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The architecture of infinite structures with non-crystallographic symmetries can

be modelled via aperiodic tilings, but a systematic construction method for finite

structures with non-crystallographic symmetry at different radial levels is still

lacking. This paper presents a group theoretical method for the construction of

finite nested point sets with non-crystallographic symmetry. Akin to the

construction of quasicrystals, a non-crystallographic group G is embedded into

the point group P of a higher-dimensional lattice and the chains of all G-

containing subgroups are constructed. The orbits of lattice points under such

subgroups are determined, and it is shown that their projection into a lower-

dimensionalG-invariant subspace consists of nested point sets withG-symmetry

at each radial level. The number of different radial levels is bounded by the

index of G in the subgroup of P. In the case of icosahedral symmetry, all

subgroup chains are determined explicitly and it is illustrated that these point

sets in projection provide blueprints that approximate the organization of

simple viral capsids, encoding information on the structural organization of

capsid proteins and the genomic material collectively, based on two case studies.

Contrary to the affine extensions previously introduced, these orbits endow

virus architecture with an underlying finite group structure, which lends itself

better to the modelling of dynamic properties than its infinite-dimensional

counterpart.

1. Introduction

Non-crystallographic symmetries are ubiquitous in physics,

chemistry and biology. Prominent examples are quasicrystals,

alloys exhibiting five-, eight-, ten- and 12-fold symmetry with

long-range order in their atomic organization (Steurer, 2004)

and, in carbon chemistry, icosahedral carbon cage structures

called fullerenes (Kroto et al., 1985), with architectures akin to

Buckminster Fuller’s geodesic domes. Icosahedral symmetry

also plays a fundamental role in virology. Viruses encapsulate

and hence protect their genomic material inside a protein

shell, called capsid, that in the vast majority of cases possesses

icosahedral symmetry. In 1962, Caspar and Klug proposed, in

their seminal paper (Caspar & Klug, 1962), a theory to

describe the geometry of icosahedral viral capsids and predict

the locations and orientations of the capsid proteins. Inspired

by the structure of the geodesic dome, they derived a series of

icosahedral triangulations, called deltahedra. More recently,

Twarock (2004) proposed a generalization of this theory by

considering more general tilings of the capsid surface inspired

by the theory of quasicrystals.

Caspar–Klug theory and generalizations thereof describe

the capsid of a virus as a two-dimensional object rather than in

three-dimensional space. Therefore, they do not provide

information about other important features of the capsid, such
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as its thickness and the organization of the genomic material

encapsulated within. Experiments showed that many viruses

exhibit icosahedral symmetry at different radial levels:

examples are the dodecahedral cage of RNA observed in

Pariacoto Virus (Tang et al., 2001) and the double-shell

structure of the genomic material of Bacteriophage MS2

(Toropova et al., 2008). These results suggest that the

symmetry of the virus should be extended to include infor-

mation on the capsid proteins and the packaged genome

collectively.

A first step towards this goal was the principle of affine

extensions, described in a series of papers (Keef & Twarock,

2009; Keef et al., 2008, 2012). In this work, the generators of

the icosahedral group have been extended by a non-compact

generator acting as a translation, with the additional

requirement that the resulting words of the group satisfy non-

trivial relations. Such affine extension can also be obtained via

a construction similar to affine extensions in the theory of

Kac–Moody algebras (Carter, 2005). In this case, icosahedral

symmetry is extended via an extension of the Cartan matrix,

resulting in the addition of a non-compact operator to the

generators of the icosahedral group (Patera & Twarock, 2002;

Dechant et al., 2012, 2013). The orbits of the affine extensions

thus constructed consist of infinite sets of points that

densely fill the space, since the icosahedral group is non-

crystallographic in three dimensions. Since viral capsids are

finite objects, a cut-off parameter must be introduced, that

limits the number of monomials of the affine group. In

previous work, words characterized by a finite action of the

translation operator had been used to construct multi-shell

structures, in which each radial level displays icosahedral

symmetry. However, such a cut-off implies that the point sets

are not invariant under the extended group structure, which

limits the use of these concepts in the formulation of energy

functions, e.g. Hamiltonians or in the context of Ginzburg–

Landau theory.

An alternative to this approach based on affine extension is

Janner’s work, which models viral architecture in terms of

lattices. In a series of papers (Janner, 2006, 2010a,b, 2011a,b),

Janner embedded virus structure into lattices, and showed that

this provided an approximation for virus architecture, and

provides an alternative approach for the modelling of the

onion-like fullerenes (Janner, 2014); a paper combining this

lattice approach with the affine extensions mentioned above

was also published (Janner, 2013). Subsequently, approxima-

tions of virus architecture in terms of quasilattices were

developed (Salthouse et al., 2015), which provide an alter-

native to the lattice approach of Janner, and by construction

have vertex sets that contain the point arrays determined by

the affine extended groups as subsets. All of these approaches

approximate viruses in terms of infinite structures, lattices,

quasilattices, infinite groups, which require a cut-off. In the

case of the lattices and quasilattices, the cut-off consists of

choosing a subset of the infinite (quasi)lattice, and in the case

of affine extensions the action of the translation operator has

to be limited. This is the motivation for the study described in

the present paper in which we develop an approach in terms

of mathematical concepts that are intrinsically finite-dimen-

sional, because they are related to orbits of finite groups.

In this paper we introduce a new group theoretical method

to study nested point sets with non-crystallographic symme-

tries, based on the embedding of non-crystallographic groups

into higher-dimensional lattices (Senechal, 1995). This

embedding is a standard way to define mathematically

quasicrystals, e.g. via the cut-and-project schemes and model

sets (Moody, 2000), or the superspace approach (Janssen &

Janner, 2014). More generally, in order to model objects in

three dimensions that possess a non-crystallographic

symmetry at different radial levels, it makes sense to embed

the non-crystallographic symmetry into a crystallographic

setting and use the long-range order implied to induce in

projection information on the collective arrangements of

different radial levels. Janner (2008) gave a first approach in

this direction, by analysing double-shell structures with five-

fold symmetry as projected orbits of specific point groups in

higher dimensions. Here we present a more systematic study

for general non-crystallographic symmetries. Specifically, we

embed a non-crystallographic group G into the point group P
of a lattice in the minimal higher dimension where the cut-

and-project construction is possible. Since this embedding is

not, in general, maximal, we consider the subgroups K of P
containing G as a subgroup, which extend the symmetry

described by G. We prove that the projection of the orbits of

lattice points under such subgroups into a lower-dimensional

subspace invariant under G is a nested finite point set with

non-crystallographic symmetryG. We show that the number of

distinct radial levels in the projected orbits is bounded by the

index of G in K.

As an illustration of this approach, we provide analytically

an explicit construction of planar nested structures for non-

crystallographic dihedral groups. Moreover, in order to pave

the way for applications to icosahedral viruses, we apply this

approach to the icosahedral group I , which can be embedded

into the point group of the simple cubic lattice in six dimen-

sions (Zappa et al., 2014). We classify all the I -containing
subgroups of the hyperoctahedral group, with the aid of the

software GAP (The Gap Group, 2013), which is designed for

problems in computational group theory. Since the six-

dimensional lattice is infinite, a cut-off parameter must be

introduced in order to select a finite number of lattice points

whose orbits can then be used to model the capsid. By

construction, all point arrays have full icosahedral symmetry,

i.e. containing reflections as well as rotations. Since viruses are

known to be chiral, this may seem perplexing; however, we

note that point arrays do not fully constrain viral architecture,

and thus proteins can be positioned in the capsid so as to

break the full symmetry, as long as they adhere overall to the

blueprint indicated by the points. Therefore, it is not possible

to obtain a full classification of the orbits as was done by Keef

et al. (2012). However, these results provide for the first time a

finite group structure, albeit in a higher-dimensional space,

underlying the geometry of the multiple layers of material in a

virus. This has important consequences for the modelling of

physical properties; specifically, conformational changes of
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viral capsids, which are important for the virus to become

infective, can be modelled in the framework of the Ginzburg–

Landau theory of phase transitions (Zappa et al., 2013), via the

formulation of an energy function invariant under the

generators of the symmetry group of the capsid.

