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Abstract: We construct perturbative quantum gravity in a generally covariant way. In
particular our construction is background independent. It is based on the locally covariant
approach to quantum field theory and the renormalized Batalin—Vilkovisky formalism.
We do not touch the problem of nonrenormalizability and interpret the theory as an
effective theory at large length scales.
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1. Introduction

The incorporation of gravity into quantum theory is one of the great challenges of
physics. The last decades were dominated by attempts to reach this goal by rather radical
new concepts, the best known being string theory and loop quantum gravity. A more
conservative approach via quantum field theory was originally considered to be hopeless
because of severe conceptual and technical problems. In the meantime, it became clear
that the other attempts also meet enormous problems, and it might be worthwhile to
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reconsider the quantum field theoretical approach. Actually, there are indications that
the obstacles in this approach are less heavy than originally expected.

One of these obstacles is perturbative non-renormalizability [74,79], which actually
means that the counter-terms arising in higher order of perturbation theory cannot be
taken into account by readjusting the parameters in the Lagrangian. Nevertheless, the-
ories with this property can be considered as effective theories with the property that
only finitely many parameters have to be considered below a fixed energy scale [43].
Moreover, it may be that the theory is actually asymptotically safe in the sense that
there is an ultraviolet fixed point of the renormalisation group flow with only finitely
many relevant directions [81]. Results supporting this perspective have been obtained
by Reuter et al. [72,73].

Another obstacle is the incorporation of the principle of general covariance. Quan-
tum field theory is traditionally based on the symmetry group of Minkowski space, the
Poincaré group. In particular, the concept of particles with the associated notions of a
vacuum (absence of particles) and scattering states heavily relies on Poincaré symmetry.
Quantum field theory on curved spacetime, which might be considered as an intermedi-
ate step towards quantum gravity, already has no distinguished particle interpretation. In
fact, one of the most spectacular results of quantum field theory on curved spacetimes is
Hawking’s prediction of black hole evaporation [47], a result which may be understood
as a consequence of different particle interpretations in different regions of spacetime.
(For a field theoretical derivation of the Hawking effect see [35].)

Quantum field theory on curved spacetime is nowadays well understood. This success
is based on a consequent use of appropriate concepts. First of all, one has to base the
theory on the principles of algebraic quantum field theory since there does not exist a
distinguished Hilbert space of states. In particular, all structures are formulated in terms
of local quantities. Global properties of spacetime do not enter the construction of the
algebra of observables. They become relevant in the analysis of the space of states whose
interpretation up to now is less well understood. It is at this point where the concept of
particles becomes important if the spacetime under consideration has asymptotic regions
similar to Minkowski space. Renormalization can be done without invoking any regu-
larization by the methods of causal perturbation theory [32]. Originally these methods
made use of properties of a Fock space representation, but could be generalized to a
formalism based on algebraic structures on a space of functionals of classical field con-
figurations where the problem of singularities can be treated by methods of microlocal
analysis [15,17,50]. The lack of isometries in the generic case could be a problem for a
comparison of renormalisation conditions at different points of spacetime. But this prob-
lem could be overcome by requiring local covariance, a principle, which relates theories
at different spacetimes. The arising theory is already generally covariant and includes all
typical quantum field theoretical models with the exception of supersymmetric theories
(since supersymmetry implies the existence of a large group of isometries (Poincaré
group or Anti de Sitter group)). See [14, 19] for more details.

It is the aim of this paper to extend this approach to gravity. But here there seems to
be a conceptual obstacle. As discussed above, a successful treatment of quantum field
theory on generic spacetimes requires the use of local observables, but unfortunately
there are no diffeomorphism invariant localized functionals of the dynamical degrees
of freedom (the metric in pure gravity). Actually, this creates, in addition to technical
complications, a problem for the interpretation. Namely, Nakanishi [62,63] uses the
distinguished background for a formal definition of an S-matrix, and one could base an
interpretation of the formalism in terms of the S-matrix provided it exists. But an inter-
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pretation based on the S-matrix is no longer possible for generic backgrounds. Often this
difficulty is taken as an indication that a quantum field theoretical treatment of quantum
gravity is impossible. We propose a solution of this problem by the concept of relative
observables introduced by Rovelli in the framework of loop quantum gravity [75] and
later used and further developed in [24,77]. The way out is to replace the requirement of
invariance by covariance. We associate observables to spacetime subregions in a locally
covariant way (compare with [19,50]). Such observables transform equivariantly under
diffeomorphism transformations, but the relations between them are diffeomorphism
invariant.

Because of its huge group of symmetries the quantization of gravity is plagued by
problems known from gauge theories, and a construction seems to require the introduc-
tion of redundant quantities, which at the end have to be removed. In perturbation theory
the Batalin—Vilkovisky (BV) approach [3,4] has turned out to be the most systematic
method, generalizing the BRST approach [5,6,78]. In a previous paper [36] two of us
performed this construction for classical gravity, and in another paper [38] we devel-
oped a general scheme for a renormalized BV formalism for quantum physics, based
on previous work of Hollands on Yang—Mills theories on curved spacetimes [49] and of
Brennecke and Diitsch on a general treatment of anomalies [12]. In the present paper it
therefore suffices to check whether the assumptions used in the general formalism are
satisfied in gravity.

In the BV approach one constructs at the end the algebra of observables as a cohomol-
ogy of a certain differential. But here the absence of local observables shows up in the
triviality of the corresponding cohomology, as long as one restricts the formalism to local
functionals of the perturbation metric on a fixed spacetime. A nontrivial cohomology
class arises on the level of locally covariant fields which are defined simultaneously on
all spacetimes. This is solved by relaxing the locality assumption a bit, and considering
the relational observables.

The paper is organized as follows. We first describe the functional framework for
classical field theory adapted to gravity. This framework was developed in detail in [18]
but many ideas may already be found in the work of DeWitt [23], and an earlier version
is [30]. In this framework, many aspects of quantum gravity can be studied, in particular
the gauge symmetry induced by general covariance.

As already discussed in [36], the candidates for local observables are locally covariant
fields, which act simultaneously on all spacetimes in a coherent way. Mathematically,
they can be defined as natural transformations between suitable functors (see [19]). It
seems, however, difficult to use them directly as generators of an algebra of observables
for quantum theory (for attempts see [33] and [36,70]). Moreover, the action of the BV
operator on such locally covariant quantum fields @ involves an additional term, which
cannot be generated by the antibracket [36]. We therefore take a different path here
and, on a generic background spacetime M = (M, go), we evaluate fields @ on test
functions of the form f = f o X, where in the simplest situation f : R* - R
and X 5( i M= 0, ..., 3 are coordinate fields constructed as scalar curvature invariants
depending on the full metric g = go + k. We interpret the obtained diffeomorphism in-
variant quantities as relative observables, similar to concepts developed in loop quantum
gravity [24,75,77].

More generally, in the absence of an intrinsic choice of a coordinate system the
physical interpretation is based on the relations between different observables. In suitable
cases some of them could be thought of as coordinates but this is not necessary for a
physical interpretation. This variant of the proposed formalism is discussed in Sect. 2.6.
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The algebra generated by the relative observables is subsequently quantized with
the use of the BV formalism. For the purposes of perturbation theory we replace the
diffeomorphism group by the Lie algebra of vector fields, so the “gauge invariance” is
in our framework the invariance under infinitesimal diffeomorphisms realized through
the Lie derivative. The quantization proceeds following the paradigm proposed in [38].
Firstly, we extend the algebra of relative observables with auxiliary objects like ghosts,
antifields, etc. and add appropriate terms to the action (Sect. 2.7). The final outcome
of this procedure is a graded differential algebra (BV(M), s), where s is the classical
BV differential, and the extended action SS*! such that s is locally generated by the
antibracket (the Schouten bracket on BV(M)). In Sect. 3 we quantize the extended
theory using methods of perturbative algebraic quantum field theory (pAQFT). In the
intermediate steps we need to split the interaction (around the background metric go)
into the free part Sy and the interaction term S;. First, we quantize the free part by
choosing a Hadamard solution of the linearized Einstein equation. We then can apply
the renormalized BV formalism, as developed in [38]. A crucial role is played by the
Mgller map, which maps interacting fields to free ones. In particular it also intertwines
the free BV differential with that of the interacting theory.

We then show that the theory is background independent (Sect. 4), in the sense that
a localized change in the background which formally yields an automorphism on the
algebra of observables (called relative Cauchy evolution in [19]) is actually trivial, in
agreement with the proposal made in [16] (see also [37]).

We sketch how to construct states on the algebra of observables, using the perturbative
ansatz of [29]. In the first step one constructs a pre-Hilbert representation of linearized
theory and the subspace of vectors with positive inner product is distinguished as the
cohomology of the free BRST charge Q. We refer to the literature where such con-
struction was achieved on some special classes of spacetimes [9,33]. In the next step
we construct the representation of the full theory on the space X of formal power series
in 7 and the coupling constant A with coefficients on K. The positive subspace is then
recovered as the cohomology of the full interacting BRST charge as proposed in [29].
The consistency of this approach with the BV formalism has been discussed in [71].

2. Classical Theory

2.1. Configuration space of the classical theory. We start with defining the kinematical
structure which we will use to describe the gravitational field. We follow [36], where
the classical theory was formulated in the locally covariant framework. To follow this
approach we need to define some categories. Let Loc be the category of time-oriented
globally hyperbolic spacetimes with causal isometric embeddings as morphisms. The
configuration space of classical gravity is a subset of the space of Lorentzian metrics,
which can be equipped with an infinite dimensional manifold structure. To formulate
this in the locally covariant framework we need to introduce a category, whose objects
are infinite dimensional manifolds and whose arrows are smooth injective linear maps.
There are various possibilities to define this category. One can follow [46] and use the
category LeMfd of differentiable manifolds modeled on locally convex vector spaces
or use the more general setting of convenient calculus, proposed in [57]. The second of
these possibilities allows one to define a notion of smoothness, where a map is smooth
if it maps smooth curves into smooth curves. We will denote by CnMfd, the category of
smooth manifolds that arises in the convenient setting. Actually, as far as the definition
of the configuration space goes, these two approaches are equivalent. This was already
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discussed in details in [18], for the case of a scalar field and the generalization to higher
rank tensor is straightforward. Let Lov(M) denote the space of Lorentzian metrics on
M. We can equip it with a partial order relation < defined by:

g < gif g (X, X) > 0 implies g(X, X) > 0, (1)

i.e. the closed lightcone of g’ is contained in the lightcone of g. Note that, if g is globally
hyperbolic, then so is g’. We are now ready to define a functor € : Loc — LcMfd that
assigns to a spacetime, the classical configuration space. To an object M = (M, go) €
Obj(Loc) we assign
EM) = {g € Lor(M)| g < go}- 2
Note that, if go is globally hyperbolic, then so is g € E(M, gp). The spacetime
(M, g) is also an object of Loec, since it inherits the orientation and time-orientation
from (M, go). A subtle point is the choice of a topology on &(M). Let I" ((T*M)®?) be
the space of smooth contravariant 2-tensors. We equip it with the topology tw, given by
open neighborhoods of the form U,y = {g+h, h € V open in FC((T*M)‘X’Z)}. It turns
out that &(M) is an open subset of I"((T*M )®2) with respect to Ty (for details, see
the Appendix A and [18]). The topology tw induces on &(M) a structure of an infinite
dimensional manifold modeled on the locally convex vector space I'.((T*M)®?), of
compactly supported contravariant 2-tensors. The coordinate chart associated to Uy v is
given by k4 (g+h) = h. Clearly, the coordinate change map between two charts is affine,
s0 E(M) is an affine manifold. It was shown in [18] that ty induces on the configuration
space also a smooth manifold structure, in the sense of the convenient calculus [57], so
€ becomes a contravariant functor from Loc to CnMfd where morphisms y are mapped
to pullbacks y*.

