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Summary. We conduct a quasi-Monte-Carlo comparison of the recent developments in para-
metric and semiparametric regression methods for healthcare costs, both against each other
and against standard practice. The population of English National Health Service hospital
in-patient episodes for the financial year 2007–2008 (summed for each patient) is randomly
divided into two equally sized subpopulations to form an estimation set and a validation set.
Evaluating out-of-sample using the validation set, a conditional density approximation estima-
tor shows considerable promise in forecasting conditional means, performing best for accuracy
of forecasting and among the best four for bias and goodness of fit. The best performing model
for bias is linear regression with square-root-transformed dependent variables, whereas a gen-
eralized linear model with square-root link function and Poisson distribution performs best in
terms of goodness of fit. Commonly used models utilizing a log-link are shown to perform badly
relative to other models considered in our comparison.
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1. Introduction

The distribution of healthcare costs provides many challenges to the applied researcher: values

are non-negative (often with many observations with costs of 0), heteroscedastic, positively

skewed and leptokurtic. Although these, or similar, challenges are found within many areas of

empirical economics, the large interest in modelling healthcare costs has driven the development

of an expanding array of estimation approaches and provides a natural context to compare

methods for handling heavy-tailed and non-normal distributions. For an excellent review of

statistical methods for the analysis of healthcare cost data with an emphasis on data collected

alongside randomized trials, see Mihaylova et al. (2011). Econometric models of healthcare

costs include applications to risk adjustment in insurance schemes (Van de Ven and Ellis, 2000),
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in devolving budgets to healthcare providers (e.g. Dixon et al. (2011)), in studies calculating

attributable healthcare costs to specific health factors or conditions (Johnson et al., 2003; Cawley

and Meyerhoefer, 2012) and in identifying treatment costs in health technology assessments

(Hoch et al., 2002).

In attempting to capture the complex distribution of healthcare costs, two broad modelling

approaches have been pursued. The first consists of flexible parametric models—distributions

such as the three-parameter generalized gamma and the four-parameter generalized beta of the

second kind distributions. This approach is attractive because of the range of distributions that

these models encompass, whereas models with fewer parameters are inherently more restrictive,

especially in regard to the assumptions that they impose on higher moments of the distribution

(e.g. skewness and kurtosis). The second is the use of semiparametric models including extended

estimating equations (EEEs), finite mixture models and conditional density approximation

estimators. The EEE model adopts the generalized linear models (GLMs) framework and al-

lows for the link and distribution functions to be estimated from data, rather than specified

a priori. Finite mixture models introduce heterogeneity (both observed and unobserved) through

mixtures of distributions. Conditional density approximation estimators are implemented by

dividing the empirical distribution into discrete intervals and then decomposing the conditional

density function into ‘discrete hazard rates’. Despite the burgeoning availability of healthcare

costs data via administrative records, together with an increased necessity for policy makers

to understand the determinants of healthcare costs and more, it is surprising that no previous

study compares comprehensively the models belonging to these two strands of literature. In this

paper we compare these approaches both with each other and against standard practice: linear

regression on levels, and on square-root and log-transformations, of costs and GLMs.

Traditional Monte Carlo simulation approaches would not be appropriate for such an exten-

sive comparison, as we are interested in a very large number of permutations of assumptions

underlying the distribution of the outcome variable. In addition, such studies are prone to

affording advantage to certain models arising from the chosen distributional assumptions

that are used for generating data. Instead, using a large administrative database consisting

of the population of English National Health Service (NHS) hospital in-patient users for the

year 2007–2008 (6164114 unique patients), we adopt a quasi-Monte-Carlo approach where

regression models are estimated on observations from one subpopulation and evaluated on

the remaining subpopulation. This enables us to evaluate the regression methods in a rigorous

and consistent manner—while ensuring that results are not driven either by overfitting to rare

but influential observations, or traditional Monte Carlo distributional assumptions—and are

generalizable to hospital in-patient services.

This paper compares and contrasts systematically these recent developments in semi-

parametric and fully parametric modelling both against each other and against standard prac-

tice. More strictly speaking, these recent developments are those that have featured in a Monte

Carlo, cross-validation or quasi-Monte-Carlo empirical comparative study. An example of a

promising method that is not compared is the extension to GLMs that was proposed by Holly

et al. (2011)—the fourth-order pseudo-maximum-likelihood method—which has been applied

to healthcare costs in Holly (2009). No comprehensive empirical comparison of these methods

is currently present in existing literature and, given the number of choices that are available for

modelling heavy-tailed, non-normal data, this study makes an important contribution towards

forming a ranking of possible approaches (for a similar study comparing propensity score meth-

ods, see Huber et al. (2013)). The focus of this paper is the performance of these models in terms

of predicting the conditional mean, given its importance in informing policy in healthcare and

its prominence in comparisons between econometric methods in healthcare cost regressions.
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Under certain circumstances this is justified, for instance if the policy maker has a sufficiently

large budget (Arrow and Lind, 1970). Other features of the distribution may be of interest (Van-

ness and Mullahy, 2007), especially when the policy maker has a smaller budget to allocate to

healthcare. Given our focus, we analyse bias, accuracy and goodness of fit of forecasted condi-

tional means. We find that no model performs best across all metrics of evaluation. Commonly

used approaches—linear regression on levels of costs, linear regression on log-transformed

costs, the use of gamma GLMs with log-link, and the use of the log-normal distribution—are

not among the four best performing approaches with any of our chosen metrics. Our results

indicate that models that are estimated with a square-root link perform much better than those

with log- or linear link functions. We find that linear regression with a square-root-transformed

dependent variable is the best performing model in terms of bias; the conditional density

approximation estimator (using a multinomial logit) for accuracy and the Poisson GLM with

square-root link best in terms of goodness of fit.

2. Previous comparative studies

Various studies have compared the performance of regression-based approaches to modelling

healthcare cost data, where model performance is assessed on either actual costs (i.e. costs

with an unknown true distribution) (Deb and Burgess, 2003; Veazie et al., 2003; Buntin and

Zaslavsky, 2004; Basu et al., 2006; Hill and Miller, 2010; Jones et al., 2014) or simulated costs

from an assumed distribution (Basu et al., 2004; Gilleskie and Mroz, 2004; Manning et al.,

2005). Using actual costs preserves the true empirical distribution of cost data, and all of its

complexities, whereas simulating costs provides a benchmark using the known parameters of the

assumed distribution (classic Monte Carlo sampling) against which models can be compared.