The paper is organized as follows. After reviewing, in x2, the
embedding of non-crystallographic groups into higher-

dimensional lattices, in x3 we describe the new group theo-

retical setup to model finite nested structures with non-

crystallographic symmetry. As a first application, we study in

x4 planar nested point sets obtained from projection of

extensions of embedded non-crystallographic dihedral groups.

In x5 we analyse in detail the case of icosahedral symmetry,

classifying the chain of subgroups containing the icosahedral

group embedded into the six-dimensional hyperoctahedral

group. Finally, in x6 we use these results to obtain geometric

constraints on viral capsid architecture, and present two case

studies, namely the capsids of Pariacoto Virus and Bacter-

iophage MS2, whose structures have been intensively studied

experimentally. We conclude in x7 by discussing further

applications of these results.

2. Crystallographic embedding of non-crystallographic
groups

Our new group theoretical setup relies on the embedding of

non-crystallographic symmetries into the point group of

higher-dimensional lattices. This is a standard method in the

theory of quasicrystals; here we briefly review it and fix the

notation that we are going to use throughout the paper. We

refer to Senechal (1995) and Baake & Grimm (2013) for

further information.

The point group P of a lattice L in Rd with generator matrix

B is the maximal set of orthogonal transformations that leave

the lattice invariant:

PðLÞ :¼ fQ 2 OðdÞ : 9M 2 GLðd;RÞ : QB ¼ BMg: ð1Þ

P is a finite group and does not depend on the matrix B

(Senechal, 1995). The lattice group ! constitutes an integral

representation of the point group P with respect to B:

!ðBÞ :¼ fM 2 GLðd;ZÞ : 9Q 2 PðLÞ : B%1QB ¼ Mg: ð2Þ

A finite group of isometries G is non-crystallographic in

dimension k if it does not leave any lattice invariant in R
k.

Following Levitov & Rhyner (1988), we introduce the

following:

Definition 2.1. Let G & OðkÞ be a finite non-crystal-

lographic group of isometries. A crystallographic representa-

tion of G is a matrix group eGG satisfying the following

conditions:

(C1) eGG stabilizes a lattice L in Rd, with d> k, i.e. eGG is a

subgroup of the point group P of L;
(C2) eGG is reducible in GLðd;RÞ and contains an irreducible

representation (irrep) !k of G of degree k, i.e.

eGG ’ !k ' !0; degð!0Þ ¼ d% k: ð3Þ

The condition (C1) implies that the matrices representing

the elements of eGG with respect to a generator matrix B of the

lattice are integral or, equivalently, B%1
eGGB is a subgroup of

the lattice group ! & GLðd;ZÞ of L [cf. equation (2)]. As a

consequence, the character "
eGG

is an integer-valued function.

The condition (C2) is necessary for the construction of

quasicrystals in Rk
via the cut-and-project method (Senechal,

1995; Baake & Grimm, 2013).

The minimal dimension d> k for which a crystallographic

representation eGG of G is possible is called the minimal crys-

tallographic dimension of G. The conditions "
eGG
2 Z and

equation (3) can be easily verified with the aid of the character

table of G and Maschke’s theorem (Fulton & Harris, 1991).

The existence, and possibly an explicit construction, of lattices

in Rd whose point group contains a crystallographic repre-

sentation of G is a more difficult task. In the case of icosa-

hedral symmetry, the minimal crystallographic dimension is six

and the lattices in R6 have been classified in Levitov & Rhyner

(1988) (this is explained in more detail in x5). For planar non-
crystallographic symmetries described by the dihedral groups

D2n, the minimal crystallographic dimension is ’ðnÞ, the Euler

function of n. We will go back to this example in x4.
Let us denote by VðkÞ the invariant subspace of Rd which

carries the irrep !k of G. Let # : Rd ! VðkÞ be the projection

into V ðkÞ, i.e. the linear operator such that the diagram

Rd eGGðgÞ
%! Rd

## ##

VðkÞ !kðgÞ
%! VðkÞ

ð4Þ

commutes for all g 2 G:

#ðeGGðgÞvÞ ¼ !kðgÞð#ðvÞÞ; 8g 2 G; 8v 2 Rd: ð5Þ

Let V ðd%kÞ denote the orthogonal complement of V ðkÞ in Rd.

We recall the following proposition [for the proof, see Sene-

chal (1995)]:

Proposition 2.1. The following are equivalent:

(i) Vðd%kÞ is totally irrational, i.e. Vðd%kÞ \ L ¼ f0g;
(ii) # jL is one-to-one.

The triple ½VðkÞ;Vðd%kÞ;L) is the starting point to define

model sets via cut-and-project schemes with G-symmetry

(Moody, 2000), which is a standard way to define quasicrystals

mathematically. In this paper, we construct finite point sets

resulting from the projection into VðkÞ of orbits of points of L
under G-containing subgroups of the point group P. We

explain this construction in the next section.

3. Nested point sets obtained from projection

The embedding of a non-crystallographic group G into a

higher-dimensional lattice L is, in general, not maximal. This
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means that there exist proper subgroups of the point group P
of L which contain a crystallographic representation eGG ofG as

a subgroup. Therefore, we introduce the set

A
eGG
:¼ fK * P : eGG * Kg; ð6Þ

which consists of all the eGG-containing subgroups of P. For
computational purposes, we fix the generator matrix B of L,
and consider the subgroup structure of the lattice group ! in

that representation, i.e. the set AHðBÞ ¼ fK<! : H<Kg,
with H :¼ B%1

eGGB. Notice that a different choice in the

generator matrix of the lattice results in subgroups K0 conju-

gate to K in GLðd;ZÞ.

The elements in AH encode the symmetry described by G

plus additional generators that extend this symmetry. LetK be

an element of AH and let n :¼ ½K : H) be the index ofH in K.

Let T ¼ fg1; . . . ; gng be a transversal ofH inK, i.e. a system of

representatives in K of the right cosets of H in K (Holt et al.,

2005). Let v 2 L be a lattice point, which can be written as

v ¼ ðm1; . . . ;mdÞ, with mi 2 Z (since we fixed the basis B). v
can be taken as seed point for the orbit OKðvÞ ¼ fkv : k 2 Kg
under K. With this setup, we prove the following theorem.

Theorem 3.1. Let OiðvÞ + OHgi
ðvÞ ¼ fhgiv : h 2 Hg be the

orbit of v 2 L with respect to the coset Hgi, and let us denote

by PiðvÞ :¼ #ðOiðvÞÞ the orbit projected into V
ðkÞ, the subspace

of dimension k carrying the irrep !k of G [cf. equation (4)].

Then we have:

(i) PiðvÞ is well defined, i.e. does not depend on the choice of

the transversal T.

(ii) PiðvÞ retains the symmetry described by G.

(iii) PiðvÞ ¼ PjðvÞ if and only if

g%1
j Hgi \ StabKðvÞ 6¼ ;: ð7Þ

(iv) If H is normal in K, then all PiðvÞ have the same

cardinality.

Proof. (i) Let T 0 ¼ ðg01; . . . ; g
0
nÞ be another transversal forH

inK. This implies that there exist ĥhi 2 H, for i ¼ 1; . . . ; n, such

that g0i ¼ ĥhigi. We have

O0
iðvÞ ¼ OHg0

i
ðvÞ ¼ fhg0i : h 2 Hg ¼ fhĥhigiv : h 2 Hg

¼ OiðvÞ; i ¼ 1; . . . ; n;

and the result follows.

(ii) It follows from the commutative property in (5); in

particular, we have

#ðOiðvÞÞ ¼ f#ðhgivÞ : h 2 Hg ¼ f!kðhÞ#ðgivÞ : h 2 Hg
¼ fĥh#ðgivÞ : ĥh 2 !kg ¼: ÔOiðvÞ;

for i ¼ 1; . . . ; n. The orbit ÔOiðvÞ has G-symmetry by

construction.

