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Abstract

Music is often discussed to be emotional because it reflects expressive movements in audible

form. Thus, a valid approach to measure musical emotion could be to assess movement stim-

ulated by music. In two experiments we evaluated the discriminative power of mobile-device

generated acceleration data produced by free movement during music listening for the pre-

diction of ratings on the Geneva Emotion Music Scales (GEMS-9). The quality of prediction

for different dimensions of GEMS varied between experiments for tenderness (R1
2(first exper-

iment) = 0.50, R2
2(second experiment) = 0.39), nostalgia (R1

2 = 0.42, R2
2 = 0.30),wonder

(R1
2 = 0.25, R2

2 = 0.34), sadness (R1
2 = 0.24, R2

2 = 0.35), peacefulness (R1
2 = 0.20, R2

2 =

0.35) and joy (R1
2 = 0.19, R2

2 = 0.33) and transcendence (R1
2 = 0.14, R2

2 = 0.00). For others

like power (R1
2 = 0.42, R2

2 = 0.49) and tension (R1
2 = 0.28, R2

2 = 0.27) results could be

almost reproduced. Furthermore, we extracted two principle components fromGEMS ratings,

one representing arousal and the other one valence of the experienced feeling. Both qualities,

arousal and valence, could be predicted by acceleration data, indicating, that they provide

information on the quantity and quality of experience. On the one hand, these findings show

howmusic-evokedmovement patterns relate to music-evoked feelings. On the other hand,

they contribute to integrate findings from the field of embodied music cognition into music rec-

ommender systems.

Introduction

Music is often used to regulate emotions like reducing stress or to influence one’s mood as

shown by [1] or [2]. This means that listening to music is highly linked to the experience of

emotions [3–5]. Nonetheless, these subjective qualities of music do still play a minor role in the

field of Music Information Retrieval (MIR) and Music Recommender Systems (MRS), i.e. for

the retrieval and recommendation of music offered by web-based services [6].

In the field of Affective Computing [6] there is increasing effort to connect the physical char-

acteristics of music to emotional valence and arousal values of the circumplex model from [7].

However, considering acoustical features of music and its implications on the perception of

emotions does not yet consider themotor origin hypothesis of emotion in music as claimed
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by [8]. Accordingly, music is often discussed to be emotional because it reflects expressive

movements in audible form [9–11]. Furthermore, the term emotio derived from the Latin

movere, to move, and is being used as a synonym for being moved. That is why Leman calls for

new non-verbal, embodied possibilities to describe music and its experience [12]. He suggests

to use corporeal articulations as a bridge between linguistic self-report measures and measure-

ments of physical energy like pitch, loudness or tempo because “human action can realize the

transformation from physical energy to cultural abstraction, and vice versa” ([12] p. 77).

Describing music by moving a mobile device like a smartphone, could build a bridge

between physical energy and subjective experience. Smartphones are among the most increas-

ingly popular devices to listen to music [13]. Once corporeal articulations are available from

smartphone-assessed motion data and emotionally interpretable, missing emotional descrip-

tions of music in MIR and MRS could be provided based on these embodied descriptions.

Hence, a model able to translate between corporeal and verbal descriptions of music would not

only offer innovative, multimodal access to the retrieval of music, but also place additional

semantic annotations about the emotional qualities of music at the disposal that also enrich the

conventional verbal search.

1 Verbal Models of Musical Emotion

The most widespread models to describe the emotional qualities of music listening experience

are the basic emotions model, the circumplex model and the Geneva Emotion Music Scales

(GEMS) [14].

The basic emotion model assumes, that there are four to six basic emotions that have evolu-

tionary meaning and that are culturally universal. They often include fear, anger, happiness,

sadness, disgust, and surprise [14]. The circumplex model maps these basic emotions and many

other emotional feelings onto a two-dimensional space that is spanned by valence (“how pleas-

ant or unpleasant is the experience?”) and arousal (“how intense is the experience?”) [7].

Accordingly, the quality of each emotion can be described by these two underlying qualities.

The GEMS have been iteratively developed and evaluated in four studies [15]. The aim for

music-related emotions was to find “a more nuanced affect vocabulary and taxonomy than is

provided by current scales and models of emotion” ([15] p. 513). The original version of the

GEMS comprises 45 terms including feeling of transcendence, nostalgic, solemn or impatient

that are not part of any other emotional model. The GEMS-9, a shortened version of the

GEMS-45, are, like the long-version, grouped into the categories of sublimity (wonder, tran-

scendence, tenderness, nostalgia, peacefulness), vitality (power, joyful activation) and unease

(tension, sadness) [15]. Torres-Eliard, Labbé and Grandjean collected self-report measures of

the GEMS and suggest that it was a suitable model to assess musical emotion [16]. They con-

cluded that “the results indicate a high reliability between listeners for different musical

excerpts and for different contexts of listening including concerts, i.e. a social context, and lab-

oratory experiments” ([16] p. 252).

2 Corporeal Articulation of Musical Emotion

Several studies have shown that there is a close link between movement and emotion in music.

Sievers et al. asked participants to adjust the features rate, jitter, consonance/smoothness, step

size and direction for each of the following five emotions: anger, happiness, peacefulness, sadness

and fear [10]. For one group the adjustment of features led to different movement and appear-

ance of a bouncing ball. For the second group adjusting features changed the melody and

expression of a piano piece. Experiments were conducted both in the U.S.A. and Cambodia. The

settings used for different emotions were highly similar for motion and music in both cultures.
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Accordingly, the authors conclude that emotion expression in music and movement seem to be

based on the same universal features. Giordano et al. studied the relationship between walking

and emotion and its implications for the expression of musical performances [8]. Slow, quiet,

and irregular walking sounds were associated with expressing sadness while fast, loud, and regu-

lar walking sounds with happiness. Similar patterns are also used in music performance (see

[17]). Thus, they concluded that their findings “support the motor-origin hypothesis of musical

emotion expression that states that musicians and listeners make use of general movement

knowledge when expressing and recognizing emotions in music” ([8] p. 29). This connection

between musical rhythm and motor activities was supported by Parncutt already in 1987 [18].