2.2. Functionals. Let us now proceed to the problem of defining observables of the
theory. We first introduce functionals F : (M) — R, which are smooth in the sense
of the calculus on locally convex vector spaces [46,65] (see Appendix A for details).
In particular, the definition of smoothness which we use implies that for all g € €M),
neN, F"(g) e I''((T*M)"), i.e. it is a distributional section with compact support.
Later, beside functionals, we will also need vector fields on &(M). Since the manifold
structure of E(MM) is affine, the tangent and cotangent bundles are trivial and are given
by: TEM) = M) x I[.((T*M)®?), T*EM) = M) x I'/((T*M)®?). By aslight
abuse of notation we denote the space I.((T*M )®2) by &.(M). The assignment of
E.(M) to M is a covariant functor from Loc to Vec where morphisms x are mapped to
pushforwards x.. Another covariant functor between these categories is the functor ©
which associates to a manifold the space D (M) = C5°(M, R) of compactly supported
functions.

An important property of a functional F is its spacetime support. Here we introduce
a more general definition than the one used in our previous works, since we don’t want
to rely on an additive structure of the space of configurations. To this end we need to
introduce the notion of relative support. Let f1, f> be arbitrary functions between two
sets X and Y, then

relsupp(f1, f2) = {x € X[fi1(x) # f2(0)}.
Now we can define the spacetime support of a functional on (M):
supp F = {x € M|V neighbourhoods U of x 3h1, hy € E(M), 3)
rel supp(hy, ho) C U such that F(hy) # F(ha)}.
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Another crucial property is additivity.

Definition 1. Let iy, hy, h3 € E(M), such that rel supp(hy, ko) Nrel supp(hy, h3) = <.
By definition of the relative support we have i3 [y=hs [y, where U = (rel supp(hy, h2))¢
N (rel supp(hy, h3))¢ and the superscript ¢ denotes the complement in M. We can there-
fore define a function % by setting

h = h3 [elsupp(hi,ha)es 1= 2 [ (el supp(ii h3))e»
We say that F is additive if
F(h1) = F(hy) + F(h3) — F(h) holds. 4)

A smooth compactly supported functional is called local if it is additive and, for
each n, the wavefront set of F("(g) satisfies: WF(F®)(g)) L TDiagh(M) with the
thin diagonal Diag* (M) = {(x,...,x) € M* : x € M}.In particular FV)(g) has to be
a smooth section for each fixed g. From the additivity property follows that F(g) is
supported on the thin diagonal. The space of compactly supported smooth local functions
F : €M) — R is denoted by §1oc(M). The algebraic completion of §joc(M) with
respect to the pointwise product

F-G(g) = F(g)G(g) &)

is acommutative algebra § (M) consisting of sums of finite products of local functionals.
We call it the algebra of multilocal functionals. § becomes a (covariant) functor by setting

Sx(F)=FoC€y,ie §x(F)(g) = F(x*g).

2.3. Dynamics. Dynamics is introduced by means of a generalized Lagrangian L which
is a natural transformation between the functor of test function spaces ® and the functor
Soc satisfying

supp(Lavi(f)) S supp(f), VM € Obj(Loc), f € D), (6)
and the additivity rule
Loy(f1+ f2+ f3) = Loyv(f1 + f2) — Loae(f2) + Lov(f2 + f3), (7

for fi, fo, f3 € ©(M) and supp f1 N supp f3 = @. The action S(L) is defined as
an equivalence class of Lagrangians [14], where two Lagrangians L{, L, are called
equivalent L ~ Ly if

supp(Ly, vt — Lo, (f) C suppdf, ®)

for all spacetimes M and all f € ©(M). In general relativity the dynamics is given by
the Einstein—Hilbert Lagrangian:

LE(f)() = / RIglf dpg. g € €O, ©)

where we use the Planck units, so in particular the gravitational constant G is set to 1.
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2.4. Diffeomorphism invariance. In this subsection we discuss the symmetries of (9).
As a natural transformation LZ¥ is an element of Nat(Tens., §),' where Tens. (M) =
bDs Tenslg (M) and Tens (M) is the space of smooth compactly supported sections of
the vector bundle @, (T M)®" @ (T*M )®!. The space Nat(Tens,, §) is quite large,
so, to understand the motivation for such an abstract setting, let us now discuss the
physical interpretation of Nat(Tens,, §). In [36] we argued that this space contains
quantities which are identified with diffeomorphism invariant partial observables of
general relativity, similar to the approach of [24,75,77]. Let @ € Nat(Tens., §). A test
tensor f € Tens.(M) corresponds to a concrete geometrical setting of an experiment,
so we obtain a functional @j(f), which depends covariantly on the geometrical data
provided by f. We allow arbitrary tensors to be test objects, because we don’t want to
restrict a priori possible experimental settings. A simple example of an experiment is
the length measurement, studied in detail in [67].

Example 1. Let S : [0, 1] — R4 A s(A) be a spacelike curve in Minkowski space
M = (R*, n). For g = n+h € &) the curve is still spacelike, and its length is

1
449 = [ Vg Gdn.

Here §* is the tangent vector of s. We write it as §* = se*, with n,,ete” = —1.
Expanding the formula above in powers of & results in

00 1 1
Ag(S) =D (=" (2) / Byyoy ()« oy, (5)S€1 €™ .. etneVnd)..
n=0 n 0
Now, if we want to measure the length up to the k-th order, we have to consider a field

Ane(fs)(h)= / Fonuvd x+ / Fihwd*x 4+ / SR

where the curve, whose length we measure, is specified by the testtensor fs = (fs.0, - - .,
fs.k) € Tens. (M), which depends on the parameters of the curve in the following way:

1

1 1
e () = (—1)"(?{)/ 8(x —s(h)selte™ .. etedh, k=1,
’ 0

1
FI o) = — / 5(x — s(L)sele’di.
’ 0

The framework of category theory, which we are using, allows us also to formulate the
notion of locality in a simple manner. It was shown in [18] that natural transformations
@ e Nat(Tens., §), which are additive in test tensors (condition (7)) and satisfy the
support condition (6), correspond to local measurements, i.e. @ (f) € Fioc(M). The
condition for a family (@) nMeobj(Loc) t0 be a natural transformation reads

Do (X f)(h) = Pov(S) (X h),

1 Both Tens, and § have to be treated as functors into the same category. In [19] this category is chosen to
be Top, the category of topological spaces, but in the present context it is more natural to include some notion
of smoothness. A possible choice is the category of convenient vector spaces [57].
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where f € Tens. (M), h € M), x : M — M. Now we want to introduce a BV
structure on natural transformations defined above. One possibility was proposed in [36],
where an associative, commutative product was defined as follows:

1
@UMf1s s fpr) == D PMUatrs oo Sr)IM a1y -+ Fatpra)-
1 TEPp1g
(10)
Note, however, that the dependence on test tensors f; physically corresponds to a
geometrical setup of an experiment, so @¢(f1)¥c(f2) means that, on a spacetime M,
we measure the observable @ in a region defined by fi and ¥ in the region defined by
Jf>. From this point of view, there is no a priori reason to consider products of fields
which are symmetric in test functions. Therefore, we take here a different approach and
replace the collection of natural transformations with another structure. Let us fix M.
We have already mentioned that the test function specifies the geometrical setup for
an experiment, but a concrete choice of f € ©(M) can be made only if we fix some
coordinate system.” This is related to the fact that, physically, points of spacetime have
no meaning. To realize this in our formalism we have to allow for a freedom of changing
the labeling of the points of spacetime. From now on we restrict the class of objects of
Loc to spacetimes which admit a global coordinate system. Following ideas of Nakanishi
[62,63] we realize the choice of a coordinate system by introducing four scalar fields
X", which will parametrize points of spacetime. We can now consider the metric as a
function of X*, u =0, ..., 3, i.e. we write

g) =D g, (X(X)AX" @ dX")(x),
v,

where g is a function g : R* — R!0, which represents g € &(M) = I'(T*M)®?) in
the coordinate system induced by X, and we use the notation g = X*g. Let €(0\) denote
the space of global coordinate systems. We can write any test tensor f € Tens.(M) in
the coordinate basis induced by X € (M), so if we fix f € R¥ — R’ for appropriate
dimensions k and [, then the change of f = X* f due to the change of the coordinate
system is realized through the change of scalar fields X*. For a natural transformation
@ € Nat(Tens., §) we obtain a map

Doy (g, X) = Po(X™ f)(g),

As long as M is fixed, we will drop M in @y and use the notation @y instead. The
Einstein—Hilbert action induces a map

L (6.0 = [ Rlglo0 S (X000,
M

For now we treat g as a dynamical variable and X* are treated as external fields. Note
that in the fixed coordinate system X the components of g satisfy the condition:

1
\/?gﬁW—gg‘”) o X =D X", (11)

2 In general, it is more natural to work with a frame instead of a coordinate system, but we leave this
problem for future study.
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Let us now consider the transformation of g and X under diffeomorphisms. Let o €
Diff (M), then the transformed coordinate system is given by X’(x) = X («(x)) and the
transformed g is the pullback a*g. Infinitesimally, the transformation of the metric is
given by the Lie derivative, so we define the action p of the algebra X.(M) = I.(T M)
by

P

® _<§Z‘ >+@__
(p(E)Pf) = 5 X,p(é)g SXA

,£§X“>. (12)
8

Note that in the coordinate system induced by X we have £: X P — &P o X, where

£7 o X is understood as a scalar field. Diffeomorphism invariance of the Einstein—Hilbert
Lagrangian means that

p(ELY" =0,

sLEH
for X* f = 1 on supp &. Moreover, with this choice of f, also <% JEe X > =0, so
g

we have two symmetries of the action:

8

m@)=ﬁj{p@m) (3)
8

m@%=%§E%X» (14)

The first of these symmetries is a dynamical local symmetry and we will see later on
that it causes the failure of the field equations to be normally hyperbolic. The other
symmetry is non-dynamical and it involves variation with respect to the external fields
X . Although the action is invariant under both of these symmetries, the diffeomorphism
invariance of observables is the weaker requirement that functionals are invariant under
the sum of these symmetries, i.e. they satisfy

pE)Ds = 0. (15)

This corresponds exactly to the invariance condition for natural transformations, pro-
posed in [36], since the second term implements the action of infinitesimal diffeomor-
phisms on the test function. Our notion of diffeomorphism invariant objects is similar
to the notion of gauge BRS invariant observables of gravity proposed by Nakanishi
in [62,63] (see also [64]). The author makes there a distinction between the intrinsic
BRS transformation and the total BRS transformation. The latter corresponds to our p1,
whereas the former corresponds to p = p; + p2, if one restricts oneself to test objects,
which are scalar densities. In general the intrinsic BRS operator, as proposed by Nakan-
ishi, has no geometrical meaning on the classical level and on the quantum level cannot
be implemented by commutator with a local charge. Therefore, we do not follow this
approach, but instead we make the coordinates X dynamical. This is discussed in the
next section.