(iii) We have

PiðvÞ ¼ PjðvÞ()#ðOiðvÞÞ ¼ #ðOjðvÞÞ()OiðvÞ

¼
ðsince# is 1%1Þ OjðvÞ()fhgiv; h 2 Hg ¼ fhgjv : h 2 Hg
()9h; k 2 H : hgiv ¼ kgjv()g%1

j k%1hgiv ¼ v

()g%1
j k%1hgi 2 StabKðvÞ;

which proves the statement.

(iv) SinceH is normal inK, the cosetsHgi form the quotient

groupK=H of size n. LetX :¼ fOi : i ¼ 1; . . . ; ng be the set of
all the orbits with respect to the cosets Hgi. In the following,

we will omit the dependence on v for ease of notation. We can

define an action of K=H on X as Hi ,OHj
:¼ OHiHj

. This

action is well defined since K=H is a group, and it is transitive

since, for every element OHi
2 X , we haveHj ,OH%1

j Hi
¼ OHi

.

Let SH :¼ StabK=HðOHÞ denote the stabilizer ofOH under this

action. With s :¼ jSHj we thus have by the orbit–stabilizer

theorem

r :¼ jXj ¼ jK=Hj
jSHj

¼
n

s
:

It follows that the setsOiðvÞ are in bijection with the left cosets

of SH in K=H. We denote these cosets by Ai, for i ¼ 1; . . . ; r.

These form a partition of the quotient group K=H, which we

write as

Hð1Þ
1 ; . . . ;Hð1Þ

s
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

A1

; . . . ;HðiÞ
1 ; . . . ;HðiÞ

s
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Ai

; . . . ;HðrÞ
1 ; . . . ;HðrÞ

s
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Ar

:

By construction,OHðiÞ

j

¼ OHðiÞ

k

, for j; k ¼ 1; . . . ; s. Let us define

the sets

KðiÞ :¼
[

s

j¼1

HðiÞ
j & K; i ¼ 1; . . . ; r: ð8Þ

The set fKðiÞ : i ¼ 1; . . . ; rg constitutes a partition of K, since it
is the union of cosets. Moreover they all have the same order:

jKðiÞj ¼ s , jHj ¼: N; 8i ¼ 1; . . . ; r: ð9Þ

Let S ¼ ðHð1Þ
1 ; . . . ;HðrÞ

1 Þ be a transversal for the coset of SH in

K=H. It follows from equation (8) that KðiÞ ¼

fk 2 K : kv 2 OHðiÞ

1

g; therefore

OKðiÞ ¼ fkv : k 2 KðiÞg ¼ OHðiÞ

1

:

To conclude, we observe that each KðiÞ contains complete

cosets of K=StabKðvÞ. In fact, let k StabKðvÞ be a coset in

K=StabKðvÞ. If k 2 KðiÞ, then an element in k StabKðvÞ is of

the form kk̂k, with k̂k 2 StabKðvÞ, and belongs to KðiÞ since

ðkk̂kÞv ¼ kðk̂kvÞ ¼ kv 2 OHðiÞ

1

. Therefore, eachKðiÞ is partitioned

into jKðiÞj=jStabKðvÞj sets: each of these sets corresponds to

a distinct point in the orbit OHðiÞ

1

. Since jKðiÞj ¼ N for all i

due to equation (9), each orbit OHðiÞ

1

has the same number

of points, and hence also each PiðvÞ, because the projection

is one-to-one. &

The decomposition of K 2 AH into cosets with respect toH
induces a well defined decomposition of the projected orbit

#ðOKðvÞÞ [cf. equation (4)]:
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#ðOKðvÞÞ ¼
[

n

i¼1

#ðOiðvÞÞ ¼
[

n

i¼1

O!k
ð#ðgivÞÞ: ð10Þ

The point set defined by equation (10) consists of points

situated at different radial levels, since, in general,

j#ðgivÞj 6¼ j#ðgjvÞj for i 6¼ j, where j , j denotes the standard

Euclidean norm in Rk. Hence the projected orbit is an onion-

like structure, with each layer being the union of the projec-

tion of orbits corresponding to different cosets. It follows that

the number r of distinct radial levels is bounded by the index

of H in K.

Using these results, we can set up a procedure to extend the

non-crystallographic symmetry described by !k in VðkÞ. In

particular, let x 2 VðkÞ be a seed point for the orbit of !k. The

pre-image v ¼ #%1ðxÞ is a point of the lattice L by construc-

tion. Let K be an element of AH. The projection of OKðvÞ

contains the orbit O!k
ðxÞ, which corresponds to the coset H

[compare with equation (10)], and possibly more layers with

G-symmetry. This procedure can be iterated; let us consider

the chain of subgroups in AH:

H & K1 & K2 & . . . & Km & !:

By ascending the chain we obtain a chain of orbits

OKi
ðvÞ & OKiþ1

ðvÞ; the projection of such orbits into VðkÞ

induces a chain of nested shells. We can summarize the

situation in the following diagram:

OHðvÞ & L %!extend OK1
ðvÞ %! . . .%! O

!
ðvÞ

"lift #project # #

O!k
ðxÞ %! #ðOK1

ðvÞÞ . O!k
ðxÞ %! . . .%! #ðO

!
ðvÞÞ . . . . . O!k

ðxÞ

:

ð11Þ

In the next section we present a first application of these

results in the case of planar non-crystallographic symmetries.

4. Embedding of dihedral groups D2n and planar nested
structures

Let n> 0 be a natural number. The dihedral group D2n is the

symmetry group of a regular n-gon, and consists of n rotations

and n reflections, with presentation (Holt et al., 2005)

D2n ¼ hRn; S : Rn
n ¼ e; SRn ¼ R%1

n Si; ð12Þ

where Rn is a rotation by 2#=n, and S a reflection.

Let $n ¼ exp½ð2#iÞ=n) 2 C be a primitive root of unity, and

let Z½$n) be the ring of integers of the fieldQð$nÞ. The standard

embedding of D2n into a ’ðnÞ-dimensional lattice, where ’ðnÞ

denotes the Euler function, is achieved via the Minkowski

embedding of Z½$n) (Baake & Grimm, 2013). Specifically, let G
denote the Galois group of Qð$nÞ. G is isomorphic to

Z
/
n :¼ fm 2 Zn : gcd ðm; nÞ ¼ 1g, the multiplicative group of

Zn, and therefore consists of ’ðnÞ elements. Such elements are

automorphisms of Qð$nÞ given by $n 7! $mn , where n and m are

coprime, and they are pairwise conjugate. We can then choose

’ðnÞ=2 non-conjugate elements %i in G, where %1 is the identity.
The Minkowski embedding of Z½$n) is then given by

L’ðnÞ :¼ fðx; %2ðxÞ; . . . ; %’ðnÞ
2
Þ : x 2 Z½$n)g & C

’ðnÞ
2 ’ R’ðnÞ;

ð13Þ

which is a lattice in R’ðnÞ. The projection # : L’ðnÞ ! C on the

first coordinate is, by construction, one-to-one on its image

#ðL’ðnÞÞ ¼ Z½$n).

We can define an action ofD2n in Z½$n) in the following way:

Rn , x ¼ $nx; S , x ¼ x;

where x denotes the complex conjugation in C and x 2 Z½$n).

Note that this action is well defined as every element of D2n

stabilizes Z½$n). If g is an element of I2ðnÞ, g can be lifted to an

element ~gg defined by

~gg , #%1ðxÞ ¼ #%1ðg , xÞ; ð14Þ

which is well defined since the projection is one-to-one. In

particular, we have

~RRn , #
%1ðxÞ ¼ #%1ðRn , xÞ ¼ #%1ð$nxÞ

¼ ð$nx; %2ð$nxÞ; . . . ; %’ðnÞ
2
ð$nxÞÞ:

Similarly we have

~SS , #%1ðxÞ ¼ #%1ðS , xÞ ¼ #%1ðxÞ ¼ x; %2ðxÞ; . . . ; %’ðnÞ
2
ðxÞ

" #

:

It follows that the transformations ~RRn and ~SS are orthogonal

and stabilize the lattice L’ðnÞ. Therefore the set f~gg : g 2 D2ng is
an embedding of D2n into the point group of L’ðnÞ. We point

out that, although this construction is a priori possible and well

defined for all natural numbers, it is difficult to find the explicit

form of the point group of L’ðnÞ in equation (13) for general n.