There are many possibilities to express music listening experience in an embodied way.

Among them are tapping or moving parts of the body along with the beat, singing, imitating to

play a musical instrument or dancing. Hedder also evaluated an approach based on facial

expression as form of embodiment [19]. Drawing as described in De Bruyn, Moelants, and

Leman [20] and [12] is another alternative as a means of graphical attuning to the experience.

Last but not least, the employment of acceleration sensor data generated by arm gestures as by

Amelynck, Grachten, van Noorden and Leman [21] was described to be a very promising

approach of multimodal querying on mobile devices.

Amelynck et al. [21] investigated howmotion can be linked to emotion in the context of MIR.

They asked participants to perform arm gestures while holding a Wii remote controller in order

to describe the music. Afterwards the emotional qualities of the musical excerpts were rated on

the dimensions of valence and arousal. Using motion features recorded with theWii controller

generated fairly good predictions for the dimension of arousal, but performed less precisely for

the dimension of valence. The authors argue that this might be due to people rating sadmusic as

pleasant as described in [22]), and conclude that the circumplex model might be unsuitable to be

used with musical emotions. Also Juslin and Vjästfjäll note that perceiving mixed emotions, that

are positive and negative at the same time, limits that employability of the circumplex model

[23]. Accordingly, Amelynck et al. suggest the GEMS as an alternative to this circumplex model.

Aims and Experimental Design

The goal of the presented study is to explore which and how well each of the GEMS can be pre-

dicted by mobile-device generated acceleration data. That way, the present study continues the

work of Amelynck [21], testing the use of an alternative emotion model and using different

motion sensors. Hence, these findings will contribute to understand, how acceleration data can

be used to integrate embodied music cognition into Music Recommender Systems. Further-

more, it will test the often described similarities between certain motion features and emotional

qualities [8][10].

First, a pilot study was conducted to develop a measurement instrument for the following

experiments. Afterwards, we conducted two experiments to test if and how accelerometer data

can be used to describe musical experience. Here, the second experiment tested if results could

be replicated for different music samples and if results changed when participants were free to

choose the songs they felt like moving to. Furthermore, we also tested how different GEMS

qualities relate to different movement patterns (rhythmic vs. gestalt), e.g. if music experienced

as sad was less suitable for rhythmic movement patterns.

General Methods

Ethics Statement

Prior to participating in both experiments, individuals were informed of their general goals

and of the procedures involved, i.e. describing the music corporeally and to rate its emotional

FromMotion to Emotion
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qualities. They gave oral consent to participating in the study and storing of the data collected

during the experiment. No ethics approval was required from the Technical University Berlin

for behavioral studies such as those reported in this manuscript. There was no institutional

review board available at the department where the experiment was conducted. Neither of the

experiments involved deception or stressful procedures. Participants were informed that they

were free to leave the experiment at any time, and that their data was analyzed anonymously.

Participants in both experiments were recruited on a voluntary basis from the students and

acquainted interested persons. Some students got course credit for participation. Others shared

a professional or private interest in the study and its methodology and therefore volunteered to

participate. The research reported in this manuscript was carried out according to the princi-

ples expressed in the Declaration of Helsinki. No other than the personal identifying informa-

tion reported in this manuscript were collected (see Methods section).

Development of Measurement Smartphone App

We conducted a pilot study to design and accompany the development of the measurement

instrument. In this phase, we interviewed 11 persons with different backgrounds, i.e. different

age, gender, musicians and non-musicians, for their preferred way of describing music experi-

ence in an embodied way. After testing two favorites in a prototypical stage, participants opted

for performing free movements while holding their smartphone device over drawing lines.

Hence, an Android App was developed iteratively applying the think-aloud method to inte-

grate participants’ feedback as described by [24].

The choice for Android was due to a wider spread of Android devices that could enable us

to repeat the experiment with a lager sample size in the future. The app presented the music sti-

muli to participants and simultaneously recorded accelerometer data from smartphone sensors

(for more details, we want to refer to the documentation for Android Developers [25]). After-

wards, it presented nine emotional attributes taken from the GEMS-9 short version. Here, par-

ticipants were instructed to rate the emotional qualities of the music excerpts presented.

Screenshots showing the App are available as Supporting Information S2 Fig.

Stimulus Selection

Music used in both experiments was selected in a participatory approach [26] based on sugges-

tions by the participants of the pilot study according to the following criteria:

1. account for a variety of field participants’ preferences

2. cover the range of the GEMS-9

3. keep the balance between female andmale artists

4. do not let emotions be covered in a stereotypical way like tenderness by female artists or ten-

sion bymale artists

5. artists of different color

6. cover a variety of genres

For each musical piece, an excerpt of*40s duration was chosen such that it was as homo-

geneous as possible w.r.t GEMS qualities during this time.

