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Abstract. Lasso-type variable selection has been demonstrated to be effective

in handling high dimensional data. From the biological perspective, traditional

Lasso-type models are capable of learning which stimuli are valuable while ig-

noring the many that are not, and thus perform feature selection. Traditional Lasso

has the tendency to over-emphasize sparsity and to overlook the correlations be-

tween features. These drawbacks have been demonstrated to be critical in limiting

its performance on real-world feature selection problems. Although some work

has considered the problem of correlation, the issue of discriminative ability re-

sulting from sparsity has been overlooked. To overcome this shortcoming, we

propose a discriminative Lasso (referred to as dLasso) in which sparsity and cor-

relation are jointly considered. Specifically, the new method can select features

(or stimuli) that are correlated more strongly with the response but are less corre-

lated with each other. Moreover, an efficient alternating direction method of mul-

tipliers (ADMM) is presented to solve the resulting sparse non-convex optimiza-

tion problem. Extensive experiments on different data sets show that although our

proposed model is not a convex problem, it outperforms both its approximately

convex counterparts and a number of state-of-the-art feature selection methods.

Keywords: Lasso, Feature selection, Feature graph, ADMM

1 Introduction

High-dimensional regression/classification is a challenging problem due to the curse of

dimensionality. An effective way to resolve this problem is by feature selection, that is

to select a subset of the most informative or discriminative predictors from the input

predictor set. The pivotal requirement is that the predictor set contains elements that are

not only jointly informative with the response, but also have little redundancy with each

other. This results in a classifier that performs accurately on the learning samples.

Recently, sparse coding has been demonstrated to be effective in handling high di-

mensional data [10,27]. In the biological sense, a sparse code generally refers to a rep-

resentation where a small number of neurons are active with majority of neurons being

inactive or showing low activity [19]. It is widely believed that the mammalian visual

cortex uses a sparse code to efficiently represent natural images[24,29], where the re-

dundancy of the relayed input is reduced as it passes from the retina. The application

⋆ Corresponding author: jbxiahou@xmu.edu.cn
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of sparse coding in feature selection is also inspired by this mechanism. Here each

stimulus is encoded by a small subset of neurons. This enables simultaneous parame-

ter estimation and variable selection. A well-known example is the penalization of the

ℓ1-norm of the estimator, known as the Lasso (Least Absolute Shrinkage and Selection

Operator) [23].

Lasso assumes that the input variables are nearly independent, i.e., they are not

highly correlated, while in most real-life data, the variables are often correlated. For

example, the functionality of the human brain typically involves more than one cere-

bral component. By investigating each individual regional brain phenotype separately

will lead to a loss of informative interactions between them [25]. Furthermore, in the

presence of highly correlated features Lasso tends to only select one of these fea-

tures, resulting in suboptimal performance [33]. For this reason, the Elastic Net [5]

uses an additional ℓ2-regularization to promote a grouping effect. This method permits

groups of correlated features to be selected when the groups are not known in advance.

While promising, these methods do not incorporate prior knowledge into the regres-

sion/classification process, which is critical in many applications.

Given feature grouping information, the group Lasso [30] is a refinement in which

variables are organized into groups and each group of variables is penalized based on a

combination of the ℓ1-norm and the ℓ2-norm. If there is a group of variables in which

the pairwise correlations are relatively high, Lasso tends to select only one variable

from the group and is not sensitive to the feature selected. By contrast, the group Lasso

considers this group in a holistic way and determines whether it is important to the

problem at hand. If this is the case, then each variable in the group is selected, other-

wise none are selected. However, the requirement of a non-overlapping group structure

in group Lasso limits its practical applicability. For example, in microarray gene expres-

sion data analysis, genes may form overlapping groups since each gene may participate

in multiple pathways [13]. A further extension of the group Lasso, namely sparse group

Lasso, yields sparsity at both the group and individual feature levels. By contrast, it not

only determines which groups are selected, but also further selects some of the most

important feature variables from each selected group. The coefficients exhibit sparsity

not only between groups, but also within each group [32].