The explicit form is known, in particular, for n ¼ 5, 8 and 12

(Baake & Grimm, 2013).

We now prove the existence of an extension K of D2n

embedded into PðL’ðnÞÞ, i.e. a subgroup K of PðL’ðnÞÞ such that

D2n is a normal subgroup of K. Note that D2n can be seen as a

subgroup of the symmetric group Sn, acting on the vertices of

a regular n-gon. More precisely, let R0
n ¼ ð1; 2; . . . ; nÞ be an

n-cycle and let S0 be the permutation defined by

S0ðjÞ ¼ %jmod n, for j ¼ 1; . . . ; n; then hR0
n; S

0i defines a

permutation representation of D2n. Let T ¼ hR0
ni ’ Zn, and

define K as the normalizer (Artin, 1991) of T:

K :¼ NSn
ðTÞ ¼ f% 2 Sn : %

%1T% ¼ Tg: ð15Þ

We point out that K thus constructed is referred to as the

holomorph of the group Zn, and denoted by HolðZnÞ (Hall,

1959). We have the following:

Lemma 4.1. D2n is a proper normal subgroup of

K ¼ HolðZnÞ when n ¼ 5 or n 0 7.

Proof. We have, using notation as in equation (15),

% 2 K () %T%%1 ¼ T () %Rn%
%1 2 T ()

%ð1; 2; . . . ; nÞ%%1 ¼ ð1; 2; . . . ; nÞ
m

for some m 2 Zn ()
ð%ð1Þ; %ð2Þ; . . . ; %ðnÞÞ ¼ ð1; 2; . . . ; nÞ

m
for some m 2 Zn with

gcd ðm; nÞ ¼ 1 [otherwise ð1; 2; . . . ; nÞ
m

decomposes into
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disjoint cycles] () 8j 2 Zn; %ðjÞ ¼ mjþ l for some m; l 2 Zn

with gcd ðm; nÞ ¼ 1. To sum up:

K ¼ f% 2 Sn : 9m 2 Z
/
n ; l 2 Zn : %ðjÞ ¼ mjþ l; 8j 2 Zng:

K contains R0
n and S0, which correspond to m ¼ 1, l ¼ 1 and

m ¼ %1, l ¼ 0, respectively. It follows that D2n is a subgroup

of K. We notice that jKj ¼ ’ðnÞn, which is greater than 2n for

n ¼ 5 or n 0 7. Hence D2n is a proper subgroup of K for these

values of n, which correspond to the non-crystallographic

cases.

In order to prove the normality, we write

D2n ’ hR0
ni [ hR0

niS0 ¼ T [ TS0:

Define % 2 K by %ðjÞ ¼ mjþ l. We want to prove that

%D2n ¼ D2n%. Clearly %T ¼ T% by definition of K [cf. equa-

tion (15)]. We are then left to show that %TS0 ¼ TS0%. For

s; j 2 Zn we have ððR0
nÞ

s
S0ÞðjÞ ¼ s% j, which implies

ð%ððR0
nÞ

s
S0Þ%%1ÞðjÞ ¼ ms% jþ 2l. Therefore, %ððR0

nÞ
s
S0Þ%%1 ¼

ðR0
nÞ

msþ2l
S0, hence %TS0 ¼ TS0%, and the result follows. &

We now prove the following:

Proposition 4.1. K ¼ HolðZnÞ is a subgroup of PðL’ðnÞÞ.

Proof. Let us define the functions tm;l 2 AutðZ½$n)Þ by

tm;l

X

n%1

j¼0

aj$
j
n

 !

:¼
X

n%1

j¼0

aj$
mjþl
n ;m 2 Z/

n ; l 2 Zn: ð16Þ

Notice that the elements tm;0, with m 2 Z
/
n , correspond to the

Galois automorphisms %m, which constitute the Galois group G
of Qð$nÞ. Let K

0 ¼ ftm;l : m 2 Z/
n ; l 2 Zng. K0 is a G-containing

subgroup of AutðZ½$n)Þ. In particular, composition of two

elements is given by

tm;l , tm0;l0 ¼ tmm0;ml0þl; ð17Þ

and the inverse of an element tm;l is tm%1;%m%1l. Let & : K ! K0

be the function

&ð%Þ ¼ tm;l; %ðjÞ ¼ mjþ l:

& is an isomorphism by construction. We defineD0
2n :¼ &ðD2nÞ.

By Lemma 4.1, we have that D0
2n is a normal subgroup of

K0 <AutðZ½$n)Þ.

We can write the Minkowski embedding of Z½$n) as L’ðnÞ ¼

fty1;0ðzÞ; . . . ; ty’ðnÞ=2;0ðzÞ : z 2 Z½$n)g 2 C
1
2’ðnÞ ffi R’ðnÞ, where 1 =

y1 < , , , < y’ðnÞ=2 < n=2 and gcdðyj; nÞ ¼ 1, for all j. We can

then lift tm;l as in equation (14), and obtain

~ttm;l , #
%1ðzÞ ¼ #%1ðtm;lðzÞÞ ¼ tm;0ðtm;lðzÞÞ; . . . ; tmy’ðnÞ=2;0

ðtm;lðzÞÞ
" #

¼
½by ð17Þ)

tmy1;y1l
ðzÞ; . . . ; tmy’ðnÞ=2;y’ðnÞ=2

ðzÞ
" #

¼
½by ð16Þ)

$y1ln tmy1;0
ðzÞ; . . . ; $

y’ðnÞ=2l
n tmy’ðnÞ=2

ðzÞ
" #

:

Therefore ~ttm;l just rearranges the coordinates of #%1ðzÞ,

possibly converting some of them to their complex conjugates

and/or multiplying them by a power of $n. Hence K0 stabilizes

the lattice Ln and this action is orthogonal. Thus K0 is a

subgroup of PðLnÞ and the result is proved. &

It follows that we can construct nested point sets with n-fold

symmetry using the extension K ¼ HolðZnÞ and the

Minkowski embedding L’ðnÞ. The number r of distinct radial

levels obtained via projection is at most

r * ½K : H) ¼
’ðnÞn

2n
¼

’ðnÞ

2
:

4.1. Fivefold symmetry

As a first example, we consider the case n ¼ 5. In this case,

the Minkowski embedding of D10 is isomorphic to the root

lattice A4 (Baake & Grimm, 2013), whose simple roots are

given by 'i ¼ ei % eiþ1, for i ¼ 1; . . . ; 4, and ei denotes the

standard basis of R5 [cf. also Carter (2005) for more details on

root systems of semisimple Lie algebras]. With respect to the

basis of simple roots, we obtain a representation H of D10

which is a subgroup of the lattice group !ðA4Þ (which is

isomorphic to the symmetric group S5):

H ¼

1 0 0 0

1 0 0 %1

1 0 %1 0

1 %1 0 0

0

B

B

@

1

C

C

A

;

%1 1 0 0

0 1 0 0

0 1 0 %1

0 1 %1 0

0

B

B

@

1

C

C

A

* +

: ð18Þ

This representation splits into two two-dimensional irreps,

which induce a decomposition R4 ’ Eð1Þ ' Eð2Þ, where Eð1Þ

and Eð2Þ are both totally irrational with respect to the root

lattice A4. A basis for each of them can be found using tools

from the representation theory of finite groups (Fulton &

Harris, 1991). The projection #
ð1Þ
2 : R

4%!Eð1Þ is given by

#
ð1Þ
2 ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð3% (Þ
p

%(0
ffiffiffiffiffiffiffiffiffiffiffi

3% (
p ffiffiffiffiffiffiffiffiffiffiffi

3% (
p

0 %
ffiffiffiffiffiffiffiffiffiffiffi

3% (
p

%1 2% ( %2(0 2% (

% &

;