Studies based on the classic Monte Carlo design are therefore ideally suited to assessing

whether or not regression methods can fit data when specific assumptions, and permutations

thereof, are imposed or relaxed. The complexities of the observed distribution of healthcare costs

are such that a comprehensive comparison of modelling approaches would require an infeasibly

large number of permutations of distributional assumptions used to generate data to make a

classic Monte Carlo simulation worthwhile. Choosing a subset of the possible permutations of

assumptions is prone to cause bias in the results in favour of certain methods. A reliance on

actual data, as an alternative approach, requires large data sets so that forecasting is evaluated on

sufficient observations to reflect credibly all of the idiosyncratic features of cost data. With this

approach, however, it is difficult to assess exactly which aspect of the distribution of healthcare

costs is problematic for each method under comparison.

2.1. Studies using cross-validation approaches

With improvements in computational capacity, there have recently been several studies using

large data sets to perform quasi-Monte-Carlo comparisons across regression models for health-

care costs. Quasi-Monte-Carlo comparisons divide the data into two groups, with samples

repeatedly drawn from one group and models estimated, whereas the other group is used to

evaluate out-of-sample performance (using the coefficients from the estimated models). In this

section, we briefly review work that has implemented quasi-Monte-Carlo comparisons (Deb

and Burgess, 2003; Jones et al., 2014, 2015) as well as discuss related approaches and important

results.

Deb and Burgess (2003) examined several models to predict healthcare expenditures by

using a quasi-Monte-Carlo approach with data from the US Department of Veterans Affairs
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comprised of approximately 3 million individual records. From within these observations a

subgroup of 1.5 million individual records was used as an ‘estimation’ group and another sub-

group of 1 million records formed a ‘prediction’ group. Their results highlight a trade-off between

bias and precision, and the need for caution surrounding the use of finite mixture models at

smaller sample sizes. In terms of bias, they found that linear regression (on levels and square-

root-transformed levels of costs) performs best, whereas in terms of accuracy models based on

a gamma density have better performance. Jones et al. (2014) focused exclusively on parametric

models and suggested the use of the generalized beta of the second kind model as an appropriate

distribution for healthcare costs. Their quasi-Monte-Carlo design compared this distribution

together with its nested and limiting cases, including the generalized gamma model. Using data

from hospital episode statistics split into ‘estimation’ and ‘validation’ sets, they found little

evidence that the performance of models varies with sample size, but they found variation be-

tween models in their ability to forecast mean costs, with the generalized gamma distribution

the most accurate and the beta of the second kind distribution the least biased. Jones et al.

(2015) also adopted the quasi-Monte-Carlo design but focused entirely on estimating and fore-

casting based on the cumulative distribution function and not on the conditional mean of the

distribution.

Hill and Miller (2010) and Buntin and Zaslavsky (2004) also used cross-validation techniques

so that models are estimated on samples of data and evaluated on the remaining observations.

Samples for estimation and the remaining data for evaluation differ across replications such

that, unlike a quasi-Monte-Carlo design, individuals may fall into either the estimation sample

or the validation sample at each replication. This approach is less data intensive and providing

sufficient replications should produce sufficient information in the evaluation exercise to judge

model performance. The approaches are similar in that they both replicate the sampling process

to ensure that there is no ‘lucky split’ and guard against overfitting by evaluating out of sample.

An alternative approach was considered in Veazie et al. (2003) where models were estimated

on samples of observations belonging to 1992–1993 and evaluated on 1993–1994 observations.

This is closer to the quasi-Monte-Carlo design and could potentially evaluate on data with a

different underlying generating process, since they are from a different time period. Out-of-

sample performance was also used as one metric in Basu et al. (2006) where they undertook

tests of overfitting (Copas, 1983).

2.2. Recent developments in semiparametric and fully parametric modelling

Table 1 outlines the literature comparing regression models for healthcare costs as described

above. As shown, there is no study that comprehensively and systematically evaluates all

recent developments in approaches. In addition, any synthesis of the existing literature would

be inconclusive in terms of which method is most appropriate for an application. Among the

semiparametric methods, the EEE model has never been directly compared in a rigorous evalu-

ation against any of the finite mixture models. They have both separately been compared against

standard practice (transformed dependent variable regression and GLMs) in Basu et al. (2006),

and in Hill and Miller (2010) and Deb and Burgess (2003) for EEE and finite mixture models

respectively. The conditional density approximation estimator, so far, has not been compared

with other healthcare cost regression models using actual data, although evidence from Monte

Carlo studies suggests that it is a versatile approach (compared with standard practice meth-

ods) (Gilleskie and Mroz, 2004). Jones et al. (2014) introduced the use of the flexible parametric

generalized beta of the second kind distribution with healthcare cost regressions and com-

pared this against the generalized gamma distribution, which is a limiting case of the former.
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Table 1. Models included in recent published comparative work

Method Studies using Monte Carlo Studies using cross-validation Studies using quasi-Monte-
methods Carlo methods

Veazie Buntin and Basu Hill and
Basu Gilleskie Manning et al. Zaslaysky et al. Miller Deb and Jones This
et al. and Mroz et al. (2003) (2004) (2006) (2010) Burgess et al. study

(2004) (2004) (2005) (2003) (2013)

Linear regression � � � � �

Linear regression (logarithmic) � � � � � �

Linear regression (square root) � � � �

Log-normal � � � �

Gaussian GLM � †
Poisson � � �

Gamma � � � � � � � � �

EEE models � � �

Weibull � � � ‡
Generalized gamma � � � �

Generalized beta of the second kind � �

Finite mixture of gamma
distributions

� �

Conditional density estimator � �

†Not commonly used and problematic in estimation for our data in preliminary work.
‡A special case of generalized gamma and generalized beta of the second kind distributions which are included in our analysis.
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Given an increasing interest in modelling healthcare costs for resource allocation, risk adjust-

ment and identifying attributable treatment costs, together with the burgeoning availability of

data through administrative records, a comprehensive and systematic comparison of available

approaches is timely. The results of this comparison will have resonance beyond healthcare

costs and should be of interest to empirical applications to other right-skewed, leptokurtic or

heteroscedastic distributions such as income and wages.

