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Abstract

The problem of estimating a continuous time model using discretely observed data is common
in empirical finance. This paper uses recently developed methods of deriving the exact
discrete representation for a continuous time ARMA (autoregressive moving average) system
of order p, q to consider three popular models in finance. Our results for two benchmark term
structure models show that higher order ARMA processes provide a significantly better fit
than standard Ornstein-Uhlenbeck processes. We then explore present value models linking
stock prices and dividends in the presence of cointegration. Our methods enable us to take
account of the fact that the two variables are observed in fundamentally different ways by
explicitly modelling the data as mixed stock-flow type, which we then compare with the
(more common, but incorrect) treatment of dividends as a stock variable.
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1. Introduction

Much of the theoretical framework of modern finance is expressed in continuous time.

Since the seminal work by Merton (1969) on optimal portfolio choice under uncertainty, con-

tinuous time models have been used to study a wide range of applications including, among

many others: the pricing of derivatives (Black and Scholes, 1973; Merton, 1973); the term

structure of interest rates (Vasicek, 1977; Brennan and Schwartz, 1979); and asset pricing

(Huang, 1987). Recent comprehensive reviews of the field can be found, for example, in An-

dersen, Davis, Kreiss and Mikosch (2009) and Aı̈t-Sahalia and Hansen (2010).1 Naturally,

interest in methods for estimating continuous time models in finance has grown alongside

developments in theory. The financial econometrician is, however, almost always forced to

work with discretely observed data, continuous time financial data being either unavailable

or contaminated with excessive micro-structure noise, and so estimation typically rests upon

the transformation of the theoretical model into some analogous discrete time form.

To date, much of the estimation of continuous time models in finance has been restricted

to Markov processes, which hold out the promise of estimation by maximum likelihood

provided a series of transition probability densities can be estimated. Unfortunately, for

many Markov systems there is no closed form solution for these densities and maximum

likelihood estimation must then be based on an approximation technique; see the discussion

in Phillips and Yu (2009). The simplest is the Euler approximation, in which (unobservable)

derivatives with respect to time are replaced with (observable) differences over time. While

it has been shown by Bergstrom (1984) for linear diffusions and by Florens-Zmirou (1989)

for more general diffusions that estimators based on this approximation converge to the

true values as the sampling interval shrinks to zero, it has been shown by Lo (1988), in

the univariate case, and Wang, Phillips and Yu (2011), for multivariate diffusions, that

estimates are inconsistent when the sampling interval remains constant. Therefore, unless

data are observed at a sufficiently high frequency, typically daily or better, a more accurate

approximation is needed.2 However, the use of high frequency data comes not entirely

without cost, because it is likely that problems of microstructure noise and/or unequally-

spaced data must also be confronted.

In this paper we turn our attention to the estimation of the class of linear continuous time

models, which include Markov processes as a special case. This class of continuous time au-

toregressive moving average (CARMA) models has been discussed by Brockwell (2001) and

Brockwell and Marquardt (2005) and has been applied to interest rates by Andresen, Benth,

Koekebakker and Zakamulin (2014) and to electricity futures by Benth and Šaltytė Benth

(2009), while Brockwell (2004, 2009) discusses their application to GARCH and stochastic

volatility models. We explore three benchmark models in finance using recently developed

techniques of Chambers and Thornton (2012, 2016) to formulate the exact discrete repre-

sentation of the CARMA model, that is to say the discrete time process which matches

perfectly the first and second moments of the discretely observed process generated by the

CARMA model and which lends itself to estimation using the Gaussian quasi-maximum

likelihood method proposed by Bergstrom (1983). The advantages of this method, including

1Both of these collections of articles also cover material that goes beyond the specific focus of the material
covered here.

2Methods based on Hermite polynomials have been proposed by Aı̈t-Sahalia (2002, 2008), but these require
numerical optimisation techniques.
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computational efficiency, have been elegantly laid out in Bergstrom (1990) and in Bergstrom

and Nowman (2007).

Alternative approaches to the estimation of linear continuous time systems have been

proposed by Harvey and Stock (1985, 1988) and Zadrozny (1988), based on state space

methods, and Robinson (1976, 1993), using spectral techniques. The state space approach

employs Kalman filtering techniques to compute the Gaussian likelihood function. It avoids

the derivation of the exact discrete time representation by producing optimal filtered esti-

mates of the unobservable components in the state space form. But, as argued in Bergstrom

(1990), the filtering approach imposes a higher computational burden than does the method

based on the exact representation, and it is of interest, and can be important, to have knowl-

edge concerning the dynamic evolution of the discrete time observations. For example, it

is not clear from the state space approach that point-in-time observations generated by a

CARMA(p, q) system satisfy an ARMA(p, p − 1) representation in discrete time, a feature

that is clear from the exact model; see, for example, Chambers and Thornton (2012). How-

ever, the state space approach is particularly amenable to handling data irregularities, such

as irregular sampling intervals and data observed at mixed frequencies, features that lead to

even greater complexity in deriving exact representation; see, for example, Chambers (2015)

in the case of mixed frequency data. Frequency domain methods also avoid the need for

deriving the exact discrete model and estimates of the model parameters are typically ob-

tained by maximising the Whittle approximation to the Gaussian likelihood. Such methods

have, however, found relatively few applications in (financial) econometrics.

The first application of CARMA models concerns short-term interest rates, generalising

the univariate model of Vasicek (1977), while the second application is to a term structure

model of the relationship between long and short rates, generalising the bivariate Brennan-

Schwartz (1979) model. This research follows the use of the exact discrete representation of

a continuous time AR(1) process by Nowman (1997, 1998) to estimate a range of models of

the term structure for interest rates. We depart from the parametrisations used by Nowman

by estimating models capable of displaying a more sophisticated covariance structure and in

the construction of the volatility component, which here is taken to be constant. In both of

these applications we use UK data and explore the robustness of the estimated parameters

across different sampling frequencies, these being weekly, monthly and quarterly. We avoid

using higher-frequency data so that we can abstract from additional complications such as

microstructure noise, day-of-the-week effects etc. We also acknowledge that other models

(e.g. non-linear ones) and methods are likely to perform better with high frequency data and

refer the reader to Aı̈t-Sahalia and Jacod (2014) for a comprehensive modern treatment. In

both of these applications we find that higher order terms, including the moving average

error, improve the fit of the model significantly.

In the third application we consider a cointegrated present value model of stock prices

and dividends due to Campbell and Shiller (1987), translated into continuous time. We

imagine there to be sufficient friction in the market to prevent arbitrage. Here we face an

additional complication in the way the data are observed. Whereas stock price data are

observed at points in time, data on dividends are (in effect) time aggregates of activity over

the observation period. That is to say, we are modelling a situation in which, following

Campbell and Kyle (1993), the market is pricing the stock continuously through time based
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on the observations it makes on firms’ accrual of the ability to pay dividends; the paid

dividend reflects the aggregate of that accrual. This issue is often overlooked in empirical

finance3; see, for example, the discretisation in Sangvinatsos and Wachter (2005) and Koi-

jen, Rodriguez and Sbuelz (2009). We also illustrate the importance of the (correct flow)

treatment of dividends by re-estimating the model under the incorrect assumption that the

data are pure stocks and comparing persistence in the residuals and the discrete analogues

across the two treatments.

In all three applications our preferred continuous time statistical model is not Markov.

It could be argued that, in certain cases, the models correspond to an underlying theoretical

model that was Markov but non-linear. Many linear statistical models in finance result from

the approximation of a non-linear function, such as in Brennan and Schwartz (1979) whose

diffusion process results from log-linearisation around a steady state, or in the discussion

of the present value model in Campbell and Shiller (1987) or Campbell, Lo and MacKinlay

(1997). In such cases, higher order terms enable a better approximation to the underlying

theoretical model, aiding forecasting.

At the same time, linear continuous time models with moving average disturbances may

arise from the aggregation of independent linear processes in much the same way as they

do in discrete time modelling. Our non-Markov CARMA models could be the reduced form

representation of the affine combinations of linear Markov processes, with the econometrician

denied access to the disaggregated factors. An example of this construction is given in section

3.3 and the Appendix. Many other (perhaps less formal) models in finance, however, such

as the discussion of momentum and mean reversion in stock returns following the insights

of Jegadeesh and Titman (1993), are deliberately not Markov.