ð19Þ

where ( :¼ 1
2 ð1þ

ffiffiffi

5
p

Þ denotes the golden ratio and

(0 :¼ 1% ( its Galois conjugate. The space Eð1Þ carries the

irrep !2:

!2 ¼
1 0

0 %1

% &

;
1

2

%(0
ffiffiffiffiffiffiffiffiffiffiffi

( þ 2
p

ffiffiffiffiffiffiffiffiffiffiffi

( þ 2
p

(0

% &' (

: ð20Þ

With the help of GAP, we study the set AH of subgroups of

!ðA4Þ containing H [compare with equation (6)]. There is a

unique chain of subgroups containing a proper extension ofH:

H / K & !ðA4Þ; ð21Þ

where K is, in fact, isomorphic to HolðZ5Þ. The explicit

representation of K is given by
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K ¼

*

0 %1 1 0

%1 0 1 0

0 0 1 0

0 0 1 %1

0

B

B

B

@

1

C

C

C

A

;

0 0 0 %1

1 0 0 %1

0 1 0 %1

0 0 1 %1

0

B

B

B

@

1

C

C

C

A

;

1 0 0 0

1 0 %1 1

0 1 %1 1

0 1 %1 0

0

B

B

B

@

1

C

C

C

A

+

:

The groupK corresponds to the point group 54 given in Janner

(2010b). We point out that, by Theorem 3.1, the point sets

obtained from projection of orbits of points of the root lattice

A4 consist of at most two radial levels, which can either be two

nested decagons or two nested pentagons. In Fig. 1 we show an

example of such point sets.

5. Nested point sets with icosahedral symmetry

As mentioned in x1, icosahedral symmetry plays a funda-

mental role in virology, carbon chemistry and quasicrystals.

For applications in the natural sciences, it is important to

distinguish between chiral and achiral symmetry. Chiral

icosahedral symmetry is described by the icosahedral group I ,
which consists of all the rotations that leave an icosahedron

invariant and admits the presentation

I ¼ hg2; g3 : g22 ¼ g33 ¼ ðg2g3Þ
5
¼ ei;

where g2 and g3 are a two- and threefold rotation, respectively.

It has order 60 and it is isomorphic to the alternating group A5.

On the other hand, achiral icosahedral symmetry corresponds

to the full symmetries of an icosahedron (i.e. reflections

included), and it is described by the Coxeter group H3, whose

order is 120 and it is isomorphic to I / Z2.

For applications in virology, we focus firstly on chiral

icosahedral symmetry, since not all viral capsids are invariant

under reflections. Since the icosahedral group contains five-

fold symmetry, it is not crystallographic in three dimensions.

Its minimal crystallographic dimension, in the sense of Defi-

nition 2.1, is six (Senechal, 1995). In particular, there are

exactly three Bravais lattices left invar-

iant by I in R6, namely the simple cubic

(SC), face-centred cubic (f.c.c.) and

body-centred cubic (b.c.c.) lattices

(Levitov & Rhyner, 1988). The point

group of these lattices is the hyper-

octahedral group in six dimensions,

which we denote by B6 [cf. equation

(1)],

B6 ¼ fQ 2 Oð6Þ : Q ¼ M 2 GLð6;ZÞg
¼ Oð6Þ \GLð6;ZÞ;

which consists of all the 6/ 6 ortho-

gonal and integral matrices. It is

isomorphic to the wreath product

Z2 o S6, where S6 denotes the symmetric

group on six elements (see Appendix A). Its order is 266! ¼

46 080. In what follows, we will focus on the SC lattice:

LSC :¼
M

6

i¼1

Zei;

where ei, i ¼ 1; . . . ; 6, is the standard basis of R6; its point and

lattice groups coincide [cf. equation (1) and equation (2)]. The

crystallographic representations of I have been classified in

Zappa et al. (2014). They are all conjugated in B6; a repre-

sentative ÎI can be chosen as the following:

ÎI ðg2Þ ¼

0 0 0 0 0 1

0 0 0 0 1 0

0 0 %1 0 0 0

0 0 0 %1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

;

ÎI ðg3Þ ¼

0 0 0 0 0 1

0 0 0 1 0 0

0 %1 0 0 0 0

0 0 %1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

: ð22Þ

ÎI leaves two three-dimensional subspaces invariant, denoted

by Ek and E?, that are both totally irrational with respect to

the SC lattice. It follows that ÎI decomposes, in GLð6;RÞ, into

two three-dimensional irreps, usually denoted by T1 and T2.

An explicit form of T1, useful for computations, is given by

T1ðg2Þ ¼
1

2

%(0 1 (

1 %( %(0

( %(0 %1

0

B

@

1

C

A
;

T1ðg3Þ ¼
1

2

( %(0 1

(0 %1 (

1 %( (0

0

B

@

1

C

A
: ð23Þ

The projection #k : R6 ! Ek is given by
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Figure 1
Examples of point sets with fivefold symmetry via projection of orbits of points from the A4 root
lattice in R4. The lattice point v ¼ ð1; 2; 4; 3Þ (whose coordinates are written with respect to the
basis of simple roots) is taken as seed point from the orbits under the groups [cf. equation (21)]: (a)
H ’ D10, (b) K ’ HolðZ5Þ and (c) !ðA4Þ ’ S5.



#k ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2þ (Þ
p

( 0 %1 0 ( 1

1 ( 0 %( %1 0

0 1 ( 1 0 (

0

@

1

A: ð24Þ

For achiral icosahedral symmetry, the crystallographic

representations of H3 are easily computed using the direct

product structure I / Z2. Specifically, if " ¼ f1;%1g is the

non-trivial irrep of Z2, then the representation ÎI 2 " is a

crystallographic representation of H3, and is such that

ÎI 2 " ’ T1 2 "' T2 2 " in GLð6;RÞ. We point out that

there exist other crystallographic groups in six dimensions

which contain the icosahedral group as a subgroup, and these

can be found using the GAP package CARAT (Opgenorth et

al., 1998). However, the representations of I induced by this

embedding do not split into two three-dimensional irreps of I,
according to the classification provided by Levitov & Rhyner

(1988), and hence they are not suitable for the construction of

nested point sets by projection presented here.

In order to construct nested structures with icosahedral

symmetry, we consider the set of all the ÎI -containing
subgroups of B6 [cf. equation (6)]:

AÎI :¼ fK<B6 : ÎI <Kg: ð25Þ

With the help of GAP, it is possible to compute the set AÎI . In

order to make computations efficient, we use some results

from group theory. In particular, we recall that, if G is a

soluble group, then every subgroup of G is soluble

(Humphreys, 1996). Since the icosahedral group is isomorphic

to A5, it is not soluble. Therefore, any subgroup H of B6

containing ÎI as a subgroup must not be soluble. Moreover, it

cannot be Abelian (since I is not) and the order of H must be

divisible by jI j ¼ 60, as a consequence of Lagrange’s theorem.

With these considerations, we provide the following algorithm.

Algorithm 5.1. In order to determine AÎI , perform the

following steps:

1. Compute the conjugacy classes Ci of the subgroups of B6.

2. List a representative Ki for each class Ci.

3. Rule out those representatives which have one of the

following properties:

(a) Ki is soluble;

(b) Ki is Abelian;

(c) 60 6 j jKij.
4. For each Ki not ruled out, compute all the elements

Gi 2 Ci. If ÎI <Gi, then add Gi to AÎI .

The algorithm was implemented in GAP and the results are

given in Table 1. There are 13 elements in AÎI , which we

denote by Gi, for i ¼ 1; . . . ; 13. A set of generators for each

group Gi is given in Appendix A. Clearly, G1 and G13 are the

icosahedral and hyperoctahedral group, respectively, whereas

G2 is isomorphic to H3. In Fig. 2 we show the graph of

inclusions of the groups Gi.

The projections into Ek of the orbits of lattice points under

the groups Gi produce nested point sets with icosahedral

symmetry at each radial level. An example is given in Fig. 3.