3. Specification of models

We compare 16 models that are applicable to healthcare cost data. Each makes different assump-

tions about the distribution of the outcome (cost) variable. Each regression uses the same vector

of covariates Xi, although the precise way in which they affect the distribution varies across mod-

els. The covariates included are age, age2, age3, gender, genderÅage, genderÅage2, genderÅage3

and 24 morbidity markers indicating the presence or absence, coded 1 and 0 respectively, of

one or more spells with any diagnosis within the relevant subset of version 10 international

classification of diseases (ICD) codes (the 24 groupings were determined on the basis of clinical

factors and initial letter of the ICD code; see the on-line appendix A for more details). All

models specify at least one linear index of covariates X′
iβ. In addition, linear regression meth-

ods with transformed outcome require assumptions surrounding the form of heteroscedasticity

(modelled as a function of Xi), to retransform predictions onto the natural cost scale (Duan,

1983). Within the GLM family, we explicitly model the mean and variance functions as some

transformation of the linear predictor (Blough et al., 1999). Fully parametric distributions, such

as the gamma and beta family of models, require an assumption about the form of the entire

distribution. In this paper, a single parameter is estimated as a function of the linear index.

Finite mixture models allow for multiple densities, each a function of the covariates in linear

form. For conditional density approximation estimator models, the empirical distribution of

costs is divided into intervals, and functions of the independent variables predict the probability

of lying within each interval.

Beginning with linear regression, we estimate three models by using ordinary least squares

(OLS): the first is on the level of costs; the second and third use a log- and square-root-

transformed dependent variable respectively (log-transformation is more commonly used in

the literature (Jones, 2011)). With these approaches, predictions are generated on a transformed

scale, and it is necessary to calculate an adjustment to retransform predictions to their natural

cost scale. This is done by applying a smearing factor, which varies according to covariates in the

presence of heteroscedasticity (Duan, 1983). Residuals from the first regression of transformed

healthcare cost against covariates are transformed by using the link function. Regressing the

transformed residual against the covariates and taking these predicted values gives each obser-

vation’s smearing factor.

Given the complications in retransformation in the presence of heteroscedasticity, researchers

more frequently use methods that estimate on the natural cost scale and explicitly model the

variance as a function of covariates. The dominant approach that achieves these aims is the

use of GLMs (Blough et al., 1999). There are two components to a GLM: the first is a link

function that relates the index of covariates to the conditional mean, and the second is a dis-

tribution function that describes the variance as a function of the conditional mean. These are

estimated simultaneously, using pseudo- or quasi-maximum-likelihood, leading to estimates

that are consistent provided that the mean function is correctly specified. Typically, the link

function in applied work takes the form of a log- or square-root function. In this paper we

consider two types of distribution function, each a power function of the conditional mean. In
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the Poisson case, the variance is proportional to the conditional mean function of covariates

and in the gamma case the variance is proportional to the conditional mean squared. Two of

the combinations of link functions and distribution families are associated with commonly used

distributions. In particular, the GLM with log-link and gamma variance is commonly applied

to healthcare costs, and the GLM with a log-link and Poisson variance is associated with the

Poisson model (see the discussion in Mullahy (1997)).

3.1. Flexible parametric models

Within the GLM and OLS approaches, much focus is placed on heteroscedasticity and the

form that it takes. Recent developments in fully parametric modelling have been made where

the modelling of higher moments, skewness and kurtosis is tackled explicitly. With this approach,

the researcher estimates the entire distribution by using maximum likelihood, which requires

that the distribution is correctly specified for consistent results. If the distribution is correctly

specified, then estimates are efficient.

3.1.1. Generalized gamma model

We estimate two models from within the gamma family, which have typically been used for

durations, but also have precedent in the healthcare costs literature (Manning et al., 2005): the

log-normal and generalized gamma distributions. Each of these is estimated, using maximum

likelihood, with a scale parameter specified as an exponential function of covariates, denoted

exp.X′
iβ/. The probability density function and conditional mean for the generalized gamma

distribution are

f.yi|Xi/=
κ[κ−2{yi=exp .X′

iβ/}κ=σ]κ
−2

exp [−κ−2{yi=exp .X′
iβ/}κ=σ]

σyi Γ.κ−2/
, .1/

E.yi|Xi/= exp.X′
iβ/κ2σ=κ Γ.κ−2 +σ=κ/

Γ.κ−2/
.2/

where σ is a scale parameter, κ is a shape parameter and Γ.·/ is the gamma function.

When κ → 0 the generalized gamma distribution approaches the limiting case of the log-

normal distribution, for which the probability density function and conditional mean are

f.yi|Xi/=
1

σyi

√
.2π/

exp

[

−{ln.yi/−X′
iβ}2

2σ2

]

, .3/

E.yi|Xi/= exp.X′
iβ/exp

(

σ2

2

)

: .4/

3.1.2. Generalized beta of the second kind distribution

We also include the generalized beta of the second kind distribution, which has yet to be com-

pared with a broad range of regression models (in Jones et al. (2014), beta-type models were

limited to comparison with gamma-type distributions). Beta-type models, like gamma-type

models, require assumptions about the form of the entire distribution. Until recently, they have

been used largely in actuarial applications, as well as for the modelling of incomes (Cummins

et al., 1990; Bordley et al., 1997). However, they have been suggested for use with healthcare

costs because of their ability to model heavy tails, e.g. in Mullahy (2009), and they have been used

with healthcare costs in Jones et al. (2014). We include the generalized beta of the second kind
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distribution, since all beta-type (and gamma-type) distributions are nested or limiting cases of

this distribution. It therefore offers the greatest flexibility in terms of modelling healthcare costs

among the duration models that are used here: see for example the implied restrictions on skew-

ness and kurtosis (McDonald et al., 2013). The probability density function and conditional

mean are

f.yi/=
ay

ap−1
i

b.Xi/apB.p, q/[1+{yi=b.Xi/}a]p+q
, .5/

E.yi|Xi/=b.Xi/

{

Γ.p+1=a/Γ.q−1=a/

Γ.p/Γ.q/

}

.6/

where a is a scale parameter, p and q are shape parameters and B.p, q/=Γ.p/Γ.q/=Γ.p+q/ is

the beta function.

We parameterize the generalized beta of the second kind distribution with the scale parameter

b as two different functions of covariates: a log-link and a square-root link.

3.2. Semiparametric methods

3.2.1. Extended estimating equations

A flexible extension of GLMs has been proposed by Basu and Rathouz (2005) and Basu et al.