Motion Data Analysis

The general workflow for motion data analysis was as follows:
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1. get raw acceleration data from motion sensor for x, y and z in 3D space

2. cut beginning (first 5s) and end to standardize duration d of signals to d = 35s

3. resample with sample rate*5.7Hz

4. apply PCA to x, y and z

5. extract motion features

6. normalize range of motion features intra-individually

7. split data set into training (50%) and test (50%) set

8. stepwise select features on training set and fit linear regression model for each GEMS feeling

9. evaluate model quality on test set for each GEMS feeling

Motion Feature Extraction. As participants needed a few seconds to fully get into the

movement, the first five seconds were cut from the beginning of the motion data. Prior to feature

extraction we applied a Principle Component Analysis (PCA) to each recording of accelerometer

data (per stimulus and participant). That way, the x-, y- and z-dimensions were transformed to

three principal components PC1, PC2 and PC3. This helped to enhance the comparability of

movements between participants, e.g. to account for different ways of holding a device. We did

not apply PCA in order to compress data, all dimensions were kept. Furthermore, we did not

extract direction-relevant features that would have spoken against applying a PCA. Table 1

shows an overview on the features extracted to characterize the movement, categorized into

tempo, size, regularity and smoothness. The statistical features absolute skewness,median and

standard deviation (std) are computed to get a time compressed representation of the features

extracted from the time series of motion data. As most features were not normally distributed,

we chose to compute themedian over themean. During the selection of features we learned that

the standard deviation still served as a significant feature to represent the degree of variance in

the distribution. In order to remove any inter-individual differences in movement size, all fea-

tures were subsequently range-normalized intra-individually to the interval [0-1]. Fig 1 shows

an example of one accelerometer recording before and after applying PCA. Here, the extraction

of different features is illustrated. When results are described, we will refer to positive accelera-

tion in eigenspace as forward and to negative acceleration in eigenspace as backwardmovement.

Model Fitting. We fitted one linear regression model for every GEMS feeling, with all

motion features as predictor variables. There was no strong multi-collinearity between motion

features indicated by the fact, that for any predictor, the Variance Inflation Factor was smaller

than 10. Stimulus order effects could have resulted in an emotional afterglow effect of stimuli

(e.g. the rating of the second piece is influenced by the rating of the first one), violating the

assumption of observational independence in linear regression models. However, no such effect

could be observed in test plots on autocorrelation of residuals and test plots mapping order

against residuals. Features were selected using the forward stepwise algorithm for linear regres-

sion [27]. Before selecting the features and fitting the model, the data was partitioned into train-

ing and test set,*50% each, in order to evaluate each model’s ability to generalize with unseen

data. The test set was compiled by randomly selecting five observations from each participant.

Experiment 1

2.1 Method

The following sections summarize the first experiment that was conducted after developing the

measurement app in the pilot study.

FromMotion to Emotion
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Stimuli. The musical stimuli for the first experiment were compiled by the pilot study’s

participants according to the criteria described in the General Methods section. Table 2 shows

the final list of musical excerpts. The list of samples was presented in random order for each

participant. However, they were then free to choose the preferred order in which to assess the

samples.

Participants. For this experiment, we recruited 22 participants from the Master of Science

program Audio Communication and Technology at TU Berlin. They had an average age of 27

years (SD = 2.36). 73% identified as ‘male’, 18% as ‘female’, 5% as ‘rather male’ and another 5%

did not identify with any gender. 91% were experienced in playing an instrument, the produc-

tion of music or singing in a choir. 5% only had short term experience in making music beyond

classes in school and 5% indicated to have no experience at all. 36% already participated in

dancing classes or similar activities for which movement is related to music. 50% were only

dancing occasionally in clubs or on concerts. 14% had no experience at all in moving to music.

82% are regularly using a smartphone, 9% are experienced in using a smartphone but do not

use one now and 9% are not using one at all. Participants also indicated, that for them they

Table 1. List of Extracted Motion Features.

Feature Description

tempo

max_freq_hz most dominant frequency in Hz across all three PCs

median_dist_midcrosses_PC1/2/3 median of distances between midcrosses

size

median_peak_PC1/2/3 median amplitude

volume volume of acceleration point cloud computed by applying delaunay triangulation to the acceleration data points in 3D-
eigenspace and hence computing the convex hull of the triangulated space as in [21]

max_freq_mag magnitude of most dominant frequency

smoothness

median_rise_PC1/2/3 median duration of attacks

median_fall_PC1/2/3 median duration of releases

regularity

max_freq_rel magnitude of most dominant frequency relative to median magnitude of all frequency peaks

skewness_peak_PC1/2/3 absolute skewness of amplitude distribution

skewness_rise_PC1/2/3 absolute skewness of attacks’ (duration) distribution

skewness_fall_PC1/2/3 absolute skewness of releases’ (duration) distribution

skewness_dist_midcrosses_PC1/2/
3

absolute skewness of midcrossings’ distribution

std_peak_PC1/2/3 std of amplitude distribution

std_dist_midcrosses_PC1/2/3 std of midcrossing’s distribution

std_rise_PC1/2/3 std of attacks’ (duration) distribution

std_fall_PC1/2/3 std of releases’ (duration) distribution

rel_max_freq_mag magnitude of most dominant frequency relative to median of spectrum’s peak magnitudes

Notes: PC1/2/3 = first, second, and third principal component of movement data. For the computation of amplitude the data series is split into N = 15

segments. For each segment, Matlab’s peak2peakmethod is called to compute the absolute distance between minimum and maximum (see pink vertical

line in fourth subplot of Fig 1). Midcrosses are the points in time when the signal crosses the mid reference level. They are computed by calling Matlab’s

midcrosses function with a tolerance level of 45%. The rise and fall times, computed with Matlab’s risetime and falltime functions, indicate the time

passed between one local minimum and the following local maximum (rise) and vice versa for fall. Volume of the acceleration data point cloud is computed

by Matlab’s delaunayTriangulation and convexHull functions. Matlab’s Fast Fourier Function (fft) was applied to determine the most dominant

frequency.

doi:10.1371/journal.pone.0154360.t001
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most formative music genres were Rock� (68%), Electro� (55%), Hip Hop� (32%), Classic

(27%), Metal (22%), Jazz (23%), Punk (23%), Pop� (18%), Dub(step) (18%) and Reggae (14%).

