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ON THE NUMBER OF ZEROS OF LINEAR COMBINATIONS OF

INDEPENDENT CHARACTERISTIC POLYNOMIALS OF RANDOM

UNITARY MATRICES

YACINE BARHOUMI-ANDRÉANI, CHRISTOPHER HUGHES, JOSEPH NAJNUDEL,
AND ASHKAN NIKEGHBALI

Abstract. We show that for any linear combination of characteristic polynomials of
independent random unitary matrices with the same determinant, the expected proportion
of zeros lying on the unit circle tends to 1 as the dimension of the matrices tends to infinity.
This result is the random matrix analogue of an earlier result by Bombieri and Hejhal on
the distribution of zeros of linear combinations of L-functions, and thus is consistent with
the conjectured links between the value distribution of the characteristic polynomial of
random unitary matrices and the value distribution of L-functions on the critical line.

1. Introduction

Over the past two decades, there have been many new results at the interface of random
matrix theory and analytic number theory that can be considered as evidence for the zeros
of the Riemann zeta function being statistically distributed as eigenvalues of large random
matrices (GUE matrices or Haar distributed unitary matrices). The interested reader can
refer to [19], [13] and [21] for a detailed account with many references, and to [12] for the
function field framework. Since the seminal papers by Keating and Snaith [14, 15], it is
believed that the characteristic polynomial of a random unitary matrix on the unit circle
provides a very accurate model for the value distribution of the Riemann zeta function (or,
more generally, L-functions) on the critical line. This analogy was used by Keating and
Snaith to produce the moments conjecture and since then the characteristic polynomial has
been the topic of many research papers, and the moments of the characteristic polynomial
have now been derived with many different methods: representation theoretic approach
(see [6, 20]); super-symmetry (see [19]); analytic methods (such as Toeplitz determinants
[19] and orthogonal polynomials on the unit circle [16]); and probabilistic techniques ([4]).
Each method brings a new insight to the problem. Many more fine-grained properties
of the characteristic polynomial have been established (e.g. the large deviations principle
[9], local limit theorems [17], the analogue of the moments conjecture for finite field zeta
functions [1, 11], etc.). Moreover, thanks to this analogy, one has been able to perform
calculations in the random matrix world (whose analogue in the number theory world
appears to be currently out of reach) to produce conjectures for the analogous arithmetic
objects (see [23] for a recent account).
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There are nonetheless certain results that can be proved in both worlds, such as Selberg’s
central limit theorem for the Riemann zeta function and the Keating-Snaith central limit
theorem for the characteristic polynomial of random unitary matrices (see [14]). In fact
Selberg’s central limit theorem can be proved more generally for a wide class of L-functions
(see [22] and [3]).

Roughly speaking, an L-function must be defined by a Dirichlet series for Re(s) > 1,
have an Euler product (with some growth condition on the coefficients of this product), an
analytic continuation (except for finitely many poles all located on the line Re(s) = 1), and
must satisfy a functional equation. Such L-functions are expected to satisfy the general
Riemann hypothesis (GRH), which says that all the non-trivial zeros are located on the
critical line, the line Re(s) = 1/2.
Now if one considers a finite number of such L-functions, all satisfying the same func-

tional equation, then one can wonder if the zeros of a linear combination of these L-
functions are still on the critical line. In general, the answer is that GRH does not hold
anymore for such a linear combination even though it still has a functional equation (this
can be thought of coming from the fact that such a linear combination does not have an
Euler product anymore). But Bombieri and Hejhal proved in [3] that nonetheless 100%
of the zeros of such linear combinations are still on the critical line (under an extra as-
sumption of “near orthogonality” which ensures that the logarithm of the L-functions are
statistically asymptotically independent and that 100% of the zeros of each L-function do
not occur in clumps). In this paper we will show that a similar result holds for linear
combinations of independent characteristic polynomials of random unitary matrices. The
result on the random matrix side is technical and difficult. In addition to being an extra
piece of evidence that the characteristic polynomial is a good model for the value distri-
bution of L-functions, the result is also remarkable when viewed in the general setting of
random polynomials. The main goal of this article is to show that on average, any linear
combination of characteristic polynomials of independent random unitary matrices having
the same determinant has a proportion of zeros on the unit circle which tends to 1 when
the dimension goes to infinity.

More precisely, if U is a unitary matrix of order N > 1, for z ∈ C let

ΦU(z) = det (IN − zU)

be the characteristic polynomial of U . From the fact that U is unitary, we get the functional
equation

ΦU(z) = (−z)N det(U)ΦU(1/z).

For z on the unit circle, this equation implies that

ΦU(z) = R(z)
√

(−z)N det(U),

where R(z) is real-valued (with any convention taken for the square root). Now, let
(Uj)16j6n be a collection of n unitary matrices of orderN , and let (bj)16j6n be real numbers.



SUMS OF CHARACTERISTIC POLYNOMIALS OF UNITARY MATRICES 3

We wish to study the number of zeros on the unit circle of the linear combination

FN(z) =
n∑

j=1

bjΦUj
(z).

If we want F to have most of its zeros on the unit circle, it is reasonable to expect that we
need a “unidimensional condition” for the equation F (z) = 0 and |z| = 1, i.e. a functional
equation similar to the equation satisfied by U . This equation obviously exists if all the
characteristic polynomials ΦUj

satisfy the same functional equation, which happens when
the matrices Uj have the same determinant. By symmetry of the unitary group, it is
natural to assume that the unitary matrices have determinant 1. More precisely, the main
result of the article is the following:

Theorem 1.1. Let (bj)16j6n be non-zero real numbers. For N > 1, let

FN(z) :=
n∑

j=1

bjΦUj
(z),

where (Uj)16j6n is a family of independent matrices whose distribution is the Haar measure

on the special unitary group SU(N). The expected proportion of zeros of FN on the unit

circle tends to 1 as N goes to infinity, i.e.

E (|{z ∈ U : FN(z) = 0}|) = N − o(N),

where |{z ∈ U : FN(z) = 0}| is the number of z on the unit circle which satisfy FN(z) = 0.

The whole paper is devoted to the proof of this result. Before explaining the strategy of
the proof, we make a few remarks.

Remark 1.2. Theorem 1.1 can be stated as

lim
N→∞

E

(
1

N
|{z ∈ U : FN(z) = 0}|

)
= 1.