From the above review of the literature, it is clear that traditional Lasso-type mod-

els assume conditional independence among the variables, and their aim is to conduct

regression individually for each response vector rather than performing it jointly for all

the response vectors. As a result they perform only data approximation and represen-

tation. In feature selection, they do not explicitly incorporate correlation information

either between the response vectors and variables (referred to as relevant information)

or the variable correlation (referred to as redundant information). Some recent work has

addressed the correlation problem. For instance, Chen et al. [3] proposed an uncorre-

lated Lasso (unLasso) for variable selection, where variable de-correlation is considered

simultaneously with variable selection, so that the selected variables are uncorrelated

as much as possible. Jiag et al. [14] proposed a covariate-correlated Lasso (ccLasso)

that selects the covariates that correlate most strongly with the response variable. An-

other popular approach, known as graph sparsity [21,11,22], is to consider the implicit

relations between different features. The implicit feature relations can be represented as
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a graph, where the nodes represent the features, and the edges imply the relationships

between features. By enforcing sparsity in the feature connectivity, the estimation accu-

racy can be improved using a subgraph containing small number of connected features.

Although much improvement has been achieved in the work mentioned above, the

selected features might not be optimal. Intuitively, if we select a few variables to form

a linear combination that best approximates the response vector, then the variables cor-

relate strongly with the response vector while there will be little correlation between

variables. To our knowledge, existing Lasso-type of variable selection methods have

not simultaneously considered the correlation between the response and the variables

together with the correlation between the variables. We refer to these two processes as

‘response-variable correlation’ and ‘variable-variable correlation’, respectively.

In order to solve the aforementioned problem in existing Lasso-type variable selec-

tion methods, we propose a discriminative Lasso (referred to as dLasso). This not only

discovers the correlations between the variables and the response, but also discrimi-

nates similar features. This distinguishes it from most of the existing work, which uses

convex methods and which may be suboptimal in terms of the accuracy of both feature

selection and parameter estimation. Specifically, we develop a non-convex paradigm

for sparse group feature selection, which is motivated by graph-based clustering meth-

ods and which group the dominant vertices into clusters. The proposed dLasso method

uses a novel graph regularizer on the feature coefficients which simultaneously con-

siders the ‘response-variable correlation’ and the ‘variable-variable correlation’ in the

data. Consequently, the proposed regularizer can trade off between feature relevance

and feature redundancy. For the purposes of optimization, we employ the alternating

direction method of multipliers (ADMM) to solve the proposed method efficiently. Be-

cause of the graph-based representation, our method is connectionist in approach, and

this potentially provides a biologically plausible route to its implementation.

The remainder of this paper is organized as follows. We briefly review the normal

Lasso and Elastic Net in Section 2 and introduce our formulation of discriminative

Lasso in Section 3. Then an effective iterative algorithm is presented to solve the sparse

optimization problem in Section 4. Experimental results and performance comparisons

with competing method are presented in Section 5. We conclude this paper by summa-

rizing the proposed method in Section 6.

2 Brief Review of Sparse Learning Based Feature Selection

According to the structure of the norm, sparsity can be obtained from the following

two types of regularization terms for feature selection, namely a)lat sparsity, where the

sparsity is often achieved by ℓ1-norm or ℓ0-norm regularizer to select individual feature,

and b) structural sparsity, where the ℓ2,1-norm or ℓ2,0-norm are imposed to select group

features.

Typically we have a set of training data (x1, y1), . . . , (xn, yn) from which to es-

timate the parameters β. Each xi = {f i
1, f

i
2, . . . , f

i
d}

T ∈ ℜd×1 is a predictive vector

of feature measurements for the i-th case. The most popular estimation method is least

squares, in which we select the coefficients β = {β1, . . . , βd}
T to minimize the residual

sum of squares
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min
β

n
∑

i=1

(yi −

d
∑

j=1

βjf
i
j)