This paper is organised as follows. Section 2 is concerned with the specification of

CARMA systems and draws on the results of Chambers and Thornton (2012) and Thornton

and Chambers (2016) concerning exact discrete time representations. It also summarises

the estimation and testing methods employed in the empirical work that follows in the

subsequent section, which contains our three applications defined above. Section 4 provides

some concluding comments.

2. Continuous time ARMA models

Many continuous time models employed in the field of finance are specified as diffusions.

For a scalar variable x(t) a general form of parametric diffusion takes the form

dx(t) = µ(x(t); θ)dt+ σ(x(t); θ)dW (t), t > 0, (1)

where µ(x; θ) and σ(x; θ) are known functions that depend on an unknown parameter vector

θ, W (t) is a Wiener process and x(0) can be taken to be fixed. The function µ(x; θ) is often

referred to as the drift function while σ(x; θ) is known as the volatility or diffusion function.

The variable x(t) generated by (1) satisfies the stochastic integral equation

x(t) = x(0) +

∫ t

0
µ(x(s); θ)ds+

∫ t

0
σ(x(s); θ)dW (s), t > 0,

3We are grateful to Enrique Sentana for drawing our attention to this feature of the literature.

3



which can be used as a basis for the development of methods for estimating θ using a sample

of observations at discrete points of time given by xh, x2h, . . . , xTh, where h denotes the

sampling interval. A review of such methods, as well as nonparametric approaches where

the drift and diffusion functions are of the form µ(x) and σ(x), respectively, and are assumed

unknown, can be found in Aı̈t-Sahalia (2007).

In many applications the estimates of the diffusion process (1) are used for some subse-

quent task, such as the pricing of options or the extraction of volatility estimates. Relatively

little attention appears to be paid, however, to questions of how well the model fits the

data, which is something that is often done in many econometric applications. For example,

it is common to carry out various (mis-)specification tests, an obvious one in the context

of diffusions being how well the model captures the dynamic evolution of the variable of

interest. Lagrange multiplier (LM) and portmanteau-type tests are widely used to detect

the presence of serial correlation in the residuals of an estimated model, which can be an

indicator of dynamic misspecification; this does not appear to be common practice in the

estimation of diffusions, a notable exception being de los Rios and Sentana (2011).

In some empirical illustrations of CARMA models (including an application to a short-

term interest rate) Chambers and Thornton (2012) found that higher-order ARMA dynamics

in the continuous time model could dramatically improve the ability of the model to capture

the dynamics present in the observed discrete time data. It is of some considerable interest

to explore this finding more widely in the context of additional applications using financial

data. In order to do so we first outline the specification of CARMA models in general before

moving on to consider issues relating to estimation and testing. Specific applications of this

methodology then follow in section 3.

2.1. Specification

The continuous time ARMA(p, q) model for the n× 1 vector x(t) is given by

Dpx(t) = a0 +Ap−1D
p−1x(t) + . . .+A0x(t) + u(t) + Θ1Du(t) + . . .+ΘqD

qu(t), t > 0, (2)

where D denotes the mean square differential operator satisfying

lim
δ→0

E

{

x(t+ δ)− x(t)

δ
−Dx(t)

}2

= 0,

A0, . . . , Ap−1 and Θ1, . . . ,Θq are n × n matrices of unknown coefficients, a0 is an n × 1

vector of unknown constants, and u(t) is an n × 1 continuous time white noise vector with

variance matrix Σ. The matrices of unknown coefficients may, of course, depend on an

underlying parameter vector θ of more deeply embedded structural parameters, provided

that the elements of the matrices are known functions of θ. Although the process u(t)

and its derivatives are not physically realizable, systems such as (2) are nevertheless of

widespread interest, and the condition q < p is imposed so that x(t) itself has an integrable

spectral density matrix and, hence, has finite variance. The task is to estimate the matrices

A0, . . . , Ap−1 and Θ1, . . . ,Θq and the vector a0 of unknown (finite) coefficients, plus the

variance matrix Σ of the continuous time white noise vector u(t), from a sample of discrete

time observations.

In the most general case the data satisfying (2) will contain both stocks and flows.
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Without loss of generality, we can partition the vector of interest as

x(t) =

[

xs(t)

xf (t)

]

,

where xs(t) (ns × 1) contains stock variables, xf (t) (nf × 1) contains flow variables, and

ns + nf = n. These variables are observed in different ways. Stock variables (such as asset

prices, interest rates, exchange rates) are observed at points in time, so that the observations

are of the form xsth = xs(th) (t = 1, . . . , T ), while flow variables (such as dividends, income,

profits) are observed as accumulations of the underlying rate of flow during the observation

interval, yielding

xfth =

∫ th

th−h
xf (r)dr, t = 1, . . . , T.

The key to deriving an exact discrete time representation for the observations lies in manip-

ulating the (mean square) solution to (2), a process which eliminates all the unobservable

components (e.g. derivatives of x) and delivers a random disturbance whose correlation prop-

erties can be derived. Let xth denote the observed vector. Chambers and Thornton (2012)

and Thornton and Chambers (2016) show that the observations satisfy the system

xth = f0 + F1xth−h + . . .+ Fpxth−ph + ηth, t = p+ 1, . . . , T, (3)

where the vector f and matrices F1, . . . , Fp are functions of the autoregressive parameters

of the continuous time system (2), and the autocovariances of ηth depend on both the

autoregressive and moving average parameters of (2), including the variance matrix Σ. In

fact, ηth is an MA(p − 1) process if xth = xsth i.e. comprises solely stock variables, and is

MA(p) when xth = xfth or xth = [xs′th, x
f ′
th]

′ i.e. in the case of pure flows or a mixture of

stocks and flows. Not only does the exact discrete time representation (3) form a basis

for estimating the parameters of the continuous time model but it can also be used for

forecasting; see Bergstrom (1990, chapter 8) and Chambers (1991) for details of forecasting

with exact discrete models.

2.2. Estimation and testing

The discrete time ARMA(p, p−1) or ARMA(p, p) representation in (3) that corresponds

to the continuous time ARMA(p, q) system (2) forms a natural basis for estimation of the

unknown parameters. It is convenient to let β denote the vector of unknown parameters

which is comprised of the elements of a0, A0, . . . , Ap−1, Θ1, . . . ,Θq and Σ. The Gaussian

likelihood methods detailed in Bergstrom (1990) for CARMA(2,0) systems can naturally be

extended to CARMA(p, q) systems as in Chambers and Thornton (2012) and Thornton and

Chambers (2016). Let η = [η′ph+h, η
′
ph+2h, . . . , η

′
Th]

′ denote the nT ∗×1 vector of disturbances,

where T ∗ = T − p denotes the effective sample size once allowance has been made for the

p lags in (3). The covariance matrix of η, E(ηη′) = Ωη, has a sparse Toeplitz structure

(reflecting the MA form) whose elements are functions of both the continuous time MA and

AR parameters as well as Σ. As this matrix is positive definite and symmetric we can find

a lower triangular matrix, M , with i, j’th element mij , such that

MM ′ = Ωη.
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Bergstrom (1990, chapter 7) showed that M also reflects the sparse nature of Ωη and,

moreover, its elements converge rapidly to constants as one moves deeper into the matrix,

leading to considerable computational advantages. A recursive procedure can be used to

produce a normalised vector e, satisfying E(e) = 0 and E(ee′) = InT ∗ , such that Me = η.

The Gaussian log-likelihood function can then be evaluated as

logL(β) = −nT ∗

2
log 2π − 1

2

nT
∑

i=p+1

(

e2i + 2 logmii

)

,

and the Gaussian (quasi maximum likelihood) estimator, β̂, is the argument that maximises

logL(β). Under standard regularity conditions of the type outlined in Bergstrom (1983),

the estimator β̂ is consistent and asymptotically normally distributed, converging at the rate

T 1/2 to the limit distribution.

The Gaussian log-likelihood provides a convenient vehicle for the testing of hypotheses

about the parameter vector β. If β̂r denotes the estimator of β subject to a set of (possibly

nonlinear) restrictions then the likelihood ratio statistic

LR = −2
[

logL(β̂r)− logL(β̂)
]

can, under appropriate regularity conditions, be expected to have an asymptotic χ2
g distribu-

tion under the null hypothesis, where g denotes the number of restrictions being tested. In

addition, the vector e used to compute the log-likelihood function can be used to conduct a

general test of dynamic specification. Bergstrom (1990, chapter 7) proposed a portmanteau-

type test statistic based on the vectors of normalised residuals, eth; it is of the form

Sl =
1

n(T ∗ − l)

l
∑

r=1

(

T
∑

t=l+1

e′theth−rh

)2

,

which, under the null hypothesis that the model is correctly specified, has an approximate χ2
l

distribution for sufficiently large l and T ∗− l, where l (> p) denotes the number of lags used.