Since the random variable
1

N
|{z ∈ U : FN(z) = 0}| is bounded by 1, the convergence

holds in all Lp spaces for p > 1. It therefore also holds in probability since convergence in
L1 implies convergence in probability.

Remark 1.3. The fact that we impose the condition that the matrices have the same de-
terminant is similar to the condition in [3] that the L-functions have the same functional
equation. Moreover, in our framework, the analogue of the Riemann hypothesis is au-
tomatically satisfied since all the zeros of each characteristic polynomial are on the unit
circle.

Remark 1.4. The fact that the proportion of zeros on the unit circle tends to 1 is a re-
markable fact when considered as a result about random polynomials. It is well known
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that the characteristic polynomial of a unitary matrix is self-inversive1. Self-inversive ran-
dom polynomials are of interest in the context of semiclassical approximations in quantum
mechanics, and determining the proportion of zeros on the unit circle is an important
problem in that context. Bogomolny, Bohigas and Leboeuf [2] showed that if the first
half of the coefficients are chosen as independent complex Gaussian random variables (the
second half being fixed by the self-inverse symmetry), then asymptotically 1√

3
of all the

zeros are exactly on the unit circle. Hence we can say that our result is not typical of
what is expected for classical random polynomials built from independent Gaussian ran-
dom variables. In our framework, we do not know the distribution of the coefficients, but
we do know that they are not independent. Consequently the classical methods which use
the independence of the coefficients (or use the fact that they are Gaussian if one wishes
to add some dependence) do not work here. Using general results on random polynomials
whose coefficients are not necessarily independent or equidistributed [10], one can deduce
that the zeros cluster uniformly around the unit circle. But showing that they are almost
all precisely on the unit circle is a much more refined statement.

We now say a few words about our strategy of proof of Theorem 1.1. In fact we use the
same general method as in [3], called the “carrier waves” method, but the ingredients of
our proof are different, in the sense that they are probabilistic. For instance we use the
coupling method, concentration inequalities and the recent probabilistic representation of
the characteristic polynomial obtained in [4]. More precisely, for U ∈ U(N) and θ ∈ R,
we denote by ZU(θ) the characteristic polynomial of U evaluated at e−iθ, i.e. ZU(θ) =
ΦU(e

−iθ). Then we make a simple transformation of the linear combination FN in order
that it is real-valued when restricted as a function on the unit circle:

iNeiNθ/2FN(e
−iθ) = iNeiNθ/2

n∑

j=1

bjΦUj
(e−iθ) =

n∑

j=1

bji
NeiNθ/2ZUj

(θ). (1)

Using the fact that Uj ∈ SU(N), one checks that iNeiNθ/2ZUj
(θ) is real, and thus the

number of zeros of FN on the unit circle is bounded from below by the number of sign
changes, when θ increases from θ0 to θ0 + 2π (with θ0 to be chosen carefully), of the real
quantity given by the right-hand side of the equation above. The notion of carrier waves is
explained in detail in [3], p. 824–827 and we do not explain it again but we would rather
give a general outline. The main idea is that informally, with “high” probability and for
“most” of the values of θ, one of the characteristic polynomials ZUj

dominates all the others
(it is the “carrier wave”). More precisely, Lemma 3.8 implies the following: If δ depends
only on N and tends to zero when N goes to infinity, then there exists, with probability
1− o(1), a subset of [θ0, θ0 + 2π) with Lebesgue measure o(1) such that for any θ outside
this set, one can find j0 between 1 and n such that

∣∣log |ZUj0
(θ)| − log |ZUj

(θ)|
∣∣ > δ

√
logN

for all j 6= j0. In other words, one of the terms in the sum of the right-hand side of
(1) should dominate all the others. Moreover, Lemma 3.13 informally gives the following:
With high probability, the order of magnitude of each of the characteristic polynomials

1A self-inversive polynomial is one where aN−k = exp(iθ)āk for some θ ∈ R, where (ak)06k6N are the
coefficients of the polynomial.
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does not change too quickly, so if the interval [θ0, θ0 +2π) is divided into sufficiently many
equal subintervals, the index of the carrier wave remains the same in a “large” part of each
subinterval. The zeros of ZUj0

correspond to sign changes of iNeiNθ/2ZUj0
(θ), and since this

is the dominant term of (1), one gets sign changes of iNeiNθ/2FN(e
−iθ). By counting all

these sign changes, one deduces a lower bound for the number of zeros of FN on the unit
circle.

The main issue of the present paper is to make rigorous this informal construction, in
such a way that one gets a lower bound N − o(N). One of the reasons why the proof
becomes technical and involved is that we have to take into account two different kinds of
sets, and show that they have almost “full measure”: subsets of the interval [θ0, θ0 + 2π)
and subsets of SU(N).

Our proof is structured as follows: We first give two standard results (Propositions 2.1
and 2.5), one on the disintegration of the Haar measure on U(N)2 and the other one which
establishes a relationship between the number of eigenvalues in a given fixed arc to the
variation of the imaginary part of the logarithm of the characteristic polynomial. Then
we provide some estimates on the real and imaginary parts of the logarithm of the char-
acteristic polynomial (Lemmas 3.1 and 3.2) as well as a bound on the concentration of
the law of the logarithm of the characteristic polynomial (Lemma 3.3). Then we provide
bounds on the oscillations of the real and imaginary parts of the logarithm of the char-
acteristic polynomial (Lemma 3.7). These estimates, and some further intermediary ones
which we establish, are also useful in their own right and complement the existing results
in the literature on characteristic polynomials. We then introduce our subdivisions of the
interval [θ0, θ0 + 2π) and the corresponding relevant random sets to implement the carrier
waves technique. Finally we combine all these estimates together to show that the average
number of sign changes of (1) is at least N

(
1−O

(
(logN)−1/22

))
. The exponent −1/22

does not play any major role in our analysis.

Notation

We gather here some notation used throughout the paper.
We write U(N) for the unitary group of order N , while SU(N) stands for the subgroup

of elements U(N) whose determinant is equal to 1. We let PU(N) and PSU(N) denote the
probability Haar measure on U(N) and SU(N) respectively. Similarly we denote by EU(N)

and ESU(N) the corresponding expectations. For n a positive integer, we let P
(n)
SU(N) be the

n-fold product of the Haar measure on SU(N), and E
(n)
SU(N) the corresponding expectation.