2 = min
β

‖yT − βTX‖22

s.t.
d
∑

j=1

‖β‖0= k (1)

where y ∈ ℜn×1 is the label vector, X ∈ ℜd×n is the training data, and k is the number

of features selected. Solving Eq.1 directly has been proved to be NP-hard and hence

very difficult to solve via optimization [4]. In many practical situations it is convenient

to allow for a certain degree of error, and we can relax the optimization constraint using

the following formulation

min
β

‖yT − βTX‖22 + λ‖β‖0 (2)

where λ ≥ 0 is the regularization parameter. Unfortunately Eq.2 is still challenging, and

for practical purposes an alternative formulation using ℓ1-norm regularization instead

of ℓ0-norm has been proposed

min
β

‖yT − βTX‖22 + λ‖β‖1 (3)

where ‖β‖1 is ℓ1-norm of vector β (sum of absolute elements), ‖β‖1 =
∑d

j=1
|βj |. The

tuning parameter λ > 0 controls the amount of regularization applied to the estimate.

The larger λ, the larger the number of zeros in β. The nonzero components give the

selected variables. After we obtain β∗, we choose the feature indices corresponding to

the top k largest values of the summation of the absolute values along each column. In

statistics, Eq.3 is referred to as the regularized counterpart of the Lasso problem [23]

and has been widely studied (e.g. [6,16,17]). However, one of the main limitations of

ℓ1-norm feature selection is that it focuses on estimating the response vector for each

variable individually without considering relations with the remaining variables. More-

over, the ℓ1-minimization algorithm is not stable when compared with ℓ2-minimization

[26].

The Elastic Net [33] adds an ℓ2-minimization term into the Lasso objective function,

which can then be formulated as

min
β∈ℜd

‖yT − βTX‖22 + λ1‖β‖1 + λ2‖β‖
2
2, (4)

where λ1, λ2 > 0 are tuning parameters. Apart from enjoying a similar sparsity of

representation of Lasso, the Elastic Net encourages a grouping effect, where strongly

correlated predictors tend to be in or out of the model together [33].

Predictors with high correlation contain similar properties, and contain some over-

lapped information. In some cases, especially when the number of selected predictors is

very limited, more information needs to be contained in the selected predictors. Strongly

correlated predictors should not participate in the model together. When strongly cor-

related predictors are present, then only one is selected. As a result the limited selected

predictors will contain more information.
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3 Discriminative Lasso

In this section, we develop a new feature selection method by simultaneously consider-

ing the ‘response-variable correlation’ and ‘variable-variable correlation’ information.

This leads to a new Lasso-type variable selection approach. Here the regression coef-

ficients associated with large ‘response-variable correlations’ together with those asso-

ciate with small ‘variable-variable correlation’ are encouraged. As a result, the selected

variables are jointly informative with respect to the response, while allowing only lim-

ited redundancy among them.

Fig. 1. The subset of features {F1, F2, F3} is relevant feature subset

3.1 ‘Response-Variable’ and ‘Variable-Variable’ Correlation

Suppose that X = [x1, x2, · · · , xn] ∈ ℜd×n is the matrix of predictors with n observa-

tions of d predictors, and the corresponding response vector is y = (y1, y2, · · · , yn)
T ∈

ℜn×1. Moreover, suppose that the responses and the d predictors are preprocessed so

that they have zero mean and unit variance, i.e. ‖y‖ = 1 and that each feature measure-

ment of a predictor vector is normalized so that ‖fi‖ = 1.

With these ingredients, our discriminative Lasso (referred to as dLasso) is moti-

vated by the following observation: If we select a relatively small number of variables

to form a linear combination that best approximates the response vector, then the vari-

ables correlated more with the response vector while little correlation between variables

would be good choices. To our knowledge, existing Lasso-type variable selection meth-

ods have not simultaneously considered the correlations between the response and the

variables, together with the correlation between variables. We refer to these two sources

of correlation as the i) ‘response-variable correlation’ and ii) the ‘variable-variable cor-

relation’. Therefore, the discriminating power of a feature pair {fi, fj} is estimated

through Pearson’s correlation coefficient [8], and it is defined as

Si,j =
1

2
ρ(fi,y) +

1

2
ρ(fj ,y)− ρ(fi, fj). (5)
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The definition of feature relevance consists of three terms. The first two terms, which

together are referred to as the relevancy, indicate the individual relevance of the feature

with respect to the response. The final term is used to measure the redundancy between

features. A large value of Si,j means that

a) both ρ(fi,y) and ρ(fj ,y) are large, and this in turn indicates that features {fi, fj}
are informative themselves with respect to the response y and

b) ρ(fi, fj) is small indicating that features {fi, fj} are not redundant.