(Note: �several similar subgenres were grouped to one).

Procedure. The laboratory used was illuminated only slightly and offered enough space to

move freely. The app ran on a Motorola Moto G with Android Version 4.4. Participants wore

AKG headphones featuring a 1,5m long cable. During the experiment, they were alone in

the lab with doors closed. Before, a guided test tour through the app was given in order to

familiarize participants with the experiment. They were informed that the study was about

describing the music corporeally and to rate it in terms of the GEMS. They did not know that,

Fig 1. Example of Extracted Features for the Movements of one Participant to the Music Excerpt
Wargasm, Experiment 1: The figure shows a participant performing large and fast movements. After
about 12s the direction of movement changed, probably for ergonomic reasons (first subplot). Principle
components of accelerometer data are shown in the second subplot. The third subplot indicates that the
maximum frequency magnitude lies at a high frequency. The fourth subplot visualizes the computation of the
signals’ amplitudes (only for PC1). The stars in the fifth subplot show the midcrosses of the motion signal.

doi:10.1371/journal.pone.0154360.g001

Table 2. List of Music Excerpts First Experiment.

Artist/Band Title Genre

L7 Wargasm Punk

Souad Massi Raoui Folk Rock

Adele Rolling in the Deep Pop

Bruno Mars Count on Me Pop

Air La Femme d’Argent Electronica

Two Fingers Sweden Grime

Bob Marley Corner Stone Reggae

Mel Bonis Berceuse Op.23 No.1 Classic

Andy Allo People Pleaser Funk

David Bowie Rebel Rebel Rock’n Roll

doi:10.1371/journal.pone.0154360.t002
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subsequently their GEMS ratings would be predicted from movement. We also told them that

there was no right or wrong way to move to the music.

After a participant selected a song, the first step was to listen to the song in order to be pre-

pared for the corporeal articulation. Participants could stop the presentation of the excerpt

early when they decided that they knew the music already well enough to describe it.

Afterwards, the movements were actually recorded by the device’s acceleration sensor syn-

chronized to the music. For this part of the study participants were instructed as follows:

“Please move now with the device according to the music. It is important that you stand and

don’t sit during motion capturing. You can move freely, i.e. all parts of the body, but keep in

mind that only movement of the device can be captured.”

After each embodied description participants rated the perceived emotional qualities of the

musical excerpts according to the GEMS-9 on a 100-point, unipolar intensity scale initialized

to ‘0’ (Table 3). They were instructed as follows: “Please rate the perceived emotional quality of

the music according to the GEMS-9. Do not rate how you felt during listening.” Subsequent to

the GEMS, participants were asked how suitable they considered both embodied and verbal

descriptions for the music excerpt. At the end of the experiment participants were asked to fill

out a short socio-biographical questionnaire.

Results and Discussion

Similarities between Movements and GEMS for First Experiment. The fixed effects

from Table 4 indicate that music perceived as transcendent was related to a rather irregular

tempo of movement (std_dist_midcrosses). For wonder the movement’s size (std_peak) was

irregular in the second component and regular (skewness_peak) in the first principle compo-

nent. Power related to regular and large movements. Tenderness was described by small

Table 3. Emotion Ratings Items: Participants rated their experience of nine German GEMS categories
(each defined by three additional adjectives).

Original English German translation

wonder Verwunderung

filled with wonder, dazzled, voller Verwunderung, geblendet,

allured, moved verlockend, bewegt

transcendence Transzendenz

fascinated, overwhelmed, fasziniert, überwältigt,

feelings of transcendence and spirituality Gefühl von Transzendenz und Spiritualität

power Energie

strong, triumphant, energetic, fiery stark, triumphierend, energetisch, glühend

tenderness Zärtlichkeit

tender, affectionate, in love, mellowed liebevoll, zärtlich, verliebt, weich

nostalgia Nostalgie

nostalgic, dreamy, sentimental, nostalgisch, verträumt, sentimental, melancholisch

peacefulness Friedlichkeit

serene, calm, soothed, relaxed still, ruhig, sanft, entspannt

joyful activation Freude

joyful, amused, animated, bouncy freudig, vergnügt, lebhaft, hüpfend

sadness Traurigkeit

sad, sorrowful traurig, sorgenvoll

tension Anspannung

tense, agitated, nervous, irritated angespannt, aufgeregt, nervös, irritiert

doi:10.1371/journal.pone.0154360.t003
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Table 4. Fixed Effects Modeling Parameter Estimates for GEMS Ratings and their Principle Components of First Experiment Predicted via Motion
Features Related to Size, Rate, Regularity and Smoothness of the Movement.