As is common with portmanteau tests, a significant value of Sl suggests dynamic misspecifi-

cation of some form, although it does not indicate the precise nature of the misspecification.

In the context of CARMA(p, q) models it would typically suggest that either p or q or both

were insufficiently large enough to capture the dynamics of the observed variable. In the

empirical work reported below, both LR (applied to hypotheses of interest) and Sl are used

to test the specification of the estimated models.4

3. Applications in finance

This section considers three applications of CARMA models to topics of interest in

finance, namely a model of short-term interest rates, a model of the term structure of

interest rates, and a present value model of stock prices and dividends. One of our principal

aims is to examine the robustness of the estimated continuous time model parameters when

4The properties of these and other misspecification tests are the subject of ongoing work by the authors;
see Chambers and Thornton (2016).
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the discrete time observation frequency is allowed to vary. In all the tables of results the

numbers reported in parentheses are standard errors while the entries for the statistics Sl

are the relevant p-values i.e. the proportion of the χ2
l distribution lying to the right of Sl.

3.1. Short-term interest rates

Recent work, e.g. Andresen, Benth, Koekebakker and Zakamulin (2014), has suggested

that CARMA models may be suitable representations for short-term interest rates. These

authors propose a number of reasons why CARMA models may be preferable to the more

commonly used first-order Vasicek-type models, not least the fact that they can provide a

better empirical fit to the observed term structure dynamics. Defining r(t) to be the interest

rate under consideration, we shall consider the CARMA(2, 1) model given by

D2r(t) = a0 +A1Dr(t) +A0r(t) + u(t) + θDu(t), t > 0, (4)

where a0, A1, A0 and θ are scalar parameters, and u(t) is a mean zero uncorrelated process

with variance σ2
u. In addition to the CARMA(2, 1) model we also consider the CARMA(2, 0)

specification (obtained by setting θ = 0) and the CARMA(1, 0) model, given by

Dr(t) = a0 +A0r(t) + u(t);

note that this model is not nested within (4) i.e. it is not possible to impose restrictions on

the parameters of (4) to obtain the CARMA(1, 0) above.

Daily data on the Sterling one-month mean interbank lending rate were obtained from

the Bank of England for the period 3 January 1978 to 6 November 2008; the properties of

the data show a significant change after this point due to the burgeoning financial crisis.

The daily data were aggregated to weekly, monthly and quarterly sampling intervals with

the aggregated observations being the appropriate end-of-period values so that the series

are genuinely of the stock variety. The sampling interval, h, was normalised to unity for

the quarterly frequency so that, for monthly data, h = 1/3 while for the weekly data,

h = 150/1985 = 0.0756 (this is the number of quarterly observations divided by the number

of weekly observations, which is close to 1/13 = 0.0769).

Results for all three models for the three sampling frequencies are given in Table 1. The

parameter estimates are relatively stable across sampling frequencies for the CARMA(1, 0)

and CARMA(2, 1) models but less so for the CARMA(2, 0) model. Likelihood ratio tests

convincingly reject the null that θ = 0 at the weekly and monthly sampling frequencies

but not at the quarterly frequency. None of the portmanteau statistics is significant at the

5% level for any model at any sampling frequency although the p-values are largest for the

CARMA(2, 1) model.

The estimates reported in Table 1 are based on the exact discrete time model cor-

responding to the underlying continuous time process. It is of interest to compare these

estimates with those obtained using an approximation method, and for this comparison we

have chosen the Euler approximation method. This has three main components: (i) replac-

ing time derivatives of r(t) with a discrete approximation based on the observations, rth;

(ii) evaluating r(t) in the differential equation at rth−h; and (iii) treating u(t) as DW (t),

where W (t) is a Wiener process, and approximating this derivative in discrete time using
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an iid Normal variate. Precise details of the Euler approximation schemes as applied to the

three CARMA models are provided in the Appendix and Table 2 contains the parameter

estimates obtained using the Euler approximation scheme.

As can be seen from Table 2 the estimates in the case of the CARMA(1, 0) models are

virtually indistinguishable from those using the exact discrete time representation. This is

explained mainly by the fact that the autoregressive coefficients in the exact and approximate

models are eA0h and 1 + A0h, respectively, and that eA0h = 1 + A0h + O(A2
0h

2). For

example, in the case of quarterly data, the exact method gives e−0.0351 = 0.9655 while

the approximation results in 1 − 0.0345 = 0.9655. The standard errors, however, for a0
and A0 are larger when using the Euler approximation. The estimates obtained using the

approximate method show greater divergence from those based on the exact method for the

CARMA(2, 0) and CARMA(2, 1) models, in which the relationships between the continuous

time and discrete time coefficients are much more complicated. They also tend to display

less robustness across frequencies than the estimates obtained using the exact discrete time

representation for these second-order autoregressive specifications.

Another comparison between the two approaches can be made in terms of the estimated

roots to the continuous time autoregressive polynomials. For the CARMA(1, 0) model the

roots are of the equation z −A0 = 0 while for the CARMA(2, 0) and CARMA(2, 1) models

the equation of interest is z2 − A1z − A0 = 0; in both cases, the roots are required to have

negative real parts for the estimated equation to be dynamically stable. The estimated

roots are reported in Table 3. While all the roots satisfy the stability condition there are

some notable differences between the two approaches, most notable for the CARMA(2, 0)

model. Also, the roots for the CARMA(2, 1) model are a complex conjugate pair under the

exact discrete time representation for all three sampling frequencies whereas under the Euler

approximation only the roots with monthly data are complex.

One of the motivations for estimating models of short-term interest rates is for the

purposes of pricing bonds (and other derivative securities) and deriving estimates of the

yield curve. Suppose the (short-term) interest rate, r(t), satisfies the CARMA(p, q) model

Dpr(t) = a0 +Ap−1D
p−1r(t) + . . .+A1Dr(t) +A0r(t) + u(t) + Θ1Du(t) + . . .+ΘqD

qu(t),

where u(t) can be regarded (heuristically) as having the same properties as σuDW (t), where

W (t) is a Wiener process and σu is a positive scalar parameter. At time th, where h denotes

the sampling interval, the price of a zero coupon bond paying one unit upon maturity at

time Th > th is given by

P (th, Th) = E

[

exp

(

−
∫ Th

th
r(s)ds

)∣

∣

∣

∣

I(th)

]

= exp

(

−µ(th, Th) +
1

2
σ2(th, Th)

)

,

where I(th) denotes the information set at time th and µ(th, Th) and σ2(th, Th) denote the

mean and variance, respectively, of
∫ Th
th r(s)ds under the risk-free measure. The yield to

maturity from buying the bond at th and selling at Th is given by

γ(th, Th) = − logP (th, Th)

Th− th
;
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the short rate is simply limT↓t γ(th, Th). Under risk-neutral pricing (or the local expectations

hypothesis, under which the risk-neutral and data generating measures coincide)

γ(th, Th) =
µ(th, Th)− 1

2σ
2(th, Th)

Th− th
.

Precise expressions for µ(th, Th) and σ2(th, Th) in terms of the parameters of the CARMA(p, q)

model are provided in the Appendix.

In order to assess how well CARMA models can fit empirical yields we follow the ap-

proach of Benth, Koekebakker and Zakamulin (2008) and use data published by the Bank of

England on the estimated yield curve. Three different dates are chosen which correspond to

different shapes of the yield curve, the dates being 31 March 1998, 31 January 2000 and 30

June 2007. Let Γ(th, Th) denote the empirical yield and γ(th, Th, θ) denote the estimated

yield using a CARMA model with parameter vector θ. We then choose θ̃ as the solution to

θ̃ = argmin
θ

S(θ) where S(θ) =

T
∑

t=1

(Γ(th, Th)− γ(th, Th, θ))2 ,

given the observed short rate at t = 0. The results of this exercise are depicted in Figures

1–3 using a horizon of T = 60 months for CARMA(1, 0) and CARMA(2, 1) specifications.

