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Abstract. Highly non-linear dynamical systems, such as

those found in atmospheric chemistry, necessitate hierar-

chical approaches to both experiment and modelling in or-

der to ultimately identify and achieve fundamental process-

understanding in the full open system. Atmospheric simula-

tion chambers comprise an intermediate in complexity, be-

tween a classical laboratory experiment and the full, ambient

system. As such, they can generate large volumes of difficult-

to-interpret data. Here we describe and implement a chemo-

metric dimension reduction methodology for the deconvo-

lution and interpretation of complex gas- and particle-phase

composition spectra. The methodology comprises princi-

pal component analysis (PCA), hierarchical cluster analy-

sis (HCA) and positive least-squares discriminant analysis

(PLS-DA). These methods are, for the first time, applied to

simultaneous gas- and particle-phase composition data ob-

tained from a comprehensive series of environmental sim-

ulation chamber experiments focused on biogenic volatile

organic compound (BVOC) photooxidation and associated

secondary organic aerosol (SOA) formation. We primar-

ily investigated the biogenic SOA precursors isoprene, α-

pinene, limonene, myrcene, linalool and β-caryophyllene.

The chemometric analysis is used to classify the oxida-

tion systems and resultant SOA according to the control-

ling chemistry and the products formed. Results show that

“model” biogenic oxidative systems can be successfully sep-

arated and classified according to their oxidation products.

Furthermore, a holistic view of results obtained across both

the gas- and particle-phases shows the different SOA forma-

tion chemistry, initiating in the gas-phase, proceeding to gov-

ern the differences between the various BVOC SOA compo-

sitions. The results obtained are used to describe the particle

composition in the context of the oxidised gas-phase matrix.

An extension of the technique, which incorporates into the

statistical models data from anthropogenic (i.e. toluene) oxi-

dation and “more realistic” plant mesocosm systems, demon-
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strates that such an ensemble of chemometric mapping has

the potential to be used for the classification of more com-

plex spectra of unknown origin. More specifically, the addi-

tion of mesocosm data from fig and birch tree experiments

shows that isoprene and monoterpene emitting sources, re-

spectively, can be mapped onto the statistical model struc-

ture and their positional vectors can provide insight into their

biological sources and controlling oxidative chemistry. The

potential to extend the methodology to the analysis of am-

bient air is discussed using results obtained from a zero-

dimensional box model incorporating mechanistic data ob-

tained from the Master Chemical Mechanism (MCMv3.2).

Such an extension to analysing ambient air would prove a

powerful asset in assisting with the identification of SOA

sources and the elucidation of the underlying chemical mech-

anisms involved.

1 Introduction

Biogenic volatile organic compounds (BVOCs) are ubiq-

uitous in the global troposphere, being emitted primarily

from terrestrial plant life (Kanakidou et al., 2005). It is

estimated that the total annual emission rate of all (non-

methane) BVOCs is roughly 10 times that of all anthro-

pogenic volatile organic compounds (VOCs), being around

750 Tg C yr−1 (Sindelarova et al., 2014). With the excep-

tion of methane, the most dominant species of BVOCs in

terms of emission strength, reactivity and their impact upon

the atmosphere are terpenes (Reinnig et al., 2008), a subdi-

vision of BVOCs that primarily comprise the hemiterpene,

isoprene (C5), monoterpenes (C10) and sesquiterpenes (C15)

(e.g. Atkinson and Arey, 2003a; Kanakidou et al., 2005).

Within the troposphere terpenes are able to react with OH,

O3 and NO3 at appreciable rates (e.g. Calvert et al., 2000;

Koch et al., 2000; Fantechi et al., 2002; Capouet et al., 2004;

Kroll et al., 2006) such that their atmospheric lifetimes are

of the order of minutes to hours (e.g. Calogirou et al., 1999).

Because of their large emission rates and high reactivities,

terpenes have a strong impact upon the chemistry of the tro-

posphere at the local, regional and global scales (e.g. Jaoui

and Kamens, 2001; Paulot et al., 2012; Surratt, 2013). For in-

stance, terpenes have high photochemical ozone creation po-

tentials (Derwent et al., 2007) and extensive photochemical

oxidation pathways that lead to the production of a complex

array of oxygenated and nitrated products, some of which are

able to form secondary organic aerosol (SOA) (e.g. Calvert et

al., 2000; Capouet et al., 2004; Jenkin, 2004; Baltensperger

et al., 2008; Kanakidou et al., 2005; Surratt et al., 2006; Kroll

and Seinfeld, 2008; Hallquist et al., 2009).

Aerosol particles are natural components of the Earth’s at-

mosphere responsible for a range of well-documented im-

pacts, ranging from visibility impairment on the local scale

to climate change, with suspended particles being able to

perturb the Earth’s radiative budget via both direct and in-

direct mechanisms (Solomon et al., 2007). Furthermore, fine

airborne particles have been shown to have numerous detri-

mental effects on human health, particularly in vulnerable

members of the population (Harrison et al., 2010; Heal et al.,

2012).

Biogenic SOA (BSOA) has been estimated to account for

a significant fraction of total global SOA. Modelling stud-

ies suggest the annual global production rate of BSOA is of

the order of 16.4 Tg yr−1 (Henze and Seinfeld, 2006). How-

ever, despite its importance and the significant amount of

investigation conducted upon it, the formation mechanisms

and chemical composition of BSOA are still not well charac-

terised (e.g. Librando and Tringali, 2005; Wang et al., 2013).

Indeed under certain conditions as much as 80–90 % of anal-

ysed SOA mass is unknown (Limbeck et al., 2003; Kalberer

et al., 2006). In particular, there remains a significant lack

of information regarding the composition and evolution of

the complex organic gas-phase matrix during aerosol forma-

tion, and its linkage to SOA (Kroll et al., 2005; Librando and

Tringali, 2005). Indeed, in the many studies conducted on

BSOA, very few gas-phase oxidation products of the precur-

sor are routinely identified and reported.

The chemistry of the atmospheric system is highly non-

linear and can be studied by experiments ranging from highly

controlled laboratory studies of a single process, to field stud-

ies of the whole complex system. A significant proportion

of the findings gained regarding SOA over the last decade

and more have come from atmospheric simulation chamber

experiments, intermediate in complexity between classical

single-process experiments and the fully open system (for

various different chamber systems and VOC precursors, see

for example, Pandis et al., 1991; Odum et al., 1996; Hoff-

mann et al., 1997; Griffin et al., 1999; Glasius et al., 2000;

Cocker et al., 2001; Jaoui and Kamens, 2003; Kleindienst et

al., 2004; Presto et al., 2005; Bloss et al., 2005; Rohrer et

al., 2005; Ng et al., 2006, 2007; Dommen et al., 2006; Surrat

et al., 2006; Grieshop et al., 2007; Chan et al., 2007; Wyche

et al., 2009; Hildebrandt et al., 2009; Rickard et al., 2010;

Camredon et al., 2010; Chhabra et al., 2011; Hennigan et al.,

2011; Jenkin et al., 2012). Chamber experiments produce a

large amount of data, the interpretation of which can often be

highly complex and time consuming even though the set-up

of the chamber constrains the complexity to a large degree.

In the current “big data” age, advanced monitoring tech-

niques are producing increasingly larger, more complex and

detailed data sets. Modern chamber experiments, monitored

by state-of-the-art gas- and particle-phase instrumentation,

often yield so much data that only a fraction is subse-

quently used in a given analysis. For example, during a

typical 6 h environmental simulation chamber experiment,

VOC monitoring chemical-ionisation reaction time-of-flight

mass spectrometry (CIR-TOF-MS) will produce roughly

1.1 × 107 data points. In order to keep pace with instrument

development and maximise the information extracted from
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sometimes-complex experiments, it is crucial that we ad-

vance our data analysis methods and introduce new data min-

ing techniques.

The work reported here focuses on detailed organic

gas-phase and particle-phase composition data, recorded

during SOA atmospheric simulation chamber experiments,

using CIR-TOF-MS and liquid-chromatography ion-trap

mass spectrometry (LC-MS/MS), respectively, as well as

broad (i.e. generic composition “type”: oxygenated or-

ganic aerosol, nitrated, sulfated) aerosol composition data,

recorded by compact time-of-flight aerosol mass spectrom-

etry (cTOF-AMS). The goal of this paper is to demon-

strate and evaluate the application of an ensemble reductive

chemometric methodology for these comprehensive oxida-

tion chamber data sets, to be used as a model framework to

map chemical reactivity from mesocosm systems, thus pro-

viding a link from model systems to more “real” mixtures

of organics. The intermediate complexity offered by simula-

tion chamber experiments makes them an ideal test bed for

the methodology. Application of the methodology to resul-

tant particle-phase data also aims to provide a level of par-

ticle composition classification in the context of gas-phase

oxidation.

Similar approaches using statistical analyses have been re-

cently applied to both detailed and broad ambient aerosol

composition data (e.g. Heringa et al., 2012; Paglione et al.,

2014), particularly in the context of source apportionment

(e.g. Alier et al., 2013). Different methods have been at-

tempted by several groups to deconvolve organic aerosol

spectra measured by the aerosol mass spectrometer (AMS)

in particular (e.g. Zhang et al., 2005, 2007; Marcolli et al.,

2006; Lanz et al., 2007). Zhang et al. (2005) applied a cus-

tom principal component analysis (CPCA) method to extract

two distinct sources of organic aerosols in an urban environ-

ment using linear decomposition of AMS spectra and later

applied a multiple-component analysis technique (MCA; an

expanded version of the CPCA) to separate more than two

factors in data sets from 37 field campaigns in the North-

ern Hemisphere (Zhang et al., 2007). Marcolli et al. (2006)

applied a hierarchical cluster analysis method to an ambient

AMS data set, and reported clusters representing biogenic

VOC oxidation products, highly oxidised organic aerosols

and other small categories. Receptor modelling techniques

such as positive matrix factorisation (PMF) employ similar

multivariate statistical methods in order to deconvolve a time

series of simultaneous measurements into a set of factors

and their time-dependent concentrations (Paatero and Tap-

per, 1994; Paatero, 1997). Depending on their specific chem-

ical and temporal characteristics, these factors may then be

related to emission sources, chemical composition and at-

mospheric processing. For example, Lanz et al. (2007) and

Ulbrich et al. (2009) applied PMF to the organic fraction of

AMS data sets and were able to conduct source apportion-

ment analysis identifying factors contributing to the com-

position of organic aerosol at urban locations. Slowik et

al. (2010), combined both particle-phase AMS and gas-phase

proton transfer reaction mass spectrometry (PTR-MS) data

for the PMF analysis of urban air, and were able to success-

fully obtain “regional transport, local traffic, charbroiling and

oxidative-process” factors. By combining the two data sets,

Slowik and colleagues were able to acquire more in-depth in-

formation regarding the urban atmosphere than could be de-

rived from the analysis of each of the sets of measurements

on their own.