fixed effects estimate SE t-statistic p-value

GEMS-9

transcendence

intercept 18.1 4.5 4.0 .0002

std_dist_midcrosses_PC1 32.5 11.1 2.9 .0050

wonder

intercept 20.7 6.0 3.4 .0012

skewness_peak_PC1 -22.9 9.8 -2.3 .0228

std_peak_PC2 36.7 9.6 3.8 .0004

power

intercept 21.1 5.6 3.7 .0005

median_peak_PC1 70.3 11.6 6.1 <.0001

std_peak_PC3 -29.5 12.1 -2.4 .0185

tenderness

intercept 69.9 6.1 11.5 <.0001

median_peak_PC1 -67.5 9.8 -6.9 <.0001

std_rise_PC3 38.4 12.1 3.2 .0025

std_fall_PC3 -32.6 14.0 -2.3 .0241

nostalgia

intercept 59.9 7.9 7.6 <.0001

median_peak_PC1 -57.1 10.6 -5.4 <.0001

skewness_fall_PC2 -23.0 10.5 -2.2 .0324

skewness_fall_PC3 28.4 11.2 2.5 .0147

peacefulness

intercept 60.3 7.3 8.3 <.0001

median_peak_PC1 -46.5 13.0 -3.6 .0007

joyful activation

intercept 42.7 4.5 9.5 <.0001

std_rise_PC3 42.8 12.4 3.5 .0011

std_fall_PC3 -39.6 14.6 -2.7 .0089

sadness

intercept 11.6 4.0 2.9 .0057

median_dist__midcrosses_PC1 36.3 8.9 4.1 .0002

tension

intercept -8.9 7.9 -1.1 .2649

std_dist_midcrosses_PC1 28.7 10.9 2.6 .0114

median_peak_PC1 30.5 10.1 3.0 .0040

skewness_fall_PC3 23.5 10.2 2.3 .0255

PRINCIPLE COMPONENTS OF GEMS-9

PC-1 relaxation

intercept 1.0 .2 5.6 <.0001

median_peak_PC1 -2.1 .3 -6.4 <.0001

PC-2 positive valence

intercept 0.3 .2 1.8 .0733

median_dist_midcrosses_PC2 -0.8 .4 -2.2 .0035

doi:10.1371/journal.pone.0154360.t004
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(median_peak) movements with regular backward (std_fall) and irregular forward (std_rise)

gestures. Nostalgia was also described by small movements (median_peak) with irregularly

smooth backward movements in the third component and regular ones in the second compo-

nent (skewness_fall). In contrast to power, peacefulness is characterized by small movements.

When participants rated music as joyful, they performed movements with regular backward

phases and less regular forward movements like jumping. For sadnessmovements were slow

while for tensionmovements were primarily large with irregular tempo.

Fig 2 shows that participants preferred rating on GEMS to describe their experience when

they perceived nostalgia, sadness, tenderness or peacefulness. For joy, power and wonder partici-

pants preferred embodied descriptions. For tension and transcendence we did not observe such

an association between feeling rating and description preference.

Prediction Results. Table 5 indicates that tenderness, power and nostalgia were predicted

best, followed by tension, wonder and sadness. For peacefulness and joy around 20% of variance

Fig 2. Spearman Correlation of GEMS and Description Preferences (Embodied vs. GEMS) for First
Experiment.

doi:10.1371/journal.pone.0154360.g002

Table 5. R-Squared and RMSE for first experiment ranked according to theirR2 on the training set.

rmse (training) R2 (training) p-value (training) rmse (test) R2 (test)

GEMS-9

tenderness 22.8 .497 <.0001 31.9 .732

power 22.8 .423 <.0001 26.2 .538

nostalgia 24.7 .423 <.0001 27.2 .582

tension 22.6 .284 .0006 27.9 .206

wonder 23.5 .247 .0006 24.4 .574

sadness 22.1 .238 .0002 21.2 .240

peacefulness 30.8 .196 .0007 32.9 .230

joyful activation 23.9 .193 .0038 32.8 .205

transcendence 24.0 .139 .0051 24.4 .275

PCs of GEMS-9

PC-1 relaxation 0.8 .439 <.0001 0.8 .504

PC-2 positive valence 1.0 .082 .035 1.1 .079

doi:10.1371/journal.pone.0154360.t005
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in the data could be explained by the fitted regression models. Transcendence was most difficult

to predict because only 14% of the variance in the data could be explained through the motion

data. Since for both, the training and test data set, a comparable amount of variance could be

explained, there was no evidence for overfitting of the model to the data.

Since we asked participants to rate the intensity of experience of the different GEMS, most

feelings are likely to be correlated with the overall intensity or arousal of emotional experience

(see Fig 2). Here, most feelings show small to large correlations with power. Therefore, we

applied a PCA on these rating data, in order to represent emotional experience with less

dimensions. A resulting arousal component in the GEMS rating could be interpreted as

describing the quantity or intensity of the feeling, whereas a valence component as describing

the quality. That way, we could identify, if there are potential differences in predicting the

quantity/intensity and quality of emotional experience from movement data.

Based on the Elbow Method we extracted two components explaining most of the variance

in the data. Table 6 visualizes the item loadings of the eigenvectors having the highest eigenval-

ues. The first PC might be interpreted as the degree of relaxation as it got high positive loadings

for tenderness, peacefulness and nostalgia, but high negative loadings for power and tension.

Accordingly, it represents the opposite of arousal. The second PC might be interpreted as posi-

tive valence as it got high positive loads for joy and wonder, but a negative loading for sadness.

Hence, the interesting question was whether the motion features only predicted the degree of

relaxation (vs. arousal and activation) or if they could also explain degrees of valence inherent

in the experienced emotionality. The estimates for the fixed effects in Table 4 show that relaxa-

tion was expressed by small movements while positive valence related to fast movements. Fur-

thermore, the prediction results from Table 5 indicate that for relaxation about 44% of the

variance in data could be described by the fitted regression models, while only 8% positive

valence variance is explained. As prediciton accuracy is similar on both training and test set,

there was no overfitting of the model to the data.

Discussion. The findings in predicting the relaxation and valence components indicate,

that not only arousal or intensity was predicted in the GEMS ratings, but also the quality of

perceived emotion, i.e. positive valence. However, only 8% of the variance in valence were cov-

ered by the approach. Therefore, these results are similar to those of [21]. This could be

explained by the fact there were several GEMS with little mean intensity and little variance as

can be seen from the polarity profile in Fig 3. Examples are transcendence, sadness, wonder,

and tension. Even though joy showed a rather high degree of variance according to the polarity

profile, its prediction turned out to be difficult in this experiment. There might not have been a

Table 6. Principle Component Loadings of GEMS Ratings of First Experiment.