If U is a unitary matrix, we write its characteristic polynomial as ΦU(z) = det (IN − zU),
with z ∈ C. For θ ∈ R, we denote by ZU(θ) the characteristic polynomial of U evaluated
at e−iθ, i.e. ZU(θ) = ΦU(e

−iθ).
We shall denote the Lebesgue measure on R by λ. If α > 0 is a constant and if I is an

interval of length α, then λα will denote the normalized measure 1
α
λ on the interval I.

2Indeed, most of our results on random matrices are established for U(N) and we show how to go from
the results for U(N) to those for SU(N).
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If n is an integer, we denote J1, nK the set of integers {1, · · · , n}, and if E is a finite set,
we write |E| for the number of its elements.

We shall introduce several positive quantities during the proof: K > 0, M > 0 and
δ > 0. The reader should have in mind that these quantities will eventually depend on
N . Unless stated otherwise, N > 4 and K is an integer such that 2 6 K 6 N/2, and
M = N/K. In the end we will use K ∼ N/(logN)3/64 and δ ∼ (logN)−3/32.

2. Some general facts

In this section, we state some general facts in random matrix theory, which will be used
later on.

2.1. Disintegration of the Haar measure on unitary matrices.

Proposition 2.1. Let PU(N) be the Haar measure on U(N), PSU(N) the Haar measure on

SU(N), and for θ ∈ R, let PSU(N),θ be the image of PSU(N) by the application U 7→ eiθU
from U(N) to U(N). Then, we have the following equality:

∫ 2π

0

PSU(N),θ
dθ

2π
= PU(N), (2)

i.e. for any continuous function F from U(N) to R+, the expectation ESU(N),θ(F ) of F
with respect to PSU(N),θ is measurable with respect to θ and

∫ 2π

0

ESU(N),θ(F )
dθ

2π
= EU(N)(F ).

Proof. One has

ESU(N),θ(F ) =

∫
F (Xeiθ)dPSU(N)(X), (3)

which, by dominated convergence, is continuous, and a fortiori measurable with respect to
θ. By integrating (3) with respect to θ, one sees that the proposition is equivalent to the
following: if U is a uniform matrix on SU(N), and if Z is independent, uniform on the unit
circle, then ZU is uniform on U(N). Now, let A be a deterministic matrix in U(N). For
any d ∈ C such that d−N = det(A), one has Ad ∈ SU(N), and then ZUA = (Z/d)(UAd),
where:

(1) UAd follows the Haar measure on SU(N) (since this measure is invariant by mul-
tiplication by Ad ∈ SU(N)).

(2) Z/d is uniform on the unit circle (since d, as det(A), has modulus 1).
(3) These two variables, which depend deterministically on the independent variables

A and Z, are independent.

Hence ZUA has the same law as ZU , i.e. this law is invariant by right-multiplication by
any unitary matrix. Hence, ZU follows the Haar measure on U(N). �

Remark 2.2. This result also appears in the proof of Lemma 2.5 of [18].
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Remark 2.3. This disintegration will allow us to deduce the estimates on SU(N) we will
need from the corresponding estimates on U(N). Another way to proceed would be to
make use of Lemma AD.7.1 from [12] which we recall here:

Lemma 2.4 ([12], p. 390). Let f : U(N) → C be a C∞ bounded central function, that

is f(UV ) = f(V U) for all U, V ∈ U(N). Then, one has the equality with an absolutely

convergent series

ESU(N)(f(X)) =
∑

ℓ∈Z
EU(N)

(
(detX)ℓf(X)

)

If one wished to proceed using this lemma, one would then need to estimate the terms
of the series in order to show that the term corresponding to ℓ = 0 is dominant, i.e. that
the expectation ESU(N)(f(X)) is close to EU(N)(f(X)). For f being a function of the
characteristic polynomial, this can be done using the probabilistic splitting defined in [4]
and used in the proof of Lemma 3.2.

2.2. Number of eigenvalues in an arc. The result we state here relates the number
of eigenvalues of a unitary matrix on a given arc to the logarithm of its characteristic
polynomial. Recall that for U ∈ U(N) and θ ∈ R, we denote by ZU(θ) the characteristic
polynomial of U evaluated at e−iθ. Moreover, if eiθ is not an eigenvalue of U , we define the
logarithm of ZU(θ), as

logZU(θ) :=
N∑

j=1

log(1− ei(θj−θ)), (4)

where θ1, . . . , θN are the zeros of ZU in [0, 2π), taken with multiplicity (notice that the
eigenvalues of U are eiθ1 , . . . , eiθN ), and where the principal branch of the logarithm is
taken in the right-hand side. Note that eiθ is not an eigenvalue of U almost surely under
Haar measure on U(N), and also almost surely under the Haar measure on SU(N), except
for the case when eiθ = 1 and N = 1.

We then have the following result, already stated, for example, in [9]:

Proposition 2.5. Let 0 6 s < t < 2π, and let us assume that s and t are not zeros of ZU .

Then, the number of zeros of ZU in the interval (s, t) is given as follows:

N∑

k=1

11{θk∈(s,t)} =
N

2π
(t− s) +

1

π
(Im logZU(t)− Im logZU(s)) . (5)

Proof. It is sufficient to check that for all ϑ ∈ [0, 2π)\{s, t},

π11{ϑ∈(s,t)} =
t− s

2
+ Im log

(
1− ei(ϑ−t)

)
− Im log

(
1− ei(ϑ−s)

)
.

Now, for v ∈ (0, 2π),

1− eiv = eiv/2(e−iv/2 − eiv/2) = −2i sin(v/2) eiv/2 = 2 sin(v/2) ei(v−π)/2.

Now, sin(v/2) > 0 and (v − π)/2 ∈ (−π/2, π/2) and hence

Im log
(
1− eiv

)
=
v − π

2
,



8 Y. BARHOUMI-ANDRÉANI, C.P. HUGHES, J. NAJNUDEL, AND A. NIKEGHBALI

since we take the principal branch of the logarithm. Now, for ϑ ∈ [0, 2π)\{s, t}, ϑ − s +
2π11{ϑ<s} and ϑ− t+ 2π11{ϑ<t} are in (0, 2π), which implies

Im log
(
1− ei(ϑ−t)

)
− Im log

(
1− ei(ϑ−s)

)
=
ϑ− t− π + 2π11{ϑ<t}

2
− ϑ− s− π + 2π11{ϑ<s}

2

=
s− t

2
+ π

(
11{ϑ<t} − 11{ϑ<s}

)
,

from which Proposition 2.5 follows by summing over the N zeros of ZU in [0, 2π). �

3. Proof of Theorem 1.1

3.1. Conventions. All the random matrices we will consider are defined, for some N > 1,
on the measurable space (MN(C),F), where F denotes the Borel σ-algebra of the space of
N ×N complex matrices MN(C). The canonical random variable with values in MN(C),
i.e. the identity function from (MN(C),F) to MN(C) is denoted by X. For example, if F
is a bounded, Borel function from MN(C) to R,

ESU(N)[F (X)] =

∫

MN (C)

F (M)dPSU(N)(M).