(2006), which is known as the EEE model. It approximates the most appropriate link by using

a Box–Cox function, where λ=0 implies a log-link and λ=0:5 implies a square-root link:

E.yi|Xi/= .λX′
iβ +1/1=λ .7/

as well as a general power function to define the variance with constant of proportionality θ1

and power θ2:

var.yi|Xi/=θ1E.yi|Xi/
θ2 : .8/

Suppose that the distribution of the outcome variable is unknown but has mean and variance

nested within equations (7) and (8). An incorrectly specified GLM mean function, where com-

mon usage of GLM mean functions is limited to standard forms such as log- and square-root

link functions, yields biased and inconsistent estimates, whereas estimates from EEE models

should be unbiased, provided that the specification of regressors is correct. A well-specified

mean function combined with an incorrectly specified distribution form will be inefficient com-

pared with EEE models. If the distribution is known to be a specific GLM form, the EEE model

is less efficient than the appropriate GLM, but both are unbiased.

3.2.2. Finite mixture models

Finite mixture models have been employed in health economics to allow for heterogeneity both

in response to observed covariates and in terms of unobserved latent classes (Deb and Trivedi,

1997). Heterogeneity is modelled through a number of components, denoted C, each of which

can take a different specification of covariates (and shape parameters, where specified), written

as fj.yiXi/, and where there is a parameter for the probability of belonging to each component,

πj. The general form of the probability density function of finite mixture models is

f.yi|Xi/=
C
∑

j

πjfj.yi|Xi/: .9/
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We use two gamma distribution components in our comparison. Preliminary work showed

that models with a greater number of components led to problems with convergence in estima-

tion. Empirical studies such as Deb and Trivedi (1997) provide support for the two-components

specification for healthcare use. In one of the models used, we allow for log-links in both com-

ponents (10), and in the other we allow for a square-root link (11). In both, the probability of

class membership is treated as constant for all individuals and a shape parameter αj is estimated

for each component:

fj.yi|Xi/=
y

αj

i

yi Γ.αj/exp.X′
iβj/

αj
exp

{

−
yi

exp.X′
iβj/

}

, .10/

fj.yi|Xi/=
y

αj

i

yi Γ.αj/.X′
iβj/2αj

exp

{

−
yi

.X′
iβj/2

}

: .11/

The conditional mean is given for the log-link specification and for the square-root link by

equations (12) and (13) respectively:

E.yi|Xi/=
C
∑

j

πjαj exp .X′
iβj/, .12/

E.yi|Xi/=
C
∑

j

πjαj.X′
iβj/2: .13/

Unlike the models in the previous section, this approach can allow for a multimodal distri-

bution of costs. In this way, finite mixture models represent a flexible extension of parametric

models (Deb and Burgess, 2003). Using increasing numbers of components, it is theoretically

possible to fit any distribution, although in practice researchers tend to use few components

(two or three) and achieve good approximation to the distribution of interest (Heckman, 2001).

3.2.3. Conditional density approximation estimators

Finally, we use two additional models that are applications of the conditional density approxi-

mation estimator that was outlined in Gilleskie and Mroz (2004). Their method is an extension

of the two-part model that is frequently used to deal with zero costs, in that the range of outcome

variable is divided into Q parts (or intervals), where the mean (of observations to be used in

estimation) within interval j (j = 1, : : : , Q) is yj and the lower and upper threshold values are

yj−1 and yj respectively (where y0 is equal to the lowest observed cost and yQ is equal to the

highest observed cost). The probability that an observation falls into interval j can be written

as

pij.Xi/=P.yj−1 �yi <yj|Xi/=
∫ yj

yj−1

f.yi|Xi/dyi: .14/

The density function is then approximated by Q ‘discrete hazard rates’, defined as the prob-

ability of lying in interval j conditionally on not lying in intervals 1, : : : , j − 1 and written as

λ.j, Xi/:

λ.j, Xi/=P.yj−1 �yi <yj|Xi, yi �yj−1/=

∫ yj

yj−1

f.yi|Xi/dyi

1−
∫ yj−1

y0

f.yi|Xi/dyi

: .15/
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The effect of covariates can vary smoothly, or discontinuously, across intervals depending

on how the model is specified: with the most flexible case using a separate model for each

interval’s hazard rate. We assume that only the probability of lying within an interval depends

on covariates, and that the mean value of the outcome variable, for a given interval, does not

vary with covariates. The conditional mean function is therefore obtained by using

E.yi|Xi/=
Q
∑

j=1

pij.Xi/yj: .16/

One of the main benefits of this approach is the flexibility that is afforded with respect to

the intervals that are used. There is flexibility in terms of the number of intervals, and where

the boundaries between them are placed, as well as the degree to which the ‘discrete hazard

rates’ are estimated separately for each interval. Within our illustration, we use 15 equally

sized intervals across all samples. Gilleskie and Mroz (2004) in their application to healthcare

costs found that between 10 and 20 intervals result in a good approximation, based on an

adjusted log-likelihood to guard against overfitting, and we found that 15 intervals resulted in

good convergence performance in preliminary work. In practice, a researcher would experiment

with different intervals and compare model performance to decide on the specification. Having

decided on the intervals to be used, we use a multinomial logit specification and an ordered

logit specification to model the probabilities of lying within each interval. This differs from the

less parametric single-logit specification that was adopted in Gilleskie and Mroz (2004), which

is more computationally demanding, and instead uses an approach similar to that of Han and

Hausman (1990). The multinomial logit specification is similar to running a separate logit model

for each ‘discrete hazard rate’, whereas the ordered logit specification is analogous to allowing

the discrete hazard rate to vary discontinuously for each interval but with no discontinuity in

the effects of covariates. Fully adhering to Gilleskie and Mroz (2004) would allow the data to

determine how flexibly to estimate the discrete hazard rates; once again our implementation is

a simpler approach which approximates their method:

pij.Xi/=
exp.X′

iβj/

Q
∑

l=1

exp.X′
iβl/

.17/

where β1 =0 to normalize for estimation purposes

pij.Xi/=
exp.ψj −X′

iβ/

1+ exp.ψj −X′
iβ/

−pij−1 .18/

where ψj represents the estimated threshold value for each category from the ordered logit

model, pi0 = 0 and pi15 = 1 −pi14, so we estimate only 14 threshold values (in our application

Q=15).

Conditional means from these models are calculated as in equation (16), where the probabili-

ties pij are calculated by using equation (17) for the multinomial logit specification and equation

(18) for the ordered logit specification.