GEMS feeling PC-1 Relaxation PC-2 Positive Valence

tenderness .889 .053

peacefulness .841 .047

nostalgia .754 -.203

power -.690 .452

tension -.687 -.060

transcendence .474 .474

sadness .470 -.373

joy -.028 .790

wonder -.070 .677

Notes: Components were rotated using the varimaxmethod.

doi:10.1371/journal.pone.0154360.t006
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common movement pattern throughout participants for music perceived as joyful. In general,

it also should to be noted that there have not been enough music excerpts to sufficiently cover

all states of the GEMS. We therefore conducted a second experiment with a different set of sti-

muli that were chosen to cover more different GEMS feelings.

Experiment 2

Experiment 2 was conducted in order to test, if the findings from Experiment 1 could be repli-

cated. Furthermore, different music stimuli were chosen in order to cover more states of the

GEMS. We also asked for more feedback concerning the movement patterns used from partici-

pants. Doing so, we tested the following two hypotheses: “Participants prefer embodied rhyth-

mic-related descriptions when they perceive power, tension or joy” and “Participants prefer

embodied gestalt-related descriptions or verbal descriptions (GEMS) when they perceive sub-

limity-related feelings like nostalgia or transcendence”. We assumed that sublimity-related musi-

cal emotions were more related to musical contour and melody. Thus, we assumed participants

to imitate musical contour by performing gestures that are more gestalt-like and less rhythmic.

Stimuli. After the first experiment, during which participants were not free to choose the

music they described corporeally, we thought it might further improve prediction results, if

participants chose the music themselves. The study from Liljeström, Juslin and Västfjäll

observed that emotions were perceived more intensely when participants chose the music

themselves [28]. Therefore, we asked them to propose music in order to compile a list from

which they could chose 10 samples out of 20. Table 7 shows the final list of musical excerpts

used and how often participants chose each excerpt in absolute numbers.

Participants. 21 students participated from the following courses: Audio Communication

and Technology (40%), engineering in the field of technical environmental protection (20%),

Fig 3. Polarity Profile of Mean GEMS Ratings for the First Experiement.

doi:10.1371/journal.pone.0154360.g003
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and others 40%. Participants had an average age of 28 years (SD = 3.0). 76% identified as

‘male’, 19% as ‘female’ and 5% did not identify with any gender. 72% were experienced in play-

ing an instrument, the production of music or singing in a choir. 29% only had short term or

no experience in making music beyond classes in school. 52% already participated in dancing

classes or similar activities for which movement is related to music. 81% were only dancing

occasionally in clubs or on concerts. 9% had only little or no experience at all in movement to

music. 81% are regularly using a smartphone, 19% do not.

Procedure and Data Analysis. Procedure and data analysis were conducted as in the first

experiment with the exception of the following minor changes:

1. All scales were initialized to ‘50’ instead of ‘0’ to equalize the effort to move the slider in

either direction.

2. The German translation of the GEMS-9 was adjusted to the one from Lykartsis et al. that

could be confirmed to fit [29].

3. Two additional questions were added to the post-experiment questionnaire: “How suitable

do you consider a corporeal description of this music excerpt by movement according to

musical contour?” and “How suitable do you consider a corporeal description of this music

excerpt by movement according to rhythm?” (see S2 Fig). These two questions should pro-

vide additional information about the preference for certain movement patterns.

Results and Discussion

Similarity between Movements and GEMS for Second Experiment. As you can observe

from Tables 8 and 9, no significant features were found for transcendence. Unlike the first

experiment, music featuring wonder was described by slow (median_dist_midcrosses)

Table 7. List of Music Excerpts for Second Experiment: Songs are ranked according to the frequency they were chosen by the participants.

Artist Title Genre Frequency

Moby Porcelain Pop 17

Air La Femme d’Argent Electronica 16

Slipknot Duality Heavy Metal 15

Die Antwoord I Fink U Freeky Rap-Rave 14

M.I.A. Paper Planes Hip Hop 14

System of a Down Roulette Rock 14

Antony And The Johnsons River Of Sorrow Pop 14

Bartok Allegro—Music for String Instruments Percussion and Celesta Classic 13

The Beatles In My Life Pop 13

Chic I Want Your Love Disco 13

Teddybears STHLM Little Stereo Trip Hop 11

Miles Davis Someday My Prince Will Come Jazz 11

David Bowie Rebel Rebel Rock’n Roll 11

Adele Rolling in the Deep Pop 10

Caetano Veloso QuemMe Dera Alternative Rock 9

Souad Massi Raoui Folk Rock 8

Andy Allo People Pleaser Funk 8

LunchMoney Lewis Bills R&B 6

Mel Bonis Berceuse Op.23 No.1 Classic 6

Helium Vola Selig Electro Medieval 5

doi:10.1371/journal.pone.0154360.t007
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Table 8. Fixed Effects Modeling Parameter Estimates for GEMS Ratings and their Principle Components of Second Experiment Predicted via
Motion Features Related to Size, Rate, Regularity and Smoothness of the Movement.