To ensure that the selected predictors of Lasso-type ℓ1-minimization are discriminative,

the regression coefficient vector β should satisfy the condition

max
β∈ℜd

βTSβ, (6)

where β is a d-dimensional indicator vector and Sii = 0, i.e., all diagonal entries of

S are set to zero. Our idea is motivated by the graph-based clustering method which

groups the dominant vertices into a single cluster [31]. Features will be selected if and

only if βi > 0, and will have maximum internal homogeneity with respect to feature

relevance, see Eq.5. In fact, the main property of the selected feature subset {fi|1 6

i 6 d, βi > 0} is that overall their relevance is greater than that for the features which

are not selected From graph theory, the set of selected feature turns out to be equivalent

to a maximal clique [18]. To provide an example, see Fig. 1. Here, there are N training

samples, each having 5 feature vectors. In order to capture the discriminative features

from these 5 features (represented as F1, . . . , F5), we construct a graph G = (V,E)
with node-set V , edge-set E ⊆ V × V and edge weight matrix S computed using

Eq.5. Each vertex represents a feature and the edge between two features represents

their pairwise relationship (or affinity). The weight on the edge reflects the degree of

relevance between two features. In our example, in Fig. 1, features {F1, F2, F3} form

the discriminative feature subset, since the edge weights “internal” to that set (0.6, 0.7

and 0.9) are larger than the sum of those between the internal and external features

(which is between 0.05 and 0.25).

3.2 Discriminative Lasso for Feature Selection

Our discriminative feature subset selection method is motivated by the desire to en-

courage the selected features to correlate more with the response while resulting in low

redundancy between them. Therefore, we unify Equations Eq.3 and Eq.6, and propose

the dLasso method for feature representation and variable selection, which is formu-

lated as

min
β∈ℜd

1

2
‖yT − βTX‖22 + λ1‖β‖1 − λ2β

TSβ, (7)

where λ1, λ2 ≥ 0 are tuning parameters. Note that βTSβ is a nonconvex constrain.

Our dLasso contrasts with previous Lasso-type feature selection methods, which

use convex methods and which may be suboptimal in terms of the accuracy of feature

selection and parameter estimation. Here, the proposed dLasso method imposes stricter
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nonconvex constraints, i.e., ‘variable-response correlations’ and ‘variable-variable cor-

relations’, in locating the optimal regression β. Once the solution β∗ of Eq.7 is obtained,

we can easily recover the number of the selected features and index them.A feature fi
is selected if and only if β∗

i > 0. Consequently, the number of selected features is

determined by the number of positive elements of the indicator vector β∗.

4 Optimization Algorithm

We have proposed a dLasso method to solve the non-convex problem 7 by using al-

ternating direction method of multipliers (ADMM) [1]. The basic idea of the ADMM

approach is to decompose a hard problem into a set of simpler ones. ADMM attempts

to combine the benefits of augmented Lagrangian methods and with those of dual de-

composition for the constrained optimization problem [1]. By introducing an auxiliary

variable γ into the objective function Eq.7, the problem solved by ADMM takes the

following form:

min
β,γ∈ℜd

f(β) + g(γ) :=
1

2
‖yT − βTX‖22 − λ2β

TSβ + λ1‖γ‖1,

s.t. β − γ= 0 (8)

which is clearly equivalent to the problem in Eq.7. We can regard γ as a proxy for β.

The augmented Lagrangian associated with the constrained problem 8 is given by

L(β, γ, z) =
1

2
‖yT − βTX‖22 − λ2β

TSβ + λ1‖γ‖1

+〈β − γ, z〉+
ρ

2
‖β − γ‖22 (9)

Here ρ is a positive penalty parameter (or dual update length) and z is a dual vari-

able (i.e. the Lagrange multiplier) corresponding to the equality constraint β = γ. By

introducing an additional variable γ and an additional constraint β − γ = 0, we have

simplified the problem 7 by decoupling the objective function into two parts that depend

on two different variables.