Both CARMA models provide a good representation of the empirical yields although the

fit of the CARMA (2, 1) is better than that of the CARMA(1, 0) in two of the three cases

– the minimised values of the objective functions are 0.0050 and 0.0669, respectively, in

Figure 1, 0.0025 and 0.0095 in Figure 2, and 0.0018 and 0.0005 in Figure 3. This is, perhaps,

not too unexpected in view of the CARMA(2, 1) model having more parameters than the

CARMA(1, 0) with which to capture the shape of the relevant curve.

3.2 A bivariate term structure model

The log-linearised version of the Brennan and Schwartz (1979) model of the term struc-

ture of interest rates consists5 of the following pair of stochastic differential equations for

the short rate, r(t), and the long rate, l(t):

d ln r(t) = α [ln l(t)− ln r(t)− ln p] dt+ σ1dz1(t), (5)

d ln l(t) = [q − k1 ln r(t)− k2 ln l(t)] dt+ σ2dz2(t), (6)

where α, k1, k2, q, ln p, σ1 and σ2 are unknown parameters, and z1(t) and z2(t) are Wiener

processes (or standard Brownian motions) with unknown correlation parameter ρ.6 In this

model α is a speed-of-adjustment parameter, p is a target value for the ratio l/r, and σ2
1 and

σ2
2 represent the variances of the shocks to the system. Defining x(t) = [ln r(t), ln l(t)]′ the

system can be equivalently written in the form of the CARMA(1, 0) model

Dx(t) = a0 +A0x(t) + u(t), (7)

5See equations (17) and (18) of Brennan and Schwartz (1979).
6Hence E[dz1(t)dz2(t)] = σ1σ2ρdt.
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where

a0 =

(

−α ln p

q

)

, A0 =

(

−α α

−k1 −k2

)

and u(t) ∼ N (0,Σu) where

Σu =

(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)

.

This is the form of system that has been widely estimated although the emphasis is usually

on obtaining parameter estimates for use in the pricing of bonds (and options) rather than

assessing how well the model captures the salient features of the data.

The main features of the model outlined above are easily migrated across to a more

general CARMA specification. For example, a CARMA(2, 1) system can be specified as

D2x(t) = a0 +A1Dx(t) +A0x(t) + u(t) + Θ1Du(t), (8)

in which a0, A0 and u(t) are as defined above and where

A1 =

(

−γ1 −γ3
−γ4 −γ2

)

, Θ1 =

(

θ1 θ3
θ4 θ2

)

.

Setting the elements of Θ1 to zero yields the CARMA(2, 0) system; such restrictions are

easily tested using observed data. The two equations encapsulated in (8) are

D2 ln r(t) = −γ1D ln r(t)− γ3D ln l(t) + α [ln l(t)− ln r(t)− ln p] + v1(t),

D2 ln l(t) = −γ4D ln r(t)− γ2D ln l(t) + [q − k1 ln r(t)− k2 ln l(t)] + v2(t),

where v1(t) = u1(t) + θ1Du1(t) + θ3Du2(t) and v2(t) = u2(t) + θ4Du1(t) + θ2Du2(t) for

notational covenience. Interest rate equations in the form of second-order stochastic differ-

ential equations are not without precedent. A CARMA(2, 0) specification (in effect) was

used in the continuous time macroeconometric model of the United Kingdom by Bergstrom

and Nowman (2007) while Andresen, Benth, Koekebakker and Zakamulin (2014) have more

recently developed more general CARMA specifications.

In the empirical work we take the short rate to be the Sterling one-month mean interbank

lending rate and the long rate to be the yield on twenty year British Government securities

with a nominal zero coupon. Daily data were obtained from the Bank of England for

the period 11 February 1992 to 6 November 2008 and aggregated to weekly, monthly and

quarterly frequencies.7 Estimates of three continuous time models are given in Tables 4–

6, these being CARMA(1, 0), CARMA(2, 0) and CARMA(2, 1) using weekly, monthly and

quarterly data. In the second-order models we have imposed the constraints that γ3 = γ4 = 0

in the matrix A1 and that θ3 = θ4 = 0 in the matrix of continuous time moving average

coefficients, Θ1. Also, for the CARMA(2, 0) and CARMA(2, 1) models we additionally set

q = ln p = 0.8

7The aggregated observations are the end-of-period values so that the series are genuinely of the stock
variety.

8Some convergence problems were encountered without imposing this restriction using weekly data. The
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Four particular aspects of the results are worth commenting on. First, all of the roots of

the CARMA(1, 0) models are real and positive, indicating that these estimated systems are

unstable. In contrast all of the roots of the CARMA(2, 0) and CARMA(2, 1) systems have

negative real parts and, hence, they are stable. Secondly, a certain amount of instability in

the parameter estimates across frequencies can be detected, with some even changing signs.

This could be interpreted as evidence against the validity of the underlying continuous time

model(s). Thirdly, it can be seen that moving from the CARMA(1, 0) to the CARMA(2, 0)

specification does not eradicate the evidence of dynamic misspecification at the weekly fre-

quency and only marginally does so at the monthly frequency, as indicated by the p-values

of the S12 statistics. This contrasts with the CARMA(2, 1) model for which the the S12

statistics have large p-values at all frequencies. Finally, Table 6 reports the p-values for

the likelihood ratio test of the null hypothesis that θ1 = θ2 = 0 i.e. of the CARMA(2, 0)

nested within the CARMA(2, 1). The null hypothesis is clearly rejected at the 5% level of

significance at all sampling frequencies further supporting the conjecture that the presence

of the MA component in the continuous time system has empirical content.

3.3. A present value model of stock prices and dividends

Present value models stipulate that, in the absence of long-run bubbles, stock prices

should represent the discounted flow of future dividends and that this leads to a long run

relationship between real stock prices and real dividends. Campbell and Shiller (1987, p.17)

note the differences in timing between the two series, with stock prices measured ‘beginning-

of-period’ and a dividend ‘paid some time within period t.’ In their discrete time model,

Campbell and Shiller were concerned about what might be known about the current pe-

riod’s dividend payout when the stock price was measured, and they constructed composite

variables as controls. The advantage of working in continuous time is that revelations in

information within observation periods are modelled explicitly. Much of the literature since,

however (see, for example, Sangvinatsos and Wachter, 2005, and Koijen, Rodriguez and

Sbuelz, 2009), has tended to ignore this distinction and to regard data on the stock price,

s(t), and on dividends, d(t), as consisting of the value of a continuous time process at a

specific point in time. This is as if firms were paying dividends continuously through time,

but only those paid at a particular point in time were recorded, which is patently not the

case, since there are no unobserved dividend payouts. In our baseline treatment we regard

dividends as a flow, with the observed payout, dt =
∫ t
t−1 d(τ)dτ , reflecting an observed ac-

crual of profits over the observation period, while stock prices are modelled point-in-time,

st = s(t), both for t = 1, 2, . . . , T . Estimated models using the conventional (but incorrect)

treatment are also reported for comparison.9

Our approach mirrors that of Campbell and Kyle (1993), who estimate a continuous time

model of stock prices and dividends, taking care to treat the dividends as a flow variable.

After exponential de-trending they model10 dividends, d(t) = d0(t) + d1(t), as the sum of

null hypothesis was not rejected for the monthly and quarterly data and hence we report estimates for all
frequencies with the restriction imposed. The restriction implies that the target value for l/r is equal to one.

9As we are only using data at a single sampling frequency in this application we set h = 1 throughout this
sub-section.

10Model A, equation (2.5).
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two independent linear processes,

Dd0(t) = σ0dz0(t),

Dd1(t) = α1d1(t) + σ1dz1(t), (9)

with dz0(t) and dz1(t) independent standard Brownian motions. It can be shown (see the

Appendix) that d(t) follows a continuous time autoregressive integrated moving average, or

CARIMA(1, 1, 1), model of the form

D2d(t) = α1Dd(t) + u(t) + θ1Du(t), (10)

suggesting that an MA component may be considered as arising naturally in this framework.

We build upon this feature in the following analysis.

In Campbell and Kyle (1993), only smart investors are able to discern the more per-

sistent process d1(t) from the purely transitory process d0(t), making the decomposition

of the observed dividends something of independent interest and naturally suitable for the

application of the Kalman filter. The computational efficiency of our approach stems from

avoiding such a decomposition, but a linear filter to perform one could be constructed from

the estimated parameters. In a world of complete information and frictionless markets,

prices following smooth continuous sample paths of bounded variation admit arbitrage op-

portunities; see Harrison, Pitbladdo and Schaefer (1984). While this remains an important

benchmark, there is a growing body of research into models that violate this condition.