Every radial level corresponds to the union of cosets of Gi

with respect to ÎI . It is worth pointing out that every group Gi,

for i> 3, contains H3 as well as I as subgroups. From a

geometrical point of view, this implies that the resulting orbits

in projection are all invariant under reflections, i.e. each radial

level possesses full icosahedral symmetry H3. This observation

provides a sharper bound on the number of distinct radial
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Table 1
Classification of the subgroups of B6 containing the icosahedral group I
as a subgroup.

Subgroup Order Index

G1 ’ I 60 1
G2 ’ H3 120 2
G3 240 4
G4 1920 32
G5 3840 64
G6 3840 64
G7 3840 64
G8 7680 128
G9 11520 192
G10 23040 384
G11 23040 384
G12 23040 384
G13 ¼ B6 46080 768

Figure 2
Graph of inclusions of the subgroups containing the icosahedral group
embedded into the hyperoctahedral group.



levels in projection: in fact, this is given by n=2, which is the

index of H3 in Gi (recall that n is the index of I in Gi).

6. Applications to viral capsid architecture

In this section we show that this group theoretical setup is a

powerful tool to rationalize viral architecture. Specifically, the

classification of the chains of subgroups of B6 extending

icosahedral symmetry, derived in x5, provides a suitable

mathematical framework to understand structural constraints

on viral capsids. As a first step towards this goal, we identify a

finite library of point arrays, corresponding to the projected

orbits of six-dimensional lattice points under the groups Gi

previously classified. Elements in this library depend on two

quantities: the group Gi 2 AÎI and the lattice point v 2 LSC.

The Gi are provided by our classification. As can be seen from

Fig. 2 and Table 1, the first group that gives icosahedral nested

shells in projection is G3. The index of G3 with respect to H3 is

2; therefore the number of radial levels is at most two. In order

to obtain deeper information about the geometry of capsids,

more radial levels are necessary. Therefore, we neglect the

orbits of G3 and consider the subgroups Gi, for i ¼ 4; . . . ; 13.

Moreover, v is chosen as follows: since the six-dimensional

lattice is infinite, we introduce a cut-off parameter N> 0 and

consider all lattice points within a six-dimensional cube,

I6N :¼ ½%N;N) / . . ./ ½%N;N) ¼ ½%N;N)6 & LSC;

containing ð2N þ 1Þ
6
lattice points. In particular, we consider

all orbits of the groups Gi within a bounded area around the

origin defined by N.

Based on this setup, the library of point arrays is obtained

via the action of the group Gi on the set I6N , for i ¼ 4; . . . ; 13.

This action is well defined since Gi is a subgroup of the point

group of the lattice, and therefore lattice points are mapped

into lattice points under elements of Gi. Let D
ðiÞ
N ¼

fvðiÞ1 ; . . . ; v
ðiÞ
ki
g be a set of distinct representatives for the orbits

of Gi in I6N . Since G4 & Gi for all i ¼ 5; . . . ; 13, and thus their

fundamental domains are contained in that of G4, the set D
ð4Þ
N

contains the sets of representatives D
ðiÞ
N for the groups Gi,

i ¼ 5; . . . ; 13, which are not necessarily distinct. Since we do

not have information on the group G4 apart from its genera-

tors, the set D
ð4Þ
N is computed numerically according to the

following procedure:

(i) For v 2 I6N , compute OG4
ðvÞ.

(ii) Among all vi 2 OG4
ðvÞ identify v̂v with the largest

number of positive components, choosing at random if two or

more points fulfil this property.

(iii) Add v̂v to D
ð4Þ
N and repeat from the start until all v 2 I6N

have been considered.

In particular, D
ð4Þ
N thus obtained contains 47, 183 and 529

points for N ¼ 2; 3 and 4, respectively. With this setup, the

library is given by

SðNÞ :¼ f#kðOGj
ðvÞÞg : v 2 D

ð4Þ
N ; j ¼ 4; . . . ; 13

n o

; ð26Þ

which by construction consists of distinct point arrays.

Once the set SðNÞ is computed for a chosen value of N, we

retrieve the information of the viral capsid in consideration

from the VIPER data bank (Carrillo-Tripp et al., 2009). These

PDB files contain structural data of the viral capsid, such as

the coordinates of the atomic positions of the capsid proteins

and in many cases also of the packaged genome. Following

Wardman (2012), we represent the atomic positions of the

proteins by spheres of radius 1.9 Å in the visualization tool

PyMOL. In order to compare the point arrays with biological

data, and hence find those point sets which best represent the

capsid features, we use the following procedure:

(i) For any group Gi 2 AÎI , we compute with GAP a

transversal TðiÞ ¼ ðg
ðiÞ
1 ; . . . ; g

ðiÞ
ni
Þ for the right cosets of ÎI in Gi,

where ni denotes the index of I in Gi.

(ii) Given a point array #kðOGi
ðvÞÞ 2 SðNÞ, we compute the

set

LðiÞðvÞ ¼ fj#kðg
ðiÞ
j vÞj : j ¼ 1; . . . ; nig:

The cardinality of LðiÞðvÞ is the number of distinct radial levels

in the point set #kðOGi
ðvÞÞ. We denote by RðiÞ

maxðvÞ :¼

maxjL
ðiÞðvÞ the largest radial level which corresponds to the

outermost layer in the nesting. This is used to scale the point

set so that the capsid is contained in the convex hull of the

projected orbit.

(iii) The rescaled orbit is then compared with the data in the

PDB file. We start by selecting those point arrays whose

outermost layer best represents the outermost features of the

capsid. Specifically, we consider a coarse-grained representa-

tion of the capsid surface by locating the most radially

distal clusters of C' atoms using the procedure described

by Wardman (2012). Denoting these clusters by Ck;
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Figure 3
Projected orbit of the lattice point v ¼ ð0; 0; 1; 1; 2; 1Þ under the group
G4. Each layer in the resulting nested point set possesses achiral
icosahedral symmetry.



k ¼ 1; . . . ;M, the Ck can be approximated byM spheres Bkð~rrÞ

of radius ~rr (for the numerical implementation, we chose the

cut-off ~rr ¼10 Å). For any orbit #kðOGi
ðvÞÞ, we isolate its

external point layer LðoutÞ by computing the points situated at

distance Rmax (introduced above) from the origin. The orbit is

then selected if, for every point x 2 LðoutÞ, there exists

k 2 f1; . . . ;Mg such that x 2 Bkð~rrÞ.

(iv) Among the point sets thus selected, we determine those

that best match the other capsid features. For this, we isolate

the inner radial levels using the decomposition of orbits into

cosets and compare them with the location of the genomic

material and the inner capsid surface. The cardinalities of the

point arrays are not large enough to match with atomic posi-

tions, but they rather map around material as in Keef et al.

(2012); this comparison can be achieved via visual inspection

using the surface representation of the capsid in PyMOL.

We consider here two case studies: Pariacoto Virus and

Bacteriophage MS2, both T ¼ 3 capsids in the Caspar–Klug

classification. These were chosen in order to facilitate

comparison with Keef et al. (2012), where point arrays derived

from affine extensions of the icosahedral group were used to

generate blueprints for viral architecture, and Janner (2011b),

where virus architecture is approximated by lattices.

6.1. Pariacoto Virus

Pariacoto Virus (PaV) is a single-stranded RNA insect

virus, whose X-ray crystal structure reveals approximately

35% of the RNA organized as a dodecahedral cage of duplex

RNA in proximity to the inner capsid surface (Tang et al.,

2001). A characteristic feature of this capsid are the 60

protrusions of approximately 15 Å around the quasi-threefold

axes, each formed by three interdigitated subunits. These are

the outermost capsid features that we will match to the largest

radial levels in the point arrays of our library in order to

identify the best-fit point array. For this we performed the

procedure described above, and found that the best fit for this

capsid is given by the projected orbit of the lattice point

v̂v ¼ ð2; 1;%1;%1; 0; 0Þ under the group G6 (see Fig. 4). This

point set consists of 960 points, arranged into eight radial

levels. The outermost level is formed by 60 points which map

onto the spikes at the 60 local threefold axes, see Fig. 4(b). The

third radial level from the origin describes the organization of

the RNA inside the capsid. This set is made up of 120 points

forming a truncated icosidodecahedron, which maps around

the dodecahedral RNA cage, see Fig. 4(d). The fifth radial

level from the origin, located between the RNA and the

spikes, consists of 120 points, organized into ten and 12 clus-

ters of six and five points each, which are located around the

three- and fivefold axes, respectively. In particular, we show in

Fig. 4(c) a close-up view of the clusters with fivefold symmetry.