The alternating direction method of multipliers (ADMM) that solves our original

problem 7 searches for a saddle point of the augmented Lagrangian by iteratively mini-

mizing L(β, γ, z) over β and γ, and then updating z according to the following update

rule:

1) β-minimization: βk+1 = arg min
β∈ℜd

L(β, γk, zk)

2) γ-minimization: γk+1 = arg min
γ∈ℜd

L(βk+1, γ, zk)

3) z-update: zk+1 = zk + ρ(βk+1 − γk+1)
The algorithm iterates until a stopping criterion is satisfied. Applying ADMM, we carry

out the following steps at each iteration:
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Update β: In the (k+1)-th iteration, βk+1 is computed by minimizing L(β, γ, z) with

γk and zk fixed. Then we need to solve the following subproblem:

min
β∈ℜd

1

2
‖yT − βTX‖22 − λ2β

TSβ + 〈β − γk, zk〉+
ρ

2
‖β − γk‖22 (10)

Taking the derivatives with respect to elements of the vector β and setting them to zero,

we have

∂

∂β

[

1

2
‖yT − βTX‖22 − λ2β

TSβ + 〈β − γk, zk〉+
ρ

2
‖β − γk‖22

]

= 0

⇒











































∂
∂β

1

2
‖yT − βTX‖22 = −Xy +XXTβ,

∂
∂β

(−λ2β
TSβ) = −2λ2Sβ,

∂
∂β

〈β − γk, zk〉 = zk,

∂
∂β

(ρ
2
‖β − γk‖22) = ρ(β − γk).

⇒ βk+1 = (ρI+XXT − 2λ2S)
−1[Xy − zk + ργk]

(11)

Update γ: Now supposing that βk+1

i and the Lagrangian multipliers zki , i = 1, · · · , d
are fixed in the Lagrangian, the optimization problem related to γk+1

i , i = 1, · · · , d
boils down to:

min
γi

λ1

d
∑

i=1

|γi|1 −

d
∑

i=1

〈γi, z
k
i 〉+

ρ

2

d
∑

i=1

(βk+1

i − γi)
2 (12)

Taking the derivative with respect to γi and setting it to zero, we have

∂

∂γi

[

λ1

d
∑

i=1

|γi|1 −

d
∑

i=1

〈γi, z
k
i 〉+

ρ

2

d
∑

i=1

(βk+1

i − γi)
2

]

= 0

⇒
∂(λ1|γi|)

∂γi
= zki − ρ(γi − βk+1

i )

⇒ γk+1

i =























1

ρ
(zki + ρβk+1

i − λ1), if zki + ρβk+1

i >λ1

1

ρ
(zki + ρβk+1

i + λ1), if zki + ρβk+1

i <− λ1

0 if zki + ρβk+1

i ∈ [−λ1, λ1].

(13)

Update z: Update zk+1

i , i = 1, · · · , d:

zk+1

i = zki + ρ(βk+1

i − γk+1

i ). (14)

A summary of the proposed method is shown in Algorithm 1 below

On the convergence of Algorithm 1, we have the following result.
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Algorithm 1: The proposed ADMM algorithm for dLasso

Input: X,y,β0,z0, λ1,λ2 and ρ

Output: β

1: while not converge do

2: Update βk+1 according to Eq.11;

3: Update γk+1

i
, i = 1, · · · , d according to Eq.13;

4: Update zk+1

i
, i = 1, · · · , d according to Eq.14.

5: end while

Theorem 1. Let {βk}, {γk}, {zk} be the iterative sequences generated by Algorithm

1. Suppose that the sequence {zk} converges to a point, i.e., limk→∞ zk = z̄ for some

z̄. Then every limit point (β̄, γ̄) of the sequence {(βk, γk)}, together with z̄, satisfy the

necessary first order conditions of the problem 8: 1) Primal feasibility: β̄ − γ̄ = 0. 2)

Dual feasibility:∇f(β̄)+z̄ = 0 and 0 ∈ ∂g(γ̄)−z̄, where ∂ denotes the sub-differential

operator (see [20]).