Fixed Effects estimate SE t-statistic p-value

GEMS-9

transcendence

none - - - -

wonder

intercept 56.5 5.9 9.5 .0000

std_fall_PC1 14.2 6.3 2.3 .0252

skewness_fall_PC1 -15.9 6.6 -2.4 .0172

std_peak_PC1 -32.6 6.6 -4.9 .0000

median_dist_midcrosses_PC2 17.2 6.7 2.6 .0111

median_fall_PC3 12.7 6.4 2.0 .0478

power

intercept 23.1 4.2 5.5 <.0001

median_peak_PC1 28.7 7.4 3.9 .0002

std_dist_midcrosses_PC2 14.3 5.9 2.4 .0165

median_peak_PC2 21.5 7.7 2.8 .0061

std_peak_PC2 19.9 7.1 2.8 .0058

tenderness

intercept 58.5 6.0 9.8 .0000

max_freq_hz -16.8 5.8 -2.9 .0046

median_dist_midcrosses_PC1 16.7 7.8 2.1 .0336

skewness_fall_PC1 -18.4 6.9 -2.7 .0088

std_peak_PC1 -20.2 6.5 -3.1 .0022

median_fall_PC3 13.8 6.5 2.1 .0351

nostalgia

intercept 39.3 5.2 7.5 <.0001

std_peak_PC1 -28.0 7.1 -4.0 .0001

median_dist_midcrosses_PC2 29.6 6.8 4.4 <.0001

std_rise_PC3 14.6 6.5 2.2 .0263

peacefulness

intercept 52.6 6.2 8.4 <.0001

skewness_rise_PC1 17.1 7.5 2.3 .0232

median_peak_PC1 -20.7 8.9 -2.3 .0215

median_dist_midcrosses_PC2 24.0 7.1 3.4 .0010

std_peak_PC2 -27.3 8.7 -3.1 .0022

joyful activation

intercept 40.4 5.3 7.6 <.0001

max_freq_hz 16.5 4.9 3.3 .0011

std_rise_PC1 -12.3 5.7 -2.1 .0341

std_fall_PC3 -18.8 5.8 -3.2 .0015

skewness_fall_PC3 18.0 6.1 3.0 .0037

median_peak_PC3 22.1 5.9 3.7 .0003

sadness

intercept 21.1 5.6 3.8 .0002

median_dist_midcrosses_PC1 25.5 7.3 3.5 .0006

std_dist_midcrosses_PC1 11.7 6.4 1.8 .0705

std_fall_PC1 16.6 6.3 2.6 .0094

(Continued)
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movements with irregular and longer backward phases (median_fall and std_fall). Though,

wonder was related to regular backward phases at the same time (skewness_fall). Furthermore,

gestures were of regular size (std_peak). As in Experiment 1 power is reflected by large move-

ments but of varying size (std_peak) and speed (std_dist_midcrosses). Tenderness was related

to slow motion (max_freq_hz and median_dist_midcrosses) of regular size and longer back-

ward phases. Nostalgia, too, was performed by slow and regularly sized movements but with

irregularly long forward phases. Similar to the first experiment, peacefulness was characterized

by small movements. During the second experiment, additionally slow and regularly sized ges-

tures were observed. Joy, however, stimulated regular, large and fast gestures. In the second

experiment sadness was correlated to tempo being slow and irregular. Here, tension was charac-

terized by fast but large movements. The gesture’s size was a significant feature during the first

experiment, too.

Confirming both of our hypotheses on description preferences, participants preferred

GEMS and gestalt movements referring to melodic contour to describe their experience when

they perceived wonder, sadness, tenderness, peacefulness or nostalgia (see Fig 4). For joy and

power participants preferred embodied and rhythmic descriptions. For tension and transcen-

dence were not related to description preference.

Prediction Results for Second Experiment. Table 10 shows that power and tenderness

were also among the top prediction results for the second experiment. This time, however,

Table 8. (Continued)

Fixed Effects estimate SE t-statistic p-value

skewness_fall_PC1 -18.9 7.1 -2.7 .0086

std_fall_PC3 14.6 5.8 2.5 .0141

tension

intercept 40.3 5.4 7.5 <.0001

volume 27.1 6.7 4.1 .0001

skewness_rise_PC1 -19.3 7.5 -2.6 .0116

median_dist_midcrosses_PC2 -31.0 6.9 -4.5 <.0001

doi:10.1371/journal.pone.0154360.t008

Table 9. Fixed Effects Modeling Parameter Estimates for GEMS Ratings and their Principle Components of Second Experiment CONTINUED.

Fixed Effects estimate SE t-statistic p-value

PRINCIPLE COMPONENTS OF GEMS-9

PC-1 relaxation

intercept 0.5 0.2 2.4 .0189

skewness_fall_PC1 -0.6 0.2 -2.5 .0153

std_peak_PC1 -1.0 0.2 -4.0 .0001

median_dist_midcrosses_PC2 0.8 0.2 3.2 .0018

skewness_dist_midcrosses_PC3 -0.5 0.2 -2.2 .0288

PC-2 negative valence

intercept 0.2 0.2 1.1 .2887

median_dist_midcrosses_PC1 0.6 0.2 2.3 .0254

std_dist_midcrosses_PC1 0.5 0.2 2.2 .0274

std_rise_PC1 0.5 0.2 2.2 .0315

skewness_fall_PC3 -0.7 0.2 -3.2 .0016

median_peak_PC3 -1.1 0.2 -5.2 <.0001

doi:10.1371/journal.pone.0154360.t009
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sadness, joy, peacefulness and wonder scored much higher in terms of R2 whereas nostalgia, ten-

sion and transcendence were among the GEMS being most difficult to predict. Since for both,

the training and test data set, a comparable amount of variance could be explained, there was

no evidence for overfitting of the model to the data.

GEMS ratings for the second experiment were similarly correlated like in the first one (see

S1 Fig). Applying PCA to the GEMS rating data also resulted in two components explaining

most of the variance in the data (according to the ElbowMethod). Table 11 indicates that relax-

ation and negative valence were present as most dominant principle components. For relaxa-

tion loadings were again highly positive for tenderness, peacefulness and nostalgia, but highly

negative loads for tension. The second PC got high negative loads for joy, but positive loads for

sadness.

