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Abstract 

In rich fens, unlike bogs, the key drivers structuring testate amoeba communities are related to 

nutrient status, suggesting the potential for transfer functions to quantitatively reconstruct changing 

nutrient status from palaeoecological records. Such records could be useful tools to investigate the 

long-term impacts of pollution and landscape change. Here we derive and test transfer functions for 

pH, water table depth, conductivity, Ca and Mg concentrations using a dataset from Polish fens. 

Results show that transfer functions for Ca and conductivity have apparent predictive power for 

surface samples; these models will require further validation and testing with palaeoecological data. 

Testate amoeba transfer functions for fen nutrient status may be a useful additional to the peatland 

palaeoecologist’s tool-kit although further work will be required to demonstrate their usefulness in 

practise.  
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Introduction 

 

In the last two decades most peatland palaeoenvironment studies have focused on reconstructing 

Holocene climate change (Gałka et al., 2013; Swindles et al., 2009), however, reconstructing the 

trophic state of wetlands is also an important aim (Hájkova et al., 2012). Shifts in peatland nutrient 

status may be anthropogenic through  pollution (Payne et al., 2012) or catchment land-use change 

(e.g. deforestation),  autogenic (Zobel, 1988) for instance through ombrotrophication, or related to 

climatic change (Ammann, 1986). However methods for quantitative reconstruction are currently 

undeveloped.  

Testate amoebae are protists that are widely used in palaeoecological research  (Mitchell et al., 

2008) because they form shells that are routinely preserved in peats  (Charman, 2001). In bogs a key 

control on testate amoeba communities is  depth to the water table (DWT) and testate amoebae 

have been widely used in climate reconstruction (Charman et al., 2002; Warner, 1990). However, 

compared to bogs, rich fen testate amoeba ecology has been much less intensively investigated. 

Recent studies in the Czech Republic (Opravilova and Hajek, 2006), the eastern Mediterranean 

(Payne, 2011) and Poland (Lamentowicz et al., 2011) have described species/environment 

relationships. Studies in Poland show that, unlike bogs, conductivity, calcium and pH are the most 

important environmental controls on testate amoeba communities. This suggests the potential for 

nutrient-status-related transfer functions but the only study to previously attempt this used a very 

small local training set (Dudova et al., 2012). Transfer functions for phosphorous have been applied 

in lakes (Patterson et al., 2012; Roe et al., 2010) and demonstrate the potential applications of similar 

models in fens. In this study we aim to: i) produce transfer functions for nutrient status-related 

factors based on a previously-derived dataset, ii) test transfer functions by cross-validation and iii) 

apply transfer functions to an existing high-resolution peat profile from N Poland (Lamentowicz et al., 

2013).  

 

Materials and Methods 

Eight fens in western Poland (Wielkopolska region) (Fig. 1) were sampled in 8-22 locations per site 

(n=147). Vascular vegetation of the studied fens was composed mainly of sedges and rushes with 

Schoenoplectus tabernaemontani, Cladium mariscus and Carex rostrata dominant. Brown mosses 

were also common including Calliergonella cuspidata and Calliergon giganteum and the relict species 



Tomenthypnum nitens and Paludella squarrosa; Sphagnum fallax and S. angustifolium were recorded 

in some acidic habitats. The data set we analyse here adds four further sites to the data previously 

discussed by Lamentowicz et al. (2011). Full details of sampling and analytical methods, and 

discussion of the autecology of species are contained in this paper.  

The upper 5cm of mosses were removed and agitated in water with the fraction >20µm and <300 µm 

retained for analysis (Booth et al. (2010). 150 tests were identified per sample (Payne and Mitchell 

(2009) based on the established taxonomic literature (Clarke, 2003; Decloitre, 1978, 1979; 

Grospietsh, 1958; Mazei and Tsyganov, 2006; Ogden and Hedley, 1980; Ogden, 1980; Ogden and 

Fairman, 1979). Three replicate ground water subsamples were collected in the field and analysed as 

described in Lamentowicz et al. (2011).  

Five variables explaining most variance in the species data are considered here: depth to water table, 

pH, and conductivity measured in the field, and Ca and Mg concentrations by Atomic Absorption 

Spectrometry (AAS) in the laboratory (Hermanowicz et al., 1999). A one-metre core was extracted 

from the northern part of the main Stążka basin using a Wardenaar sampler (Wardenaar, 1987) and 

sub-sampled every centimetre. Detailed description of the core and multi-proxy results are provided 

in Lamentowicz et al. (2013). 

Transfer functions were developed using two established methods which are known to perform well 

with testate amoeba data (Mitchell et al., 2013; Payne et al., 2011): Weighted averaging (WA) (Ter 

Braak and Barendregt, 1986) and weighted average partial least squares (WA-PLS) (Birks, 1998). 