2.5. Metric-dependent coordinates. Up to now we have considered the coordinates X
to be external fields independent of the metric. As a consequence, the diffeomorphism
transformation (12) involves the term where variation with respect to X* is present.
To avoid this, we can replace X* with some scalars X if ,u=0,...,3, which depend
locally on the metric. The particular choice of these fields is not relevant for the present
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discussion. They could be, for example, scalars constructed from the Riemann curvature
tensor and its covariant derivatives (see [56], which uses the earlier work of [7,8]).
The caveat is that some particularly symmetric spacetimes do not admit such metric
dependent coordinates, since in such cases the curvature might vanish (for a detailed
discussion see [21,48]). This is however a non-generic case and in the situation where
we are interested in, pure gravity without matter fields, such spacetimes are physically
not observable. If matter fields are present, one can construct X*’s using them. A known
example is the Brown—Kuchat model [13], which uses dust fields. Here we briefly discuss
a similar Ansatz, where the gravitational field is coupled to 4 scalar massless fields. We
add to the Einstein—Hilbert action a term of the form

3
L (f)(g. 4% ... =D /M (Ved™)d .
a=0

The additional scalar fields satisfy the equations of motion
O,¢9% =0, «=0,...,3.

Classically, we can now identify the coordinate fields with the matter fields ¢¢, i.e. we
set X g’ o= o, u = 0,...,3. With quantization in mind, we make the split of g and
¢“ into background and perturbations, which will subsequently be treated as quantum
fields. We set g = go + Ah and ¢ = ¢ + Ap®. Our gauge-invariant observables are of
the form

Dp(h, 0", ..., 07) = P gp) (@ )H(MD),
where ¢* f(x) = f(¢°(x), ..., #>(x)). As a concrete example consider
®rh,¢°, ..., 0%

_ / Ry R g0 + M1 (68 + 26") (). - ... (0 4 20 (0 tgosnn
M

where ¢ define harmonic coordinates with respect to the background metric, i.e.
Ogopg = 0, = 0,...3 and we choose f such that ¢j f is compactly supported.
The physical interpretation of the scalar fields ¢* has to be made clear in concrete
examples. We will come back to this problem in our future works.

On generic spacetimes matter fields are not necessary and it is enough to use the
curvature scalars. Let us denote by 8 the map g — (X9, ..., X 2) and we define

Dh(e) = Dp(g, Xy). (16)

Here we do not need to worry anymore if X ? define an actual coordinate system or not,
but we have to make sure that the support of f is contained in the interior of the image
of M inside M under the quadruple of maps X fgf , for all g of interest. To ensure that,
we restrict ourselves to a sufficiently small neighborhood O C &(M) of the reference
metric go. This restriction is not going to be relevant later on, as quantisation is done
perturbatively anyway.

Let F(M) denote the algebra generated by functionals @? where f has compact

support contained in the interior of (), X (M). Note that elements of this space are
no longer compactly supported in the sense of definition (3), since the support of the
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functional derivative (& ﬁ)(l) (g) can be different for different points g € O, even though

each (@ 5;)(1) (g) is a compactly supported distribution. They are also not local, because

X; f can depend on arbitrary high derivatives of the metric g. An advantage of using
F (M) is that the transformation law under diffeomorphisms takes a simpler form, namely

PIEP] = (p©))]

where p = p1 + p2, as defined in (13) and (14). To see this, note that

5% () 50/ (9)
(@@ = —L—| eeg)r( =L eext
f X g

o8 SXH

This becomes particularly relevant for the construction of the BV differential s, which
we will perform in the next section. In particular, as p; is not a dynamical symmetry,
it cannot be implemented consistently within the BV formalism by means of the an-
tibracket. From this reason, it is better to work on F()M), where only p; is necessary.

The downside is the non-locality which we introduced by choosing the field depen-
dent coordinates. Note, however, that non-local dependence on field configurations is
necessary to obtain meaningful diffeomorphism invariant quantities, as we know that
there are no local diffeomorphism invariant observables in general relativity.

= (pEP)(Xg. 8) = (pE)D)].

2.6. An abstract point of view on field dependent coordinates. More generally, there is
no reason to distinguish between the curvature invariants that enter the definition of X,’s

and those which constitute the density @, in @f; (g) = f w Dx (@) f(Xg(x)). Abstractly
speaking, one can consider a family of N scalar curvature invariants Ry, ..., Ry and
a class of globally hyperbolic spacetimes characterized by the 4-dimensional images
under this N-tuple of maps. It was shown in [61] that any globally hyperbolic spacetime
with a time function 7 such that |[Vt| > 1, can be isometrically embedded into the N-
dimensional Minkowski spacetime M for a sufficiently large N (fixed by the spacetime
dimension). This suggests that, depending on the physical situation, one can always
choose N and construct Ry, ..., Ry in such a way that all spacetimes of interest are
characterized uniquely in this framework. One can then consider observables of the form

/ S(R1(x), ..., Rny(x)),
M

where f : MV — Q4(M)isa density-valued function, which we assume to be com-
pactly supported inside the image of M under the embedding ¢ : M — M defined by
the family Ry, ..., Ry. One could then quantize the metric perturbation, in the same
way as we do it in the present work. An alternative approach would be to quantize the
embedding ¢ itself, as it was done for the bosonic string quantization in [1]. We hope to
explore these possibilities in our future works.
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2.7. BV complex. In this section and in the following ones we fix the spacetime M
and the map B, so we can simplify the notation and write @ ¢ instead of 0555;/[ 1 if
no confusion arises. In the first step we construct the Chevalley—FEilenberg complex
corresponding to the action p of X.(M) on F(M). The Chevalley—Filenberg differ-
ential is constructed by replacing components of the infinitesimal diffeomorphism in
(15) by ghosts, i.e. evaluation functionals on X.(M) defined by c*(x)(§) = &*(x).
CE(M), the underlying algebra of the Chevalley—Eilenberg complex, is the graded
subalgebra of C®(E(M), AX’ (M)) generated by elements of the form @, where
@ e Nat(Tens., €&) and CEM) = CG(EM), AX'(M)). The Chevalley—Eilenberg
differential y. is defined by

CET (M) — CET (W),
q
(VCE (t))(é:(), e ‘i:q) = Z(_])i+q <%|X(w(§07 s éi: s Eq))’ £§,g>
i=0

+ D (D O([E, &L L gD, ()

i<j

where &, ..., &, € X(M). To see that ycr maps CE(M) to itself, we have to use the
fact that symmetries act locally, so y¢r maps local functionals into local functionals and
can be also lifted to a map on natural transformations and hence is also well defined on
CE(M). By construction y is nilpotent and, comparing with (15), we see that the 0-th
cohomology of ycr is the space of diffeomorphism invariant elements of F(MM).

Now we construct the Batalin—Vilkovisky complex, following the ideas of [36]. Note
that €& (M) can be formally seen as the space of multilocal, compactly supported func-
tions on a graded manifold EON) = ¢O[0] ® XOVD[1]. The underlying graded
algebra of the BV complex, is formally Co3(JTT* &(M)) the graded algebra of multilo-
cal functions on the odd cotangent bundle? of (). We define BV(M) to be its graded
subalgebra generated by covariant fields which arise as @ ¢ for @ € Nat(Tens., BY)
with

BY = CX (¢, AERACRAGRS ). (18)

The sequential completion & of the algebraic tensor product is explained in details
in [36]. We denote a field multiplet in (M) by ¢ and its components by ¢*, where
the index o runs through all the metric and ghost indices. “Monomial” elements* of
BU (M) can be written formally as

/fF(Xl,n s Xm) Doy - - xk&p(im (gw(gm, (19)

where @,, are evaluation functionals, the product denoted by the juxtaposition is the
graded symmetric product of BL(M), 5-— (  are right derivatives and we keep the sum-
mation over the indices « implicit. Polynomlals are sums of elements of the form (19),
where fF is a distributional density with compact support contained in the product of
partial diagonals. The WF set of fF has to be chosen in such a way, that F' is multilocal.

3 By ITT* &) we mean the graded manifold &(M)[0]® X(M)[1]1@ &* (M)[—1]1@ X*(M)[—2], where
E* (M), X* (M) are the spaces of sections of the appropriate dual bundles.

4 The name monomial, used after [30], highlights the fact that these functions are homogeneous functions
of field configurations.
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In the appropriate topology (more details may be found in [36]) polynomials (19) are
dense in BYU(M). We identify the right functional derivatives %’ which differ from

the left derivatives by the appropriate sign, with the so called antifields, @, (x).> Func-
tional derivatives with respect to odd variables and antifields are defined on polynomials
as left derivatives and are extended to B0 (M) by continuity. In what follows
ng(x) denote left derivatives.

BVY(M) is a graded algebra with two gradings: the pure ghost number #pg and the
antifield number #af. Functionals on (M) have #af = 0; ghosts have #pg = 1 and
#af = 0. Vector fields on €(M) have the antifield number assigned according to the rule
#af (<1>§ (x)) = #pg(d*(x)) + 1. We define the total grading of BV(M), the total ghost
number by setting #gh = #pg — #af.

Since BV(M) is the subalgebra of the algebra of functions on the odd cotangent
bundle [TT*EM), its elements are graded multivector fields and BV(M) carries a
natural graded bracket {., .} (called the antibracket), which is defined as minus the usual
Schouten bracket, i.e.

S'F 8G S'F §lG
F.Gl =% =)\ =% 5%
S¢% Sqpi Spe 0p“

Let us now discuss the field equations. Taking <%L?H (g), h> and choosing f such

s
El a(pa(x) k]

that f(X,) = 1 on the support of &, we arrive at Einstein’s equation in the vacuum:
Ryvlg] =0. (20)

Let E5(M) be the space of solutions to (20). We are interested in characterizing the
space of covariant fields on &g(M), which can be characterized as the quotient Fg (M) =
F(W) /Fo(M), where Fo(M) C F(M) is the ideal of F(IM) generated by the equations
of motion, i.e. it is the image of the Koszul operator é. defined by

Sen®p =@y, L"), &y € BVM), f = 1onsupp f', @

To simplify the notation, we write from now on 8z, ® = (D f SEMY instead of (21).

In a similar manner, one can find a natural transformation 6%, that implements y%,, i.e.
Yee = { -, 0°F}. For future convenience, we choose 0 as

65" (g C)=<i £ g>—<ﬁ chd (fC)> (22)
fee 8g’ fe s¢’ ’

where f = X ; S The motivation for the above form of 657 (f) is to introduce the cutoff
for the gauge transformation by multiplying the gauge parameters with a compactly
supported function f. The total BV differential is the sum of the Koszul-Tate and the

Chevalley—FEilenberg differentials:

spy =1{-, ST +0°F).

5 The choice of right derivatives at this point is just a convention and we use it in this work to simplify the
signs.
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The nilpotency of sy is guaranteed by the classical master equation (CME). In [36] it was
formulated as a condition on the level of natural transformations. Here we can impose
a stronger condition, with an appropriate choice of test functions. Let f = (f, f»2)
be a tuple of test functions chosen in such a way that f;(X,), i = 1,2 is compactly
supported for all g € O € &(M) for an appropriately chosen small neighborhood O of
g0- A pair of Lagrangians (LE#, ), acts on the test functions according to

[ .
L =15 + 07, (23)

For simplicity we will write just L## instead of (L, 0), so L?H = L?H , similarly for
the other terms.

The choice of different test functions is motivated by the fact that they have slightly
different meaning in our formalism and a different physical interpretation. The test
function f; is the cutoff for the Einstein—Hilbert interaction Lagrangian and f', is used
to multiply the gauge parameters in order to make the gauge transformations compactly
supported. From this perspective, it is natural to require that f; = 1 on the support of
f>. This way, the gauge transformations doesn’t see the cutoff of the theory.