Because receptor models require no a priori knowledge

of meteorological conditions or emission inventories, they

are ideal for use in locations where emission inventories are

poorly characterised or highly complicated (e.g. urban areas),

or where atmospheric processing plays a major role. How-

ever, because all of the values in the profiles and contribu-

tions are constrained to be positive, the PMF model can have

an arbitrary number of factors and the user must select the

“best” solution that explains the data. This subjective step of

PMF analysis relies greatly on the judgment and skill of the

user.

The central methodology employed in this work is based

around the application of principal component analysis

(PCA), hierarchical cluster analysis (HCA) and positive

least-squares discriminant analysis (PLS-DA) of single-

precursor oxidant chemistry in environmental simulation

chambers. Colloquially, we can describe these three ap-

proaches as providing dimensions along which the data are

separable (PCA), tests of relatedness (HCA) and checks for

false positives (PLS-DA).

Such dimension reduction techniques can be very pow-

erful when used in chemometrics, enabling large and of-

ten complex data sets to be rendered down to a relatively

small set of pattern-vectors to provide an optimal descrip-

tion of the variance of the data (Jackson, 1980; Sousa et

al., 2013; Kuppusami et al., 2015). Unlike other statistical

techniques such as PMF, the ensemble methodology pre-

sented here does not require the use of additional external

databases (comprising information regarding different envi-

ronments/reference spectra), is simpler to use and less labour

intensive, and places less importance on user skill in the pro-

duction of accurate and meaningful results. Moreover, the

primary focus of techniques such as PMF is on source identi-

fication/separation, whereas here the focus is placed on com-

positional isolation.

The analysis conducted in this work shows that “model”

biogenic oxidative systems can be clearly separated and clas-

sified according to their gaseous oxidation products, i.e. iso-

prene from β-caryophyllene from non-cyclic monoterpenes

and cyclic monoterpenes. The addition of equivalent meso-

cosm data from fig and birch tree experiments shows that

large isoprene and large monoterpene emitting sources re-

spectively, can be mapped onto the statistical model structure

and their positional vectors can provide insight into the ox-

idative chemistry at play. The analysis is extended to particle-

phase data to show further classifications of model systems

www.atmos-chem-phys.net/15/8077/2015/ Atmos. Chem. Phys., 15, 8077–8100, 2015
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Table 1. Summary of experiments conducted.

Experiment ID Precursor Structure k(OH)/k(O3)a/ Experiment VOC / NOx RH/%

cm3 molec−1 s−1 type (no.) range range

ISOP1 – 10b,c Isoprene 9.9 × 10−11/1.2 × 10−17 Photooxidation (10) 1.3–20.0 49–72– – –

– α – –

– – –

– β – –

– – –

– – –

APIN1 – 4b,c,d,e α-pinene 5.3 × 10−11/8.4 × 10−17 Photooxidation (4) 1.3–2.0f 49–73

– – –

– α – –

– – –

– β – –

– – –

– – –

LIM1 – 6b,d,e Limonene 1.7 × 10−10 / 2.1 × 10−16 Photooxidation (6) 1.4–2.0f 50f–82

– – –

– α – –

– – –

– β – –

– – –

– – –

BCARY1 – 10b,d,e β-caryophyllene 2.0 × 10−10/1.2 × 10−14 Photooxidation (10) 0.6–2.0f 50f–72

– – –

– α – –

– – –

– β – –

– – –

– – –

MYRC1 – 2b,d,e Myrcene 2.1 × 10−10/4.7 × 10−16 Photooxidation (2) 1.4–1.9 52–54

– – –

– α – –

– – –

– β – –

– – –

– – –

LINA1 – 2b,d,e Linalool 1.6 × 10−10/4.5 × 10−16 Photooxidation (2) 1.4–2.6 42–47

– – –

– – –

– – –

BIR1 – 2b Birch trees Multiple emissionsg Multiple emissions Mesocosm 5.5–5.6 73–84

Photooxidation (2)

FIG1 – 2b Fig trees Multiple emissionsg Multiple emissions Mesocosm 2.7–9.4 65–75

Photooxidation (2)

TOL1 – 5h Toluene 3.7 × 10−12/– Photooxidation (5) 1.3–11.6 2–6

– – –

– – –

– – –

a From Atkinson and Arey (2003b), Sun et al. (2012), Khamaganov and Hites (2001) and references therein; b experiments conducted in the MAC; c experiments conducted in the PSISC;
d LC-MS/MS filter data available for at least one of these experiments (MAC); e cTOF-AMS data available for at least one of these experiments (MAC); f estimated using known volume

of reactants injected; g see Wyche et al. (2014); h experiments conducted in the EUPHORE.

based on both broad and detailed SOA composition measure-

ments.

The methodology described and the results presented (sup-

ported by findings obtained from zero-dimensional box mod-

elling) indicate that there is some potential that the approach

could ultimately provide the foundations for a framework

onto which it would be possible to map the chemistry and

oxidation characteristics of ambient air measurements. This

could in turn allow “pattern” typing and source origina-

tion for certain complex air matrices and provide a snap-

shot of the reactive chemistry at work, lending insight into

the type of chemistry driving the compositional change of

the contemporary atmosphere. There are similarities between

this approach to discovery science in the atmosphere and

metabolomic strategies in biology (e.g. Sousa et al., 2013;

Kuppusami et al., 2015).

2 Experimental details

2.1 Choice of precursors

Six different BVOCs and one anthropogenic VOC were cho-

sen for analysis. The target compounds, their structures and

reaction rate constants with respect to OH and O3 are given

in Table 1. The BVOCs were chosen according to their at-

mospheric prevalence, structure and contrasting photooxida-

tive reaction pathways; all have previously been shown to

form SOA under simulation chamber conditions (e.g. Hoff-

mann et al., 1997; Griffin et al., 1999; Glasius et al., 2000;

Jaoui and Kamens, 2003; Presto et al., 2005; Ng et al.,

2006; Surratt et al., 2006; Dommen et al., 2006; Lee et al.,

2006; Hallquist et al., 2009; Alfarra et al., 2013, and ref-

erences therein). Isoprene is a C5 diene that accounts for

around 62 % (∼ 594 Tg yr−1) of total annual non-methane

BVOC emissions (Sindelarova et al., 2014). After isoprene,

monoterpenes (C5H16) have the next largest annual emis-

sion rate; they account for around 11 % (∼ 95 Tg yr−1) of

total annual non-methane BVOC emissions (Sindelarova et

al., 2014). α-pinene and limonene were chosen for analy-

sis here alongside isoprene, the former acting as a model

system to represent bicyclic monoterpenes, and the latter to

represent monocyclic diene terpenes. In this work, α-pinene

and limonene together generically represent (and are referred

to hereafter as) “cyclic” monoterpenes (i.e. monoterpenes

that contain one six-member carbon ring). In order to ex-

plore the chemistry of non-cyclic monoterpenes, myrcene,

an acyclic triene monoterpene, was also included, as was the

structurally similar acyclic diene oxygenated VOC (OVOC),

Atmos. Chem. Phys., 15, 8077–8100, 2015 www.atmos-chem-phys.net/15/8077/2015/
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Table 2. Key technical features of MAC, EUPHORE and PSISC (Alfarra et al., 2012; Becker, 1996; Bloss et al., 2005; Camredon et al.,

2010; Paulsen et al., 2005; Zador et al., 2006).

Chamber Material Environment Size Light source Spectrum

MAC FEP Teflon Indoor 18 m3, 1 × 6 kW Xe arc lamp λ range = 290–800 nm

3(H) × 3(L) × 2(W) m Bank of halogen lamps jNO2
= 1.1 × 10−3 s−1 (290–422 nm)

EUPHORE FEP Teflon Outdoor 200 m3, Solar Solar; 75 % transmission at 290 nm,

(hemispherical) 85 % transmission > 320 nm

jNO2
= ∼ 5–9 × 10−3 s−1

PSISC FEP DuPont Tedlar Indoor 27 m3, 4 × 4 kW Xenon λ range = 290–800 nm

3(H) × 3(L) × 3(W) m arc lamps jNO2
= 2 × 10−3 s−1

linalool. In this work, myrcene and linalool together gener-

ically represent (and are referred to hereafter as) “straight

chain” monoterpenes/BVOCs (note: linalool is not techni-

cally a monoterpene, but does contain the same carbon back-

bone as myrcene; consequently, it is expected to exhibit

similar photooxidative chemistry). Finally, β-caryophyllene

was included to represent sesquiterpenes, which have an-

nual emissions of the order of 20 Tg yr−1 (Sindelarova et

al., 2014). In order to test the ability of the methodology

to distinguish between biogenic and anthropogenic systems,

toluene was also included. Toluene is often used as a model

system to act as a proxy for aromatic species in general

(Bloss et al., 2005). For contrasting plant mesocosm sys-

tems, Ficus benjamina and Ficus cyathistipula (fig) and Be-

tula pendula (birch) species were chosen to represent tropical

rainforest and European environs, respectively.

