proof. First we have to show that BV(M) is closed under ⌊., .⌋g̃. It was already shown in [20] that
BVµc(M) is closed under the Peierls bracket. It remains to show that the additional condition
we imposed on the first derivative is also preserved under ⌊., .⌋g̃. Consider

(⌊F,G⌋g̃)(1)(ϕ) =
〈
F (2)(ϕ), ∆G(1)(ϕ)

〉
−
〈
∆F (1)(ϕ), G(2)(ϕ)

〉

−
〈
∆AF (1)(ϕ), S′′′(ϕ)∆RG(1)(ϕ)

〉
(66)

+
〈
∆RF (1)(ϕ), S′′′(ϕ)∆AG(1)(ϕ)

〉
,

where S′′′(ϕ) denotes the third derivative of the action. The last two terms in the above for-
mula are smooth sections, since the wavefront set of S′′′(ϕ) is orthogonal to TDiag3(M) and
∆R/AF (1)(ϕ), ∆R/AG(1)(ϕ) are smooth. The first term of (66) can be written as d

dtF
(1)(ϕ +

th)
∣∣∣
t=0

, where h = ∆G(1)(ϕ) is smooth. By assumption, ϕ 7→ F (1)(ϕ) is smooth, so the above

derivative exists as a smooth section in E(M). The same argument can be applied to the second
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term in (66), so we can conclude that ⌊F,G⌋g̃)(1)(ϕ) is a smooth section. From a similar reasoning

follows also that ϕ 7→ (⌊F,G⌋g̃)(1)(ϕ) is a smooth map.
The antisymmetry of ⌊., .⌋g̃ is clear, so it remains to prove the Jacobi identity. In [61,20] it

was shown that this identity follows from the symmetry of the third derivative of the action, as
long as products of the form ∆R/AF (1)(ϕ) are well defined. With our definition of BV(M) this
is of course true, since F (1)(ϕ) is required to be a smooth section.

B. BRST charge

In this section we construct the BRST charge that generates the gauge-fixed BRST transforma-
tion s. It is convenient to pass from the original Einstein-Hilbert Lagrangian to an equivalent
one given by:

L′
(M,g0)

(f)(h) =

∫

M

dvol(M,g)g
µν
(
Γλ
µρΓ

ρ
νλ − Γ ρ

µνΓ
λ
ρλ

)
.

It differs from the Einstein-Hilbert Lagrangian by a term
∫
M

f∇µD
µ, where

Dµ =
√−g(gρσΓµ

ρσ − gµνΓλ
νλ)

and Γ ’s are the Christoffel symbols. Let L be the gauge-fixed Lagrangian, where the Einstein-
Hilbert term is replaced by L′. The full BRST current corresponding to γ is given by the formula:

Jµ(x)
.
=
∑

α

(
γϕα ∂LM(x)

∂(∇µϕα)
+ 2∇νγϕ

α ∂LM(x)

∂(∇µ∇νϕα)
−∇ν

(
γϕα ∂LM(x)

∂(∇µ∇νϕα)

))
−Kµ

M
(x) ,

where Kµ
M

is the divergence term appearing after applying γ to LM(f). Using this formula we
obtain (compare with [74,66,71]):

Jµ =
√−ggµλ(bρ∇λc

ρ − (∇λbρ)c
ρ) + α(bρ + icα∇αc̄

ρ)(bρ + icα∇αc̄ρ) + i
√−ggµλcαcρR β

λαρ c̄β .

(67)
The free BRST current is given by:

Jµ
0 =

√−ggµλ(bρ∇λc
ρ − (∇λbρ)c

ρ) .

For a spacetime M with compact Cauchy surface Σ, for any closed 3-form β there exists a closed
compactly supported 1-form η on M such that

∫
M
η ∧ β =

∫
Σ
β. In this case we can define the

BRST charge as:

Q
.
=

∫

M

η ∧ J

and analogously for the free BRST charge Q0.
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