With an appropriate choice of a natural Lagrangian 0% which generates ycr (as for
example the one made in (22)), a stronger version of the CME is fulfilled, namely

1

for any compactly supported f, constructed as above.

Now, the fact the §;, (graded-)commutes with y is the consequence of the invari-
ance of the field equations under infinitesimal diffeomorphism. As 82, = 0 = y2,,
we conclude that s2, = 0. A crucial feature of the BV formalism is the fact that the
cohomology of the total differential can be expressed with the cohomology of y.; and
the homology &y . For this to hold (BV(M), §z) has to be a resolution (i.e. the Hy’s
are trivial for £ < 0). To see this, we can look at the first row of the BV bicomplex with
#pg = 0. We have

S A2V @ g JEHOR e g g

where V(M) is the subalgebra of BV(M) consisting of vector fields on &(M) and
G(M) that is generated by elements of the form @y for @ € Nat(Tens., &), where
G(M) = CH(E(M), X.(M)). Here p is the map defined in (12), so its image exhausts the
kernel of 6y and the sequence is exact in degree 1. This reasoning extends also to higher
degrees, so one shows that the complex above is a resolution. The same argument can be
repeated for all the rows of the BV bicomplex. Using standard methods of homological
algebra, we can now conclude that the 0-th cohomology of sz, on BV(M) is given by

HY(BYM), spv) = H'(BVM), 824), ver),

and can be interpreted as the space of gauge invariant on-shell observables.

In the next step we introduce the gauge fixing along the lines of [36]. For the specific
choice of gauge we need, we have to extend the BV complex by adding auxiliary scalar
fields: 4 scalar antighosts ¢, in degree —1 and 4 scalar Nakanishi—Lautrup fields b,,,
u =0,...,3 in degree 0. The new extended configuration space is again denoted by
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E(V) and the extended space of covariant fields on the new configuration space by
BV(W). We define

$@y) = ib, — £2,,
s(by) = £cb,.

To implement these new transformation laws we need to add to the Lagrangian a term

8" _ 8"
<ﬁa lfzb/L - £f2€C/,L7 > + <%7 £f2€blta > )
where > = f,0 X,

Next, we perform an automorphism ay of (BV(M), {., .}) such that the part of the
transformed action which doesn’t contain antifields has a well posed Cauchy problem.
We define

o0

, 1
aq,(F)=Zﬁ{qff,,...,{qff,,F}...}, (25)
n:() ° —r—J
where X3 f' =1 on supp F and
vy =iy /((auavg“” = L) ) (X g ()i (1), (26)
JTRY

where k is a non-degenerate 2-form on R*. The explicit appearance of this form in the
gauge fixing Fermion is related to the choice of a dual pairing for Nakanishi—Lautrup

fields. This pairing is also used to define the embedding of &, into € . We will see in
the next section that, as long as one uses consistently the same pairing, all essential
structures are independent of this choice.

(g L) = = [0,(£2b08" ~ S Fobubunc)y/= derg) (X a'x

vi / 30/ = Aot g8 0 (f26")) (X g (1))d* X,

which can be rewritten as
[0t abg™) Kodig + [(5F2bub0) o dug +i [ £05,C s,

where CH = £.X,g", and k™ is now a non-degenerate 2-form on M. In the coordinate
system defined by X we have C* = ¢* o X, = ¢/, so the scalar fields C* coincide
with the components of the ghost field ¢ € X(0M). We denote the first term in the

above formula by L?‘; and the second by L;‘: (gauge-fixing and Fadeev—Popov terms,

respectively). The full transformed Lagrangian is given by:
L' = L5 + L?F + L5+ LAF, 27)
1 2 2 2

where Lf}Fz is the term containing antifields. The re-defined L;’Z“ also satisfies (24).

The variables of the theory (i.e. the components ¢® of the multiplet ¢ € E(M))
are now: the metric g € €(M), the Nakanishi—Lautrup fields b, and the antighosts ¢,
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w = 0,...,3 (scalar fields), ghosts ¢ € X(M). We introduce a new grading, called
the total antifields number #ta. It is equal to O for functions on &(M) and equal to 1
for all the vector fields on &(M). New field equations are now equations for the full
multiplet ¢ = (g, by, c,cu), w = 0,...,3 and are derived from the #ta = 0 term of
L, denoted by L. The corresponding action S(L) is called the gauge fixed action. The
ay-transformed BV differential s = ay o sy 0 og;l is given by:

s=1{, 8% =y +3.

The differential § is the Koszul operator for the field equations derived from S and
y is the gauge-fixed BRST operator y. The action of y on F(M) and the evaluation
functionals b, c, ¢,, is summarized in the table below:

4
i)
dred (%Lt
c —%[c, c]
by £:by,
Cu ib—£.c,

The equations of motion expressed in the X coordinate system are:

Ry [g] = —idhCy 0y — 01Dy (28)

Oge =0 (29)

Og€u =0 (30)

Tgerg On (v~ det gg") (X) = by (X )" 31

where g, b, ¢/, ¢, have to be understood as evaluation functionals and not as field
configurations. The last equation implies that

Oy XY =b", (32)

where b” = (b, k"") o X,. The equation for b* is obtained by using the Bianchi identity
satisfied by R;,[g] in equation (28) and takes the form

Ogby = 0. (33)

The gauge condition (31) is the generalized harmonic gauge, studied in detail in [41]
(see also [40] for a review). With this choice of a gauge the initial value problem for the
multiplet (g, by, ¢, ¢,,) is well posed and the linearized equations become hyperbolic.
It turns out that for M = (M, go), the choice k*¥ = gg " is particularly convenient, so
from now on we will continue with this choice. Since s = § + y and (BV(M), §) is a
resolution, the space of gauge invariant on-shell fields is recovered as the cohomology
FM OO = HOs, BVOW) = H (v, Ho(8, BY(WD))).
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2.8. Peierls bracket. We are finally ready to define the Peierls bracket. The system of
equations considered in the previous section can be linearized by computing the second
derivative of Ly and defining the Euler-Lagrange derivative Sﬁ(,[ as a map from the
extended configuration space to the space of vector-valued distributions (details about
the functional analytic aspects of this construction can be found in [69]) given by

81 r

(S0 v @ v5) = <WWLf, vevl),

where ¥ € €M), ¥ € @;(J\/[) are field configuration multiplets and X* f = 1 on
the support of yr». To simplify the sign convention, we use both the right and the left
derivative. For k = g, an explicit construction shows that the retarded and advanced
propagators exist. We give formulas for these propagators in the next section, for the
case of linearization around a particular background. Let Ag/ 4 denote the propagators
obtained by linearizing around the metric g. We define a Poisson (Peierls) bracket on
BV(M) by:

. 3'A 48" B _ A R
LA, B](g,by,c,cp) = Z W’Ag W (g, by, c,cp), Ag = Ag —Ag-
a.p

Note that the support of | A, B ], is contained in the support of | A, B|g,, where the
latter is the Peierls bracket defined with the use of Ag replacing A, in the formula
above. Hence, |., .] is a well defined operation on BV (M), taking values in the space
of smooth functionals on &(M). However, BV(M) is closed under [., .]. In order to
obtain a Poisson algebra, one needs a suitable completion BV(M), which we define in
Appendix A. Now we want to see if |., .| is compatible with s. First, note that the image
of § is a Poisson ideal, so |., .] is well defined on H 0¢s, W(M)). It remains to show
that, on H°(8, BY(M)), y is a derivation with respect to |., .]. To prove it, we have to
show that

mo(y®1+l®y)01_£g=moFAgo(y®l+l®y),

where

st 8"
/ .
FAg=Z<Agaﬁ,8—® >

oP
v, g

After a short calculation, we obtain the following condition (compare with Prop. 2.3. of
[71]):
(=DK% )AL (x, y) + K% (D AGF (x, y) = y (A7), (34)

where |0 | denotes #gh(¢?), while K, is defined by
Y0g D = ZKg“G ()P = (K@),
o

and Yy, is the linearization of y around g.
In a more compact notation we can write this condition as

(—DI7(Kg 0 Ag)™ +(Ag 0 K])® = y(A%Y),



R. Brunetti, K. Fredenhagen, K. Rejzner

where K g means taking the transpose of the operator-valued matrix and adjoints of its
entries.

In [71] it was shown that this condition holds when K is linear and the causal propa-
gator doesn’t depend on the fields. Here we give the proof of the general case. The gauge
invariance of the action in the stronger form used in (24) implies that

alL
f _
o

where 6 b is the term in 6 ¢ which multiplies @i We can now apply on the both sides

the differential operator <(AR)WS (A Rykv > and obtain

3 ﬂ a(pkv
roup | 8 88 R
0 , He KV
<(Ag) o<5</>'3 5¢° 8<pKLf’9f>’(Ag) >
sl sl 564
Ry\up , S Ry\xv

slos 30%
AR [,L/S L , AR KV
+<( g) o<8(pa8(p’( fva(pﬂ 7( g)
r 1
wleakys o (2r 80 (AR} —o,
8 Sp® " 8¢k Spb f

Setting f’ = 1 on the support of f we see that the last term is proportional to equations
of motion, so we can ignore it. In the remaining terms we can make use of the fact that
Ag is the Green’s function for S%/[, so we finally obtain

»

Oa

89; o
Sob

aAR 50
—(—=.0% )+ (— 1)'ﬂ‘ Lo (ABy 4 ARy o
f 8¢

where “="" means “modulo the terms that vanish on-shell”, i.e. modulo the image of
8. The extra sign appears because we had to change one left derivative into a right
derivative. The expression above is treated as an operator on €.(M) and if we choose
X* f =1 on the support of the argument, we arrive at

Y(AR) Z (=DII(K 0 Ag)7 +(Ag 0 K7

The same argument can be applied to A4, so the identity (34) follows. We conclude
that y is a derivation with respect to |[., .|, modulo terms that vanish on the ideal gen-
erated by the full equations of motion, i.e. modulo the image of §. It follows that y is
a derivation on H%(8, BY(M)), hence |., .| ¢ induces a Poisson bracket on ?;nv M) =
HO®s, BV(M)) = H°(y, (Ho(8, BV(M))). This way we obtain a Poisson algebra
F ;HV(M) [.,.l¢), which we interpret as a classical algebra of observables in general
relativity, for a partlcular choice of coordinates (16).
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3. Quantization

3.1. Outline of the approach. In the previous section we defined the classical theory,
now we want to quantize this structure. The usual prescription involving the star product
cannot be applied to {., .}, because acting iteratively with the functional differential

1 r\ . . .
operator <A g"‘ﬂ, 557 ® (‘Z—ﬁ> involves also derivatives of Ag. Therefore, from the point

of view of quantization, it is convenient to split the gauge fixed action S into a free part
and the rest and quantize the free theory first. One can make this split by writing the
Taylor expansion of L ¢ around a reference metric go, so & = g — go is the perturbation.
Later on, & will be interpreted as a quantum fluctuation around a classical background.
Interaction is introduced in the second step, with the use of time-ordered products.