Note that these points provide constraints on the lengths

of the protein helices and the positions of the protein subunits

of type C.

We point out thatG6 is the group of smallest order in the set

AÎI that provides a blueprint for PaV that captures the loca-

tion of both capsid proteins and the RNA collectively. The

orbit of v̂v under G4 in projection, which by construction is

contained in #kðOG6
ðv̂vÞÞ, maps around the spikes, but totally

lacks information on the organization of the genomic material
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Figure 4
Blueprints for the capsid of Pariacoto Virus (based on PDB file 1f8v, Tang et al., 2001). (a) Cross section of the capsid superimposed with the projected
orbit of v̂v ¼ ð2; 1;%1;%1; 0; 0Þ under the group G6. The point set consists of 960 points situated at eight distinct radial levels which provides constraints
on the capsid architecture. (b) Close-up view of the outermost layer of the projected orbit, which encodes the locations of the spikes around the quasi-
threefold axes. (c) The layers between the spikes and the genomic material map around the inner surface of the capsid proteins. (d) The third farthest
layer from the origin gives information on RNA organization: the 120 points, forming a truncated icosidodecahedron, map around the dodecahedral
RNA cage.



inside. Moreover, all the orbits of v̂v under the G6-containing

Gk 2 AÎI , i.e. G8 and G12, as well as B6 (cf. Fig. 2) coincide in

projection, implying that they contain no additional informa-

tion on capsid architecture. Hence G6 can be chosen as the

six-dimensional symmetry group that induces the three-

dimensional structure of the PaV capsid in projection.

6.2. Bacteriophage MS2

Like PaV, MS2 is a single-stranded RNAvirus, with a T ¼ 3

capsid. Cryo-electron microscopy reveals a double-shell

structure in the organization of the genomic RNA (Toropova

et al., 2008), and we will demonstrate here that our approach is

able to capture this. With our procedure as above, we found

that the projected orbit of ~vv ¼ ð2; 1; 1;%1; 0; 1Þ under the

group G4 is the point set that provides the best blueprint for

the capsid (see Fig. 5). Specifically, this orbit contains 960

points, that are arranged, in projection, into nine radial levels.

The two outermost layers, Lð9Þ and Lð8Þ, map to the exterior of

the capsid: Lð9Þ consists of 60 points, arranged into 12 clusters

of five points each, positioned around the fivefold symmetry

axes of the capsid, whereas Lð8Þ has size 120 and is made up of

20 clusters of six points, located around the threefold axes.

This is consistent with the quasi-equivalent structure of the

T ¼ 3 capsid. We point out that Lð8Þ and Lð9Þ are in fact almost

situated at the same radial level (the ratio of their radii is

’ 1:064814), and collectively map around the capsid exterior

as demonstrated in the close-up in Fig. 5(b).

All other points of the array are from a mathematical point

of view related to these outermost shells, and should therefore

also map around material boundaries. We start by comparing

the point array with the icosahedrally averaged cryo-electron

microscopy structure at 8 Å resolution in Toropova et al.

(2008). As shown in Fig. 5(a), the innermost radial levels of the

point array define the interior of the

inner RNA shell. Moreover, there are

points mapping around the outer and

inner surfaces of the other shell. There

is a layer of points between the shells

that at a first glance seems to float in

space, but a close inspection of the data

set reveals that they are in fact posi-

tioned around the RNA connecting the

outer and inner shell (see also the close-

up in Fig. 5c). This icosahedrally aver-

aged data set has been obtained via a

superposition of a large number of viral

particles, aligned according to their

symmetry axes, in order to enhance the

resolution. However, in any individual

particle, the RNA is organized in an

asymmetric way, that is consistent with

the icosahedrally averaged density.

Since our point arrays are not fully

constraining the structure, but are

providing blueprints for the overall

organization of the virus, we expect the

asymmetric organization to be consistent with our symmetric

point arrays. In order to test this hypothesis, we compare our

model with the asymmetric RNA density of a cryo-electron

microscopy tomogram at about 39 Å resolution (Dent et al.,

2013; Geraets et al., 2015), see Fig. 6. Since the density is shown

in a cross-sectional view, the density in the two shells cannot

be seen in full. However, as expected, the density is consistent

with the radial levels defined by the point arrays, consistent

with our hypothesis that the mathematical model indeed

describes material boundaries in this virus. Taken together,
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Figure 5
The projected orbits of ~vv ¼ ð2; 1; 1;%1; 0; 1Þ under the group G4 provide blueprints for the capsid
of Bacteriophage MS2 (based on PDB file 1aq3, van den Worm et al., 1998). (a) Cross section of the
capsid: the point set consists of nine different radial levels which encode information on the position
of capsid proteins and the genomic material of the virus. (b) Close-up view of the outermost layers
of the projected orbit which map around the capsid proteins. (c) Close-up view of the RNA density.
The second and third innermost layers (in blue and green, respectively) map around the fivefold
symmetry axes and connect the two RNA shells.

Figure 6
A cryo-tomogram of Bacteriophage MS2, based on an RNA density map
provided by Dent et al. (2013), superimposed on the best-fit point array
for Bacteriophage MS2. The top of the figure shows a portion of the
bacterial pilus, the natural receptor of this virus. The surface representa-
tion shows both the capsid on the exterior and the genomic RNA. The
inner and outer RNA shells follow the blueprints of the array points, but
realize it in an asymmetric way as expected.



these results imply that the group G4 is the group of smallest

order in our classification that provides structural constraints

on the capsid proteins and the genome organization of MS2,

and is therefore the symmetry group in six dimensions that

describes the structure of this virus in projection.

7. Conclusion

The method presented here is a new way of constructing finite

nested point sets with non-crystallographic symmetry from

group theoretical principles. It complements previous studies,

in which such point sets were constructed via affine extensions

of non-crystallographic groups. The latter, being based on the

theory of infinite-dimensional Kac–Moody algebras, produced

infinite point sets, and a cut-off parameter had to be intro-

duced in order to obtain finite structures. This implies that the

point sets do not correspond to orbits of finite groups. The

method developed in this paper, on the other hand, provides

for the first time a characterization of non-crystallographic

finite multi-shell structures which is entirely based on the

theory of finite groups in a higher-dimensional space

which admits a crystallographic embedding of the non-

crystallographic symmetry.

With application to viruses in mind, we discussed the case of

icosahedral symmetry in detail and provided a classification of

all the subgroup chains of the hyperoctahedral group that

contain a crystallographic embedding of the icosahedral

group. We showed that the point sets induced by orbits of

lattice points under such groups via projection into a three-

dimensional invariant subspace provide a library of structural

constraints on the structural organization of viruses. In parti-

cular, we presented two case studies, Pariacoto Virus and

Bacteriophage MS2, both T ¼ 3 viruses, and showed that the

corresponding constraint sets indicate material boundaries in

these viruses. We note also that previous approaches provided

good approximation for the material boundaries (Janner,

2011b; Keef et al., 2012; Salthouse et al., 2015); however, in

contrast to these approaches, we approximate here virus

architecture via point arrays that are generically finite,

because they stem from orbits of finite groups. As already

pointed out, the point sets display achiral icosahedral

symmetry at each radial level, and hence they are invariant

under reflections, i.e. the non-crystallographic Coxeter group

H3. However, since the point arrays only provide constraints

on the structural organization of a virus, but do not fully

determine its structure, this does not imply that the virus must

have full H3 symmetry. Indeed, as we have discussed above,

viruses may realize the blueprints given by the point arrays in

an asymmetric way. This can occur, e.g., via asymmetric

components in the viral capsid such as the one copy of a

maturation protein that is believed to replace one of the

protein dimers in the capsid shell of Bacteriophage MS2 (Dent

et al., 2013), or by the way in which genomic material realizes

the polyhedral genome organization observed via cryo-

electron microscopy. As an example of the latter, we discussed

a cryo-electron microscopy tomogram of the packaged RNA

of Bacteriophage MS2. However, knowledge of the possible

blueprints is important, as it can be used, in combination with

other techniques, in the analysis of low-resolution data of the

genome organization in viruses (Geraets et al., 2015).