4. Data and choice of variables

Our study uses individual level data from the English hospital episode statistics (for the financial

year 2007–2008). This data set contains information on all in-patient episodes, out-patient visits

and accident and emergency department attendances for all patients admitted to English NHS
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Table 2. Descriptive statistics for hospital costs

Statistic Results for Results for Results for
full data set estimation set validation set

N 6164114 3082057 3082057
Mean £2610 £2610 £2610
Median £1126 £1126 £1126
Standard deviation £5088 £5090 £5085
Skewness 13:03 12:94 13:13
Kurtosis 36318 347:06 379:36
Maximum £604701 £476458:3 £604701
99th percentile £19015 £19074 £18955
95th percentile £8956 £8943 £8969
90th percentile £6017 £6010 £6025
75th percentile £2722 £2721 £2722
25th percentile £610 £610 £610
10th percentile £446 £446 £446
5th percentile £407 £407 £407
1st percentile £347 £347 £347
Minimum £217 £217 £217

hospitals (Dixon et al., 2011). For our study, we exclude spells which were primarily mental or

maternity healthcare, as well as private sector spells. This data set was compiled as part of a

wider project considering the allocation of NHS resources to primary care providers. Since much

mental healthcare is undertaken in the community and with specialist providers, and hence is

not recorded in the hospital episode statistics, the data are incomplete, and also since healthcare

budgets for this type of care are constructed by using separate formulae. Maternity services

are excluded since they are unlikely to be heavily determined by morbidity characteristics, and

accordingly for the setting of healthcare budgets are determined by using alternative mecha-

nisms. The hospital episode statistics database is a large administrative data set collected by the

Health and Social Care Information Centre (now named the NHS Information Centre), with

our data set comprising 6164114 separate observations, representing the population of hospital

in-patient healthcare users for the year 2007–2008. Since data are taken from administrative

records, we have information only on users of in-patient NHS services, and therefore we can

only model strictly positive costs (0s are typically handled by a two-part specification and the

main challenge is to capture the long and heavy tail of the distribution rather than the 0s).

The cost variable that is used throughout is individual patient annual NHS hospital cost

for all spells finishing in the financial year 2007–2008. To cost utilization of in-patient NHS

facilities, tariffs from 2008–2009 (reference costs for 2005–2006, which were the basis for the

tariffs from 2008–2009, were used when 2008–2009 tariffs were unavailable) were applied to the

most expensive episode within the spell of an in-patient stay (following standard practice for

costing NHS activity). Then, for each patient, all spells within the financial year were summed.

The data are summarized in Table 2.

The challenges of modelling cost data are clearly observed in Table 2: the observed costs are

heavily right hand skewed, with the mean far in excess of the median, and are highly leptokurtic.

Placement in the estimation and validation subsets was determined by a random split and as

seen in Table 2 there are only small differences in the summary statistics of the sets of observa-

tions. In particular, the ‘lumpy’ nature of the data—due to many mass points arising from the
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Fig. 1. Variance against mean for each of the 20 quantiles of the linear index of covariates: the data were
divided into 20 subsets by using the deciles of a simple linear predictor for healthcare costs with the set of
regressors introduced later; the figure plots the means and variances of actual healthcare costs for each of
these subsets, with fitted linear and quadratic trends

data-generating process—can be seen from the number of percentiles that are the same across

both subsets.

We construct a linear index of covariates (by regressing the outcome variable on the set of

covariates that we include in our regression models by using OLS) and divide the data into

quantiles according to this, to analyse conditional (on X) distributions of the outcome variable.

First, we plot the variances of each quantile against their means (Fig. 1). This gives us a sense

both of the nature of heteroscedasticity and of feasible assumptions relating these aspects of

the distribution. From Fig. 1, we can see that there is evidence against homoscedasticity (where

there would be no visible trend), and evidence for some relationship between the variance and

the mean. A similar analysis can be carried out for higher moments of the distribution, plotting

the kurtosis of each quantile against their skewness. Parametric distributions impose restrictions

on possible skewness and kurtosis: one-parameter distributions are restricted to a single point

(for example a normal distribution imposes a skewness of 0 and a kurtosis of 3), two-parameter

distributions allow for a locus of points to be estimated and distributions with three or more

parameters allow for spaces of possible skewness and kurtosis combinations. For further details

see Holly and Pentsak (2006), Pentsak (2007), McDonald et al. (2013) and Jones et al. (2015).

All the models in the quasi-Monte-Carlo comparison use a specified vector of covariates

and have at least one linear index of these. This vector mirrors the practice in the literature

regarding comparing econometric methods for healthcare costs, allowing models to control

for age (as well as age squared and age cubed), gender (interacted fully with age terms) and

morbidity characteristics (from ICD classifications). Morbidity information is available through

the hospital episode statistics data set, adapted from the ICD version 10 chapters (World Health

Organization, 2007)—see the on-line appendix A for further details. Each of the 24 morbidity

markers indicates the presence or absence, coded 1 and 0 respectively, of one or more spells with
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any diagnosis within the relevant subset of ICD version 10 chapters, during the financial year

2007–2008 (see appendix A). We do not use a fully interacted specification, since morbidity is

modelled with a separate intercept for the presence of each type of diagnosis (and not interacted

with age or gender). However, we do allow for interactions between age and its higher orders

and gender. This means that we are left with a specification that is close to those used in the

comparative literature as well as a parsimonious version of the set of covariates that are used

to model costs in person-based resource allocation in England, as in, for example, Dixon et al.

(2011). In addition, making the specification less complicated aids computation and results in

fewer models failing to converge.

5. Methodology

5.1. Quasi-Monte-Carlo design

By using the hospital episode statistics data, we have access to a large amount of observations

representing the whole population of English NHS in-patient costs. To exploit this, we use a

quasi-Monte-Carlo design similar to that of Deb and Burgess (2003). The population of obser-

vations (6164114) is randomly divided into two equally sized subpopulations: an estimation set

(3082057) and a validation set (3082057). From within the estimation set we randomly draw,

100 times with replacement, samples of size Ns (Ns ∈5000, 10000, 50000, 100000). The models

are estimated on the samples and performance then evaluated on the sample drawn from both

the estimation set and the full validation set. Using a split sample to evaluate models has prece-

dent in the comparative literature on healthcare costs; see Duan et al. (1983) and Manning et al.

(1987). Fig. 2 illustrates our study design in the form of a diagram: note that the subscript m

denotes the model used, Ns the sample size used and r the replication number.

To execute this quasi-experimental design, we automate the model selection process for each

approach: for instance, with the conditional density approximation estimator, we specify a

number of bins to be estimated, a priori, rather than undergoing the investigative process that

was outlined in Gilleskie and Mroz (2004). Similarly, all models have been automated to some

extent, since we set a priori the specification of regressors (all models), the parameters that vary

with covariates (generalized gamma and generalized beta of the second kind models) and the

number of mixtures to model (finite mixture models). Our specification of regressors was based

on preliminary work, which showed that alternative specifications, including the use of a count

of the number of morbidities, give similar results, but with worse convergence performance.