The VOC precursors employed have certain similarities

in terms of reaction rate constants with respect to OH and

O3, e.g. limonene, myrcene, linalool and β-caryophyllene

all have atmospheric lifetimes with respect to OH of the or-

der of 40–50 min (Alfarra et al., 2013; Atkinson and Arey,

2003b). β-caryophyllene has the shortest lifetime with re-

spect to O3 (ca. 2 min) and isoprene and α-pinene have the

longest lifetimes with respect to both OH and O3, e.g. iso-

prene and α-pinene have atmospheric lifetimes with respect

to OH of the order of 1.4–2.7 h (Alfarra et al., 2013; Atkinson

and Arey, 2003b). In order to ensure the various systems had

progressed sufficiently down their respective photooxidative

reaction pathways, the experiment duration was set to be suf-

ficiently long so that the majority of the precursor would be

consumed by the conclusion of the experiment.

2.2 Chamber infrastructure

Experiments were carried out across three different European

environmental simulation chamber facilities over a number

of separate campaigns. The chambers used, included (1)

The University of Manchester Aerosol Chamber (MAC), UK

(Alfarra et al., 2012); (2) The European Photoreactor (EU-

PHORE), ES (Becker, 1996); and (3) The Paul Scherrer In-

stitut Smog Chamber (PSISC), CH (Paulsen et al., 2005). A

brief technical description of each facility is given in Table 2.

2.3 Experiment design

Table 1 provides a summary of the experiments conducted,

which can be divided into three separate categories: (1) pho-

tooxidation, indoor chamber (Wyche et al., 2009; Alfarra et

al., 2012, 2013); (2) photooxidation, outdoor chamber (Bloss

et al., 2005; Camredon et al., 2010); and (3) mesocosm pho-

tooxidation, indoor chamber (Wyche et al., 2014). In each

case the reaction chamber matrix comprised a temperature

(T = 292–299 K) and humidity (49–84 % for photooxida-

tion, indoor chamber and < 2–6 % for photooxidation, out-

door chamber) controlled synthetic air mixture. For all exper-

iments the chamber air matrix also contained a pre-defined

initial quantity of NO and NO2 (VOC / NOx ratios in the

range 0.6–20, but typical ∼ 2). The VOC precursor was intro-

duced into the reaction chamber in liquid form via a heated

inlet. In the case of the mesocosm photooxidation experi-

ments, a known volume of air containing the precursor VOCs

was transferred to the reaction chamber from a separate, il-

luminated plant chamber, which contained several tree speci-

mens. For the indoor chamber systems, the experiments were

initiated, after introduction of all reactants, by the switching

on of artificial lights. For the outdoor chamber systems, the

opening of the chamber cupola marked the start of the exper-

iment. Experiments were typically run for 4–6 h.

2.4 Instrumentation

CIR-TOF-MS was used to make real-time (i.e. 1 min) mea-

surements of the complex distribution of VOCs (6VOC, i.e.

the sum of VOCs, oxygenated VOCs – OVOCs and nitrated

VOCs – NVOCs) produced in the gas-phase during oxidation

of each parent compound. In brief, the CIR-TOF-MS com-

prises a temperature controlled (T = 40 ◦C) ion source/drift

cell assembly coupled to an orthogonal time-of-flight mass

spectrometer equipped with a reflectron array (Kore Tech-

nology, UK). Proton transfer reaction (PTR) from hydro-

nium (H3O+) and hydrated hydronium (H3O+(H2O)n) was

www.atmos-chem-phys.net/15/8077/2015/ Atmos. Chem. Phys., 15, 8077–8100, 2015



8082 K. P. Wyche et al.: Mapping gas-phase organic reactivity and concomitant SOA formation

employed as the ionisation technique during all experiments

(Jenkin et al., 2012; Wyche et al., 2007). Further details re-

garding the CIR-TOF-MS can be found in Blake et al. (2004)

and Wyche et al. (2007).

Aerosol samples were collected on 47 mm quartz fibre fil-

ters at the end of certain experiments and the water-soluble

organic content was extracted for analysis using LC-MS/MS.

Reversed-phase LC separation was achieved using an HP

1100 LC system equipped with an Eclipse ODS-C18 column

with 5 µm particle size (Agilent, 4.6 mm × 150 mm). Mass

spectrometric analysis was performed in negative ionisation

mode using an HCT-Plus ion trap mass spectrometer with

electrospray ionisation (Bruker Daltonics GmbH). Further

details can be found in Hamilton et al. (2011).

For several experiments, real-time broad chemical charac-

terisation of the SOA was made using a cTOF-AMS (Aero-

dyne Research Inc., USA). The cTOF-AMS was operated

in standard configuration, taking both mass spectrum (MS)

and particle time-of-flight (PTOF) data; it was calibrated for

ionisation efficiency using 350 nm monodisperse ammonium

nitrate particles, the vaporiser was set to ∼ 600 ◦C and a col-

lection efficiency value of unity was applied (Alfarra et al.,

2006). For further details, refer to Drewnick et al. (2005) and

Canagaratna et al. (2007).

Filter and cTOF-AMS data were collected only during

photooxidation experiments conducted at the MAC. Repeat

experiments conducted at the MAC were carried out under

similar starting conditions (e.g. VOC / NOx ratio; Alfarra et

al., 2013).

Each chamber was additionally instrumented with online

chemiluminescence/photolytic NOx analysers, UV photo-

metric O3 detectors, and scanning mobility particle sizers

and condensation particle counters for aerosol size and num-

ber concentration, as well as temperature, pressure and hu-

midity monitors. For full details regarding the various in-

strument suites employed at each chamber see Alfarra et

al. (2012), Paulsen et al. (2005), Camredon et al. (2010) and

references therein.

2.5 Model construction

In order to aid analysis, the composition and evolution of

the gas-phase components of the α-pinene chamber system

were simulated using a chamber optimised photochemical

box model incorporating the comprehensive α-pinene atmo-

spheric oxidation scheme extracted from the Master Chemi-

cal Mechanism website (Jenkin et al., 1997, 2012; Saunders

et al., 2003; http://mcm.leeds.ac.uk/MCM). The α-pinene

mechanism employed (along with an appropriate inorganic

reaction scheme) contained approximately 313 species and

942 different reactions. The box model employed also in-

corporated a series of “chamber-specific” auxiliary reactions

adapted from Bloss et al. (2005), Zador et al. (2006) and Met-

zger et al. (2008) in order to take into account background

chamber reactivity. Photolysis rates were parameterised for

the PSI chamber and constrained using measured values of

(j (NO2)). All simulations were run at 295 K and 50 % rel-

ative humidity. NO, NO2, HONO and α-pinene were either

initialised or constrained, depending on the scenario inves-

tigated. For further details regarding the chamber auxiliary

mechanism and similar modelling exercises, see for example

Rickard et al. (2010).

3 Data analysis

3.1 Data processing

All CIR-TOF-MS data were recorded at a time resolution of

1 min. In order to remove the time dimension and simulta-

neously increase detection limit, the individual mass spectra

were integrated over the entire experiment; as such, no ac-

count is taken of overall reaction time in the CIR-TOF-MS

analysis. Removing the time dimension acts to reduce the di-

mensionality of the data, whilst maintaining the central char-

acteristic spectral fingerprints produced by the photooxida-

tion process. On average across all experiments studied, 98 %

of the precursor had been consumed by the conclusion of the

experiment; hence, it is assumed that sufficient reaction took

place in each instance to provide summed-normalised mass

spectra that fully capture first- and higher-generation product

formation.

The resultant summed spectra were normalised to 106

primary reagent ion counts (i.e. 6(H3O++ H3O+(H2O)n)).

Similarly normalised background spectra (recorded prior

to injection of the precursor) were then subtracted

from the summed-and-normalised experiment spectra. The

65 < m/z < 255 channels of the background removed spec-

tra were extracted to comprise the region of interest. These

ions tend to carry the most analyte-specific information, with

lower m/z features tending to comprise either generic frag-

ment ions that provide little chemical information (Blake

et al., 2006) and/or small “common” compounds, some of

which can be emitted from illuminated chamber walls (e.g.

Bloss et al., 2005; Zador et al., 2006; Metzger et al., 2008).

The extracted data were refined further by the application of

a Mann–Whitney test (see Statistical Analysis for details),

leaving residual spectra that comprised only the integrated-

over-time signals corresponding to the VOC precursor and

any product VOCs formed within the chamber during the ex-

periment. Finally, the signal counts (in units of normalised

counts per second; ncps) in each mass channel of the residu-

als, were expressed as a percentage of the total ion count in

the refined region of interest.

The LC-MS/MS signal intensity data for the region

51 < m/z < 599 were extracted for analysis. For the AMS

data, a 10 min average was produced at 4 h after lights

on (hour-4; roughly around the time when SOA mass had

reached a peak and towards to the end of the experiment)

and the region 40 < m/z < 150 (again the region carrying the
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most information; Alfarra et al., 2006) was extracted. Similar

to the gas-phase data sets, the LC-MS/MS and cTOF-AMS

data were filtered using a Mann–Whitney test. Finally, for

each data set all signal counts were expressed as a percentage

of the total ion count in the respective m/z region of interest.

3.2 Statistical analysis

Before any multivariate analysis was conducted, the pro-

cessed CIR-TOF-MS, LC-MS/MS and cTOF-AMS spectra

were first filtered to remove unwanted data that were deemed

not to be statistically significant. In order to do this, the mass

spectra were initially grouped by structure of the precursor

employed, giving seven separate groups for the CIR-TOF-

MS data and three groups (owing to the smaller number

of precursor species investigated) for the LC-MS/MS and

cTOF-AMS data, respectively. A two-sided Mann–Whitney

test was then used to assess whether signals reported in in-

dividual mass channels were significantly different from the

corresponding signals measured during a blank experiment.