Viruses are known to exhibit icosahedral symmetry in their

capsids due to the principle of genetic economy: the use of

symmetry in the capsid organization enables viruses to code

for a small number of different types of building blocks, thus

minimizing genome length, whilst building containers with a

maximal number of repeats (corresponding to the order of the

symmetry group) of the basic building blocks, thus achieving

maximal container volume. The high level of symmetry that is

observed at different radial levels, including genome organi-

zation, may seem surprising. However, the fact that the

interaction sites between genomic RNA and capsid proteins

are at symmetry-related positions with reference to capsid

architecture may provide an explanation for the correlation

between capsid architecture and genome organization in

terms of local interactions.

Moreover, our analysis of the group theoretical under-

pinnings of viral architecture has implications for our under-

standing of the dynamic properties of viruses. For example, it

provides a framework for the analysis of conformational

changes in the viral capsid, which are structural rearrange-

ments of the capsid proteins that are important for larger

classes of viruses to become infective. Specifically, such

structural transitions can be modelled with a crystallographic

approach, using a generalization of the concept of Bain strain

for multi-dimensional lattices (Indelicato et al., 2011) or in the

framework of the Ginzburg–Landau theory of phase transi-

tions (Zappa et al., 2013). Our work opens up a new avenue for

a description of such structural transitions in terms of

Hamiltonians that are formulated in terms of the six-

dimensional symmetry groups that induce the three-

dimensional structures of the virus in projection.

More generally, previous mathematical work on affine

extensions of non-crystallographic symmetries has resulted in

applications beyond the area of virology for which these

concepts had originally been introduced. For example, the

organization of different fullerene shells of carbon onions has

been modelled with previous approaches (Janner, 2014;

Dechant et al., 2014), and we expect that our new approach

should be relevant in this context as well. Moreover, a math-

ematical formulation of systems with non-crystallographic

symmetries is a challenge in wider areas of physics, such

as integrable systems, where models in terms of non-

crystallographic root systems have been introduced (Fring &

Korff, 2005, 2006); we expect that the use of projections of

the higher-dimensional symmetry groups, that contain non-

crystallographic symmetries as crystallographic embeddings,

could provide a new perspective also in this context.

APPENDIX A

In this Appendix we provide the generators of the

subgroupsGi, for i ¼ 1; . . . ; 13, which constitute the setAÎI (cf.

x5). For the computations in GAP, it is convenient to work
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with permutation instead of matrix representations. In parti-

cular, the hyperoctahedral group is isomorphic to a subgroup

of the symmetric group S12. We briefly recall this result here;

for more details, we refer to Baake (1984).

Let a 2 Z6
2 and let # be a permutation in the symmetric

group S6. The set fða;#Þ : a 2 Z6
2;# 2 S6g is a group under the

multiplication

ða;#Þðb; %Þ :¼ ða% þ2 b;#%Þ; ða%Þk :¼ a%ðkÞ; k ¼ 1; . . . ; 6;

known as the wreath product of Z2 and S6 and denoted by

Z2 o S6. It is isomorphic to B6 via the function T : Z2 o S6 ! B6

given by

½Tða;#Þ)ij ¼ ð%1Þ
aj)i;#ðjÞ; i; j ¼ 1; . . . ; 6:

The function ’ : Z2 o S6 ! S12 given by

’ða;#ÞðkÞ :¼
#ðkÞ þ 6ak if 1 * k * 6

#ðk% 6Þ þ 6ð1% ak%6Þ if 7 * k * 12

)

is an injective homomorphism; the composition

’ 3 T%1 : B6 ! S12 can be used to map B6 into a subgroup of

S12. In particular, the generators of B6 are given by

B6 ’ hð1; 2Þð7; 8Þ; ð1; 2; 3; 4; 5; 6Þð7; 8; 9; 10; 11; 12Þ; ð6; 12Þi;

and for the representation ÎI of I we have [cf. equation (22)]:

ÎI ’ hð1; 6Þð2; 5Þð3; 9Þð4; 10Þð7; 12Þð8; 11Þ;
ð1; 5; 6Þð2; 9; 4Þð7; 11; 12Þð3; 10; 8Þi:

With these results, Algorithm 5.1 was implemented in GAP.

The generators for the groups Gi, for i ¼ 2; . . . ; 12, are the

following:

G2 ¼ hð1; 6Þð2; 5Þð3; 9Þð4; 10Þð7; 12Þð8; 11Þ;
ð1; 5; 6Þð2; 9; 4Þð7; 11; 12Þð3; 10; 8Þ;

ð1; 7Þð2; 8Þð3; 9Þð4; 10Þð5; 11Þð6; 12Þi;

G3 ¼ hð3; 11Þð4; 12Þð5; 9Þð6; 10Þ; ð2; 3; 5; 4Þð6; 12Þð8; 9; 11; 10Þ;
ð1; 2Þð3; 5Þð7; 8Þð9; 11Þi;

G4 ¼ hð1; 3Þð2; 8Þð4; 5; 10; 11Þð7; 9Þ;
ð1; 3; 4; 7; 9; 10Þð2; 5; 12; 8; 11; 6Þi;

G5 ¼ hð1; 8; 9; 7; 2; 3Þð4; 6; 5Þð10; 12; 11Þ;
ð1; 2Þð3; 5Þð7; 8Þð9; 11Þ; ð4; 10Þi;

G6 ¼ hð3; 9Þð6; 12Þ; ð3; 4; 5; 6Þð9; 10; 11; 12Þ;
ð1; 7Þð6; 12Þ; ð1; 2; 9; 10; 11; 7; 8; 3; 4; 5Þð6; 12Þi;

G7 ¼ hð1; 7Þð6; 12Þ; ð2; 8Þð6; 12Þ;
ð1; 2; 9; 10; 11; 7; 8; 3; 4; 5Þð6; 12Þ;

ð3; 4; 5; 12; 9; 10; 11; 6Þi;

G8 ¼ hð1; 8; 9; 7; 2; 3Þð4; 6; 5Þð10; 12; 11Þ;
ð1; 2Þð3; 5Þð7; 8Þð9; 11Þ; ð3; 4; 5; 6Þð9; 10; 11; 12Þ; ð4; 10Þi;

G9 ¼ hð2; 8Þð6; 12Þ; ð1; 7Þð2; 5; 3Þð6; 12Þð8; 11; 9Þ;
ð1; 3; 7; 9Þð2; 12; 8; 6Þ; ð1; 3; 2; 7; 9; 8Þð4; 5; 12; 10; 11; 6Þi;

G10 ¼ hð1; 2; 6; 4; 3Þð7; 8; 12; 10; 9Þ; ð5; 11Þð6; 12Þ;
ð1; 2; 6; 5; 3Þð7; 8; 12; 11; 9Þ; ð5; 12; 11; 6Þi;

G11 ¼ hð1; 8; 9; 7; 2; 3Þ; ð1; 7Þð2; 3; 4Þð8; 9; 10Þ;
ð1; 7Þð2; 3; 5Þð8; 9; 11Þ; ð2; 6; 3; 5; 4Þð8; 12; 9; 11; 10Þ;

ð5; 11Þi;

G12 ¼ hð2; 8Þð6; 12Þ; ð1; 2; 6; 5; 3Þð7; 8; 12; 11; 9Þ;
ð5; 6Þð11; 12Þ; ð1; 2; 6; 4; 3Þð7; 8; 12; 10; 9Þi:
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