Besides Campbell and Kyle (1993), arbitrage opportunities are present in the models of:

Willard and Dybvig (1999), where the market constrains investors from making incredible

promises in states that they believe will not occur; Basak and Croitoru (2000), where het-

erogeneity between agents can generate mispricing in equilibrium; Liu and Longstaff (2004),

where risk aversion and the possibility of loss of collateral prevents investors from exploit-

ing opportunities fully; Jarrow and Protter (2005), due to the presence of influential large

traders; and, Koijen, Rodriguez and Sbuelz, (2009), who consider portfolio choice when stock

prices exhibit momentum.

After taking logs, both series display unit-root type behaviour leading Campbell and

Shiller (1987) to postulate that the long run relationship between the two series is a form of

cointegration, with the discount factor determining the cointegrating vector. Following their

work we analyse the relationship between the logarithm of the stock price and the logarithm

of dividends using the same monthly data spanning the period 1871–1986,11 which avoids

the need to include share buy-backs as part of investor remuneration.

In the linear continuous time framework, 1 ≤ r < n cointegrating relationships between

the components of x(t) imply that the n×n matrix A0 has rank r and can be written in the

form A0 = αβ′, where α and β are both n× r. The matrix α has the interpretation of con-

taining speed-of-adjustment parameters while β is the matrix of cointegrating vectors such

that β′x(t) is stationary. As shown by Phillips (1991), the matrix of long-run parameters, β,

is unaffected by the aliasing phenomenon; it contains cointegrating vectors of the observed

data xt, whether the variables are stocks or flows. The mixed stock-flow nature of the data

means that, even for the simplest models, the short run parameters cannot be estimated by

11The data are available at http://www.econ.yale.edu/˜shiller/data.htm.
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a conventional VAR.

We consider three models based on equation (2) with x(t) = (s(t), d(t))′. In a two

variable system, cointegration implies that we may write, without loss of generality, A0 =

αβ′, where α′ = [α1, α2] and β′ = [1, β1]. In each case a value of β1 in the vicinity of −1 is

expected, with divergence the result of discounting of future dividends, while error correction

implies α1 < 0 and α2 > 0. Estimates for the CARMA(1, 0) model,

Ds(t) = a0,1 + α1s(t) + α1β1d(t) + u1(t),

Dd(t) = a0,2 + α2s(t) + α2β1d(t) + u2(t),

where u(t) = [u1(t), u2(t)]
′ ∼ N (0,Σu) and Σu = QQ′ with Q a lower triangular matrix, are

reported in Table 7. The estimate of β1 is close to −1.4, but α1 has the wrong sign, placing

the burden of error correction within the system on dividends. The Bergstrom S statistic is

in the extreme right tail of its asymptotic distribution for both 4 and 12 lags, suggesting a

higher order dynamic structure is needed.

We also report, in Tables 8 and 9, estimates of CARMA(2, 0) and CARMA(2, 1) systems,

respectively; the latter is given by

D2s(t) = a0,1 +A1,11Ds(t) +A1,12Dd(t) + α1s(t) + α1β1d(t) + w1(t), (11)

D2d(t) = a0,2 +A1,21Ds(t) +A1,22Dd(t) + α2s(t) + α2β1d(t) + w2(t), (12)

where w1(t) = u1(t) + Θ11Du1(t) + Θ12Du2(t) and w2(t) = u2(t) + Θ21Du1(t) + Θ22Du2(t)

are defined for notational convenience. The CARMA(2, 0) model is obtained by setting

Θi,j = 0 (i, j = 1, 2). In both specifications the estimate of β1 remains between −1.4 and

−1.5 and the adjustment parameters in α have the expected sign. The evidence of dynamic

misspecification given by the Bergstrom S statistic remains in the CARMA(2, 0) model, with

the CARMA(2, 1) showing significant improvement over both purely autoregressive models.

The CARMA(2, 1) also has by far the highest log-likelihood and the test statistic for the

likelihood ratio test of the restriction that the four continuous time MA parameters are

jointly zero is over 680, far into the extreme tail of the asymptotic χ2
4 distribution. The

parameter Θ22 has by far the highest t-ratio, suggesting that it is the equation describing

the law of motion for dividends that benefits most from the inclusion of a moving average

error.

We now consider the effects of treating dividends, incorrectly, as a stock variable; that

is to say, as if our dividend data were of the form dt = d(t) (t = 1, 2, . . . , T ). Tables 10

to 12 report estimates for the above models under this treatment. Two features are worth

reporting. First, the CARMA (2, 1) model performs better than the two simpler versions in

the plausibility that its errors are white noise and that the model where dividends are treated

as a flow have the higher log-likelihood. Secondly, estimates of the cointegrating vector are

remarkably consistent across both treatments. The effect of the different treatments is, not

surprisingly, seen most clearly in the off-diagonal elements of A1, which reflect the short-

run impact of (time derivatives of) the two variables on one another, with their impact on

themselves remaining relatively stable.

To compare the relative success of each model in explaining the dynamic relationship be-

tween stock prices and dividends, Figure 4 plots the autocorrelations and cross-correlations

between the normalised residuals, et, generated by our six candidate models. For a correctly
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specified model, these should be independent white noise processes, and the autocorrela-

tions explore the findings of the Bergstrom S statistic in greater detail. The first panel

shows the autocorrelations for the normalised residuals on the stock equation, where both

CARMA (1, 0) specifications exhibit relatively large first order autocorrelations of around

0.3, providing evidence of under-parametrisation, but there is little to chose between the

other specifications. This is not true of the remaining panels. The second panel shows the

cross-correlation between the normalised residual on the stock equation and lags of the nor-

malised residual on the dividend equation. There is a noticeable up-tick in all series at the

twelfth lag, suggesting that unusually high (low) stock prices might be related to unusually

large (small) dividend payments one year previously in a way that these parsimonious mod-

els are not able to capture. That being said, the mixed CARMA(2, 1) model out-performs

the others, including the corresponding pure stock model, particularly at short lags. Not

surprisingly, the largest distinction between the treatments can be seen in the final panel,

showing the autocorrelations for the normalised residuals on the dividend equation. It is

clear that the normalised residuals produced by the CARMA(1, 0) models suffer from pos-

itive first order serial correlation, while the higher order pure stock models, including the

CARMA (2, 1) exhibit negative first order serial correlation before bouncing back. Both

CARMA(2, 0) models over-shoot zero for the second order autocorrelation. Only the nor-

malised residuals from the mixed CARMA (2, 1), have the expected correlation structure.

The normalised residuals from the pure stock CARMA (2, 1) do not, despite using the same

number of parameters.

The implications of the two treatments of dividends are also revealed by the corre-

sponding exact discrete time models. When data generated by equations (11) and (12) are

observed at discrete intervals they have a vector error correction representation of the form

∆st = f1 + a1[st−1 + β1dt−1] + F11∆st−1 + F12∆dt−1 + η1,t,

∆dt = f2 + a2[st−1 + β1dt−1] + F21∆st−1 + F22∆dt−1 + η2,t,

where ∆ is the difference operator and ηt = (η1,t, η2,t)
′ has a moving average representation

of order two when dividends are treated as a flow and order one when treated as a stock. Fol-

lowing Phillips (1991), the parameter β1, describing the cointegrating relationship between

the series, is the same as in (11) and (12). Table 13 presents the translation of the intercept

and short-run parameters in the two treatments, where a = [a1, a2]
′ denotes the vector of

adjustment parameters. While signs remain unaltered, the magnitudes of some short-run

parameters are clearly affected. The misspecified stock treatment of dividends noticeably

underestimates the short-run impact of changes in the stock price on future dividends while

overestimating the short-run impact of changes in dividends on future stock prices.

4. Concluding comments

This paper has considered the estimation of CARMA models in finance using their

exact discrete time representation. CARMA systems offer a number of attractive features,

including the ability to capture adequately the dynamics inherent in observed financial time

series as well as being able to model stock and flow data in accordance with the different ways

in which they are observed, while maintaining a closed-form expression for the likelihood.

These features have been evident in our three empirical examples, and we have also shown
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that mistakenly treating a flow series as a stock has significant consequences for the estimates

of parameters dictating short-run dynamics.

We have applied our techniques to relatively smooth time series that can be modelled as

stochastic differential equations but a number of extensions are possible. The CARMAmodel

driven by a Lévy process has already been discussed by Brockwell (2001) and Brockwell

and Marquardt (2005) to model particularly volatile financial time series. Incorporating

jump processes into our exact discrete framework would also extend the range of estimation

techniques open to applied researchers. Such extensions are, however, beyond the scope of

the current contribution.