SPSS V20 (IBM, USA) was used for the analysis. A p value

of < 0.05 was considered statistically significant. The final

summed-normalised and filtered spectra were then subjected

to a series of multivariate statistical analysis techniques in

order to probe the underlying chemical information. PLS-

Toolbox (Eigenvector Research Inc., USA), operated in Mat-

Lab (Mathworks, USA; PLS-Tool Box), was used for the

analysis.

To begin with, to reduce the data and identify similarities

between the precursor oxidation systems, a PCA was con-

ducted on the BVOC data set and the model generated was

then employed to map the reactivity of fig and birch tree

mesocosm systems and to investigate the fit of a typical an-

thropogenic system (toluene) into the PCA space (both intro-

duced into the model as test data sets). An unsupervised pat-

tern recognition, hierarchical cluster analysis was also con-

ducted on the data and a dendrogram was produced to test

relatedness, support the PCA and help interpret the precursor

class separations achieved. The dendrogram was constructed

using PCA scores, the centroid method and Mahalanobis dis-

tance coefficients. Finally, a supervised pattern recognition

PLS-DA analysis was employed as a check for false positives

and as a quantitative classification tool to test the effective-

ness of classification of the various systems in the model.

For the superposition of “classification” confidence lev-

els onto the results of the PCA and HCA and for clas-

sification discrimination in the PLS-DA, prior to analysis

the experiments were grouped according to the structure of

the precursor investigated. Group 1 = isoprene (hemiterpene)

and group 2 = α-pinene and limonene (both cyclic monoter-

penes with an endocyclic double bond). Although limonene

also has an exocyclic double bond in a side chain, we jus-

tify this classification on account of the endocyclic dou-

ble bond in limonene being much more reactive towards

ozone and slightly more reactive towards OH (Calvert et

Figure 1. (a) NOx , O3, myrcene and 4-vinyl-4-pentenal (primary

aldehyde product), and (b) particle mass (not wall loss corrected

and assuming ρ = 1.3) and size evolution within the MAC during a

typical photooxidation experiment.

al., 2000). Group 3 = β-caryophyllene (sesquiterpene) and

group 4 = myrcene (straight chain monoterpene) and linalool

(straight chain OVOC). Strictly speaking, linalool is an

OVOC (structure C10H18O) and not a monoterpene (struc-

ture C10H16); however we justify this grouping on account of

both myrcene and linalool comprising primary BVOCs (of-

ten co-emitted; Bouvier-Brown et al., 2009; Kim et al., 2010;

Wyche et al., 2014) with certain structural similarities.

4 Results

4.1 Experiment overview

The temporal evolution of various key gas-phase (a) and

particle-phase (b) parameters measured during a typical pho-

tooxidation experiment, are shown in Fig. 1 in order to pro-

vide background context. In this instance the precursor was

myrcene and the facility employed was the MAC. Full de-

tails describing the underlying chemical and physical mech-

anisms at play within such experiments can be found else-

where (e.g. Larsen et al., 2001; Bloss et al., 2005; Paulsen et

al., 2005; Surratt et al., 2006, 2010; Wyche et al., 2009, 2014;

Camredon et al., 2010; Rickard et al., 2010; Eddingsaas et

al., 2012a and b; Hamilton et al., 2011; Jenkin et al., 2012;

Alfarra et al., 2012, 2013, and references therein).

4.2 Mapping gas-phase composition

Of the 191 different mass channels extracted from the CIR-

TOF-MS data for analysis (i.e. 65 < m/z < 255), the Mann–

Whitney test identified 151 as significant for one or more of

the terpene precursor groups tested. These data were subse-

quently subjected to PCA. From inspection of the Eigenval-

ues derived, four principal components (PCs) were selected

for analysis, which collectively accounted for 96 % of the

variance within the data, with PCs 1 and 2 accounting for

the vast majority, i.e. 63 and 18 %, respectively. This step,

therefore, reduced the temporal traces of 191 mass spectrum

peaks to four composite and orthogonal dimensions.
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Figure 2. PCA loadings bi-plot of the second vs. first principal components derived from the PCA analysis of the isoprene, cyclic

monoterpene (c-m-terpene in the legend; α-pinene and limonene), sesquiterpene (β-caryophyllene) and straight chain biogenic (s-m-

terpene in the legend; myrcene and linalool) chamber data. Classification confidence level is 95 %. Tentative assignments of major ions,

include m/z 71 – methyl vinyl ketone and methacrolein, 75 – hydroxy acetone, 83 – C5-hydroxy carbonyls/3-methyl furan, 87 – C4-

hydroxycarbonyls/methacrylic acid, m/z 237 – β-caryophyllene aldehyde, 235 and 253 – β-caryophyllene secondary ozonide (and isomers

thereof), m/z 107, 151 and 169 – piononaldehyde and limononaldehyde, 139 – limonaketone, m/z 93 – 4-vinyl-4-pentenal and 4-hydroxy-

4-methyl-5-hexen-1-al. See main text (Sect. 4.2 and Table 3) for further information. For clarity, the scale has been set to show the bulk of

the data; hence, precursor parent ions and m/z 71 are not shown.

Figure 2 shows a loadings bi-plot of PC2 vs. PC1. It is

clear from Fig. 2, that the model is able to successfully sep-

arate the four different classes of biogenic systems investi-

gated. β-caryophyllene mass spectra are grouped in the upper

left-hand quadrant of Fig. 2, the monoterpenes in the lower

left-hand quadrant and isoprene to the centre right. More-

over, the principal component analysis is able to distinguish

between the cyclic monoterpene experiments of limonene

and α-pinene (grouped into one class), and the straight chain

monoterpene experiments of myrcene and linalool (grouped

into a second class), albeit with the latter having a greater

spread in confidence.

The m/z loadings of the PCA allow us to understand how

the spectral fingerprints of the different terpene oxidation

systems are grouped/separated by the PCA model. The first

set of ions that contribute to separation of the different ter-

pene systems comprises the protonated parent ions (MH+) of

the precursors themselves (and major fragments thereof), i.e.

m/z 69 for isoprene, 137 (and fragment 81) for all monoter-

penes (regardless of structure) and 205 for β-caryophyllene.

Important contributions are to be expected from the respec-

tive parent ions (being the basis for the use of chemical-

ionisation mass spectrometry as an analyser of gas mixtures;

Blake et al., 2009). Our purpose here goes beyond identifi-

cation of precursor and intermediate VOCs to an interpreta-

tion of reaction pathways in complex mixtures and potential

linkages to SOA. In doing this, a certain amount of disam-

biguation of isobaric compounds becomes possible; indeed,

as discussed in more detail below, Fig. 2 clearly shows sepa-

ration between cyclic and non-cyclic monoterpene oxidation

groups, both of which have precursors of molecular weight

(MW) 136 g mol−1. Note, for clarity within Fig. 2, the scale

has been set to show the bulk of the data; hence, precursor

parent ions and m/z 71 are not shown.

Moving past the precursors into the detailed chem-

ical information provided by the oxidation products

formed within the chamber, we can see from the

data and Fig. 2 that amongst others, m/z 71 (methyl

vinyl ketone and methacrolein), 72 (methyl vinyl ketone

and methacrolein C13 isotope), 75 (hydroxy acetone),

83 (C5-hydroxy carbonyls/3-methyl furan) and 87 (C4-

hydroxycarbonyls/methacrylic acid) all contribute to separa-

tion of the isoprene group, and m/z 237 (β-caryophyllene

aldehyde) and 235 and 253 (β-caryophyllene secondary

ozonide and isomers thereof) to that of the β-caryophyllene

group. The monoterpene groupings are influenced by the
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presence of m/z 107, 151 and 169 (primary aldehydes, pi-

ononaldehyde and limononaldehyde) and 139 (primary ke-

tone, limonaketone) ions in their mass spectra. Helping to

separate the straight chain from cyclic monoterpenes are

m/z 95 and 93, relatively dominant features in both the

myrcene and linalool spectra (relative abundance 10–24 %

for m/z 93). m/z 93 has previously been identified as a major

fragment ion of first generation myrcene and linalool prod-

ucts 4-vinyl-4-pentenal and 4-hydroxy-4-methyl-5-hexen-1-

al, respectively (Shu et al., 1997; Lee et al., 2006). A list of

major ions contributing to the separation of spectra in sta-

tistical space is given in Table 3 along with potential identi-

ties and precursors. It is worthy of note here that these ions

and the overall fragmentation patterns observed in this study

are largely in-line with those reported by Lee et al. (2006),

in their comprehensive PTR-MS analysis of a wide range of

BVOC precursors and their associated oxidation products.

4.3 Implementation of the model to classify mesocosm

data

Having employed the terpene data as a training set to con-

struct a PCA model, a test set of mesocosm data was intro-

duced in order to investigate the ability of the model to map

the classification of more complex biogenic mixtures. In this

instance the mesocosm test set comprised two birch tree and

two fig tree photooxidation experiments, containing a more

complex and “realistic” mixture of various different VOCs

(Wyche et al., 2014). The resultant scores plot is shown in

Fig. 3.

Figure 3 demonstrates that the model can successfully dis-

tinguish between the two different types of mesocosm sys-

tems. Moreover, the model correctly classifies the meso-

cosm systems within the PCA space, with the birch trees,

which primarily emit monoterpenes and only small quantities

of isoprene (Wyche et al., 2014), grouped with the single-

precursor monoterpene cluster and the fig trees, which pri-

marily emit isoprene and camphor and only a small amount

of monoterpenes (Wyche et al., 2014), grouped between

the monoterpene and isoprene clusters. Investigation of the

mesocosm mass spectra and PCA loadings shows that mass

channels 137, 139, 107, 95, 93, 81 and 71 are amongst fea-

tures important in classifying the birch tree systems, with the

relatively strong presence of m/z 93 suggesting the emis-

sion of non-cyclic as well as cyclic monoterpenes from the

birch trees. This was confirmed by cross reference with GC-

MS analysis, which showed that the acyclic monoterpene,

ocimene, was the third most abundant monoterpene present

in the birch tree emissions (Wyche et al., 2014). For the fig

tree systems, mass channels 153, 81, 73, 71 and 69 are key

for classification, with the presence of small quantities of

camphor (m/z 153) and monoterpenes (m/z 81) causing the

group to undergo a lateral shift in the PCA space, along PC1

away from the single-precursor isoprene cluster.
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Figure 3. PCA scores plot of the second vs. first principal compo-

nents derived from the PCA analysis of the mesocosm test set using

the PCA model derived from the isoprene, cyclic monoterpene (α-

pinene and limonene), sesquiterpene (β-caryophyllene) and straight

chain monoterpene (myrcene and linalool) chamber data. Classifi-

cation confidence level is 95 %.
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Figure 4. PCA scores plot of the second vs. first principal compo-

nents derived from the PCA analysis of the toluene test set using

the PCA model derived from the isoprene, cyclic monoterpene (α-

pinene and limonene), sesquiterpene (β-caryophyllene) and straight

chain monoterpene (myrcene and linalool) chamber data. Classifi-

cation confidence level is 95 %.