5.2. Evaluation of model performance

5.2.1. Estimation sample

Researchers modelling healthcare costs will typically carry out multiple tests to establish the

reliability of their model specification. These tests are carried out in sample and help to inform

the selection of models that will then be used for predictive purposes. They are commonly

used to build the specification of the ‘right-hand side’ of the regression: the covariates used and

interactions between them. In addition, researchers working with healthcare costs use these tests

to establish the appropriate link function between covariates and expected conditional mean,

and other assumptions about functional form. We include results from the Pearson correlation

coefficient test, which is simple to carry out and has intuitive appeal. Results from Pregibon

link, Ramsey RESET and modified Hosmer–Lemeshow tests, in preliminary work, were found

to display the same pattern as the Pearson correlation coefficient test, but with smaller variation

in rejection rates across the different models. To carry out the Pearson correlation coefficient
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Full data set (n= 6,164,114)

Random allocation

Estimation set (n= 3,087,057) Validation set (n= 3,087,057)

Estimate models ( )

Four sample sizes (draws with

replacement)

Multiple replications at each sample size

( )

Pearson correlation test

Forecasts generated using

estimated parameters.

Full validation set used to

calculate:

MPE

MAPE

RMSE

ADMPE

Fig. 2. Diagram setting out the study design

test, residuals (computed on the raw cost scale) are regressed against predicted values of cost.

If the slope coefficient on the predicted costs is significant, then this implies a detectable linear

relationship between the residuals and the covariates, and so evidence of model misspecification.

5.2.2. Validation set

We use our models to estimate forecasted mean healthcare costs over the year for individu-

als (ŷV
i = ̂E.yV

i |XV
i /— computed by using coefficients from models estimated on the estimation

set (for example for linear regression E. ̂yV
i |XV

i /= α̂E + β̂EXV
i )—where V denotes that the obser-

vation is from the validation set, and we evaluate performance on metrics designed to reflect

the bias (mean prediction error (MPE), MPEmsr =Σ.yi − ŷi/=Ns), accuracy (mean absolute pre-

diction error (MAPE), MAPEmsr =Σ|yi − ŷi|=Ns) and goodness of fit (root-mean-square error
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(RMSE), RMSEmsr =
√

{Σ.yi − ŷi/
2=Ns}) of these forecasts. The MPE can be thought of as

measuring the bias of predictions at an aggregate level, where positive and negative errors can

cancel each other out, whereas the MAPE is a measure of the accuracy of individual predic-

tions. The RMSE is similar to the MAPE in that positive and negative errors do not cancel

out; however, larger errors count for disproportionately more, since they are squared. In ad-

dition, we evaluate the variability of bias across replications (absolute deviations of the mean

prediction error (ADMPE), ADMPEmsr = |MPEmsr −Σ
R
r=1MPEmsr=R|). These are all evalu-

ated on the full validation set, where m denotes the model used, s the sample size used and r the

replication.

Only replications where all 16 models are successfully estimated on the sample are included

for evaluation, and model performance according to each criterion is calculated as an average

over all included replications, e.g. MPEms =Σ
R
r=1MPEmsr=R. All models estimated successfully

every time, except for the CDEM and EEE models. CDEM could not be estimated on two of

the 100 replicates with samples of 5000 observations. The EEE models could not be estimated

on four, four, six and four of the 100 replicates with sample sizes of 5000, 10000, 50000 and

100000 observations respectively.

To obtain a greater insight into the performance of different distributions, we evaluate

forecasted conditional means at different values of the covariates. In practice this is done by

partitioning the fitted values of costs into deciles. We assess the MPE and MAPE for deciles

of predicted costs, since there is concern that models perform with varying success at dif-

ferent points in the distribution. Models designed for heavy tails, for instance, might be ex-

pected to perform better in predicting the biggest costs. This also represents a desire to fit the

distribution of costs for different groups of observations according to their observed covari-

ates.

We combine the results that we obtain from different sample sizes Ns and attempt to find

a pattern in the way in which models perform as the sample size varies. To do this we con-

struct response surfaces (as in, for example, Deb and Burgess (2003)). These are polynomial

approximations to the relationship between the statistics of interest and the sample size of the

experiment, Ns. For our purposes, we estimate the following regression for each model and for

each metric of performance (illustrated below for the MPE):

MPEmsr =αMPE
m +βMPE

m

1

Ns

+uMPE
msr : .19/

We specify the relationship between the MPE and the inverse of the sample size, reflecting that

we expect reduced bias as the number of observations increases. In particular, the value of αMPE
m

represents the value of the MPE to which the model approaches asymptotically with increasing

sample size: testing whether or not this is statistically significant from 0 gives an indication of

whether the estimator is consistent. Here, uMPE
msr represents the error term from the regression.

For the metrics that cannot be negative, we use the log-function of the value as the dependent

variable. With the log-specification, differences in estimates are to be interpreted as percentage

differences, as opposed to absolute differences.

6. Results and discussion

To begin, we consider the results from the smallest samples that we draw from the estimation set

(5000 observations). Results from larger samples are analysed by way of the response surfaces

which we present later. Table 3 is a key for the labels that we use for each model in discussion of

the results.
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Table 3. Key for model labels

OLS Linear regression
LOGOLSHET Transformed linear regression (logarithmically), heteroscedastic smearing factor
SQRTOLSHET Transformed linear regression (square-root), heteroscedastic smearing factor
GLMLOGP GLM, log-link, Poisson-type family
GLMLOGG GLM, log-link, gamma-type family
GLMSQRTP GLM, square-root link, Poisson-type family
GLMSQRTG GLM, square-root link, gamma-type family
LOGNORM Log-normal
GG Generalized gamma
GB2LOG Generalized beta of the second kind, log-link
GB2SQRT Generalized beta of the second kind, square-root link
FMMLOGG Two-component finite mixture of gamma densities, log-link
FMMSQRTG Two-component finite mixture of gamma densities, square-root link
EEE EEE method
CDEM Conditional density approximation estimator (multinomial logit)
CDEO Conditional density approximation estimator (ordered logit)

6.1. Estimation sample results

We first conduct tests of misspecification across the models used. Researchers use these tests to

inform the specification of regressors, and the appropriateness of distributional assumptions, in

particular the link function. Since we use the same regressors in all models, our tests are used to

inform choices of distributional assumptions. The Pearson correlation coefficient test can detect

whether there is a linear association between the estimated residuals and estimated conditional

means, where the null hypothesis is no association. A lack of this kind of association suggests

evidence against misspecification. It is also possible, however, that the relationship between the

error and covariates is non-linear, which this test cannot detect. Linear regression estimated by

using OLS, by construction, generates residuals that are orthogonal to predicted costs, and so

the Pearson test cannot be applied to this model. The Pearson test represents a simple test that

is practically easy to implement and can be used to compare across different types of model.