To keep track of the order in 4, it is convenient to introduce a formal parameter A
(identified with the square root of the gravitational coupling constant, i.e. A = /)
and the field multiplet (go + Ah, Ab, Ac, Ac), together with corresponding antifields
()»hT, b7, rct, )\ET). We denote (k, b, ¢, ¢) collectively by ¢. It is convenient to use
the natural units, where « is not put to 1, but has a dimension of length squared, so / has
a dimension of 1/length. The action used in quantization must be dimensionless, so, as
in the path integral approach, we use L /A2, where L is the full extended action defined
before. We denote

=M 2o
LO - )"L(M,go)(go’ 07 O? 0) + ?L (M,go)(g()a 07 09 O))

and consider it to be the free action. If g¢ is not a solution to Einstein’s equations, the linear
term doesn’t vanish and the free equation of motion becomes a differential equation with
a source term. Also, negative powers of A appear in the action. Formally, we can solve
this problem by introducing another parameter w, so that %L((,L) go>( 80,0,0,0) = g,
where Jg is the source term, linear in 2. Our observables will now be formal power series
in both A and . For the physical interpretation we will restrict ourselves to spacetimes
where g is a solution and put u = 0, but algebraically we can perform our construction
of quantum theory on arbitrary backgrounds.

We introduce the notation §; = S*' — §j and § = S*' — S. We also expand 0
around go. The first nontrivial term in the expansion is linear in configuration fields and
we denote it by 6. It generates the free gauge-fixed BRST differential 3. The Taylor
expansion of the classical master equation (24) yields in particular:

{60, S (0)} + {60, 6o} + {61, SV (0)} ~ 0.

The first two terms of this identity correspond to the classical master equation for the
free Lagrangian S (0) + 6. The third term vanishes only for on-shell backgrounds, so
Yo is a symmetry of Sy only if g¢ is a solution of Einstein’s equations. Consequences of
this fact are discussed in detail in [71].

Observables are formal power series in A obtained by expanding elements of BV (M)
around (go, 0, 0, 0). From now on BV (M) is implicitly understood as the space of formal
power series in A and w. As a simple example consider the scalar curvature R on an
on-shell background (M, go).
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1 (g) = /M Rigol f (Xgo)d gy

1)
+A( | ) -k

where f is a compactly supported function on R?*, with the support inside the interior of
the image of M under X ,. Note that we do not need to make any restrictions on 4 now, as
our construction is perturbative and the choice of f refers only to the background metric
go. Therefore, from now on we will consider the configuration space to be (M) =
T'(T*M)®?).

Let us now summarize the general strategy for the perturbative quantization of gravity,
which we will follow in this work. We start with the full classical theory, described by the
gauge-fixed action S which is invariant under the BRST operator y. Then, we linearize
the action and the BRST differential around a fixed background metric g¢. This way, the
“gauge” invariance of the theory is broken and the linearized classical theory doesn’t
posses the full symmetry anymore. If we linearize around go which is a solution of the
full Einstein’s equations, then part of the symmetry remains and Sy is invariant under yy.
This, however, is not needed for performing a deformation quantization of the linearized
theory along the lines of [38], which works for arbitrary (M, go) € Obj(Loc). The
free theory, quantized this way, still contains non-physical fields and is not invariant
under the full BRST symmetry. This is to be expected, since the linearization breaks this
symmetry in an explicit way. To restore the symmetry we have to include the interaction.
This can be done with the use of time-ordered products and relative S-matrices. The full
interacting theory is again invariant under the full BRST symmetry y . This is guaranteed
by the quantum master equation (QME), which is a renormalization condition for the
time-ordered products (see [38] for more details). A crucial step in our construction is
to prove that the quantized interacting theory which we obtain in the end doesn’t depend
on the choice of the background gg. This will be done in Sect. 4.

2

¢
(h)+/ R[go0ld, f(Xg,) S
20 M 8

(h))+ou2),
80

3.2. Perturbative formulation of the classical theory. The starting point for the construc-
tion of the linearized classical theory is the gauge-fixed free action Sp. For simplicity we
choose from now on the gauge with k = g. To write Sp in a more convenient way, we
introduce some notation. Let us define the divergence operator, which acts on symmetric
covariant tensors div : I'(S?T*M) — I'(T*M) by
1
(divi)y = N 800,10/~ det g0).

Let us also introduce a product

(u,v)goz/M<u#,v>d/LgO,

where u, v are tensors of the same rank and # is the isomorphism between T*M and T M
induced by go. The formal adjoint of div with respect to the product (., .)4, is denoted

by div* : I'(T*M) — I'(S>T*M). In local coordinates (in our case fixed by the choice
of X go ) we obtain:

. 1
(div*v)ep = z(aﬂva + g Vp).
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Another important operation is the trace reversal operator G : (T M)®? — (T M)®2,
defined by

1
Gt=t— E(trt)go. (35)

We have tr(Gr) = —trt and G2 = id. Using this notation we can write the quadratic
part of the gauge fixed Lagrangian on a generic background M = (M, g) € Obj(Loc)
in the form:

3

(h)+2i > (dé,. d( fe"),, +(fb, div(Gh) — %b)go,
0 v=0

1)

Log= [ —(Rfdw)
88

M 8

where % (Rd ) ‘ (h) denotes the linearization of the Einstein—Hilbert Lagrangian den-
0

sity around the background go and b is a 1-form on M definedby b = >_ b, (X4)d X go'

Now we calculate the variation of L f>to obtain Sg\’,[ (x, y). We write it here in a block
matrix form:

—1 (@G +2Gdivi odivo G) Godiv: 0 0
1" _ divo G -1 0 0
S (2, x)=08(z, x) 0 0 0 —illy (x),
0 0 iy 0
(36)
where the variables are (&, b, A8, Co, ..., c3). In the formula above Oy = §d is

the Hodge Laplacian, § = s 'd is the codifferential and [J;, is given in local coordinates
by
(OLh)ap = VHV, hep — 2(R(a”hﬂ)ﬂ + R(a’“ﬂ)hw). 37)

In the literature, [J; is called Lichnerowicz Laplacian [55] and it provides a gen-
eralization of the Hodge Laplacian to the space of symmetric contravariant 2 tensors.
Note that [0, commutes with G on &(M). It is now easy to check that the retarded and
advanced propagators for Sy are given by:

A/R A/R

G A GAMRG o div 0 0

AR (¢ )= | diVveo AME diveo ARG odivi+las 0 0
, . A/R |

0 0 0  —iAl

0 0 inA/R 0

where §4 denotes the Dirac delta in 4 dimensions and subscripts in div, and div¥ mean
that the operator should be applied to the first, respectively, to the second variable. In the
above formula A,A/ R are the advanced/retarded propagators for the operator [J;, acting
on symmetric tensor fields with compact support &.(M) = I'.(S>T*M). Analogously,
A?/ R are the propagators for L1z on O-forms (scalar functions). Using the above formula
we can write down the expression for the causal propagator and use this propagator to
define the classical linearized theory, by introducing the Peierls bracket:

S'F 3G
F,G|, = —— A,
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where A = AR — A4 Let us define microcausal functionals as smooth, compactly
supported functionals whose derivatives (with respect to both ¢ and ¢*) satisfy the WF
set condition:

WE(F™ (¢, ¢*)) C By, VneN, Yg € €M), (38)

where =), is an open cone defined as
En = T*M"\{Cx1, s s et k)l k) € (Ve UVD) ), (39)

where V1 is the closed future/past lightcone with respect to the metric go. For details
on WF sets and pointwise multiplication of distributions see [52]. B*U ;. (M) denote the
space of microcausal functionals. It is equipped with the Hormander topology 75, which
allows to control properties of functional derivatives (see [36] for a precise definition).
We extend the space of covariant fields to ones induced by natural transformations in
@ € Nat(%Tens., BY,.) and the algebra generated by the corresponding functionals

cbﬁ is denoted by BV,,c(M).

3.3. Free quantum theory. In the next step we want to construct the quantized al-
gebra of free fields by means of deformation quantization of the classical algebra
(BV e (M), ., .1 go)- Tothis end, we equip the space of formal power series BV, (M)[[]]
with a noncommutative star product. In this construction one needs Hadamard paramet-
rices, i.e. a set of distributions in D’(M?) which fulfill

rCLa™ (x, y) — (=) 1 10P (3, x) = i[0%(x), 0P ()] o (392)
Zﬁ Oga)ﬁ ¥ = 0 mod C* function, (39b)

WE(*?) c C,, (39¢)

0B (x, y) = oP%(y, x). (394)

Here Of are the coefficients of the differential operator induced by Sy, written in
the basis {¢®}. They can be easily read off from (36). By C, we denoted the following
subset of the cotangent bundle 7* M?:

Cy = {(x1, %23 k1, —k2) € T*MA\{0}|(x1; k1) ~ (x2; k2), k1 € V;},

where (x1; k1) ~ (x2; k) if there is a lightlike geodesic from x to x, and k> is a parallel
transport of k1 along this geodesics. These are the properties which we will require for
a Hadamard parametrix on the general background M € Obj(Loc). If we replace the
condition (39b) by a stronger one

> 0407 =0, (40)
B

then the Hadamard parametrix becomes a Hadamard 2-point function (for details on the
singularity structure of n-point functions of Hadamard states, see [68]). We will now
show that such a distribution can be constructed on generic backgrounds. Assume that
o is of the form:

G, ol divy 0 0
w=_2|divxer diviGoldivy 0 0 | @1
0 0 0 —iwy

0 0 iwy 0
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In this case, the conditions for w to be a Hadamard 2-point function reduce to:

a)v/t(xa)’)_a)v/t()’ax)ZiAv/t(x’)’), (413)
DLwt=07 DHwUZOa (41b)
WF(@y1) C s, (410)

Wy (X, y) = W/ (Y, X). (41d)

The existence of a Hadamard parametrix is already clear, since one just needs to pick
arbitrary parametrices w;, w, of [y and [y respectively. Their existence was already
proven in [76] (the paper actually discusses general wave operators acting on vector-
valued field configurations). Now, from a parametrix, one can construct a bisolution
using a following argument: let w be a Hadamard parametrix and by O we denote the
hyperbolic operator from (39b), so Oyw = h, Oyw = k, hold for some smooth functions
h and k. Let x be a smooth function such that suppy is past-compact and supp(l — x)
is future-compact. Define

Gy = ARy + A% — x).
Clearly G, is aright inverse for O. A Hadamard bisolution w, can be now obtained as
wy =(1—-Gy0)owo(l—0OG).

With the use of Hadamard 2-point functions and parametrices one can define on BV, (M)
[[~]] a noncommutative star product. To separate the functional analytic aspects of the
framework from the algebraic structure, it is convenient to introduce the space of regular
functionals Bee (M), which is defined as the space of smooth functionals satisty-
ing WF(F™ (¢, ¢*)) = @ for all ¢, ¢*, so their derivatives are compactly supported
smooth functions. Here, in contrast to our previous works, we do not assume that these
functionals are compactly supported.

We can define on B (M) the star product %, which provides the deformation
quantization of (BUee (M), |., .]g,) as:

F*G =moexp(ihl})(F ® G),
where I is the functional differential operator

> (o Le

= <Aa,_® >
B

oy Sp* Sy

There is however, a problem with extending this structure to BV (M), due to the
singularity structure of the causal propagator. To solve this problem, we replace A by a
Hadamard 2-point function @ = 5 A + H. The resulting star product is given by

Fxy G=moexp(ihl))(F ® G).

The two star products introduced above provide isomorphic structures on BUe, (M)

[[~]] and this isomorphism is given by the map oy = exln BUreg V)[[A]] —
%mreg (M)[[A]], where

sbos"
Iy = Z<H“ﬂ ——>.