As a further test of the technique to distinguish between

and to classify VOCs and the matrix of oxidised organic

compounds that may derive from their atmospheric chem-

istry, test data from an anthropogenic system was introduced

into the model. In this instance, the toluene photooxidation

system was employed. Toluene is an important pollutant in

urban environments, originating for example from vehicle

exhausts and fuel evaporation; furthermore, it represents a

model mono-aromatic, SOA precursor system (e.g. Bloss et

al., 2005). As can be seen from the resultant scores plot in

Fig. 4, the model is also able to discriminate the anthro-
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Table 3. List of certain major product ions integral to the separation of BVOC photooxidation spectra in statistical space, their corresponding

tentative assignments and their precursor. See main text (Sects. 4.2 and 4.5) for further information.

Ion / m/z CIR-TOF-MS LC-MS/MS cTOF-AMS

Assignment Precursor Assignment Precursor Assignment Precursor

41 – – – – C3H+
5

All

43 – – – – CH3CO+ All

44 – – – – CO+
2

All

71 methyl vinyl ketone isoprene – – – –

+ methacrolein

75 hydroxyl acetone isoprene – – – –

83 C5-hydroxy carbonyls isoprene – – – –

/3-methyl furan

87 C4-hydroxycarbonyls isoprene – – – –

/ methacrylic acid

93 4-vinyl-4-pentenal myrcene / – – – –

/ 4-hydroxy-4- linalool

methyl-5-hexen-1-al

107 piononaldehyde / α-pinene / – – – –

limononaldehyde limonene

111 4-vinyl-4-pentenal myrcene / – – – –

/ 4-hydroxy-4- linalool

methyl-5-hexen-1-al

139 limonaketone limonene – – – –

151 piononaldehyde / α-pinene / – – – –

limononaldehyde limonene

169 piononaldehyde / α-pinene / pinalic-3-acid / α-pinene / – –

limononaldehyde limonene ketolimonon-aldehyde limonene

+ limonalic acid

183 – – pinonic acid / α-pinene / – –

limononic acid limonene

+ 7-hydroxylimonon-aldehyde

185 – – pinic acid / α-pinene / – –

limonic acid limonene

199 – – C9H11O5 myrcene – –

215 – – C10H15O5 myrcene – –

227 – – C10H11O6 myrcene – –

235 β-caryophyllene β-caryophyllene – – – –

secondary ozonide

+ isomers

237 β-caryophyllene β-caryophyllene 3-[2,2-dimethyl-4- β-caryophyllene – –

aldehyde (1-methylene-4-oxo-butyl)

-cyclobutyl]-propanoic acid

251 – – β-caryophyllonic β-caryophyllene – –

acid

253 β-caryophyllene β-caryophyllene – – – –

secondary ozonide

+ isomers

255 – – 4-(2-(2-carboxyethyl) β-caryophyllene – –

-3,3-dimethylcyclobutyl)

-4-oxobutanoic acid

267 – – β-14-hydroxy- β-caryophyllene – –

caryophyllonic acid

+β-10-hydroxy-

caryophyllonic acid

271 – – 4-(2-(3-hydroperoxy-3-oxopropyl) β-caryophyllene – –

-3,3-dimethylcyclobutyl)

-4-oxobutanoic acid /

4-(2-(2-carboxy-1-hydroxyethyl)

-3,3-dimethylcyclobutyl)

-4-oxobutanoic acid

321 – – [M-H2+FA+Na]− myrcene – –

C12H14O6 / C13H18O5

Atmos. Chem. Phys., 15, 8077–8100, 2015 www.atmos-chem-phys.net/15/8077/2015/



K. P. Wyche et al.: Mapping gas-phase organic reactivity and concomitant SOA formation 8087

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

20

25

30

35

Distance Between Cluster Centers

I1 

I3 

I8 

I4 

I5 

I6 

I2 

I7 

I9 

I10

FT1

FT2

A1 

A4 

L3 

L4 

A2 

L1 

L6 

A3 

BT1

L5 

L2 

BT2

M1 

LN1

M2 

LN2

B1 

B4 

B2 

B3 

B7 

B6 

B9 

B5 

B10

B8 

 

 

Figure 5. Dendrogram showing the grouping relationship between the various gas-phase matrices of systems examined. Red – isoprene, pink

– fig, green – cyclic monoterpenes (α-pinene and limonene), yellow – birch, light-blue – straight chain monoterpenes (myrcene and linalool)

and dark-blue – sesquiterpene (β-caryophyllene).

pogenic system from those of biogenic origin. Besides the

protonated toluene parent ion, those ions contributing to the

positioning of the toluene cluster within the PCA space, in-

clude the protonated parent ions m/z 107 and 109 respec-

tively, i.e. the ring retaining primary products benzaldehyde

and cresol; m/z 123, i.e. the ring retaining secondary prod-

uct, methyl benzoquinone; and m/z 99 and 85, i.e. higher-

generation, ring-opening products (e.g. 4-oxo-2-pentenal and

butenedial, respectively). A brief discussion regarding aro-

matic BVOCs is provided separately in the Supplement.

4.4 Cluster analysis and classification

The relationships between the various terpene and mesocosm

systems and their groupings with respect to one another can

be explored further via the implementation of HCA; Fig. 5

gives the dendrogram produced. Inspection of Fig. 5 provides

further evidence that the various systems in the four classes

of terpenes investigated distinctly group together, with over-

all relatedness < 1 on the (centroid) distance between clusters

scale using the Mahalanobis distance measure (Mahalanobis,

1936). Figure 5 shows that the sesquiterpene oxidation sys-

tem has the most distinct spectral fingerprint (containing dis-

tinctive, higher mass oxidation products, e.g. m/z 253) and

that the cyclic and straight chain monoterpene systems ap-

pear the most similar (with some common features alongside

key, unique precursor/mechanism specific product patterns,

e.g. m/z 93 for myrcene and linalool), grouping together

with subclusters of cyclic and non-cyclic precursors. The

monoterpene dominated birch tree mesocosm experiments

are grouped with the cyclic monoterpenes and show a close

relationship with non-cyclic monoterpene systems. Being

dominated by isoprene emissions, yet with some monoter-

penes and camphor present, the fig tree mesocosm experi-

ments group separately but with a relatively close degree of

relation to the single-precursor isoprene experiments.

In order to advance our chemometric mapping of biogenic

systems beyond PCA and HCA (which do not consider user

supplied a priori observation “class” information) and to pro-

vide a degree of quantification to our analysis, a PLS-DA

using six latent variables (LVs) was conducted on the ter-

pene and mesocosm data. For the PLS-DA, the experiments

were grouped into their respective “classes”, i.e. hemiterpene

– isoprene; cyclic monoterpene – α-pinene and limonene;

sesquiterpene – β-caryophyllene; non-cyclic monoterpene –

myrcene and linalool; birch trees; fig trees. Figure 6 shows

a plot of the resultant scores on the first three LVs (account-

ing for ∼ 85 % of the variance), from which it is clear that the

PLS-DA is able to successfully discriminate between the four

terpene classes, and places the monoterpene dominant birch
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Figure 6. Scores plot of the first three latent variables derived from

the PLS-DA model analysis of the isoprene, cyclic monoterpene

(α-pinene and limonene), sesquiterpene (β-caryophyllene), straight

chain monoterpene (myrcene and linalool), fig and birch chamber

data. Classification confidence level is 95 %.

experiments within the single-precursor monoterpene clus-

ter, and the isoprene dominant fig experiments close to the

single-precursor isoprene cluster within the statistical space.

The greater spread in confidence of the non-cyclic monoter-

pene group is likely to result, to some extend, from the low

number of repeat experiments employed (i.e. only two each

for myrcene and linalool).

As can be seen from inspection of Table 4, model classi-

fication sensitivity and specificity was high in each instance.

Each of the biogenic systems studied were predicted with

100 % sensitivity (with the exception of birch mesocosm),

meaning that each set of experiments (again, except birch

mesocosm) was predicted to fit perfectly within its class.

The relatively low sensitivity obtained for birch mesocosm

(50 %), is most likely a result of the use of only two repeat

experiments in the model, coupled with experiment limita-

tions and ageing trees producing slightly lower emissions

during the final birch mesocosm experiment. All of the sys-

tems were predicted with > 90 % specificity (four of the six

with 100 % specificity), indicating that all experiments are

highly unlikely to be incorrectly classified.

4.5 Mapping particle-phase composition

In order to explore similar classifications and linkages in

the concomitant particle-phase, the PCA, HCA and PLS-

DA techniques were also applied to the off-line LC-MS/MS

spectra obtained from analysis of filter samples and on-line

cTOF-AMS spectra.