Researchers may wish to consider other means to choose between models; for instance Jones

et al. (2014) compared Akaike information criterion and Bayesian information criterion scores,

AIC and BIC. These provide a useful summary of the goodness of fit of the whole distribution on

the scale of estimation, rather than the specification of the conditional mean function on the scale

of interest in the Pearson test. In this context, when comparing parametric and semiparametric

models, it is unclear how AIC and BIC could be calculated without imposing distributional

assumptions on the methods that are not fully parametric.

Table 4 shows that, according to this test, there is less evidence of misspecification when the

model is estimated by using a square-root link function compared with other possible link func-

tions, when all other distributional assumptions are the same. This is also the case in the GLM

family of models, where the link and distribution functions can be flexibly estimated by using

an EEE model, with results indicating that there is less evidence of misspecification with GLM-

SQRTP and GLMSQRTG than the flexible case (on average across replications with sample size

5000, the estimated λ-coefficient in the EEE model was 0.28 with standard deviation of 0.07, in-

dicating a link function between logarithmic and square root). Although the EEE model should

be better specified on the scale of estimation (following, effectively, the transformation of the de-

pendent variable), the retransformation may lead to increased evidence of misspecification on the

scale of interest (levels of costs). Introducing more flexibility in terms of the whole distribution,

generally, appears to have mixed effects on results from this test. In the case of LOGNORM
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Table 4. Percentage of tests rejected at the 5%
significance level, when all converged, 94 con-
verged replications, sample size 5000

Model Pearson test
rejection rate (%)

OLS —
LOGOLSHET 99
SQRTOLSHET 0
GLMLOGP 11
GLMLOGG 99
GLMSQRTP 0
GLMSQRTG 13
LOGNORM 95
GG 89
GB2LOG 96
GB2SQRT 85
FMMLOGG 85
FMMSQRTG 82
EEE 48
CDEM 7
CDEO 1

and GLMLOGG which are special cases of GG, there is the least evidence of misspecification

from the most complicated distribution among the three. There is also evidence of less misspec-

ification with FMMLOGG compared with GLMLOGG, which it nests. Conversely, GG and

LOGNORM are special cases of GB2LOG, for which there is the most evidence of misspecifi-

cation among these three models. Looking at the rejection rates above for FMMSQRTG and

GLMSQRTG, there is more evidence of misspecification in the more flexible case. Finally, the

results from CDEM and CDEO are promising, with little evidence of misspecification compared

with other models tested. This may be because there is no retransformation process onto the

scale of interest for these models.

6.2. Validation set results

All tests in the previous section were carried out on the estimation sample. Given the practical

implementation of the models that are considered here, a researcher may be more interested in

how models perform in forecasting costs out of sample. Results based on the estimation sample

may arise from overfitting the data. Therefore, our main focus is the forecasting performance

out of sample, i.e. evaluation on the validation set.

We look first at performance of model predictions on the whole validation set. Then we con-

sider how well the models forecast for different levels of covariates throughout the distribution,

by analysing performance by decile of predicted costs. Finally, we analyse the out-of-sample

performance with increasing sample size by constructing response surfaces.

Looking at the results in Table 5, where the four best performing models in each category

(MPE, MAPE and RMSE) are in italics, it is clear that some of the most commonly used

models—OLS, LOGOLSHET, GLMLOGG and LOGNORM—do not perform well on any

metric. CDEM is among the models with top four performance in every category, illustrating

the potential advantages of this approach for analysts concerned with any of bias, accuracy

or goodness of fit. Generally, the results also indicate that a square-root link function is the



18 A. M. Jones, J. Lomas, P. T. Moore and N. Rice

Table 5. Results of model performance, when all converged,
sample size 5000, averaged across 94 replications

Model Bias MPE Accuracy Goodness-of-
(£) MAPE (£) fit RMSE

OLS −1:56 1833.49 4475.49
LOGOLSHET −140:53 1816.63 4960.08
SQRTOLSHET 0.11 1725.95 4432.94
GLMLOGP −1.44 1748.43 4557.19
GLMLOGG −147.33 1818.06 4984.86
GLMSQRTP 0.26 1704.77 4426.24
GLMSQRTG 46.71 1689.28 4454.25
LOGNORM 64.25 1734.10 4825.51
GG 44.60 1750.79 4754.22
GB2LOG −63:96 1796.91 4873.13
GB2SQRT 134.84 1686.48 4483.35
FMMLOGG −3:19 1758.06 4782.69
FMMSQRTG 121.80 1690.28 4477.10
EEE −42:31 1727.28 4508.03
CDEM 0.89 1683.40 4444.85
CDEO −10:13 1725.53 4474.84

most appropriate of those featured. Interestingly, the Pearson test conducted on the estimation

sample is shown here to perform well in discriminating between these competing models. This

is encouraging given its ease of implementation and interpretation.

In terms of bias, models which are mean preserving in sample also perform well out of

sample in these results. This is evidenced by the strong performance of OLS, GLMLOGP

and GLMSQRTP, with absolute levels of mean prediction error of £1:56, £1:44 and £0:26

respectively. All models with a square-root link function underpredict costs on average, whereas

some log-link function models underpredict (LOGNORM and GG) and others overpredict

on average (LOGOLSHET, GLMLOGP, GB2LOG and FMMLOGG). SQRTOLSHET and

CDEM perform best and third best respectively, and worst performing is GLMLOGG, which

overpredicts by £147:33 on average (5.64% of the population mean).

With respect to accuracy and goodness of fit, a clear message from the results is that the best

performing link function is the square-root function. The ordering of the other link functions

varies. For accuracy the flexible link function of the EEE model is next best, followed by the

log-link function and then OLS. For goodness of fit OLS is second best, followed by EEE whereas

the log-link model is the worst. There is variation in performance among different models with

the same link function, which we discuss next when considering the gains to increased flexibility.

In addition, CDEM performs very well according to these criteria.