’ o /3
wF dp% ¢
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Now, the star product xy can be extended to BV ,.(M)[[]] and the resulting alge-
bra is denoted by 2y (M). Note that BUee (M)[[R]] is dense in BV, (M[[A]], if
we equip it with the Hormander topology. We can, therefore, use the intertwining
map oy : BV MV)[[A]] — BY,c(M)[[7]] to define a certain “completion” of
the source space BV, (M) by extending BUee (M) with all elements of the form

lim,, s o 0‘;1] (Fp), where (F}) is a convergent sequence in BV (M) with respect to

the Hormander topology. The resulting space, denoted by a;,l (BV ;e (M), is equipped
with a unique continuous star product equivalent to g,

a;,lF *a;llG = a,;l(F *xg G).

Different choices of H differ only by a smooth function, hence all the algebras (01;11 (BV e
(MD[[R]]), ») are isomorphic and define an abstract algebra A(M). For F € 2A(M), we
have ag F € Ay (M), hence we can realize A(M) more concretely as the space of
families {G i} #, labeled by possible choices of H, fulfilling the relation

G =exp(hl'y—y)GH,
equipped with the product
(FxG)y = Fy*n GH.

The support of F € A(M) is defined as supp(F) = supp(ay F'). Again, this is indepen-

dent of H. Functional derivatives are understood as <‘§—z, w> = a;ll <‘SO§’; £ w), which

is well defined as I'y/_y commutes with functional derivatives.

Polynomial functionals in 2z (M) are interpreted as Wick powers.

Corresponding elements of (M) are obtained by applying a;,l . The resulting object
is denoted by

/:qﬁxl...@xn - f(xl,...,x,,)ioz;ll(/@xl...@xnf(xl,...,xn)), 42)

where f € 8/:_;” (M", V) and we suppress all the indices. Let us now discuss the co-
variance properties of Wick powers. The assignment of (M) to a spacetime M can
be made into a functor 2( from the category Loc of spacetimes to the category of topo-
logical *-algebras Obs and, by composing with a forgetful functor, to the category Vec
of topological vector spaces. Admissible embeddings are mapped to pullbacks, i.e. for
x M — M we set UAx F (@) = F(x*¢). Locally covariant quantum fields are natural
transformations between ® and 2. We require Wick products to be locally covariant in
the above sense. Let BV, (M) denote the subspace of BV (M) generated (as a vector
space) by natural transformations Nat(Tens., ‘B0, ). Note that elements are local in a
weaker sense, as the coordinates in @9(X ; f) depend on the metric (albeit locally).

Let us now define covariant Wick products. On each object M we have to construct
the map T ¢ from BV (M) (the “classical world”) to the quantum algebra 24(M) in
such a way that

Tin (@4 ) (") = Tioe (@4 (), 43)

As we have noted before, classical functionals can be mapped to 2 ;7 (M) by identification
(42). This, however, doesn’t have the right covariance properties and (43) would not be
fulfilled. A detailed discussion of the analogous problem in the scalar field theory is
presented in the section 5 of [19], where it is shown that redefining Wick products
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to become covariant amounts to solving a certain cohomological problem. The result

reproduces the solution, which was proposed earlier in [50]. One has to define T as

a;,l_ > Where w is the smooth part of the Hadamard 2-point functionw = Z +vlno +w

with o (x, ¥) denoting the square of the length of the geodesic connecting x and y and
with geometrically determined smooth functions # and v. A more explicit construction
of Wick products was provided in a recent review [39]. In the present case the only
difference lies in the fact that elements of BV (M) are typically formal power series
in A, with coefficients that are local polynomials of arbitrary degree. As an example, we
consider the Wick ordered scalar curvature on a background gg.

Tioe (@f) = /M Rlgolf (Xeo)d ey

¥

5x!
) + / Rlgoldy f(xg)
£0 M g

8
+rayl, (/M S (Xgo) @(Rdu) (h))+ o).
80

For the simplicity of notation we will drop the subscript M if we keep the background
M fixed and use the notation T instead of T for the Wick ordering operator.

3.4. Interacting theory. Following [38], we introduce the interaction by means of renor-
malized time-ordered products. Let Ap = %(AR + A4) denote the Dirac propagator.
By joc (M) denote the space T (BVioc (M)[[A]]) of Wick ordered local functionals and
we define operators T, : Ajoc (M)®* — A(M), n > 1 by means of

Ta(Fi, ... F) =ap  (F1) 5.0 0y, (F),
for F; € Ajoc(M) with disjoint supports,6 where
F.7 G=moexp(ihl') )(F®G),

andwesetTy = 1,7 = a;{frw. Maps 7, have to be extended to functionals with coincid-
ing supports and are required to satisfy the standard conditions given in [14,49]. In partic-
ular, we require graded symmetry, unitarity, scaling properties, suppT, (F1, ..., F,) C
|J suppF; and causal factorization property: if the supports of Fj ... F; are later than
the supports of Fj,1, ... Fy,, then we have

T(F1® - QF)=T("® - @F)«T,_i(Fii® - QF,). (44)

Maps satistying the conditions above are constructed inductively, and T}, is uniquely
fixed by the lower order maps T, k < n, up to the addition of an n-linear map

Zn t Wioc V)" — oyt i (M) =1 Ajoe (M), (45)

which describes possible finite renormalizations. In [38] it was shown that the renor-
malized time ordered product can be extended to an associative, commutative binary
product defined on the domain D (M) = T(BV(M)), where T = @, T, o m~!. Here
m=' BV — S*BVY (M) is the inverse of the multiplication, as defined in [38,70].
The only difference is that now we consider functionals that are formal power series in A.

6 Note that Fi,i=1,..., n are of the form ¢>}_ for some locally covariant quantum fields @l d=1,..., n.
1
By pairwise disjoint supports we therefore mean that the supports of f; are pairwise disjoint.



R. Brunetti, K. Fredenhagen, K. Rejzner

Dg(M) contains in particular Ao (M) and is invariant under the renormalization group
action. Renormalized time ordered products are defined by

F-sG=TT'F-T'G), (46)

and we use the notation : F: = T(F).

Time ordered products on different spacetimes have to be defined in a covariant way.
To show that this can be done, one uses a straightforward generalization of the result of
[49] on the existence of covariant time-ordered products for Yang—Mills theories.

Using covariant time-ordered products we can now introduce the interaction. As
indicated in Sect. 3.2, we split the action into L' = L+ L, where L is the interaction
term. Let f = (f(, f) be a tuple of test functions chosen in such a way that f;(Xg,),
i = 0,1 are compactly supported. We require that f; = 1 on supp f; (compare with
the condition preceding (23)) and we have a pairing LefXt =Lof,+Lysg,-

The formal S-matrix 8 is a map from ;o (M) to A(M) defined as the time-ordered
exponential. In particular, we have

| T h
SCG:Lyy: =e§r L/t

(47

Now we want to construct a local net of x-algebras corresponding to the interacting
theory on a fixed spacetime M. This is done along the lines of [14], by means of relative
S-matrices. For V, F € joc(M) the relative S-matrix is defined by the Bogoliubov
formula

Sy (F)=8(V) ' x8(V + F). (48)

The infinitesimal version of the above formula allows to define an interacting field
corresponding to an observable F under the influence of the interaction V [11]:

Ry(F) = =ih- 8y (sF)l,—g = (eif”’/ h) . (efv/ . TF) . (49)
S

Unfortunately, we cannot insert directly :L; ¢: as V/, since the resulting interacting fields
would in general depend on the choice of the cutoff function f. One way to do it would
be to take the limit f — 1 directly, in some appropriate topology. This, however, is
typically not well under control. Instead we construct the so called “algebraic adiabatic
limit”.

Let O be a relatively compact open subregion of the spacetime M. From the support
properties of the retarded Mgller operator follows that for F € 2joc(0), the S-matrix
SLI[' (F) depends only on the behavior of f/ = f/o X g0 Within J_(0). Moreover,

the dependence on f’ in that part of the past which is outside of J.(0O) is described
by a unitary transformation which is independent of F. Concretely, if /7 = f" o X,
coincides with f/ on a neighborhood of J¢(0) := J.(Q) N J_(0O), then there exists a
unitary U (f”, f) € U[[A]] (formal power series in 7, A and possibly ) such that

8L, (F) = U(f", f)8L,, (OU(f", f)7",

forall F € joc(0). Hence the algebra generated by the elements of the form 8, Ly (F)is,

up to isomorphy, uniquely determined by the restriction of f’ to the causal completion
J°(0O). This defines an abstract algebra [ 1(0), where [f'] = [f]o denotes the
class of all test functions which coincide with f’ on a neighborhood of J¢(0). In fact,
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f' can be chosen as a smooth function without the restriction on the support. The algebra
Ap,171(0), is generated by maps

/ /7 . d
Reyi(F) Lf 1o = ADD,  f = Ry, ,(F) = lhﬁsL,f/(?»F) o

Now if O; C O3, we can then define a map 27, r1(O1) to 2y, 1(02) by taking the
restriction of maps Ri,(10, (F) 10 [f'lo,- For f" =1 we denote Az, [11(0) = As, (0)
and analogously Ry ,[11(F) = Rg,(F) for F € joc(0). We can now construct the
inductive limit 2(g, (M) of the net of local algebras (s, (0))ocn. We call this the
algebraic adiabatic limit.

Note that for V' € BUeo (M) we can define on BUee (M) a product xy as

Fxy G = R, (Ry(F) x Ry(G)). (50)

This doesn’t work for local arguments, as R;l would not be well defined. Instead, we
can define x5, formally, by setting

Rs, (F x5, G) = R, (F) x Rs, (G). (&2Y)

Let us now come back to quantization of structures appearing in the BV formal-
ism. Following the approach proposed in [38], we define the renormalized time-ordered
antibracket on T(BYV(M)) by

(X,Y}; =TT 'x, 77y},

‘We can also write it as:

: 8'X Sy
X, Y — — (=1l — ) dpu. 52
{ J= Z/( -7 (=1 S%TSW)M (52)
The above formula has to be understood as:

(F, Gy = ‘I(D*(T‘% ®T‘%)), (53)

where D* denotes the pullback by the diagonal map and (‘J' MF )((p) is a compactly
supported distribution (i.e. an element of &'(M)) defined by

<(7_12—2)(¢),f>£(7‘< )@ = ( TUF f)@).  feeQu.