3.2. An estimate on the average of the logarithm of the characteristic polyno-

mial.

Lemma 3.1. There exists a universal constant c1 > 0 such that for all N > 2, and A > 0,
∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > A

√
logN

) dθ
2π

6 c1e
−A

2

(
A∧

√
logN
2

)

where A ∧
√
logN
2

denotes the minimum of A and
√
logN
2

.

Proof. For all λ > 0,
∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > A

√
logN

) dθ
2π

6 e−λA
√
logN

∫ 2π

0

ESU(N)

(
eλ|logZX(θ)|) dθ

2π

6 e−λA
√
logN

EU(N)

(
eλ|logZX(0)|) (by (2))

6 e−λA
√
logN

EU(N)

(
eλ(|Re logZX(0)|+|Im logZX(0)|))

Using the inequality e|a|+|b| 6 ea+b + ea−b + e−a+b + e−a−b, valid for all a, b ∈ R, and
writing the right-hand side of this inequality as 4E

(
eBa+B′b

)
for B and B′ two independent

Bernoulli random variables, independent of U , such that P (B = 1) = 1−P (B =−1) = 1/2,
we have:
∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > A

√
logN

) dθ
2π

6 4e−λA
√
logN

EU(N)

(
eλ(B Re logZX(0)+B′ Im logZX(0) )

)
.
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Keating and Snaith [14] showed that for s, t ∈ C such that Re(s+ it) and Re(s− it) are
strictly larger than −1,

EU(N)

(
es Re logZX(0)+t Im logZX(0)

)
=
G
(
1 + s+it

2

)
G
(
1 + s−it

2

)
G (1 +N)G (1 +N + s)

G
(
1 +N + s+it

2

)
G
(
1 +N + s−it

2

)
G (1 + s)

(6)

where G is the Barnes G-function, defined for all z ∈ C, by

G(z + 1) := (2π)z/2e−[(1+γ)z2+z]/2

∞∏

n=1

(
1 +

z

n

)n
e−z+(z2/2n),

with γ being the Euler constant.
In other words, one has

EU(N)

(
es Re logZX(0)+t Im logZX(0)

)
=
G
(
1 + s+it

2

)
G
(
1 + s−it

2

)

G (1 + s)
N(s2+t2)/4GN,s,t,

where, by the classical estimates of the Barnes function,

GN,s,t := N−(s2+t2)/4 G (1 +N)G (1 +N + s)

G
(
1 +N + s+it

2

)
G
(
1 +N + s−it

2

)

tends to 1 when N goes to infinity, uniformly on s and t if these parameters are bounded.
For any sequence (λN)N>1 such that λN ∈ [0, 1/2], one has (taking s = λNB and

t = λNB
′):

EU(N)

(
eλN (B Re logZX(0)+B′ Im logZX(0) )

)
=M(λN)N

λ2
N/2,

where

M(λN) := E

(
G
(
1 + λN

B+iB′

2

)
G
(
1 + λN

B−iB′

2

)

G(1 + λNB)
GN,λNB,λNB′

)
.

Since the function G is holomorphic, with no zero on the half-plane {z ∈ C : Re(z) > 0},
and since GN,λB,λB′ tends to 1 when N goes to infinity, uniformly on λ ∈ [0, 1/2], the
quantity M(λ) is uniformly bounded by some universal constant c′ > 0, for λ ∈ [0, 1/2].
Hence for N going to infinity,

EU(N)

(
eλN (B Re logZX(0)+B′ Im logZX(0) )

)
6 c′Nλ2

N/2,

which implies that

∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > A

√
logN

) dθ
2π

6 4c′e−λNA
√
logN+(λ2

N logN)/2.
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Now, taking λN = (1/2) ∧ (A/
√
logN) (which means λN is the smaller of 1/2 and

A/
√
logN), we have
∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > A

√
logN

) dθ
2π

6 4c′e−λN
√
logN [A−(λN

√
logN)/2]

6 4c′e−λN
√
logN [A−(A/

√
logN)(

√
logN)/2]

6 4c′e−λN
√
logN(A/2)

6 4c′e−[(
√
logN/2)∧A](A/2). �

3.3. An estimate on the imaginary part of the logarithm of the characteristic

polynomial. From the previous result, we obtain the following estimate for the imaginary
part of the logarithm of the characteristic polynomial:

Lemma 3.2. There exists a universal constant c′1 > 0 such that for all N > 2, A > 0, and
θ ∈ R,

PSU(N)

(∣∣∣ Im logZX(θ)
∣∣∣ > A

√
logN

)
6 c′1e

−A
2

(
A∧

√
logN
2

)

.

Proof. We use here the probabilistic splitting established in [4] which shows that for any
U ∈ U(N), there exists, for 1 6 j 6 N , xj on the unit sphere of Cj, uniquely determined,
such that

U = R(xN)

(
R(xN−1) 0

0 1

)(
R(xN−2) 0

0 I2

)
· · ·
(
R(x1) 0
0 IN−1

)
, (7)

where R(xj) denotes the unique unitary matrix in U(j) sending the last basis vector ej of
C

j to xj, and such that the image of Ij − R(xj) is the vector space generated by ej − xj.
(See also [5] for an infinite-dimensional point of view).
Moreover, the characteristic polynomial of U ∈ U(N) is given by

ZU(0) =
N∏

j=1

(1− 〈xj, ej〉),

and its logarithm is

logZU(0) =
N∑

j=1

log(1− 〈xj, ej〉), (8)

when 1 is not an eigenvalue of U , taking the principal branch of the logarithm on the right-
hand side. Notice that the determination of the logarithm given by this formula fits with
the definition involving the eigenangles (4). Indeed, the two formulas depend continuously
on the matrix U , on the connected set {U ∈ U(N), 1 /∈ Spec(U)}, and their exponentials
are equal, hence, it is sufficient to check that they coincide for one matrix U . For example
if U = −IN then xj = −ej for all j and the two formulas both give N log 2.
If U follows the uniform distribution on U(N), then the vectors (xj)16j6N are indepen-

dent and xj is uniform on the sphere of Cj. The determinant of U is equal to the product
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of the determinants of R(xj) for 1 6 j 6 N , and since R(x1) is the multiplication by x1
on C, one has

det(U) = x1

N∏

j=2

Γj(xj),

where Γj is the function from C
j to the unit circle U that maps xj 7→ det(R(xj)). From

this, we deduce that under the measure PSU(N),θ

(1) The vectors (xj)26j6N are independent, xj being uniform on the unit sphere of Cj.
(2) The value of x1 ∈ U is uniquely determined by the determinant det(U) = eiNθ,

x1 = eiNθ

N∏

j=2

[Γj(xj)]
−1.