First we consider the gains in using a mixture of gamma distributions, over the nested single-

gamma-distribution models. Looking at the results for GLMLOGG and FMMLOGG, the

mixture improves forecasting performance in terms of bias, accuracy and goodness of fit. This

is also observed in results from other sample sizes (see the on-line appendix B). As discussed

earlier, the gains to this increased flexibility are insufficient for results from FMMLOGG to per-

form better than relatively simple models using a square-root link function (e.g. GLMSQRTP).

Comparing results from GLMSQRTG with those from FMMSQRTG is more complicated,

at sample size 5000; as seen in Table 5, we observe that GLMSQRTG performs better than

FMMSQRTG in all metrics. FMMSQRTG performs better than GLMSQRTG, at larger
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samples, in terms of accuracy—with FMMSQRTG the best performing model of all 16 com-

pared—but the nested single-distribution case (GB2SQRTG) performs better, at all sample sizes,

in terms of bias and goodness of fit (see appendix B).

Greater flexibility among the fully parametric models has an ambiguous effect on performance

of forecasting means. GG is a limiting case of GB2 and its performance is better across all

metrics. Conversely, LOGNORM, which is a special case of models GG and GB2, performs

best of the three in terms of accuracy, the worst in terms of bias and second in terms of goodness

of fit. Using GG or GB2LOG improves performance over special case GLMLOGG based on

the MPE, MAPE and RMSE. Once again, the best of these four models performs worse than

certain models with a square-root link function. Comparing GLMSQRTG and GB2SQRT, we

can see that not much is gained from introducing more parameters, since performance is worse

for GB2SQRT than for GLMSQRTG except in the cases of accuracy at sample sizes 5000 and

10000 (the difference is small at all sample sizes analysed).

Crucially, these results consider only performance based on the mean, whereas some of these

models can provide information on higher moments and on other features of the conditional

distribution such as tail probabilities. This is a significant qualitative advantage of parametric

models over models such as linear regression, where the models have been used to predict

probabilities of lying beyond a threshold value, e.g. tail probabilities; see Jones et al. (2014) who

found that the GG and LOGNORM distributions perform best for the threshold values they

considered. We construct graphs of bias and accuracy by decile of predicted costs. This can be

thought of as analysing the fit of models for the mean of distributions of costs conditionally on

observed variables, since each decile of predicted costs represents a group of observations with

certain values of covariates. In previous analysis, we have considered all observations as equal,

but it is possible that a policy maker prioritizes the prediction error of certain observations over

others. There is considerable interest in modelling the outcomes for high cost patients, since

these can be responsible for large proportions of overall costs. The highest costs are likely to be

found in the highest decile of predicted costs.

Fig. 3 shows that models with the same link function follow a largely similar pattern. Those,

for example, with square-root link functions underpredict in the decile of highest predicted

costs, whereas log-link models overpredict in the last decile. Results with other link functions—

OLS, EEE, CDEM and CDEO—all have different patterns. Generally, the first decile of

predicted costs from square-root models are on average underpredictions (only GB2SQRT

overpredicts in the smallest decile), which combined with the underpredicted last decile gives

them a ‘u-shaped’ line. The performance of each model varies across the deciles. SQRTOL-

SHET has a u-shaped line and, although it performs best in predicting costs on average across

all deciles, the performance for certain groups may be worse than that of other models. For

example, CDEM performs slightly worse across all 10 deciles but has a smaller range of

overpredictions and underpredictions. In terms of the highest decile of predicted costs, the

model with the lowest MPE is CDEO, underestimating on average £48:96. Generally this decile

tends to be the largest absolute MPE for models, with values as large as an average overpredic-

tion of £2211:47 in the case of GLMLOGG. Results for MAPE by decile of predicted cost are

presented in the on-line appendix B, where it is striking that the pattern across all models is very

similar.

Fig. 4 displays the response surfaces constructed to analyse how each model’s performance

varied with increasing sample size for the subset of best performing models (those in italics in

Table 5). We have already touched on this earlier when looking at results regarding accuracy be-

tween related distributions. The performance of most estimated models varies little as the sample

sizes increase above 5000. There is some evidence that the variability of the MPE (measured by
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using the ADMPE) reduces as the sample size increases, although this happens at a similar rate

across all models. Largely, though, the response surfaces for each model are parallel, indicating

that the relative performance of models changes little. Further, the fact that they are flat repre-

sents evidence that performance does not change for each model with increasing sample size.

The exception to this is that the performance of FMMSQRTG varies with increasing sample

size: its accuracy improves, and its bias worsens. This suggests that this model behaves differently

with samples as small as 5000 observations, possibly because of the number of parameters that

are required. On the whole, though, from samples of 5000 observations or more, there is little

evidence that more flexible models require more observations than less flexible models.

7. Conclusions

We have systematically evaluated the state of the art in regression models for healthcare costs,

using administrative English hospital in-patient data, employing a quasi-Monte-Carlo design to

ensure rigour and drawing conclusions based on out-of-sample forecasting. We have compared

recently adopted semiparametric and fully parametric regression methods that have never before

been evaluated against one another, as well as comparing with regression methods that are now

considered standard practice in modelling healthcare cost data.

Our results echo other studies, in that there is no single model that dominates in all respects:

SQRTOLSHET is the best performing model in terms of bias and CDEM for accuracy, and

in terms of goodness of fit the best performer is GLMSQRTP. This broadly corresponds to the

results from the in-sample Pearson test for model selection, which highlights its potential use as a

simple means to discriminate between competing models. On the basis of the Pearson test results,

researchers might have implemented other power transformations of the outcome in linear

regression as well as in the link functions of the GLMs. Since the EEE model estimated that the

appropriate link function was somewhere between a log- and square-root function (on average

0.28 over all samples of 5000 observations), the researcher might have experimented with a cubic-

or quartic-root transformation. However, as square-root models generally outperformed EEE

models, there is no guarantee that results would have been better. Because there is no dominant

model, the policy maker must weigh up these factors in arriving at their preferred model, based

on their loss function over prediction errors. It is worth noting, however, that CDEM performs

among the best four models for all three metrics. Another striking result is that four models that

are commonly employed in regression methods for healthcare costs do not perform among the

best four of any of the three metrics (OLS, LOGOLSHET, GLMLOGG and LOGNORM). Our

analysis by decile shows the way in which models are sensitive to the choice of link function,

with square-root link functions underpredicting in the decile of highest predicted costs, and

log-link models overpredicting in the last decile. Finally, the response surfaces indicate that, on

the whole, the more recent developments do not suffer because of the use of smaller sample

sizes (from 5000 observations).
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