In the second step we used the field independence of time-ordered products. Since
F € T(BU(M)), the distribution (‘J"l ‘;—2) (¢) defined by the above equation is actually

a smooth function and the pullback in (53) is well defined. Similarly, we define the
antibracket with the x-product:

srx sy xSy
(X, Y}*—Z/( el '@*g)du, (54)

whenever it exists. Clearly, it is well defined if one of the arguments is regular or equal
to So. The antibracket {., Sp}, with the free action defines a x-derivation and, similarly,
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{., So}7 is a -7 -derivation. A relation between these two is provided by the Master Ward
Identity [12,49]:

(el X, Sohe = (el o3 X, So}g + €Y a, (B Ay (X) (X, Vis). (59
Now we can use the BV formalism to discuss the gauge invariance in the quantum theory.
In the framework of [38], the S-matrix is independent of the gauge fixing-fermion if the
quantum master equation (QME) is fulfilled on the level of natural transformations. In
terms of the relational observables we use in the present work, this condition means that
at each order in A and A,

—iTLy s /R i TLy ¢, /h
supp (e 1 e {1 Lo, } ) € suppiaf), (56)

where f1 = f1 o0 Xg,.
Using the Master Ward Identity [12,49] and our choice of f, f(, we can rewrite
the above condition as:

supp ({LS", L'} + ALy ) € supp(@fi), (57

where A(L; f) is the anomaly term, which in the formalism of [38], is interpreted as
the renormalized version of the BV Laplacian. The condition (57) is called the quantum
master equation. If we redefine time-ordered products in such a way that the anomaly
is equal to 0, the above condition is fulfilled. To show that such a redefinition of time-
ordered products is possible, one uses a cohomological argument similar to that of
[38,49], which reduces the problem of removing the anomaly term to the problem of
analyzing the cohomology of s modulo d on local forms (forms constructed locally from
the fields of the theory). For the case of gravity in the metric formulation, the relevant
cohomology (i.e. H (s |d) on top forms) was computed in [2] (see also earlier work [20],
without antifields). In 4 dimensions for pure gravity this cohomology is trivial, so the
anomaly can be removed, i.e. one can redefine the time-order products in such a way
that (57) holds for the new definition of 7.
Let us now define the quantum BV operator §, as a map on BV (M) given by

N —i T h i T h
5(X) = efrl Lig/ . ({e; Lyl

9 TX Lop) ) = (LG LG 0 TX, (58)
where the second term is a correction for the fact that {L‘;Z“, L‘;Z“}T vanishes only for

J — 1. The nilpotency of § is easily checked by direct computation, with the use of the
Jacobi identity for the antibracket and the fact that {L?t, L‘;Z“}g is odd. From the MWI

follows that § can be rewritten as
$(X) ={X, 5%} + A, (X),

so it is local and doesn’t depend on the choice of f. As in [38] we have an intertwining

property
{.SolsoRL,; =Ry, ;0 § + (terms that vanish for d f = 0), (59)

hence we can formally state that

. -1
s = RLIf o{., So}xo RLIf df=0’
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Note that § doesn’t depend on the choice of f and the intertwining property above
suggests that § should (at least formally) be a derivation with respect to xg, . To make this
statement precise, we can use the fact that § is locally implemented by the BRST charge
Q [71]. It is defined as the Noether charge corresponding to the BRST transformation.
A concrete formula is provided in Appendix B. Let us assume that M has a compact
Cauchy surface. Using the result of [71] we can conclude that

Rii GO p) =~ (R, (@ ). Re, (O, (60)

holds on-shell for @ ; € BV(O), where f' = f'oXg, issupportedin Oand f = foXyg,
is identically 1 on O. Formally, this can be written as

§5Pp =Dy, Q]*L1f'

As we are interested in constructing only the local algebras associated to bounded regions
O € M, we can always embed such a region in a spacetime with compact Cauchy
surfaces. Since the x;, —commutator is local, it doesn’t depend on the behavior of Q in
the region spacelike to the support of f’, so the formula (60) holds also for spacetimes
with non-compact Cauchy surfaces, although Q alone is not well defined (see the remarks
in [49] at the end of section 4.1.1).

We can now define the space of gauge invariant fields as the Oth cohomology of
(5, BV(M)). This concludes the construction of the algebra of diffeomorphism invariant
quantum fields for general relativity.

4. Background Independence

In the previous section we constructed the algebra of interacting observables of effective
quantum gravity, by choosing a background and splitting the action into a free and
interacting part. Now we prove that the result is independent of that split. In [16] it was
proposed that a condition of background independence can be formulated by means
of the relative Cauchy evolution. Let us fix a spacetime M; = (M, g;) € Obj(Loc)
and choose X_ and X, two Cauchy surfaces in M, such that X, is in the future of
X _. Consider another globally hyperbolic metric g on M, such that k = g» — g; is
compactly supported and its support K lies between X_ and X,. Let us take N1 €
Obj(Loc) that embed into My, My, via x1+, x2+ and x;+=(N1),i = 1,2 are causally
convex neighborhoods of X1 in M;. We can then use the time-slice axiom to define
isomorphisms or,,, = 2 x;+ and the free relative Cauchy evolution is an automorphism
of 2A(MMy) given by Bor = Uy, © “6X12, 0y, © a(;le. It was shown in [19] that the
functional derivative of g with respect to g is the commutator with the free stress-energy
tensor. Let us recall briefly that argument, using a different formulation. We can apply
B to the S-matrix, which works as the generating function for free fields, and calculate
the functional derivative using an explicit formula for relative Cauchy evolution. To this
end we use the perturbative agreement condition introduced by Hollands and Wald in
[51]. Recently a more general result in this direction was proven in [27]. Following these
ideas, we use a map "' : A(Mz) — A(M;), such that "' maps Py, (f) to Doy, (f)
(modulo the image of §y), f = f o Xy, if the support of f lies outside the causal future
of K. Physically it means that free algebras 2A(M) and 2(M5) are identified in the past
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of K. Analogously, one defines a map 72", which identifies the free algebras in the

future. The free relative Cauchy evolution is then given by

Pok = T © (i) ™ 1)

As we choose to work off-shell, we define ™! as the classical retarded Mgller operator

constructed in [31]. This definition can be understood as an off-shell extension of the
definition given in [51].
The perturbative agreement is a condition that, on shell,

ret _
Tglgz [¢] 82 = SSOM2—50M1 holds. (62)
Here SSOM1 —Sont, denotes the relative S-matrix constructed with the interaction Spa, —
Soac, and the background metric g1, while 8 is the S-matrix constructed on M; with
the T, product. More explicitly, we have

et ( id’sz//ﬁ) 0. (ei(LOM2 —Lo, )f/h)*l . (ei(LOMZL()J\T] /P Py, g /B

8182 \ "I, I, 81\ Ty ’
(63)

where = means “holds on-shell with respect to free equations of motion” (i.e. modulo

the image of §p) and, using the notation introduced in the previous section, (Loy,) f =

(Low,) f,» Where f = (fg, f1) is atuple of test functions such that f, = 1 on supp f.

We also choose f to be identically (1, 1) on supp f.

The perturbative agreement condition for T;f‘;z is analogous to (63) and reads:

_adv (eicDsz//h) os. (ei(Lm‘,[sz1 )f/h+ia>M2f//h> N (ei(LoMfLOMl )f/h)—l

8182 \ "I, Tty 81 \"T, ’

(64)
Conditions (63) and (64) were proven in [51] for the case of the free scalar field, but the
same argument can be used also for pure gravity.

To fulfill the perturbative agreement condition, one fixes the time-ordered product
Tov, and shows that there exists a definition of T, on the background M, compatible
with other axioms, such that also (62) can be fulfilled. In particular, the quantum master
equation holds automatically for T7, if it holds for Ty, . To prove this, we use the off-
shell definition of rg‘gz, given in [31], and from (62) it follows that rgfgz 082(Pyyq, )=

8Sont, —Sont; (Poviy ) + 1, where I belongs to the image of {., Soag, },, - Let

‘/i = ‘TM, (LM, - LOM,)f

380,
de(x)

IS0,

So0) it follows that

Since Tt to

8182

ret iV2/h _ ) ret iVa/h
fae ({ETMz ’ SOMZ]*gz) N {‘Eg]g2 (e(‘TMz ) > Sovt }*gl
i(Lone, —Lone ) /h\ ! i((Lonty —Lont ) p+V2) /B
= [(€7M1 : : ) *g1 (eerI : : )vSOMl

Now we use the fact that (Lo, — Loa, ) f doesn’t depend on antifields and that (Loy, —
Loy)f+V2=V1. This yields

, ; -1 .
ret iVa/h _( iLovy—Lon,) /R iVi/h .
tg1g2 ({ETMZ ’ SOMZ}*g ) - (e'TMl *g| e“TJ\/[l 5 SOMI = Os
2

*g

is an algebra morphism and it maps

*g1
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so the QME holds for Ty, .
Let us go back to the relative Cauchy evolution. The functional derivative of Box with
respect to k = g» — g1 can now be easily calculated, yielding

) Dy f//FL
Bok (eA ’ )
Sk Ty 81

o.=s.i _ S(LOMz)f’ . ei¢Wt1f’/h+ei¢3»{1f’/h* S(LOMz)f)
h Sk g 8T i o Sk a1

i i(pM]f//h
- _7_1 [TO,LLUseg’Ml *1

where Ty, is the stress-energy tensor of the linearized theory.

Let us now discuss a corresponding construction in the interacting theory. It was
conjectured in [16] that, for the full interacting theory of quantum gravity, the relative
Cauchy evolution should be trivial (equal to the identity map), hence the derivative with
respect to g should vanish. Using the quantum Mgller maps Ry,, Ay,,i = 1,2, we can
write the interacting relative Cauchy evolution as:

_ p—1 ret —1 adv —1
ﬂ_RV1 o‘cglgzoRVzoAVz o(z'g]gz) oAy,.
We can now formulate the condition of background independence as:

-1 ret _ a1 adv
RV1 0 Tyrq, © Ryy = AV1 0 Tyigy © Ay,.

Note that we can avoid potential problems with domains of definition of R;ll and A_ll,
by rewriting the above condition as

iVi/h ret s ad ivVi/h
€T, *@ (Tglgz ° Ry, (Q)sz/)) - (Tgls\'l2 o Av, (@sz/)) *g1 €Ty,

Using formulas for 7%, and 7% and the fact that (Loyg,) £ + Vo = L%Ez f» We obtain:

8182 8182
. —1 . .
ivi/h l(LSv[Xt —LOMl)f/h I(LSV[X‘ —LOMl)f/hH@sz//ﬁ
e e, 2 *oi €5 2
Tae, X8\ €7, 81 €Ty,

. . . -1
0. el(ngm27L03\T1)f/h+l¢’M2f’/h el(Lgv[msz()Ml)f/ﬁ R eivl/h
- 'J'Ml 81 TM] 81 TMI

Differentiating with respect to k;,, yields a condition

[Ry, (@, ) Ry (T ()] =0,

where

SLSY
e - (820,

is the full stress-energy tensor smeared with a test section 1 and we chose f = 1 on
suppn. We can write the above condition in a more elegant way, using the formal notation
with xy,, namely

0.8.v;
[¢M1f’:T(7l)]*V1 = 0,
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where =" means “holds on-shell with respect to the equations of motion of the full
interacting theory”. To prove that the infinitesimal background independence is fulfilled,
we have to show that 7'(n) = 0 in the cohomology of §. This is easily done, as

sSxt st .
Ty = (22| )= (2| o) = s (n ) =3 (nn),
(m <8kw o n > <8th N n n n

where /i is the perturbation metric. The last equality follows from the fact that the anomaly
can always be removed for linear functionals [12,28]. This concludes the argument, so
the theory is perturbatively background independent.

5. States

Finally we come to the discussion of states. We start with outlining the construction
of a state for the full interacting theory for on-shell backgrounds (i.e. backgrounds for
which the metric is a solution to Einstein’s equations), given a state for the linearised
theory. We will use the method proposed in [29] which relies on the gauge invariance
of the linearized theory under the free BV transformation so. We have already indicated
that this requires the background metric gg to be a solution of Einstein’s equations, so
throughout this subsection we assume that this is indeed the case. The construction we
perform is only formal, since we don’t control the convergence of interacting fields and
we treat them as formal power series in / and A.

For a fixed spacetime M = (M, go), we define the quantum algebra (M) of the
free theory as in Sect. 3.2. Since we assumed in this subsection that g is a solution of
Einstein’s equation, the free action L contains only the term quadratic in /.

Let us assume that we have a representation 7o of A()M) on an indefinite product
space Ko (M) and we denote K (M) = Ko(M)[[A, A]]. The scalar product (., .) gy on
K (M) is defined in terms of formal power series in /2 and A.