Appendix

Derivation of the exact discrete time representation

We give a brief overview of the method for deriving the exact discrete representation of a

continuous time ARMA process when the observed data, xth = x(th), are stocks. Extensions

to processes involving flow data are covered in Chambers and Thornton (2012) and Thornton

and Chambers (2016). We begin by noting that (2) can be written in state space form as

Dy(t) = a+Ay(t) + Θu(t), (13)

where y(t) = [y1(t), y2(t)
′, . . . , yp(t)

′]′ with x(t) = y1(t) and

a =

















0

0
...

0

a0

















, A =

















Ap−1 I 0 . . . 0

Ap−2 0 I . . . 0
...

...

A1 0 0 . . . I

A0 0 0 . . . 0

















, Θ =

















Θp−1

Θp−2

...

Θ1

I

















,

where Θj = 0 for j > q. Integrating (13) over (0, th] gives

y(th) = eAthy(0) +

∫ th

0
eA(th−s) [a+Θu(s)] ds

= eAhty(0) +

∫ t

0
eAh(t−r) [a+Θu(rh)]hdr, t > 0, (14)

from which it follows that

y(th) = c+ Cy((t− 1)h) + ǫ(th), t = 1, . . . , T, (15)

where

c =

(∫ 1

0
C(r)dr

)

ah, ǫ(th) =

∫ th

(t−1)h
eA(th−s)Θu(ds),

C(r) = erAh and C = eAh. The disturbance vector in (15) has expectation zero and second

moments given by

E
(

ǫ(th)ǫ(th)′
)

=

∫ th

(t−1)h
eA(th−s)ΘΣΘ′eA

′(th−s)ds = h

∫ 1

0
eAhrΘΣΘ′eA

′hr dr.
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The exact discrete representation follows from deploying lags of (15) to solve for the un-

observable elements in the state vector, y(th), and eliminating them from the equation for

x(t) using the methods discussed in Chambers and Thornton (2012). Similar methods apply

when the observations are on flow variables or a mixture of stocks and flows.

Derivation of the Euler approximation

The main steps in deriving the Euler approximation were outlined in the text. For the

CARMA(1, 0) model,

Dr(t) = a0 +A0r(t) + u(t),

the derivative on the left-hand side is approximated using

Dr(t) ≈ rth − rth−h

h
.

Noting that DW (t) ∼ N(0, σ2
u/dt),

12 u(t) can be approximated with

u(t) ≈ σu

h1/2
eth ∼ N

(

0,
σ2
u

h

)

,

where eth ∼ iidN(0, 1) and dt is approximated with h. The approximate model is then,

replacing r(t) with rth−h,

rth − rth−h

h
= a0 +A0rth−h +

σu

h1/2
eth,

which, upon rearranging, becomes

rth = a0h+ (1 +A0h)rth−h + σuh
1/2eth,

so that rth is ARMA(1,0) in discrete time.

Turning to the CARMA(2, 0) model

D2r(t) = a0 +A1Dr(t) +A0r(t) + u(t)

we need the additional approximation

D2r(t) ≈
(

rth − rth−h

h2

)

−
(

rth−h − rth−2h

h2

)

=
1

h2
(rth − 2rth−h + rth−2h) .

Again we evaluate terms involving r(t) on the right-hand side at the preceding sample point

to obtain

1

h2
(rth − 2rth−h + rth−2h) = a0 +A1

(

rth−h − rth−2h

h

)

+A0rth−h +
σu

h1/2
eth

12This is based on the observation that dW (t) ∼ N(0, σ2
udt) and noting that DW (t) = dW (t)/dt, thereby

introducing dt into the demoninator of the variance.
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which can be rearranged to give the discrete time ARMA(2,0) representation

rth = a0h
2 + (2 +A1h+A0h

2)rth−h − (1 +A1h)rth−2h + σuh
3/2eth.

Finally, the CARMA(2, 1) model

D2r(t) = a0 +A1Dr(t) +A0r(t) + u(t) + θDu(t)

requires the additional approximation for Du(t), for which we use

Du(t) ≈ σu

h1/2

(

eth − eth−h

h

)

=
σu

h3/2
(eth − eth−h) .

Making the substitutions yields

1

h2
(rth − 2rth−h + rth−2h) = a0+A1

(

rth−h − rth−2h

h

)

+A0rth−h+
σu

h1/2
eth+

θσu

h3/2
(eth − eth−h)

which can be rearranged to give

rth = a0h
2+(2+A1h+A0h

2)rth−h− (1+A1h)rth−2h+σu

(

h3/2 + θh1/2
)

eth−σuθh
1/2eth−h,

which is ARMA(2, 1) in discrete time.

Derivation of bond pricing formulae

In order to evaluate the components of γ(th, Th) it is convenient to write the CARMA

model in state space form. To do this we define the p×1 state vector y(t) = [y1(t), . . . , yp(t)]
′

and let y1(t) = r(t). It can then be shown that the CARMA(p, q) model for r(t) satisfies the

state space representation in (13). Let S1 = (1, 0, . . . , 0) denote the 1 × p selection vector

that picks r(t) from y(t) i.e. r(t) = S1y(t). Then the (conditional) mean and variance of r(t)

are given by the (conditional) mean and variance of S1y(t).

We begin by noting that, for s > th,

y(s) = eA(s−th)y(th) +

∫ s

th
eA(s−v) (a+Θu(v)) dv

and so it follows that
∫ Th

th
y(s)ds =

(∫ Th

th
eA(s−th)ds

)

y(th) +

∫ Th

th

∫ s

th
eA(s−v) (a+Θu(v)) dvds

=

(∫ Th

th
eA(s−th)ds

)

y(th) +

∫ Th

th

(∫ s

th
eA(s−v)dv

)

ds · a

+

∫ Th

th

∫ s

th
eA(s−v)Θu(v)dvds.
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In what follows it is convenient to define the following integrals of the matrix exponential:

Φ(x) =

∫ x

0
eAsds, Υ(x) =

∫ x

0
Φ(r)dr =

∫ x

0

∫ r

0
eAsdsdr.

Taking the first component, a change of variable yields

∫ Th

th
eA(s−th)ds =

∫ Th−th

0
eAwdw = Φ(Th− th).

Similarly, we also find that
∫ Th

th

(∫ s

th
eA(s−v)dv

)

ds =

∫ Th

th

(∫ s−th

0
eAwdw

)

ds

=

∫ Th

th
Φ(s− th)ds

=

∫ Th−th

0
Φ(x)dx = Υ(Th− th).

For the stochastic integral involving u(t) we can show that

∫ Th

th

∫ s

th
eA(s−v)Θu(v)dvds =

∫ Th

th

∫ Th

v
eA(s−v)Θu(v)dsdv

=

∫ Th

th

(∫ Th

v
eA(s−v)ds

)

Θu(v)dv

=

∫ Th

th

(∫ Th−v

0
eAwdw

)

Θu(v)dv

=

∫ Th

th
Φ(Th− v)Θu(v)dv.

Hence we have shown that

∫ Th

th
y(s)ds = Φ(Th− th)y(th) + Υ(Th− th)a+

∫ Th

th
Φ(Th− v)Θu(v)dv.

From the usual rules of expectation and variance we obtain

µ(th, Th) = S1[Φ(Th− th)y(th) + Υ(Th− th)a],

σ2(th, Th) = S1

∫ Th

th
Φ(Th− v)ΣΘΦ(Th− v)′dvS′

1,

where ΣΘ = σ2
uΘΘ′. The integral in the last expression also simplifies using a change of
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variable:
∫ Th

th
Φ(Th− v)ΣΘΦ(Th− v)′dv =

∫ Th−th

0
Φ(w)ΣΘΦ(w)

′dw

=

∫ Th−th

0

(∫ w

0
eAsds

)

ΣΘ

(∫ w

0
eArdr

)′

dw

=

∫ Th−th

0

∫ w

0

∫ w

0
eAsΣΘe

A′rdrdsdw

= Λ(Th− th)

where the triple matrix exponential integral function Λ(x) is defined by

Λ(x) =

∫ x

0

∫ w

0

∫ w

0
eAsΣΘe

A′rdrdsdw.