One can easily prove Theorem 1 by following a proof similar to that of Proposition

3 in [15]. We observe from Theorem 1 that, in general, Algorithm 1 converges to a local

solution to problem 8.

The algorithm stops when the primal and dual residuals [1] satisfy a stopping crite-

rion. The stopping criterion can be specified by two thresholds namely a) the absolute

tolerance εabs and b) the relative tolerance εrel (see Boyd et al.[1] for more details).

The penalty parameter ρ affects the primal and dual residuals, and hence affects the

termination of the algorithm. A large ρ tends to produce small primal residuals, but in-

creases the dual residuals [1]. A fixed ρ (say 10) is commonly used. But there are some

schemes for varying the penalty parameter which achieve better convergence [28].

5 Experiments and Comparisons

To demonstrate the effectiveness of the proposed approach, we conduct experiments on

four benchmark data sets, i.e., the USPS handwritten digit data set [12], Isolet speech

data set and DNA data set from the UCI Machine Learning Repository [7], YaleB face

data set [9]. Table. 1 summarizes the extents and properties of the four data-sets.

Table 1. Summary of four benchmark data sets

Data-set Sample Features Classes

Isolet1 1560 617 26

USPS 9298 256 10

YaleB 2414 1024 38

DNA 2000 180 3
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5.1 Classification Comparison

In order to explore the discriminative capabilities of the information captured by our

method, we use the selected features for further classification. We compare the clas-

sification results from our proposed method (dLasso) with three representative Lasso-

type feature selection algorithms. These methods are the Lasso [23], unLasso [3] and

ccLasso [14]. A 10-fold cross-validation strategy using the C-Support Vector Machine

(C-SVM) [2] is employed to evaluate the classification performance. Specifically, the

entire sample is randomly partitioned into 10 subsets and then we choose one subset for

test and use the remaining 9 for training, and this procedure is repeated 10 times. The

final accuracy is computed by averaging of the accuracies from all experiments.
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(b) USPS dataset
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(c) YaleB dataset
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Fig. 2. Accuracy rate vs. the number of selected features on four benchmark datasets

The classification accuracies of different algorithms obtained with different feature

subsets are shown in Fig.2. From the figure, it is clear that our proposed method dLasso

is, by and large, superior to the alternative Lasso-type feature selection methods on all

four benchmark datasets. As Fig.2 (a) and (b) shows, when the number of selected fea-

tures is small, the dLasso performs much better than other Lasso-type feature selection

methods. The results verify that dLasso can select more discriminative feature subset

than baselines. However, we observed that the advantage of the proposed algorithm
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Table 2. Classification results of different feature selection algorithms on different datasets when

different number of features are selected. The best results are highlighted in bold.

Method Isolet1 USPS YaleB DNA

Lasso 23.59% ± 2.75 (5) 35.00% ± 2.78 (5) 24.40% ± 2.46 (10) 81.45% ± 2.36 (5)

41.86% ± 4.07 (15) 50.64% ± 3.42 (15) 33.65% ± 2.16 (30) 90.90% ± 2.48 (15)

53.59% ± 5.11 (25) 56.99% ± 2.58 (25) 46.85% ± 2.68 (50) 92.00% ± 1.90 (25)

60.64% ± 5.36 (35) 62.82% ± 2.14 (35) 48.63% ± 3.23 (70) 91.25% ± 2.68 (35)

67.05% ± 3.73 (45) 71.86% ± 1.20 (45) 56.22% ± 2.93 (90) 92.00% ± 1.49 (45)

ccLasso 23.65% ± 2.64 (5) 29.43% ± 1.55 (5) 24.27% ± 2.31 (10) 75.05% ± 2.99 (5)

42.05% ± 3.21 (15) 55.27% ± 1.86 (15) 31.29% ± 2.02 (30) 83.70% ± 2.76 (15)

52.69% ± 4.13 (25) 69.95% ± 1.35 (25) 47.18% ± 4.01 (50) 84.25% ± 3.13 (25)

61.79% ± 2.76 (35) 79.07% ± 1.62 (35) 48.92% ± 2.50 (70) 90.85% ± 1.53 (35)