Indeed, let P′
SU(N),θ be the probability measure on the image of SU(N) by the multiplication

by eiθ, under which the law of (xj)16j6N is given by the two bullet points above. This
probability measure can be constructed as the law of the random matrix U given by the
formula (7), where (xj)16j6N are random vectors whose joint distribution is given by the
bullet points (1) and (2) just above. We now have to prove that PSU(N),θ = P

′
SU(N),θ. Let

us first notice that the joint law of (xj)26j6N , under the probability measure P′
SU(N),θ, does

not depend on θ. Hence, under the averaged measure
∫ 2π

0

P
′
SU(N),θ

dθ

2π
,

the vectors (xj)26j6N still have the same law, i.e. they are independent and xj is uniform

on the unit sphere of Cj. Moreover, conditionally on (xj)26j6N , x1 = eiNθ
∏N

j=2[Γj(xj)]
−1,

where θ is uniform on [0, 2π). Hence (xj)16j6N are independent, x1 is uniform on U, and
thus xj in uniform on the unit sphere of Cj for all j ∈ {1, . . . , N}, which implies

∫ 2π

0

P
′
SU(N),θ

dθ

2π
= PU(N) =

∫ 2π

0

PSU(N),θ
dθ

2π
.

Now, PSU(N),2π/N is the image of PSU(N) by multiplication by ei2π/NIN , which is a ma-
trix in SU(N). The invariance property defining the Haar measure PSU(N) implies that
PSU(N),2π/N = PSU(N), and so θ 7→ PSU(N),θ is (2π/N)-periodic. It is the same for θ 7→
P
′
SU(N),θ, since the values of x1, . . . xN involved in the definition of P′

SU(N),θ do not change

if we add a multiple of 2π/N to θ. Hence,

∫ 2π/N

0

P
′
SU(N),θ

Ndθ

2π
=

∫ 2π/N

0

PSU(N),θ
Ndθ

2π
.

Now, let F be a continuous, bounded function from U(N) to R. By applying the equality
above to the function U 7→ F (U)11{detU∈{eiNθ, θ∈I}}, for an interval I ⊂ [0, 2π/N), one
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deduces with obvious notation that

∫

I

E
′
SU(N),θ(F )

dθ

|I| =
∫

I

ESU(N),θ(F )
dθ

|I| ,

where |I| is the length of I. By the definition of PSU(N),θ and P
′
SU(N),θ, the first measure

is the image of PSU(N) by multiplication by eiθ, and the second measure is the image

of P′
SU(N),0 by right multiplication by the matrix

(
eiNθ 0
0 IN−1

)
. Hence by continuity

and boundedness of F , and by dominated convergence, ESU(N),θ(F ) and E
′
SU(N),θ(F ) are

continuous with respect to θ. By considering a sequence (Ir)r>1 of intervals containing a
given value of θ and whose length tends to zero, one deduces, by letting r → ∞,

E
′
SU(N),θ(F ) = ESU(N),θ(F ).

We now get the equality PSU(N),θ = P
′
SU(N),θ, and thus the law of (xj)16j6N under PSU(N),θ

described above.
Hence, the sequence (xj)26j6N has the same law under PSU(N),θ and PU(N). We now use

this fact to construct a coupling between these two probability measures on the unitary
group.

The general principle of coupling is the following: When we want to show that two
probability distributions P1 and P2 on a metric space have a similar behavior, a possible
strategy is to construct a couple (U,U ′) of random variables defined on the same probability
space endowed with a probability P, such that the law of U under P is P1, the law of U ′

under P is P2, and the distance between U and U ′ is small with high probability. In the
present situation, we take (x′j)16j6N to be independent with x′j uniform on the unit sphere

of Cj for all j ∈ {1, . . . , N}. We construct, using (7), a random matrix U ′ following PU(N).
Then, we do the coupling by taking xj := x′j for 2 6 j 6 N and

x1 := eiNθ

N∏

j=2

[Γj(xj)]
−1,

which gives a random matrix U following PSU(N),θ. From the fact that xj = x′j for j > 2
and the equation (8), we get the following:

logZU(0)− logZU ′(0) = log(1− x1)− log(1− x′1),

and in particular,

|Im logZU(0)− Im logZU ′(0)| 6 π.
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Now, for B :=
(
A− π√

logN

)
+
, one gets:

PSU(N)

(∣∣∣ Im logZX(−θ)
∣∣∣ > A

√
logN

)
= PSU(N),θ

(∣∣∣ Im logZX(0)
∣∣∣ > A

√
logN

)

= P

(∣∣∣ Im logZU(0)
∣∣∣ > A

√
logN

)

6 P

(∣∣∣ Im logZU ′(0)
∣∣∣ > A

√
logN − π

)

= PU(N)

(∣∣∣ Im logZX(0)
∣∣∣ > B

√
logN

)

=

∫ 2π

0

PSU(N)

(∣∣∣ Im logZX(θ)
∣∣∣ > B

√
logN

) dθ
2π

6

∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > B

√
logN

) dθ
2π

6 c1e
−B

2

(
B∧

√
logN
2

)

Now, if B 6
√
logN
2

, then

A

2

(
A ∧

√
logN

2

)
6
A2

2
6

1

2

(
B +

π√
logN

)2

=
B2

2
+

Bπ√
logN

+
π2

2 logN

6
B2

2
+
π

2
+

π2

2 log 2

=
B

2

(
B ∧

√
logN

2

)
+
π

2
+

π2

2 log 2
.

If B >
√
logN
2

, then

A

2

(
A ∧

√
logN

2

)
6
A
√
logN

4
6

√
logN

4

(
B +

π√
logN

)
=
B
√
logN

4
+
π

4

=
B

2

(
B ∧

√
logN

2

)
+
π

4
.