Using the above expressions it follows that

P (th, Th) = exp

(

1

2
S1Λ(Th− th)S′

1 − S1 [Φ(Th− th)y(th) + Υ(Th− th)a]

)

and, hence, the yields are of the form

γ(th, Th) =
1

Th− th

(

S1 [Φ(Th− th)y(th) + Υ(Th− th)a]− 1

2
S1Λ(Th− th)S′

1

)

.

Computationally, all of the integrals of the matrix exponential, and the matrix exponen-

tial itself, can be obtained from the computation of a single matrix exponential. Van Loan

(1978) considered a matrix M , and its exponential N(t) = eMt, of the form

M =











A1 B1 C1 D1

0 A2 B2 C2

0 0 A3 B3

0 0 0 A4











, N(t) =











F1(t) G1(t) H1(t) K1(t)

0 F2(t) G2(t) H2(t)

0 0 F3(t) G3(t)

0 0 0 F4(t)











.

By noting that (d/dt)eMt = MeMt and solving subject to eMt|t=0 = I he was able to show
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that

Fj(t) = eAjt, j = 1, . . . , 4,

Gj(t) =

∫ t

0
eAj(t−s)Bje

Aj+1sds, j = 1, 2, 3,

Hj(t) =

∫ t

0
eAj(t−s)Cje

Aj+2sds+

∫ t

0

∫ s

0
eAj(t−s)Bje

Aj+1(s−r)Bj+1e
Aj+2rdrds, j = 1, 2,

K1(t) =

∫ t

0
eA1(t−s)D1e

A4sds+

∫ t

0

∫ s

0
eA1(t−s)

[

C1e
A3(s−r)B3 +B1e

A2(s−r)C2

]

eA4rdrds

+

∫ t

0

∫ s

0

∫ r

0
eA1(t−s)B1e

A2(s−r)B2e
A3(r−w)B3e

A4wdwdrds.

By suitable choice of the sub-matrices of M it is possible to derive the functions of interest

here from eM(Th−th). Specifically, taking

M =











−A I 0 0

0 −A I 0

0 0 0 ΣΘ

0 0 0 A′











,

we find, in particular, that

F4(t) = eA
′t,

G2(t) =

∫ t

0
e−A(t−s)ds = e−At

∫ t

0
eAsds,

H1(t) =

∫ t

0

∫ s

0
e−A(t−s)e−A(s−r)drds = e−At

∫ t

0

∫ s

0
eArdrds,

K1(t) =

∫ t

0

∫ s

0

∫ r

0
e−A(t−s)e−A(s−r)ΣΘe

A′wdwdrds

= e−At

∫ t

0

∫ s

0

∫ r

0
eArΣΘe

A′wdwdrds.

It then follows that

Φ(t) = F4(t)
′G2(t),

Υ(t) = F4(t)
′H1(t),

Λ(t) = F4(t)
′K1(t) +K1(t)

′F4(t);

see, also, Jewitt and McCrorie (2005, p.401) for a similar result. Note that K1(t) involves

the triple integral with limits
∫ t
0

∫ s
0

∫ r
0 . . . dwdrds whereas Λ(t) involves

∫ t
0

∫ s
0

∫ s
0 . . . dwdrds –

the appearance of K1(t) and K1(t)
′ in the expression for Λ(t) accounts for these differences.
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Derivation of equation (10)

We express (9) as

Dd0(t) = σ0dz0(t),

(D − α1)d1(t) = σ1dz1(t).

Multiplying the top equation through by (D − α1) and the bottom by D before summing

produces

(D − α1)Dd(t) = (D − α1)σ0dz0(t) +Dσ1dz1(t).

The most straightforward way to demonstrate equivalence between the zero mean distur-

bance process (D − α1)σ0dz0(t) +Dσ1dz1(t) and the zero mean disturbance process on the

right hand side of (10) is to match the spectra, see Priestley (1981), of the two processes,

(iλ− α1)(−iλ− α1)
σ2
0

2π
+ (iλ)(−iλ)

σ2
1

2π
= (1 + θ1iλ)(1− θ1iλ)

σ2
u

2π

(λ2 + α2
1)
σ2
0

2π
+ λ2 σ

2
1

2π
= (1 + θ21λ

2)
σ2
u

2π
,

where i =
√
−1 and −∞ < λ < ∞ denotes frequency. Equality can be achieved for all λ by

equating the coefficients on the powers in λ. For λ0 we have

σ2
u = α2

1σ
2
0,

while for λ2 we have

θ1 =

√

σ2
0 + σ2

1

σ2
u

=

√

σ2
0 + σ2

1

α2
1σ

2
0

.
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Table 1

Estimates of CARMA models for short-term interest

rate at different sampling frequencies

Frequency: Weekly Monthly Quarterly

CARMA(1, 0)

a0 0.0026 0.0029 0.0027
(0.0023) (0.0023) (0.0024)

A0 −0.0309 −0.0344 −0.0351
(0.0249) (0.0241) (0.0249)

σu 0.0096 0.0102 0.0104
(0.0002) (0.0004) (0.0007)

logL 7371.5142 1370.2543 383.4108

S12 0.1356 0.0797 0.4788

CARMA(2, 0)

a0 0.3915 0.1102 0.0204
(0.1364) (0.1782) (0.0190)

A0 −4.6676 −1.3081 −0.2590
(0.5164) (1.5596) (0.2184)

A1 −137.0820 −34.5267 −6.1614
(18.6358) (26.7567) (4.4423)

σu 1.3806 0.3676 0.0695
(0.1786) (0.2691) (0.0451)

logL 7374.0029 1370.7351 384.0340

S12 0.3319 0.0908 0.5812

CARMA(2, 1)

a0 0.0009 0.0007 0.0009
(0.0009) (0.0009) (0.0011)

A0 −0.0125 −0.0103 −0.0137
(0.0080) (0.0077) (0.0091)

A1 −0.2040 −0.1970 −0.2539
(0.0619) (0.0662) (0.0870)

θ 4.7961 6.4076 4.7971
(2.2209) (3.5194) (2.4909)

σu 0.0020 0.0016 0.0021
(0.0009) (0.0009) (0.0011)

logL 7376.8255 1376.1754 385.4889

S12 0.3528 0.2454 0.6717

LR(θ = 0) 0.0175 0.0001 0.1131
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Table 2

Estimates of CARMA models for short-term interest

rate using Euler approximation

Weekly Monthly Quarterly

CARMA(1, 0)

a0 0.0026 0.0029 0.0027
(0.0033) (0.0042) (0.0042)

A0 −0.0308 −0.0342 −0.0345
(0.0272) (0.0333) (0.0356)

σu 0.0096 0.0101 0.0102
(0.0001) (0.0002) (0.0004)

logL 7371.5142 1370.2543 383.4108

S12 0.1364 0.0821 0.4962

CARMA(2, 0)

a0 0.0364 0.0091 0.0029
(0.0438) (0.0125) (0.0043)

A0 −0.4334 −0.1085 −0.0376
(0.3577) (0.1000) (0.0369)

A1 −12.4950 −2.8344 −0.9240
(0.2233) (0.1220) (0.0862)

σu 0.1263 0.0303 0.0101
(0.0007) (0.0006) (0.0004)

logL 7374.0526 1370.8145 383.7957

S12 0.3381 0.0952 0.6269

CARMA(2, 1)

a0 0.0114 0.0010 0.0010
(0.0130) (0.0012) (0.0012)

A0 −0.1342 −0.0123 −0.0148
(0.1146) (0.0100) (0.0098)

A1 −3.0995 −0.1811 −0.2763
(1.6847) (0.1581) (0.0499)

θ 0.1988 3.9126 3.1552
(0.1356) (3.7428) (1.2375)

σu 0.0348 0.0024 0.0024
(0.0172) (0.0021) (0.0007)

logL 7375.1754 1373.2746 384.9630

S12 0.5969 0.1951 0.4973

LR(θ = 0) 0.1340 0.0265 0.1265
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Table 3