As can be seen from inspection of Fig. 7, the detailed

LC-MS/MS aerosol spectra produce PCA results somewhat

similar to those of the gas-phase CIR-TOF-MS spectra,

with distinct clusters of cyclic monoterpenes, straight chain

monoterpenes and sesquiterpenes. From inspection of

the loadings components of the bi-plot (Fig. 7a), we can

see that m/z 237 (3-[2,2-dimethyl-4-(1-methylene-4-oxo-

butyl)-cyclobutyl]-propanoic acid), 251 (β-caryophyllonic

acid), 255 (4-(2-(2-carboxyethyl)-3,3-dimethylcyclobutyl)-

4-oxobutanoic acid), 267 (β-14-hydroxycaryophyllonic

acid and β-10-hydroxycaryophyllonic acid) and 271 (4-(2-

(3-hydroperoxy-3-oxopropyl)-3,3-dimethylcyclobutyl)-4-

oxobutanoic acid or 4-(2-(2-carboxy-1-hydroxyethyl)-3,3-

dimethylcyclobutyl)-4-oxobutanoic acid) are amongst those

ions dominant in classifying the sesquiterpenes. For further

details regarding β-caryophyllene oxidation products, see

for example Lee et al. (2006), Winterhalter et al. (2009),

Hamilton et al. (2011), Chan et al. (2011), Li et al. (2011)

and Jenkin et al. (2012) and references therein, as well as

Sect. 5. Of this set of oxidation products, β-caryophyllonic

acid is common between the gas (i.e. m/z 253) and particle

(i.e. m/z 251) phases.

Similarly, those ions (compounds) significant in isolat-

ing the cyclic monoterpenes include, m/z 169 (pinalic-3-

acid, ketolimononaldehyde and limonalic acid), 183 (pinonic

acid, limononic acid and 7-hydroxylimononaldehyde) and

185 (pinic acid and limonic acid), of which only those com-

pounds of m/z 169 were observed to be of significant contri-

bution to the gas-phase composition (observed as m/z 171;

relative contribution as high as 1–5 % during α-pinene exper-

iments). For further details regarding α-pinene and limonene

oxidation products, see for example Larsen et al. (2001),

Jaoui et al. (2003, 2006), Capouet et al. (2004), Jenkin

(2004), Lee et al. (2006), Ng et al. (2006), Camredon et

al. (2010) and Hamilton et al. (2011) and references therein

as well as Sect. 5. Comparatively little information is avail-

able on the speciated composition of myrcene and linalool

SOA; however from Fig. 7a it is clear that here, compared to

the cyclic monoterpenes, somewhat larger mass compounds

are important in classifying straight chain monoterpenes, e.g.

m/z 321 (adduct ion [M-H2+ FA + Na]− M = 254 Da; po-

tential formulae – C12H14O6, six double bond equivalents

or C13H18O5, five double bond equivalents; indicative of

oligomer formation), 325, 322 (the C13 peak for the m/z 321

ion), 227 (C10H11O6), 215 (C10H15O5) and 199 (C9H11O5).

Compounds of such high molecular weight were not ob-

served in the concomitant gas-phase spectra. A list of ma-

jor ions contributing to the separation of spectra in statistical

space is given in Table 3 along with potential identities and

precursors.

As with the PCA, the dendrogram produced via cluster

analysis of the LC-MS/MS particle-phase data gave three

distinct clusters (Fig. 7b), i.e. cyclic monoterpene, straight

chain monoterpene and sesquiterpene. The corresponding

PLS-DA analysis reported 100 % sensitivity in each case and

100 % specificity for all systems except sesquiterpenes (i.e.

β-caryophyllene = 83 %), suggesting a good level of model

classification for the three types of terpene systems studied.
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Table 4. PLS-DA model classification sensitivity and specificity for the gas-phase biogenic air matrices.

Cross- Isoprene Cyclic- Sesquiterpene Straight-chain- Fig tree Birch

validation monoterpene monoterpene tree

Sensitivity (%) 100.0 100.0 100.0 100.0 100.0 50.0

Specificity (%) 100.0 92.9 100.0 100.0 100.0 91.7

Figure 7. (a) Loadings bi-plot of the second vs. first principal components obtained from the PCA of LC-MS/MS aerosol spectra from a

subset of terpene experiments and (b) the corresponding HCA dendrogram. See main text (Sect. 4.5 and Table 3) for further information,

including ion assignments.

Despite utilising the somewhat destructive electron impact

(EI) ionisation technique, the cTOF-AMS produces spectra

of sufficient chemical detail such that the PCA and HCA are

able to successfully differentiate between the groups of ter-

penes tested (Fig. 8a and b). However, unlike the outputs

from the CIR-TOF-MS and LC-MS/MS PCAs, the cyclic

and straight chain monoterpenes in the cTOF-AMS PCA

do not group into two distinct classes, instead they tend to

group in their species-specific sub-classes within the upper

region of the PCA space. Indeed, the PLS-DA gave 100 %

sensitivity and specificity for the cyclic monoterpenes and

sesquiterpenes, but only 75 % sensitivity for the straight

chain monoterpenes, suggesting that the model does less

well at assigning myrcene and linalool cTOF-AMS spectra

to their defined class.

As can be seen from inspection of Fig. 8a, α-pinene,

limonene and linalool tend in general to cluster towards the

upper and right regions of the PCA space, primarily ow-

ing to the significant presence of m/z 43 and to some ex-

tent m/z 44, in their spectra; both ions constituting com-

mon fragments observed in AMS of SOA (Alfarra et al.,

2006). During such chamber experiments, the m/z 43 peak

tends to comprise the CH3CO+ ion, originating from ox-

idised compounds containing carbonyl functionalities; it is

usually representative of freshly oxidised material and semi-

volatile oxygenated organic aerosol (SV-OOA; Alfarra et al.,

2006, 2013).

From further inspection of the loadings bi-plot (Fig. 8a),

we see that the four sesquiterpene (β-caryophyllene) exper-

iments cluster towards the lower left-hand quadrant, their

clustering heavily influenced by the presence of m/z 41 in

their spectra as well as m/z 55, 79 and 95. In EI-AMS,

m/z 41 comprises the unsaturated C3H+

5 fragment (Alfarra

et al., 2006). As well as being influenced by the m/z 41

ion, the myrcene cluster (situated in the region of both the

α-pinene and β-caryophyllene clusters in the PCA space) is

also influenced by m/z 44, i.e. most likely the CO+

2 ion. In

this instance m/z 44 would tend to result from low volatility

oxygenated organic aerosol (LV-OOA), derived from highly

oxidised compounds, including oxo- and di-carboxylic acids

(Alfarra et al., 2004, 2006). For full details regarding the

particle-phase-specific experiments conducted at the MAC,

see Hamilton et al. (2011), Jenkin et al. (2012) and Alfarra et

al. (2012, 2013).

5 Discussion

5.1 Mapping chemistry

Figure 9 provides a highly simplified overview of the cur-

rent state of knowledge regarding the atmospheric oxidation
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Figure 8. (a) Loadings bi-plot of the second vs. first principal components obtained from the PCA of cTOF-AMS aerosol spectra from of

a subset of terpene experiments and (b) the corresponding HCA dendrogram. See main text (Sect. 4.5 and Table 3) for further information,

including ion assignments.

of hemi-, sesqui-, cyclic and straight chain monoterpenes,

showing selected key steps and intermediates on route to

SOA formation. The mechanisms outlined in Fig. 9 underpin

the findings reported here and help to explain how the atmo-

spheric chemistry of the various terpene oxidation systems

and their SOA can be chemometrically mapped with respect

to one another.

From a review of recent literature and from the summary

presented in Fig. 9, it can be seen that isoprene can re-

act to form condensable second and higher-generation ni-

trates in the presence of NOx , e.g. C4-hydroxy nitrate peroxy

acetyl nitrate (C4-HN-PAN in Fig. 9) (Surratt et al., 2010), as

well as condensable OVOCs, e.g. hydroxymethyl-methyl-α-

lactone (HMML) (Kjaergaard et al., 2012) and methacrylic

acid epoxide (MAE) (Lin et al., 2013), via metharcolein

(MACR) and methacryloyl-peroxy nitrate (MPAN). Alter-

natively, under “low NOx” conditions (e.g. < 1 ppbV) iso-

prene can react to form condensable second-generation epox-

ides, e.g. isoprene epoxides (IEPOX), via primary perox-

ides (ISOPOOH) (Paulot et al., 2009a; Surratt et al., 2006).

Such C4 and C5 saturated, low volatility species consti-

tute the monomer building blocks that proceed to form rel-

atively high O : C ratio (nitrated in the presence of NOx

and sulfated in the presence of H2SO4) isoprene SOA

oligomers (e.g. 2-methyl tetrol dimer, O : C = 7 : 9) (Claeys

et al., 2004; Surratt et al., 2006, 2010; Worton et al.,

2013). Consequently, the gas-phase composition under con-

ditions forming isoprene SOA will therefore be dominated

by relatively low MW monomer precursors, e.g. MACR

(MH+ = m/z 71 in the CIR-TOF-MS spectra), isoprene ni-

trates (ISOPN in Fig. 9; MH+-HNO3 = m/z 85) and MPAN

(MH+H2O-HNO3 = m/z 103) under “high NOx” condi-

tions (e.g. ∼ 10s–100s ppbV (Paulot et al., 2009b; Surratt

et al., 2006, 2010), and ISOPOOH and IEPOX (MH+-

H2O = m/z 101) under “low NOx” conditions. For the “high

NOx” isoprene experiments conducted here, besides m/z 71,

i.e. MACR (measured together with methyl vinyl ketone),

m/z 87, 85, 83 and 75, i.e. (tentatively assigned to be)

C4-hydroxycarbonyls/methacrylic acid, ISOPN, C5-hydroxy

carbonyls (C5HC in Fig. 9)/3-methyl furan (3-MF) and hy-

droxy acetone, respectively, were significant in classifying

the isoprene group; MPAN at the m/z 103 ion was only a

minor contributor. It should be noted that in theory, both

HMML and MAE (MH+ = m/z 103) may produce fragment

ions of m/z 85 (i.e. MH+-H2O) following PTR ionisation;

however without further detailed characterisation we are un-

able at this stage to postulate their fractional contribution to

the measured m/z 85 signal.