Hence, we get Lemma 3.2, with

c′1 = c1e
π
2
+ π2

2 log 2 . �

3.4. Bound on the concentration of the law of the logarithm of the characteristic

polynomial.

Lemma 3.3. For N > 4, θ ∈ [0, 2π) and δ ∈ (0, 1/2), one has, uniformly in x0 ∈ R

PSU(N)[| log |ZX(θ)| − x0| 6 δ
√
logN ] 6 Cδ log(1/δ),

where C > 0 is a universal constant.

Proof. The proof of Lemma 3.3 needs several steps.
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Sublemma 3.4. For j > 1 integer, s, t ∈ R, let us define

Q(j, s, t) :=

(
j + it−s

2

) (
j + it+s

2

)

j(j + it)
.

Then,

(1) For s2 + t2 > 8j2, |Q(j, s, t)| > max
(
1,

√
s2+t2

8j

)
.

(2) For j2 6 s2 + t2 6 8j2, |Q(j, s, t)| 6 1.

(3) For s2 + t2 6 j2, |Q(j, s, t)| 6 e−(s2+t2)/10j2.

Proof. One has

Q(j, s, t) =
1− s2+t2

4j2
+ it/j

1 + it/j
. (9)

If s2 + t2 6 8j2, it is immediate that the numerator has a smaller absolute value than the
denominator, i.e. |Q(j, s, t)| 6 1. Moreover,

|Q(j, s, t)|2 =
1− s2+t2

2j2
+ (s2+t2)2

16j4
+ t2

j2

1 + t2

j2

= 1−

(
s2+t2

2j2

)(
1− s2+t2

8j2

)

1 + t2

j2

and in the case where s2 + t2 6 j2, one deduces

|Q(j, s, t)|2 6 1− 7(s2 + t2)

32j2

and then
|Q(j, s, t)| 6 e−7(s2+t2)/64j2

6 e−(s2+t2)/10j2 .

Now, if s2+t2 > 8j2, the numerator in (9) has a larger absolute value than the denominator,
and then |Q(j, s, t)| > 1. Moreover, since (s2 + t2)/8j2 > 1,

|Q(j, s, t)|2 =

(
s2+t2

4j2
− 1
)2

+ t2

j2

1 + t2

j2

>

(
s2+t2

8j2

)2
+ t2

j2

1 + t2

j2

>

(
s2+t2

8j2

)2
+ s2+t2

j2

1 + s2+t2

j2

>
1

64
.

(
s2+t2

j2

)2
+ s2+t2

j2

1 + s2+t2

j2

=
s2 + t2

64j2
,

which finishes the proof of the sublemma. �

Sublemma 3.5. Let j > 1 be an integer, let ρj and σj be the real and imaginary parts

of log(1−
√
β1,j−1e

iθ), where β1,j−1 is a beta random variable with β(1, j − 1) distribution
and θ is independent of β1,j−1, uniform on [0, 2π]. Then, for s, t ∈ R,

|E[ei(tρj+sσj)]| 6 e−(s2+t2)/30j

if s2 + t2 6 8j2, and

|E[ei(tρj+sσj)]| 6 8√
s2 + t2
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if s2 + t2 > 8j2 and j > 2.

Proof. For t ∈ R and s ∈ C with real part strictly between −1 and 1,

E[ei(tρj+sσj)] =
Γ(j)Γ(j + it)

Γ
(
j + it−s

2

)
Γ
(
j + it+s

2

) (10)

(see [4]). Now, if t is fixed, the function

s 7→ E[ei(tρj+sσj)]

is holomorphic, since the imaginary part is uniformly bounded (by π/2). This implies that
(10) holds for all t ∈ R, s ∈ C, and in particular for all s, t ∈ R. Moreover,

Γ(k)Γ(k + it)

Γ
(
k + it−s

2

)
Γ
(
k + it+s

2

) −→
k→∞

1,

since Γ(k + z)/Γ(k) is asymptotic to kz for large k for all z ∈ C. Hence, by using the
equation Γ(z + 1) = zΓ(z), one deduces that

E[ei(tρj+sσj)] =
∞∏

k=j

(
k + it−s

2

) (
k + it+s

2

)

k(k + it)
=

∞∏

k=j

Q(k, s, t).

If s2 + t2 6 8j2, then |Q(k, s, t)| 6 1 for all k > j and |Q(k, s, t)| 6 e−(s2+t2)/10k2 for all
k > 3j. Hence

|E[ei(tρj+sσj)]| 6
∞∏

k=3j

e−(s2+t2)/10k2
6

∞∏

k=3j

e−(s2+t2)/10k(k+1) = e−(s2+t2)/30j.

Now let us assume s2 + t2 > 8j2. One has:

E[ei(tρj+sσj)] =
Γ(1)Γ(1 + it)

Γ
(
1 + it−s

2

)
Γ
(
1 + it+s

2

)
j−1∏

k=1

1

Q(k, s, t)

where all the factors 1
Q(k,s,t)

have absolute value bounded by one. By considering the case

where j = 1, one deduces
∣∣∣∣∣

Γ(1)Γ(1 + it)

Γ
(
1 + it−s

2

)
Γ
(
1 + it+s

2

)
∣∣∣∣∣ 6 1,

and then, for j > 2,

|E[ei(tρj+sσj)]| 6 1

|Q(1, s, t)| 6
8√

s2 + t2
. �

Sublemma 3.6. For N > 4 and θ ∈ [0, 2π), the distribution of log(ZX(θ)) under Haar

measure on U(N) has a density with respect to Lebesgue measure on C, which is continuous

and bounded by C0/ log(N), where C0 > 0 is a universal constant.
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Proof. By the results in [4] and the previous sublemma, one checks that the characteristic
function Φ of log(ZX(θ)) ∈ C ∼ R

2 is given by

Φ(s, t) =
N∏

j=1

E[ei(tρj+sσj)].

If s2 + t2 > 32N , one has s2 + t2 > 128 > 8j2 for j ∈ {2, 3, 4}. Hence,

|Φ(s, t)| 6 |E[ei(tρ2+sσ2)]||E[ei(tρ3+sσ3)]||E[ei(tρ4+sσ4)]| 6 512

(s2 + t2)3/2
.

If s2 + t2 6 32N , then s2 + t2 6 8j2 for all j > 2
√
N . Hence,

|Φ(s, t)| 6
∏

2
√
N6j6N

E[ei(tρj+sσj)] 6 exp


−(s2 + t2)

∑

2
√
N6j6N

1

30j


 .