67.56% ± 3.81 (45) 81.96% ± 1.40 (45) 55.93% ± 3.14 (90) 92.25% ± 1.51 (45)

unLasso 28.78% ± 2.98 (5) 29.47% ± 1.38 (5) 29.25% ± 2.82 (10) 79.70% ± 2.26 (5)

50.38% ± 2.99 (15) 59.27% ± 2.06 (15) 38.30% ± 3.76 (30) 91.00% ± 2.36 (15)

53.53% ± 3.19 (25) 66.48% ± 2.18 (25) 46.89% ± 3.19 (50) 92.25% ± 1.64 (25)

59.94% ± 2.64 (35) 78.23% ± 1.58 (35) 50.71% ± 3.54 (70) 92.65% ± 2.21 (35)

74.94% ± 4.06 (45) 81.49% ± 1.30 (45) 53.11% ± 2.04 (90) 92.80% ± 1.27 (45)

dLasso 34.87% ± 3.97(5) 66.89% ± 1.98(5) 33.11% ± 2.79(10) 90.10% ± 1.79(5)
51.41% ± 3.38(15) 80.43% ± 2.60(15) 64.85% ± 3.27(30) 92.45% ± 2.42(15)
60.83% ± 4.82(25) 87.20% ± 1.59(25) 71.87% ± 2.67(50) 93.55% ± 1.95(25)
69.49% ± 3.93(35) 90.13% ± 1.53(35) 73.15% ± 3.65(70) 93.55% ± 2.05(35)
75.19% ± 3.07(45) 92.27% ± 2.26(45) 76.56% ± 3.09(90) 94.15% ± 1.83(45)

over the other three comparative methods tends to diminish as the selected number of

features is increased. This is within our expectation, as any feature selection method

will work well if we aim to select most of features.

For clear comparison, we summarize the classification accuracy of different meth-

ods when different number of features are selected in Table 2. In the table, the classifi-

cation accuracy (MEAN ± STD) is shown first and the number of features selected is

reported in brackets. As can be observed, our method dLasso improved the classifica-

tion accuracy in the range from 0.25% to 7.7% (Isolet1), 10.31% to 31.89% (USPS),

3.86% to 26.55% (YaleB) and 0.9% to 9.65% (DNA), respectively, compared to the

best performances among the competing methods. Comparatively, ccLasso [14] gives

the worst performance. This may be explained by our observation that it is unable to

handle feature redundancy and is prone to select redundant features. The advantage of

the proposed dLasso algorithm over unLasso [3] is that the former not only discovers

the correlations between the variables and the response, but also discriminates similar

features. As validated by the experiment results, our proposed dLasso method can select

the most informative feature subset.

5.2 Discriminative ability

The aim of this experiment is to compare the discriminative ability of selected fea-

tures by different methods. As mentioned before, if we select a few variables to form
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(c) YaleB dataset
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Fig. 3. Discriminative ability of selected features by different methods

a linear combination that best approximates the response vector, then the selected vari-

ables correlate more with the response vector while little correlation between variables

would be good choice. To further illustrate these, we compute the discrimination of a

feature subset by Eq.5. Figure 3 shows the comparison results across different num-

ber of selected features. Here we can note that for small number of selected features,

all methods have the comparable performance. However, if we select large number of

features, the discriminative ability of dLasso is clearly larger than the alternative Lasso-

type feature selection methods. The results further verify that dLasso can select more

informative feature subset than baselines. The improvement mainly derives from incor-

porating correlation information between response vectors and variables as well as the

variable correlation into the regression model.

6 Conclusion

In this paper, we simultaneously consider the ‘response-variable correlation’ and ‘variable-

variable correlation’ information in our Lasso-type variable selection approach, where

regression coefficients associated with larger ‘response-variable correlation’ as well as

smaller ‘variable-variable correlation’ are penalized less. Therefore, the selected vari-

ables are jointly informative with the response while little redundancy among them. We
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employ an efficient ADMM algorithm to solve the proposed formulation. Numerical

experiments on real data demonstrate the effectiveness of the proposed method.
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