Depending on the chemistry involved (Fig. 9), poten-

tial SOA forming monoterpene products will either be (six-

member) ring-retaining (e.g. from reaction with OH) or (six-

member) ring cleaved (e.g. from reaction with OH or O3),

leading to gas-phase spectra with mid-MW C9 and C10 oxy-

genated (and nitrated in the presence of NOx) products (e.g.

Kamens and Jaoui, 2001; Larsen et al., 2001; Capouet et al.,

2004; Yu et al., 2008; Camredon et al., 2010; Eddingsaas

et al., 2012a and b). Both (six-member) ring-retaining and

(six-member) ring-opening products have been observed in

monoterpene SOA (e.g. Yu et al., 1999; Larsen et al., 2001;

Camredon et al., 2010), with the latter generally being domi-

nant in terms of abundance (Camredon et al., 2010). Further-

more, (six-member) ring-opening products are believed to

undergo chemistry within the aerosol to form relatively low

O : C ratio oligomers (e.g. 10-hydroxy-pinonic acid-pinonic

acid dimer, O : C = 7 : 19) (Gao et al., 2004; Tolocka et al.,

2004; Camredon et al., 2010).

OH will react with straight chain monoterpenes, such as

myrcene, primarily by addition to either the isolated or the

conjugated double bond system. Reaction at the isolated

C=C bond can proceed via fragmentation of the carbon

backbone, producing acetone and mid-MW, unsaturated C7

OVOCs (and/or NVOCs, depending on NOx levels). Reac-
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tion at the conjugated double bond system in myrcene would

be expected to form formaldehyde in conjunction with either

a C9 aldehyde or C9 ketone. Structure activity relationships

(SARs) predict that the conjugated double bond system ac-

counts for almost half of the OH reactivity. The conjugated

double bond would therefore be expected to have a partial

rate coefficient of the order of 1 × 10−10 cm3 molec−1 s−1

(i.e. similar to OH + isoprene) (Atkinson and Arey, 2003b).

Consistent with this, the reported yields of acetone and

formaldehyde from OH + myrcene are similar (Atkinson and

Arey, 2003b), suggesting that the isolated double bond and

the conjugated double bond system have comparable OH re-

activity, as such we would expect C9 and C7 co-products

to be formed in comparable yields. With a significant frac-

tion of reactions with OH leading to the loss of three carbon

atoms from the parent structure, the straight chain monoter-

pene gas-phase spectra tend to contain fewer features of

MW greater than that of the precursor and more mid-MW

features. It tends to be these mid-MW features, such as

m/z 111 and 93 (e.g. 4-vinyl-4-pentenal – MYR 1.2 in

Fig. 9, MH+ and MH+-H2O, respectively) and 113 (e.g.

2-methylenepentanedial, MH+; Lee et al., 2006) that assist

in the classification of the straight chain monoterpene ex-

periments within the statistical space. Besides these ions,

m/z 139 (primary myrcene C9 aldehyde and/or C9 ketone

product) also assists in separating the myrcene spectra from

those of α-pinene.

By comparing both the gas- and particle-phase PCA re-

sults for cyclic monoterpenes in Figs. 2 and 7a, it is evident

that the dominant loadings represent compounds of similar

MW, i.e. m/z 169, 151 and 107 (primary aldehyde product,

e.g. pinonaldehyde- PINAL in Fig. 9, parent ion and frag-

ments thereof) and 139 (primary ketone product parent ion)

for the gas phase and m/z 187, 185, 183 and 169 for the par-

ticle phase. Conversely, for the straight chain monoterpene

experiments the major gas-phase loadings represent com-

pounds of significantly smaller MW than their particle-phase

counterparts, i.e. m/z 113, 111 and 93, compared to m/z 325,

322, 321, 227 and 215. Indeed, the straight chain monoter-

pene LC-MS/MS spectra contained on average ∼ 10 % more

signal > 250 Da than the cyclic monoterpene spectra. Also,

the composition of the ions observed in the straight chain

monoterpene LC-MS/MS spectra suggests that the SOA par-

ticles contained both oligomers and highly oxidised species

with the C10 backbone intact (i.e. O : C = 0.6), similar in

structure to (but a little less oxidised than) extremely low

volatility organic vapours (ELV-VOC), which have been ob-

served previously in significant yield from α-pinene and

limonene (as well as 6-nonenal) ozonolysis chamber exper-

iments in the absence of an OH scavenger, as well as from

boreal forests in Finland (Ehn et al., 2014). Further evidence

to elucidate the type of SOA formed from the oxidation of

straight chain monoterpenes can be obtained from investiga-

tion of the grouping of myrcene spectra in the cTOF-AMS

PCA (Fig. 8a). In the hour-4 cTOF-AMS PCA loadings bi-

plot, we see that the grouping of the myrcene spectra is in-

fluenced somewhat by both m/z 41 and 44, indicating the

presence of unsaturated hydrocarbon material and LV-OOA

in the SOA, potentially a result of oligomerisation or further

oxidative heterogeneous chemistry involving reaction at re-

maining C=C double bond site(s).

β-caryophyllene readily forms particulate matter on oxi-

dation (e.g. Jaoui et al., 2003; Lee et al., 2006; Winterhalter

et al., 2009; Alfarra et al., 2012; Chen et al., 2012), with re-

action predominantly at one of the two C=C sites, e.g. with

OH or O3, although O3 attack occurs almost exclusively at

the endocyclic double bond (Jenkin et al., 2012), yielding

relatively low vapour pressure, unsaturated and oxygenated

primary products (Fig. 9), which have significant affinity for

the particle-phase (Jenkin et al., 2012). A further oxidation

step involving the second C=C site can result in increased

oxygen (and/or nitrogen, depending on NOx conditions) con-

tent, yet with little, if any reduction in the original C num-

ber. As with the cyclic monoterpene PCAs, the CIR-TOF-

MS and LC-MS/MS PCA bi-plots demonstrate similarities in

terms of classifying β-caryophyllene oxidation and SOA for-

mation with comparable MW species, e.g. primary products

β-caryophyllene aldehyde (MW 236, BCAL in Fig. 9) and

β-caryophyllene secondary ozonide in the gas-phase (MW

252, BCSOZ in Fig. 9), β-caryophyllonic acid (MW 252,

C141CO2H in Fig. 9) in both phases and secondary product

β-nocaryophyllinic acid (MW 254, C131CO2H in Fig. 9) in

the particle-phase. In the hour-4 cTOF-AMS PCA loadings

bi-plot, the myrcene and β-caryophyllene clusters are located

adjacent to one another, with β-caryophyllene classification

primarily influenced by the m/z 41 peak, which as described

above, is indicative of unsaturated hydrocarbon content (Al-

farra et al., 2012).

5.2 Mapping within a class

Within the cyclic monoterpene group there is a small de-

gree of separation between the limonene and α-pinene ex-

periments, with three out of the four α-pinene experiments

located to the upper and right region of the monoterpene clus-

ter. This distribution/separation within the group may be a

consequence of precursor-specific reaction pathways; for in-

stance, although structurally similar, α-pinene and limonene

react at somewhat different rates with respect to both OH and

O3 (Atkinson and Arey, 2003a). Over a fixed time period,

such system reactivity will govern the degree of oxygenated

content present within a closed analyte matrix and may facil-

itate the isolation of specific reaction pathways. Furthermore,

the separation of such similar gas-phase precursors within a

class cluster may help us to elucidate differences in resultant

SOA yield and composition (e.g. limonene tends to have a

larger SOA yield than α-pinene; Lee et al., 2006; Fry et al.,

2014). It therefore may be possible with the use of larger and

more detailed data sets, to employ loading information to de-

termine the importance of certain products to SOA composi-
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tion. However, additional data to those reported here would

be required to fully test this hypothesis.

5.3 Mapping reactivity

In order to explore how the PCA technique can be used

to investigate product distributions driven by certain start-

ing conditions, a separate analysis was conducted on the

five toluene experiments. In this instance we investigate the

product distribution dependency on initial VOC / NOx ra-

tios. The VOC / NOx ratios employed nominally represent

“low”, “medium” and “high” NOx conditions, with values of

roughly 11 (i.e. low NOx , “NOx-limited” ozone formation

conditions – as determined from simulation chamber ozone

isopleth plots; see Wagner et al., 2003; two experiments), 4

(i.e. moderate NOx ; two experiments) and 1 (i.e. high NOx ,

“VOC-limited”; one experiment), respectively. The resultant

PCA loadings bi-plot (produced using the methodology de-

scribed in Sect. 3) is given in Fig. 10.

From inspection of the PCA loadings bi-plot in Fig. 10,

it is clear that the toluene photooxidation spectra dis-

tribute in statistical space according to their respective ini-

tial VOC / NOx ratios. Figure 10 shows the low NOx , high

VOC / NOx ratio experiments grouped in the lower right-

hand quadrant of the PCA space, principally influenced by

loadings representing toluene (m/z 93 and 77, parent and

fragment ions, respectively; note m/z 93 off-scale in Fig. 10)

and cresol (m/z 109). Summed spectra containing larger

quantities of precursor would suggest the presence of a less

reactive environment, which is the case here, where low NOx

levels in the NOx limited regime, result in low [OH] (reduced

radical cycling) and low [O3] (less NO to NO2 conversions)

(see also Bloss et al., 2005). Similarly, the relatively large

contribution from cresol to the low NOx summed spectra,

originates from a larger net cresol concentration across the

experiment on account of low system reactivity (i.e. loss via

reaction with OH).

The moderate NOx , medium VOC / NOx experiments

group uniquely in the lower left-hand quadrant of the

PCA space in Fig. 10, principally on account of load-

ings representing benzaldehyde (m/z 107) and the ring-

opening products: citraconic anhydride (m/z 113); 4-oxo-2-

pentenal, maleic anhydride and/or angelicalactone (m/z 99)

and methyl glyoxal (m/z 73). The greater abundance of

higher-generation, ring-opening products implies a more re-

active environment (i.e. increased chemical processing) than

that formed under low NOx conditions. Larger net benzalde-

hyde concentrations are likely to originate from greater sys-

tem reactivity and greater abundance of NO to fuel the form-

ing RO2 + NO reaction.