Since e1/j > j+1
j
, one deduces

|Φ(s, t)| 6
∏

2
√
N6j6N

(
j

j + 1

)(s2+t2)/30

6

(
2
√
N + 1

N + 1

)(s2+t2)/30

6

(
3
√
N

N

)(s2+t2)/30

= e− log(N/9)(s2+t2)/60.

Now, for N > 10,
∫

R2

|Φ(s, t)|dsdt 6
∫

R2

512

(s2 + t2)3/2
11{s2+t2>32N}dsdt+

∫

R2

e− log(N/9)(s2+t2)/60 11{s2+t2632N}dsdt

= π

(∫ 32N

0

e−u log(N/9)/60du+

∫ ∞

32N

512

u−3/2
du

)

6
60π

log(N/9)
+ 1024π(32N)−1/2

6
10000

logN
,

and for N ∈ {4, 5, 6, 7, 8, 9},
∫

R2

|Φ(s, t)|dsdt 6
∫

R2

512

(s2 + t2)3/2
11{s2+t2>32N}dsdt+

∫

R2

11{s2+t2632N}dsdt

= π

(∫ 32N

0

du+

∫ ∞

32N

512

u−3/2
du

)

6 32πN + 1024π(32N)−1/2
6 288π + 1024π(128)−1/2

6
10000

log 9
.

By applying Fourier inversion, we obtain Sublemma 3.6. �
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Let us now go back to the proof of Lemma 3.3. For any X ∈ U(N) with eigenvalues
(eiθj)16j6N , one has, in the case where eiθ 6= eiθj for all j ∈ {1, . . . , N},

I := Im(log(ZX(θ)) =
∑

16j6N

Im(log(1− ei(θj−θ)))

=
1

2

∑

16j6N

(θj − θ) +
∑

16j6N

Im(log(e−i(θj−θ)/2 − ei(θj−θ)/2))

=
1

2
Im(log det(X))− Nθ

2
+
∑

16j6N

Im (log (−2i sin (θj − θ)/2)))

=
J
2
− N(θ + π)

2
,

where J denotes the version of Im(log det(X)) lying on the interval (−π, π]. Hence, for any
ǫ ∈ (0, π), |J | 6 ǫ if and only if I is on an interval of the form

[
2kπ−ǫ−N(θ+π)

2
, 2kπ+ǫ−N(θ+π)

2

]

for some k ∈ Z. Now, for some A > 0 chosen later as a function of δ, let Φ be a continuous
function from C to [0, 1] such that Φ(z) = 1 if |Re z−x0| 6 δ

√
logN and | Im z| 6 A

√
logN ,

and such that Φ(z) = 0 for |Re z − x0| > 2δ
√
logN or | Im z| > 2A

√
logN . For ǫ ∈ (0, π),

and under the Haar measure PU(N) on U(N),

π

ǫ
EU(N)

[
Φ(log(ZX(θ)))11{|J |6ǫ}

]

=
π

ǫ

∑

k∈Z
EU(N)

[
Φ(log(ZX(θ)))11{ 2kπ−ǫ−N(θ+π)

2
6I6 2kπ+ǫ−N(θ+π)

2 }
]

=
π

ǫ

∑

k∈Z

∫ ∞

−∞
dx

∫ (2kπ+ǫ−N(θ+π))/2

(2kπ−ǫ−N(θ+π))/2

dy D(x+ iy)Φ(x+ iy)

= π
∑

k∈Z

∫ ∞

−∞
dx

∫ 1/2

−1/2

duD(x+ i[kπ−N(θ+π))/2+uǫ])Φ(x+ i[kπ−N(θ+π))/2+uǫ]),

whereD denotes the density of the law of log(ZX(θ)), with respect to the Lebesgue measure.
Now,

D(x+ i[kπ −N(θ + π))/2 + uǫ])Φ(x+ i[kπ −N(θ + π))/2 + uǫ])

is uniformly bounded by the overall maximum of D and vanishes as soon as |x − x0| >
2δ
√
logN or |k|π > N(|θ| + π)/2 + π/2 + 2A

√
logN . Since D and Φ are continuous

functions, one can apply dominated convergence and deduce that

π

ǫ
EU(N)

[
Φ(log(ZX(θ)))11{|J |6ǫ}

]

converges to

π
∑

k∈Z

∫ ∞

−∞
D(x+ i[kπ −N(θ + π))/2])Φ(x+ i[kπ −N(θ + π))/2])dx
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when ǫ goes to zero. On the other hand, if the matrix X follows PSU(N) and if T is an

independent uniform variable on (−π, π], then XeiT/N follows PU(N) and its determinant
is eiT . One deduces

π

ǫ
EU(N)

[
Φ(log(ZX(θ)))11{|J |6ǫ}

]
=
π

ǫ
ESU(N)

[
Φ(log(ZXeiT/N (θ)))11{|T |6ǫ}

]

=
1

2ǫ

∫ ǫ

−ǫ

ESU(N) [Φ(log(ZXeit/N (θ)))] dt

=

∫ 1/2

−1/2

ESU(N) [Φ(log(ZXe2ivǫ/N (θ)))] dv

Now, the function X 7→ Φ(log(ZX(θ))) is continuous from U(N) to [0, 1], since Φ is contin-
uous with compact support and X 7→ log(ZX(θ)) has discontinuities only at points where
its real part goes to −∞. One can then apply dominated convergence and obtain

π

ǫ
EU(N)

[
Φ(log(ZX(θ)))11{|J |6ǫ}

]
−→
ǫ→0

ESU(N) [Φ(log(ZX(θ)))] .

By comparing with the convergence obtained just above, one deduces that

ESU(N) [Φ(log(ZX(θ)))] = π
∑

k∈Z

∫ ∞

−∞
D(x+i[kπ−N(θ+π))/2])Φ(x+i[kπ−N(θ+π))/2])dx.