In contrast to the first experiment, estimates for the fixed effects (Table 9) show that relaxa-

tion was expressed by slow and regular movements while negative valence related mainly to

Fig 4. Spearman Correlation of GEMS and Description Preferences (Embodied (Gestalt or Rhythm),
GEMS) for Second Experiment.

doi:10.1371/journal.pone.0154360.g004

Table 10. R-Squared and RMSE for Second Experiment Ranked According to theirR2 on the Training Set.

rmse (training) R2 (training) p-value (training) rmse (test) R2 (test)

GEMS-9

power 19.0 .494 <.0001 27.3 .375

tenderness 23.0 .385 <.0001 26.2 .388

sadness 23.1 .346 <.0001 29.2 .322

peacefulness 24.4 .345 <.0001 25.7 .303

wonder 23.2 .343 <.0001 25.0 .586

joyful activation 21.9 .325 <.0001 24.4 .276

nostalgia 25.1 .295 <.0001 26.3 .334

tension 24.8 .265 <.0001 27.3 .266

transcendence - - - - -

PCs of GEMS-9

PC-1 relaxation .9 .330 <.0001 .9 .450

PC-2 negative valence .9 .354 <.0001 .9 .368

doi:10.1371/journal.pone.0154360.t010
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small and slow movements. This time, prediction results (Table 10) indicate that for relaxation

and negative valence about one third of the variance in data could be described by the fitted

regression models. Since for both, the training and test data set, a comparable amount of vari-

ance could be explained, there was no evidence for overfitting of the model to the data.

Discussion. The second study confirmed that there were two principal components in the

GEMS ratings: relaxation and (positive/negative) valence. This time, for relaxation and valence

approximately same amounts of variance could be explained by the regression models. That

might probably be due to the fact that for the second experiment joyful experiences could be

predicted to a much better degree. Also sadness and peacefulness were predicted better, while

for transcendence no regression model could be fitted since there were no significant features.

In general, prediction results from the first experiment were slightly worse. That might be due

to the chosen samples or the participants’movement patterns or both. Another possibility is

that participants did not keep up movement speed or size over the whole period of the musical

excerpt and e.g. only moved half-time for fast music. That is why, they might sometimes not be

able to describe the experience corporeally, though they rate it as more powerful. Hence, for

ergonomic and biomechanical reasons, corporeal descriptions and GEMS ratings might drift

apart (cf. [[12]pp. 112–114]). One countermeasure could be to inspect the motion data in dif-

ferent time windows and to chose the window featuring maximum speed or size, instead of

simply averaging over the whole time. The extracted motion features already covered a good

degree of rhythmic qualities but were ignorant of the course and direction of the movement

expressed. These gestalt features could be particularly important when it comes to complex

emotional expressions in music like nostalgia.

General and Concluding Discussion

Results for both experiments showed that movements predicted both arousal and in Experi-

ment 2 also valence. The quality of prediction for different degrees of GEMS also varied

between experiments for joy, sadness, transcendence, wonder and tension, for others like power

or peacefulness results could be reproduced. For many GEMS feelings, participants applied

similar movement patterns across the two experiments (cf. Tables 4, 8 and 9).

These movement patterns often follow the similar principles reported in previous studies of

[17] and [8]. There, joy or happiness was consistently associated with medium sound levels, high

tempi and small timing variation. The size (large) of the movement (equaling sound level) and

small timing variation were significant features for the second experiment. Furthermore, like both

studies cited, we also showed that sadnesswas correlated with irregular and slow movements.

Table 11. Principle Component Loadings of GEMS ratings of Second Experiment.

GEMS feeling PC-1 relaxation PC-2 negative valence

tenderness .781 .336

peacefulness .778 .214

nostalgia .745 .334

wonder .717 .296

tension -.697 .027

transcendence .494 -.353

joy .028 -.855

sadness .343 .714

power -.229 -.599

Notes: Components have been rotated using to the varimaxmethod.

doi:10.1371/journal.pone.0154360.t011
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Considering the prediction results, there are some possible explanations for the better results

of the more rhythm-related feelings (e.g. power, cf. Fig 4) over those requiring presumably more

additional gestalt elements: Emotions like nostalgia and transcendence call for features that are

less bound to rhythm but to the musical contour like directional and time series features. Acceler-

ation data seems to not sufficiently cover nostalgic or transcendent gestures. As acceleration does

not determine the absolute position in space, it is particularly difficult for slow but big gestures to

be captured. This calls for applying different and more sophisticated motion sensor fusion tech-

niques. Participants preferred the embodied description for the more energetic and joyfulmusical

excerpts (cf. Figs 2 and 4) and hence, they might also not be trained to express certain feelings

like sadness or transcendence in a corporeal way. Furthermore, there might be significant inter-

individual differences in how participants are able to express feelings through movement that

would also be an interesting topic of future investigations. Also, given the often reported high

inter-individual variance of musical emotion, a much larger data set would be desirable. This

would allow to model the different individual or stimulus specific sources of variance in the data.

Conclusion

This study evaluated the predictive power of mobile-device generated acceleration data pro-

duced by free movement during music listening experience for the prediction of different

degrees of the Geneva Emotion Music Scales (GEMS-9). The results show that participants con-

sidered the corporeal description of music as very suitable and produced movement data that

could be used to predict emotion ratings. Hence, this study contributed to the envisioned use

case of multimodel querying in two ways: First of all, it emphasizes the user need and acceptance

for an innovative embodied access to MIR andMRS. Secondly, it showed that such an approach

is technically feasible. Since GEMS that are more related to rhythm could be predicted better,

observations suggest that there might still be a lot of hidden potential in additional movement

features capturing direction and position in order to describe the gestalt of the movement.

Supporting Information

S1 Fig. Distribution of GEMS Ratings for Music Samples for 2nd Experiment.

(ZIP)

S2 Fig. App Screenshots.

(ZIP)
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