In order to distinguish a subspace of K (M) that corresponds to physical states, we
will apply the Kugo—Ojima formalism [59,60] that makes use of the interacting BRST
charge Qine = Rs,(Q) to characterize the physical states in K. The nilpotency of Q
(as an operator on X (M)) can be shown by arguments analogous to [49], postulating
appropriate Ward identities. It follows that the 0-th cohomology of Q defines a space
closed under the action of physical observables (i.e. under H O(BV(M), §)). To see that
this is consistent, let us take ¥ € ker(Qiy) and F € BV(M). Then

RL[f(fF)lp = [RLIf(Q)v RL[/(F)]*W = RL[f(Q)RL1fF

holds, i.e. Ry, P (S F)¥ € Im(Qin), so it vanishes in the cohomology. Vectors belonging
to ker(Qint) are constructed perturbatively from the elements of ker(Qg) C Ko(M) by
the recursive method introduced in [29]. The assumptions on Qg and Ko(M) necessary
for this method to work are the following:

L (Y, ¥)agon = 0, VY € Ko(M),
2. If ¢ € Ko(M) satisfies (¢, ¥) 5¢,vpy = 0, then ¥ € Koo(M) = ker Q.

It was shown in [29] that under these assumptions (., .)gy) is positive definite on

ker Qine € K(M), so H2(Q, K(M)) provides formally a Hilbert space representation
of HY(BY(W), §).
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It remains to show that for a given on-shell background M = (M, go) there exists
a pre-Hilbert space representation Ko(M) of the quantum linearized theory satisfying
the conditions above. This problem hasn’t been solved yet in a full generality, but there
has been a lot of progress made in the recent years, see for example [9,33]. A technical
problem which we have to face is that construction of Hadamard states is difficult in
generic spacetimes. On the other hand, if a background M has symmetries, it might
happen that there is no sensible choice of curvature scalars X go. Therefore, instead
of looking at pure gravity, in concrete models it might be better to consider coupling
to matter fields and make the coordinates X* dependent on these fields. A natural
candidate is the Brown—Kuchat model [13], where the coordinates are fixed by four
scalar “dust fields”. The construction of the algebra of observables in such a model
proceeds analogous to the one presented in this work. We plan to investigate such models
in our future work and compare the results to the other approaches to quantum gravity
[25].

6. Conclusions and Outlook

We showed in this paper how the conceptual problems of a theory of quantum gravity
can be solved, on the level of formal power series. The crucial new ingredient was the
concept of local covariance [19] by which a theory is formulated simultaneously on
a large class of spacetimes. Based on this concept, older ideas could be extended and
made rigorous. The construction uses the renormalized Batalin Vilkovisky formalism,
as recently developed in [38].

In the spirit of algebraic quantum field theory [44,45] we first constructed the alge-
bras of local observables. In a theory of gravity, this is a subtle point, since on first sight
one might think that in view of general covariance local observables do not exist. We
approached this problem in the following way. Locally covariant fields are, by definition,
simultaneously declared on all spacetimes. These objects then give rise to partial (rela-
tional) observables used by Rovelli [75], Dittrich [24] and Thiemann [77]. The algebra
of observables is defined as being generated by such objects.

The states in the algebraic approach are linear functionals on the algebra of observ-
ables interpreted as expectation values. In gauge theories the algebra of observables is
obtained as the cohomology of the BRST differential on an extended algebra. The usual
construction first described by Kugo and Ojima [58—60] (for an earlier attempt see [22])
starts from a representation of the extended algebra on some Krein space and an imple-
mentation of the BRST differential as the graded commutator with a nilpotent (of order
2) operator (the BRST charge). The cohomology of this operator is then a representation
space for the algebra of observables. We followed this approach also here, assuming
there exists a representation of the linearized theory, and constructed as in [30] the full
interacting theory as a formal power series in /2 and A.

In this paper we treated pure gravity. It is, however, to be expected that the procedure
can be easily extended to include matter fields (scalar, Dirac, Majorana, gauge). It is less
clear whether supergravity can be treated in an analogous way. Introducing matter fields
will make it easier to construct the dynamical coordinates X*, for example like in the
Brown—Kuchai models [13].

On the basis of the formalism developed in this paper one should be able to perform
reliable calculations for quantum corrections to classical gravity, under the assumption
that these corrections are small and allow a perturbative treatment. There exist already
some calculations of corrections, e.g. for the Newton potential [10] with which these
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calculations could be compared. It would also be of great interest to adapt the renormal-
ization approach of Reuter et al. (see, e.g., [72,73]) to our framework. Further interesting
problems are the validity of the semiclassical Einstein equation (for an older discussion
see [80]) and the possible noncommutativity of the physical spacetime [26].

Another possible direction of further study would be to reformulate everything in
terms of frames instead of a coordinate systems. The advantage of that is the existence
of global frames in a large class of spacetimes, where global coordinate systems do not
exist.
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A. Aspects of Classical Relativity Seen as a Locally Covariant Field Theory

In this appendix we discuss some details concerning the formulation of classical relativity
in the framework of locally covariant quantum field theory. The first issue concerns the
choice of a topology on the configuration space €(M). In Sect. 2.1 we already indicated
that a natural choice of such a topology is Ty, given by open neighborhoods of the form
Ugv = {go+h, h € V open in I.((T*M)®?)}, where I'.((T*M)®?) is equipped with
the standard inductive limit topology. In our case, ty coincides with the Whitney C*°
topology, W O°°, hence the notation. After [54], Whitney C* topology is the initial topol-
ogy on C® (M, (T*M)®?) induced by the graph topology on (M, J>° (M, (T*M)®?)
through maps I' (T*M)®?) 5 h > j*®h, where J° (M, (T*M)®?) is the jet space and
j°h is the infinite jet of 4. On the space of all Lorentzian metrics we have also another
natural topology, namely the interval topology t; introduced by Geroch [42], which is
given by intervals {g|g1 < g < g2}, where the partial order relation < is defined by (1),
ie.

g < gif g (X, X) > 0implies g(X, X) > 0.

The configuration space &(M), defined in (2) is, by definition, an open subset of Lot (M),
with respect to 7;. Moreover, if g’ € (M), then we know that there exists A € R such
that Ag — g’ is positive definite, so we can find a neighborhood V C I'.(T*M Y®2) of
0, such that g’ + h € Lot(M) and Ag — g’ — h is also positive definite. It follows that
g +h <Agand g’ +V C E(W). This shows that (M) is open also with respect to Ty .
More generally, it was shown in [54] that the C° Whitney topology, W 0°, on Lot(M)
coincides with the interval topology on the space of continuous Lorentz metrics. This
result was than used in [18] to show that the space of smooth, time-oriented and globally
hyperbolic Lorentzian metrics on M is an open subset of Lot(M), with respectto W O*°.

Functionals on (M) are required to be smooth in the sense of calculus on locally
convex vector spaces, but the relevant topology is the compact open topology 7¢c o not
the Whitney topology tw. More precisely, let U be an open neighborhood of hg in
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the compact open topology tco. The derivative of F at hg in the direction of h; €
[((T*M)®?) is defined as

1
(FO o). ) = lim = (F(ho -+ th1) = F o)) (65)

whenever the limit exists. The function F is called differentiable at s if (F W (he), h 1)
exists forall 1 € E(M). Itis called continuously differentiable if it is differentiable at all
points of €M) and dF : U x M) — R, (ho, h1) — (FV (ho), hy) is a continuous
map. It is called a C'-map if it is continuous and continuously differentiable. Higher
derivatives are defined in a similar way. Note that the above definition means that F' is
smooth, in the sense of calculus on locally convex vector spaces, as amap U — R. It
was shown in [18, Remark 2.3.9] that this fits also into the manifold structure on & (M)
induced by tw. To see this, note that a compactly supported functional F, defined on
a t-open set Ug, v can be extended to a functional F o ¢, defined on an ¢ p-open
neighborhood t;l (Ugy,v) by means of a continuous map ¢, : (F((T*M)®2), Tco) —
(F((T*M)®2), Tw), defined by ¢, (g') = go + (g’ — go) x. From the support properties
of F follows that F o ¢, is independent of .

In particular, F () defines a kinematical vector field on &(0M) in the sense of [57].
Moreover, since &.(M) is reflexive and has the approximation property, it follows (the-
orem 28.7 of [57]) that kinematical vector fields are also operational i.e., they are deriva-
tions of the space of smooth functionals on &(M).

At the end of Sect. 2.7 we have indicated that the space of multilocal functionals can
be extended to a space BU (M) which is closed under |[., .]. Here we give a possible
choice for this space. We define BU(M) to be a subspace of BY,,(M) (defined in
Sect. 3.2) consisting of functionals F, such that the first derivative F (1)(g0) is a smooth
section for all ¢ € €M) and ¢ — FWD(p) is smooth as a map EM) — E(M),
where &(M) is equipped with its standard Fréchet topology. Since the lightcone of g
is contained in the interior of the lightcone of g, the WF set condition (38) guarantees
that | ., .] is well defined on B0 (MM). Using arguments similar to [18] we can prove the
following proposition:

Proposition 1. The space BL(M) together with | ., .| is a Poisson algebra.

Proof. First we have to show that BU(M) is closed under |., .|. It was already shown
in [18] that B0, (M) is closed under the Peierls bracket. It remains to show that the
additional condition we imposed on the first derivative is also preserved under |., .].
Consider

(LF. GV (@) = (FP ), A6V () = (aF V(9), 6P ()
— (a4 FD ), 5" (@ 4*G V() (66)
+(4RFD (), 5" (4% V().
where S” (¢) denotes the third derivative of the action. The last two terms in the above for-

mula are smooth sections, since the wavefront set of S”(¢) is orthogonal to T Diag? (M)
and AR/AFMD (), ARIAGD () are smooth. The first term of (66) can be written as

%F(l)ap + th)‘[_o, where h = AGV () is smooth. By assumption, ¢ — F (@) is
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smooth, so the above derivative exists as a smooth section in &(M). The same argument
can be applied to the second term in (66), so we can conclude that | F, GJ)(I)(q)) is a
smooth section. From a similar reasoning follows also that ¢ — (|F, GNDV(p) is a
smooth map.

The antisymmetry of |.,.] is clear, so it remains to prove the Jacobi identity. In
[18,53] it was shown that this identity follows from the symmetry of the third derivative
of the action, as long as products of the form AR/A F( () are well defined. With our
definition of BV(M) this is of course true, since F(p) is required to be a smooth
section. O

B. BRST Charge

In this section we construct the BRST charge that generates the gauge-fixed BRST
transformation s. It is convenient to pass from the original Einstein—Hilbert Lagrangian
to an equivalent one given by:

Lipg, gy () () = / dvoluw,g8"" (i T = T
M

It differs from the Einstein—Hilbert Lagrangian by a term f V. DH, where
M

DH = /=g(g" Ity — "' T};)

and I"’s are the Christoffel symbols.
Let L be the gauge-fixed Lagrangian, where the Einstein—Hilbert term is replaced by
L’. The full BRST current corresponding to y is given by the formula:

oL oL oL
0= 3 (18" gy * I 5y % (19 s )) ~ K
p % TARY n Vv

where K é“/[ is the divergence term appearing after applying y to Ly¢(f). Using this

formula we obtain (compare with [58,63,66]):

JH = J—gg‘“‘(prwp — (Vabp)e?) + a(b? +ic*VucP)(by +ic*Vyc)p) +i«/—gg‘“‘c°‘chmpﬂE,3.
(67)
The free BRST current is given by:
Iy = V=88""(bpVac® — (Vabp)c).

For a spacetime M with compact Cauchy surface X, for any closed 3-form B there exists
a closed compactly supported 1-form 1 on M such that |, unAB= / 5. B. In this case
we can define the BRST charge as:

Qi/Mn/\J

and analogously for the free BRST charge Q.
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