Recently Juggins and Birks (2012) have introduced a new method which is tested here for the first 

time with testate amoeba data. Locally weighted weighted-averaging selects a local training-set of 

size k using the distance criterion of the modern analogue technique (MAT) and then applies 

weighted averaging to this sub-set. In this case we selected k=30 after initial trials and use squared 

chord distance. Transfer function performance was assessed using leave-one-out (LOO, also termed 

jack-knifing), boot-strap and leave-one-site-out (LOSO) cross validation, recently suggested as a more 

robust approach to account for within-site clustering of samples (Payne et al. 2012). To account for 

the possible impact of unevenly sampled gradients we also applied the segment-wise RMSEP 

approach advocated by Telford and Birks (2011a). Transfer functions were applied to the palaeo data 

set and significance testing carried out using randomTF (Telford and Birks, 2011b). All analyses were 

carried out in R 12.2.1 with the packages rioja (Juggins, 2012) and palaeoSig (Juggins and Birks, 2012) 

 

Results and Discussion 

 



Results show that transfer functions for water table depth and Mg have very little predictive power 

(Table 1): with LOO cross-validation R
2
 values are <0.3, while when the more conservative LOSO 

cross-validation is applied R
2
 is <0.15 and RMSEP is greater than standard deviation. This result for 

water table contrasts with many studies in bogs and reinforces the fundamental differences in 

testate amoeba ecology between bogs and fens (Payne 2011).  

Results were more promising in the cases of Ca, pH and conductivity (Table 1). In all these cases 

multiple WA-PLS components did not improve on WA (inverse deshrinking). LWWA showed initial 

promise with standard cross-validation methods, however, when LOSO was used to cross-validate 

the models lost all predictive power (R
2
<0.1 and RMSEP>sd). This is almost certainly due to the 

clustering problem discussed by Payne et al. (2012): in LOO and boot-strapping it is likely that the 

majority of the 30 preferentially-selected analogues will be from the same site as the test sample(s) 

and therefore model performance over-estimated. This is likely to be a general problem for LWWA in 

peatland transfer function studies. Due to these problems we selected WA (inverse deshrinking) as 

the preferred model for pH, Ca and conductivity. R
2 

(LOO) ranged from 0.35 to 0.44, lower than is 

typical for bog WTD transfer functions. In the case of both Ca and conductivity, model performance 

was weaker at the upper end of the gradient (Fig. 2). The gradients are unevenly sampled, 

particularly in the case of pH which is likely to have biased performance statistics, segment-wise 

RMSEPs (LOO) (Telford and Birks, 2011a) were larger than standard RMSEPs: 0.76 for pH, 55.4 for Ca 

and 276.6 for conductivity. In the case of pH this implies that the transfer function may not have 

predictive power when accounting for uneven sampling.  

Reconstructions of pH, Ca and conductivity show very similar down-core trends (Fig. 2). This is 

unsurprising as all represent the nutrient status/base-richness gradient and there are strong 

correlations in the training set. Reconstructions support our previous qualitative interpretations 

(Lamentowicz et al., 2013) particularly in relation to deforestation and subsequent conifer 

afforestation in 1850-1900 (Giętkowski, 2011). However, when reconstruction significance is tested 

using the randomTF approach non-significant results are returned for all variables (Fig.3). While such 

a non-significant result does not mean that our interpretation of the record is incorrect it does call 

into question the usefulness of the transfer function output; this appears to be a general issue with 

testate amoeba transfer functions and will be discussed more elsewhere.  

Overall, our results show that transfer functions for conductivity and Ca concentration appear to 

have predictive power for surface samples in fens, while addressing the usefulness of such transfer 

functions in palaeo reconstruction will require further research. We believe that testate amoeba 

transfer functions for fen nutrient status may be a useful additional to the peatland palaeoecologist’s 

tool-kit.  



 

 

 

 

 

 

 
Captions to figures 

Figure 1. Location of the study sites – (A) transfer function and (B) peat sampling. (1 – Makąty; 2 – 

Kazanie; 3 – Wagowo; 4 – Czarne; 5 – Kuźnik Olsowy i Kuźnik Bagienny; 6 – Czarci Staw; 7 – Rurzyca; 8 

– Wierzchołek)  

Figure 2. Performance of the transfer function of the particular variables: A – Ca, B – COND, C – pH. 

Figure 3. Quantitative reconstruction of Ca, pH and COND from Bagna nad Stążką peat core 

published by Lamentowicz et al. (2013) 

 

Tables 

Table 1. Performance of transfer functions for the different variables using various cross-validation 

methods: LOO – Leave One Out, LOSO – Leave One Site Out, boot- boot-strapping. Best performing 

variables shown in bold and best results in terms of predictive power have grey background.  
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