Estimated roots of CARMA models for

short-term interest rate

p, q Weekly Monthly Quarterly

Exact discrete time representations

1, 0 −0.0309 −0.0344 −0.0351

2, 0 −0.0341 −0.0379 −0.0423
−137.0480 −34.4888 −6.1191

2, 1 −0.1020 −0.0985 −0.0783
±0.0461i ±0.0252i ±0.1756i

Euler approximations

1, 0 −0.0308 −0.0342 −0.0345

2, 0 −0.0348 −0.0388 −0.0427
−12.4602 −2.7956 −0.8813

2, 1 −0.0439 −0.0906 −0.0727
−3.0556 ±0.0641i −0.2036

27



Table 4

Estimates for the CARMA(1, 0) term structure model

Weekly Monthly Quarterly

α 0.0848 0.0552 0.0653
(0.0457) (0.0325) (0.0417)

k1 0.0131 0.0295 0.0647
(0.0588) (0.0396) (0.0435)

k2 0.0442 0.0304 0.0322
(0.0429) (0.0329) (0.0329)

ln p 0.0140 0.0638 0.1206
(0.0119) (0.0576) (0.1590)

q 0.0067 0.0310 0.1529
(0.0056) (0.0197) (0.0658)

σ1 0.0891 0.0619 0.0758
(0.0021) (0.0031) (0.0069)

σ2 0.0703 0.0589 0.0577
(0.0017) (0.0030) (0.0052)

ρ 0.0259 −0.0115 −0.0799
(0.0339) (0.0804) (0.1285)

Roots 0.0922 0.0897 0.1463
0.0065 0.0293 0.0395

lnL 4257.9418 770.7349 169.3028

S12 [0.0026] [0.0000] [0.0929]

Standard errors in parentheses; p-values in square

brackets.
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Table 5

Estimates for the CARMA(2, 0) term structure model

Weekly Monthly Quarterly

α 4.9333 0.6241 0.1281
(4.0294) (0.3312) (0.0936)

k1 −2.3622 −0.6682 0.0718
(2.5592) (1.4070) (1.5806)

k2 2.7039 0.8681 0.0139
(2.6179) (2.0166) (0.1764)

σ1 6.2269 0.6601 0.1163
(0.3095) (0.1021) (0.0417)

σ2 5.2959 2.2663 0.7444
(0.7351) (6.6858) (14.4853)

ρ 0.0343 0.0219 0.1827
(0.0420) (0.0718) (1.7910)

γ1 60.0521 8.7896 0.8541
(3.6327) (1.8480) (0.3523)

γ2 65.0928 36.6878 12.0768
(11.0595) (114.5287) (246.3730)

Roots −0.0036 −0.0043 −0.0074
−0.1203 −0.0912 −0.1853
−59.9692 −8.7179 −0.6626
−65.0518 −36.6641 −12.0757

lnL 4218.9718 774.9704 178.9368

S12 [0.0000] [0.0552] [0.9742]

Standard errors in parentheses; p-values in square

brackets.

29



Table 6

Estimates for the CARMA(2, 1) term structure model

Weekly Monthly Quarterly

α 3.0501 0.0894 0.0539
(6.4713) (0.0448) (0.0336)

k1 −0.7162 −0.1666 −0.0715
(5.2446) (2.6682) (0.1630)

k2 1.1002 0.2399 0.0994
(7.5515) (3.8589) (0.1681)

σ1 3.3465 0.0620 0.0482
(6.8452) (0.0231) (0.0164)

σ2 3.9020 0.8289 0.2616
(24.7424) (13.4620) (0.1405)

ρ −0.0309 0.0550 0.4139
(0.0491) (0.0714) (0.1374)

γ1 41.6066 0.4335 0.3362
(83.8215) (0.2711) (0.1225)

γ2 64.4861 13.3527 3.8875
(406.9634) (217.1427) (2.3110)

θ1 −0.0318 0.8079 −0.9512
(0.0546) (0.3243) (0.4024)

θ2 0.0255 0.0569 −0.1016
(0.1139) (1.2318) (0.1583)

Roots −0.0051 −0.0052 −0.0064
−0.0854 −0.2232 −0.1777

−41.5331 ±0.2125i ±0.1701i
−64.4691 −13.3348 −3.8618

lnL 4266.2651 785.9869 182.3819

S12 [0.6785] [0.8970] [0.9762]

LR(θ1 = θ2 = 0) [0.0000] [0.0000] [0.0319]

Standard errors in parentheses; p-values in square

brackets.
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Table 7

Estimates of cointegrated

CARMA(1, 0) model for stock

prices and dividends

Ds(t) Dd(t)

a′0 −0.0007 −0.0283
(0.0098) (0.0057)

α′ 0.0009 0.0140
(0.0047) (0.0020)

β′ 1.0000 −1.4079
(0.0959)

Q′ 0.0420 0.0004
(0.0008) (0.0005)

- 0.0181
(0.0003)

logL 6330.3980

S4 S12 [0.0000] [0.0000]

Table 8

Estimates of cointegrated

CARMA(2, 0) model for stock

prices and dividends

D2s(t) D2d(t)

a′0 0.0084 −0.0960
(0.0457) (0.0211)

A′
1 −2.6594 −0.6519

(0.4011) (0.2353)

−0.8612 −2.9394
(1.1588) (0.3779)

α′ −0.0021 0.0471
(0.0220) (0.0089)

β′ 1.0000 −1.3978
(0.0863)

Q′ 0.1415 0.0379
(0.0200) (0.0180)

- 0.0560
(0.0051)

logL 6426.6386

S4 S12 [0.0000] [0.0000]
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Table 9

Estimates of cointegrated

CARMA(2, 1) model for stock

prices and dividends

D2s(t) D2d(t)

a′0 0.0316 −0.0125
(0.0317) (0.0063)

A′
1 −1.8575 0.2650

(0.4914) (0.1434)

0.3948 −0.2111
(0.6330) (0.1104)

α′ −0.0156 0.0065
(0.0159) (0.0029)

β′ 1.0000 −1.4832
(0.1038)

Θ′ 0.2190 0.4060
(0.1863) (0.1742)

0.2749 2.5502
(1.7101) (0.3917)

Q′ 0.1009 -0.0144
(0.0245) (0.0058)

- 0.0181
(0.0008)

logL 6504.4292

S4 S12 [0.1673] [0.0919]

Table 10

Estimates of cointegrated

CARMA(1, 0) model for stock

prices and dividends, both stocks

Ds(t) Dd(t)

a′0 −0.0029 −0.0273
(0.0100) (0.0049)

α′ 0.0019 0.0132
(0.0047) (0.0017)

β′ 1.0000 −1.3874
(0.0868)

Q′ 0.0420 0.0013
(0.0008) (0.0004)

- 0.0155
(0.0003)

logL 6212.1120

S4 S12 [0.0000] [0.0000]

32



Table 11

Estimates of cointegrated

CARMA(2, 0) model for stock

prices and dividends, both stocks

D2s(t) D2d(t)

a′0 0.0258 −0.0454
(0.0317) (0.0094)

A′
1 −2.4507 −0.2153

(0.2178) (0.0454)

−0.2059 −1.3383
(0.3547) (0.0935)

α′ −0.0108 0.0224
(0.0148) (0.0036)

β′ 1.0000 −1.4063
(0.0949)

Q′ 0.1307 0.0122
(0.0084) (0.0023)

- 0.0301
(0.0011)

logL 6452.3617

S4 S12 [0.0000] [0.0000]
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Table 12

Estimates of cointegrated

CARMA(2, 1) model for stock

prices and dividends, both stocks

D2s(t) D2d(t)

a′0 0.0465 −0.0149
(0.0284) (0.0037)

A′
1 −1.9047 0.0295

(0.5414) (0.0777)

0.8903 −0.3028
(0.4268) (0.0490)

α′ −0.0231 0.0078
(0.0134) (0.0014)

β′ 1.0000 −1.4692
(0.1010)

Θ′ 0.1625 0.0345
(0.1672) (0.0281)

1.2289 1.0286
(0.4932) (0.1239)

Q′ 0.1039 -0.0037
(0.0265) (0.0040)

- -0.0095
(0.0009)

logL 6512.1382

S4 S12 [0.9999] [0.0465]

Table 13

Intercept and short-run dynamics of discrete representations

of CARMA (2, 1) models

f0 a F1

stock-flow treatment

stock price 0.0118 −0.0058 −0.2134 −0.1443

dividend −0.0124 0.0064 −0.3013 −0.7959

stock-stock treatment

stock price 0.0173 −0.0072 −0.1523 −0.3305

dividend −0.0125 0.0068 −0.0106 −0.7450
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Figure 1. Empirical and CARMA Bond Yields, 31 March 1998
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Figure 2. Empirical and CARMA Bond Yields, 31 January 2000
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Figure 3. Empirical and CARMA Bond Yields, 30 June 2007
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Figure 4. Autocorrelations and Cross-correlations of the normalised residual vector et for

the Stock price and Dividends model
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