The high NOx , low VOC / NOx ratio experiment is sited

in the left-hand half of Fig. 10, on account of it possess-

ing higher system reactivity (with respect to the low NOx

experiments) and the resultant greater proportion of ring-

opening product ions (as is the case for the moderate NOx
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Figure 10. PCA loadings bi-plot of the second vs. first princi-

pal components derived from the PCA analysis of the toluene

experiments. Experiments were conducted under low NOx ,

high VOC / NOx ratio (red diamonds), moderate NOx , medium

VOC / NOx ratio (green squares) and high NOx , low VOC / NOx

ratio (blue triangle) conditions. For clarity, the scale has been set to

show the bulk of the data; hence, m/z 93 and 85 are not shown.

experiments). However, the low VOC / NOx ratio experi-

ment is uniquely displaced into the upper region of the PCA

space owing to a large contribution from 2-butenedial and/or

2(5H)-furanone (m/z 85, off scale in Fig. 10) to the summed

spectra (the yields of both of which are likely to be impor-

tant under high NOx conditions, owing to reaction through

the RO2+ NO channel).

6 Atmospheric relevance and future directions

Having successfully used the mechanistic fingerprints in the

chamber data to construct descriptive statistical models of the

gas and particle phases, and having applied the methodology

to map mesocosm environments, a next logical step would be

to use this detailed chemical framework to investigate ambi-

ent VOC and SOA composition data, in an attempt to help

elucidate and deconvolve the important chemistry controlling

the gas- and particle-phase composition of inherently more

complex real-world environments.

If ambient biogenic gas/particle composition spectra of

unknown origin, uncertain speciated composition and/or a

high level of detail and complexity were to be mapped onto

the relevant statistical model (i.e. introduced as a separate test

set), their resultant vector description in the statistical space

could provide information regarding the type of precursors

present and the underlying chemical mechanisms at play, as

exemplified by the classifying of the mesocosm experiments

by the fraction of isoprene, monoterpene and sesquiterpene
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chemistry in the experimental fingerprints. Furthermore, as

shown by the mapping of toluene photooxidation experi-

ments into a separate and distinct cluster, the methodology

is potentially able to be robust with respect to other chemical

compositions expected for a real-world environment that is

significantly impacted by both anthropogenic and biogenic

emissions (e.g. Houston, USA and the Black Forest – Mu-

nich, DE). This capability is important when attempting to

understand the complex interactions that exist between ur-

ban and rural atmospheres and when attempting to under-

stand VOC and SOA source identification.

One potential problem in moving from simulation cham-

ber data to real-world systems, would be the applicability

of using “static” experimental spectra (i.e. time averaged) to

build a model to accept “dynamic” data, in which there would

be potentially overlapping reaction coordinates and multiple

precursor and radical sources.

In order to investigate the impact of a more dynamic sys-

tem on the composition of the gas-phase matrix and hence on

the composition of the spectra employed to build the model,

a zero-dimensional chamber box model was constructed for

the α-pinene system and operated under three different sce-

narios:

1. Basic chamber simulation: α-pinene concentration

constrained to measurements (initial concentration

124 ppbV); NO and NO2 initialised according to mea-

surements (31 and 41 ppbV, respectively).

2. Spiked chamber simulation: α-pinene constrained as in

(1), but profile duplicated to represent a fresh injection

of the precursor (at the midpoint of the experiment) on

top of the already evolving matrix; constant 10 ppbV

HONO employed as NO and radical source.

3. Constant injection chamber simulation: α-pinene and

HONO constrained to constant values of 5 and 10 ppbV,

respectively.

It should be noted here that the model runs are not ide-

alised. The aim of these simulations is only to provide sys-

tematically more complex chemical systems with which to

compare and contrast a simulation representing the measured

data set. For work regarding the evaluation of the MCM with

respect to single VOC precursor chamber experiments (in-

cluding model-measurement intercomparison), see, for ex-

ample, Bloss et al. (2005) (toluene), Metzger et al. (2008) and

Rickard et al. (2010) (1,3,5-TMB), Camredon et al. (2010)

(α-pinene) and Jenkin et al. (2012) (β-caryophyllene).

The results of the three different model scenarios are given

in Fig. 11, mapped through to the resultant simulated mass

spectra (i.e. integrated across the experiment).

Figure 11a and b show the results from scenario (1). Fig-

ure 11a gives the evolution of the system over the molec-

ular weight region of interest with time and Fig. 11b gives

the scenario summed “model mass spectra”, i.e. the relative

Figure 11. Results from MCM α-pinene photooxidation simula-

tions. (a) and (b) represent basic α-pinene photooxidation; (c) and

(d) – spiked injection of α-pinene, continuous HONO input; (e) and

(f) – continuous α-pinene and HONO input. Left-hand image plots

show the evolution of the respective systems over the molecular

weight region of interest with time; colour scale represents relative

abundance (%). Right-hand plots represent (b) relative abundance

of simulated molecular weights during straight α-pinene photooxi-

dation; (d) difference in relative abundance of simulated molecular

weights between double injection of α-pinene continuous HONO

input and straight α-pinene photooxidation; (f) difference in rela-

tive abundance of simulated molecular weights between continuous

α-pinene and HONO input and straight α-pinene photooxidation.

See text for details.

abundance of all simulated compounds within the gas-phase

molecular weight region of interest (with relative contribu-

tions from isobaric species summed into a single “peak”).

Scenario (1) and Fig. 11a and b approximate the experimen-

tal data employed within this work and constitute the model

base case.

Figure 11c and d show the results from scenario (2). Fig-

ure 11c clearly shows the second α-pinene injection on top of

the evolving matrix and the resultant system evolution. Fig-

ure 11d shows the “difference model mass spectra” between

scenarios (1) and (2), from which it can clearly be seen that

there is very little difference between the spectra of the ba-

sic model and the “spiked” system. The difference in “mass

channel” relative abundance (1MC) is generally ≤ ±2 %,
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with the exceptions of MWs 168 and 186. MW 168 primar-

ily comprises pinonaldehyde, with a 1MC of around −6 %;

pinonaldehyde is a primary product and is slightly lower in

relative abundance in scenario (2) owing to the longer reac-

tion time employed and the greater proportion of pinonalde-

hyde reacted. MW 186 comprises a number of primary and

secondary products and has a 1MC of roughly +3 %.

The results from model scenario (3) are given in Fig. 11e

and f. As with scenario (2), there is no dramatic differ-

ence between the simulated mass spectra of scenario (3) and

the base-case scenario (1). In this instance 1MC is gener-

ally ≤ ±5 %, with the exceptions of MWs 136 and 168 and

MWs 121 and 245. The relative abundance of the precursor

is lower in this case on account of the constraining method

employed and once again the relative abundance of pinon-

aldehyde is slightly lower owing to the longer reaction time.

MW 121 solely comprises PAN and MW 245 primarily com-

prises a C10 tertiary nitrate (C10H15NO6, MCM designation:

C106NO3). Both species are slightly elevated with respect

to the base-case in scenario (3) owing to the longer reaction

time and the continual input of OH and NO into the model in

the form HONO.

Scenarios (2) and (3) represent complex mixtures with

overlapping reaction coordinates, each one step closer to a

real-world case than scenario (1) and the chamber data em-

ployed within this work. However, despite the increase in

complexity of the scenarios, both exhibit very little compo-

sitional difference to the base-case scenario and hence the

chamber data employed in this work. These results give some

confidence that despite being constructed from summed sim-

ulation chamber data, the statistical models employed here

represents a solid framework onto which real atmosphere

spectra could be mapped and interpreted.

A further step in increasing complexity and hence a further

step towards the real-world system, would be the addition of

other (potentially unidentified) precursors to the simulation,

which may be at different stages of oxidation or have passed

through different reactive environments. Further increases in

complexity, beyond the analysis discussed here, will form the

focus of future work.

7 Conclusions

A chemometric dimension reduction methodology, compris-

ing PCA, HCA and PLS-DA has been successfully applied

for the first time to complex gas- and particle-phase compo-

sition spectra of a wide range of BVOC and mesocosm envi-

ronmental simulation chamber photooxidation experiments.

The results show that the oxidised gas-phase atmosphere (i.e.

the integrated reaction coordinate) of each different structural

type of BVOC can be classified into a distinct group accord-

ing to the controlling chemistry and the products formed. In-

deed, a potential major strength of the data analysis method-

ology described here, could lie in the decoding of mecha-

nisms into pathways (i.e. separation within a group on ac-

count of different underlying chemistry) and consequently

linking chemical pathways to precursor compounds. Further-

more, the methodology was similarly able to differentiate

between the types of SOA particles formed by each differ-

ent class of terpene, both in the detailed and broad chemical

composition spectra. In concert, these results show the dif-

ferent SOA formation chemistry, starting in the gas-phase,

proceeding to govern the differences between the various ter-

pene particle compositions.

The ability of the methodology employed here to effi-

ciently and effectively “data mine” large and complex data

sets becomes particularly pertinent when considering that

modern instrumentation/techniques produce large quantities

of high-resolution temporal and speciated data over poten-

tially long observation periods. Such statistical mapping

of organic reactivity offers the ability to simplify complex

chemical data sets and provide rapid and meaningful insight

into detailed reaction systems comprising hundreds of reac-

tive species. Moreover, the demonstrated methodology has

the potential to assist in the evaluation of (chamber and real-

world) modelling results, providing easy to use, comprehen-

sive observational metrics with which to test and evaluate

model mechanisms and outputs, and thus help advance our

understanding of complex organic oxidation chemistry and

SOA formation.

The Supplement related to this article is available online

at doi:10.5194/acp-15-8077-2015-supplement.
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