Since D(z) 6 C0/ logN and

11{|x−x0|6δ
√
logN,|y|6A

√
logN} 6 Φ(x+ iy) 6 11{|x−x0|62δ

√
logN,|y|62A

√
logN}

for all x, y ∈ R, one deduces

PSU(N)[| log |ZX(θ)| − x0| 6 δ
√

logN, | Im logZX(θ)| 6 A
√

logN ] 6
πdLC0

logN
,

where d = 4δ
√
logN is the length of the interval [x0 − 2δ

√
logN, x0 + 2δ

√
logN ] and L is

the number of integers k such that |kπ − N(θ + π))/2| 6 2A
√
logN . Now, it is easy to

check that L 6 1 + 4A
√
logN
π

, and so

PSU(N)

[
| log |ZX(θ)| − x0| 6 δ

√
logN, | Im logZX(θ)| 6 A

√
logN

]
6 16C0Aδ +

4πδ C0√
logN

.

Using Lemma 3.2, one obtains

PSU(N)

[
| log |ZX(θ)| − x0| 6 δ

√
logN

]
6 16C0Aδ +

4πδ C0√
logN

+ c′1e
−A

2

(
A∧

√
logN
2

)

.

Let us now choose A := 1 + 5 log(1/δ). One finds

A ∧
√
logN

2
= [1 + 5 log(1/δ)] ∧

√
logN

2
>

√
log 2

2

and thus
A

2

(
A ∧

√
logN

2

)
>

5
√
log 2 log(1/δ)

4
> log(1/δ).
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Therefore,

PSU(N)

[
| log |ZX(θ)| − x0| 6 δ

√
logN

]
6 16C0 δ + 80C0 δ log(1/δ) +

4πδ C0√
logN

+ c′1δ.

Since δ < 1/2, one has δ 6 δ log(1/δ)/ log(2), which implies Lemma 3.3, for

C =
16C0

log 2
+ 80C0 +

4π C0

(log 2)3/2
+

c′1
log 2

. �

3.5. Behaviour of the oscillation in short intervals of the logarithm of the char-

acteristic polynomial.

Lemma 3.7. There exists c2 > 0 such that for µ ∈ R and A > 0 and uniformly in

N >M > 2 ∨ |µ|
2π
,

PSU(N)

(∫ 2π

0

∣∣∣∣Re logZX

(
θ +

µ

N

)
− Re logZX(θ)

∣∣∣∣
dθ

2π
> A

√
logM

)
6

c2
A2
,

and

PSU(N)

(∫ 2π

0

∣∣∣∣ Im logZX

(
θ +

µ

N

)
− Im logZX(θ)

∣∣∣∣
dθ

2π
> A

√
logM

)
6

c2
A2
.

Proof. By symmetry of the problem, we can assume µ > 0. Setting

Rθ := Re logZX

(
θ +

µ

N

)
− Re logZX(θ)

for fixed µ (or the same expression with the imaginary part), we get:

PSU(N)

(∫ 2π

0

|Rθ|
dθ

2π
> A

√
logM

)
6

1

A2 logM
ESU(N)

((∫ 2π

0

|Rθ|
dθ

2π

)2
)

6
1

A2 logM
ESU(N)

(∫ 2π

0

R2
θ

dθ

2π

)

=
1

A2 logM

∫ 2π

0

ESU(N)

(
R2

θ

) dθ
2π

=
1

A2 logM
EU(N)

(
R2

0

)
(by (2))

Now, under U(N), the canonical matrix X is almost surely unitary. Let θ1, . . . , θN be
its eigenangles in [0, 2π). For j ∈ {1, . . . , N} and t ∈ [0, 2π)\{θj}, we can expand the
logarithm as a conditionally convergent series

log(1− ei(θj−t)) = −
∑

k>1

eik(θj−t)

k
.
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Hence, for t such that ZX(t) 6= 0,

logZX(t) = −
N∑

j=1

∑

k>1

eik(θj−t)

k
= −

∑

k>1

e−ikt

k
tr
(
Xk
)
.

Therefore

Re logZX(t) = −1

2

(
∑

k>1

1

k
e−ikt tr

(
Xk
)
+
∑

k>1

1

k
eikt tr

(
X−k

)
)

= −1

2

∑

k∈Z∗

1

|k|e
−ikt tr

(
Xk
)
,

and

Im logZX(t) = − 1

2i

(
∑

k>1

1

k
e−ikt tr

(
Xk
)
−
∑

k>1

1

k
eikt tr

(
X−k

)
)

= − 1

2i

∑

k∈Z∗

1

k
e−ikt tr

(
Xk
)
.

Here, the series in k ∈ Z
∗ = Z\{0} are conditionally convergent. More precisely, for K > 1

set

S
(K)
t := −1

2

∑

k∈Z∗,|k|6K

1

|k|e
−ikt tr

(
Xk
)
,

and
St := Re logZX(t),

then S
(K)
t tends almost surely to St as K goes to infinity.

Moreover, one has the following classical result, [7]: For all p, q ∈ Z,

EU(N)

(
tr (Xp)tr (Xq)

)
= 11{p=q} |p| ∧N. (11)

Hence, for K,L > 1, t, u ∈ R,

EU(N)

(
S
(K)
t S(L)

u

)
= EU(N)


1

4

∑

p,q∈Z∗,|p|6K,|q|6L

e−i(pt+qu)

|pq| tr (Xp) tr (Xq)




=
1

4

∑

p,q∈Z∗,|p|6K,|q|6L

e−i(pt+qu)

|pq| EU(N)(tr (X
p) tr (Xq))

=
1

4

∑

p,q∈Z∗,|p|6K,|q|6L

e−i(pt+qu)

|pq| 11{p=−q} |q| ∧N (from (11))

=
1

4

∑

k∈Z∗,|k|6K∧L

eik(u−t)

k2
|k| ∧N

=
1

2

∑

16k6K∧L

k ∧N
k2

(
eik(u−t) + e−ik(u−t)

2

)

=
1

2

∑

16k6K∧L

k ∧N
k2

cos (k(u− t)) .
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One deduces that

EU(N)

(
(S

(K)
t − S

(L)
t )2

)
= EU(N)

(
(S

(K)
t )2

)
+ EU(N)

(
(S

(L)
t )2

)
− 2EU(N)

(
S
(K)
t S

(L)
t

)

=
1

2

∑

k>1

k ∧N
k2

cos (k(u− t))
(
11{k6K} + 11{k6L} − 211{k6K∧L}

)

=
1

2

∑

k>1

k ∧N
k2

cos (k(u− t)) 11{K∧L<k6K∨L}

6
1

2

∑

k>K∧L

k ∧N
k2

,

which tends to zero when K ∧L goes to infinity. Hence, S
(K)
t converges in L2 when K goes

to infinity, and the limit is necessarily St. Therefore,

EU(N)(StSu) = lim
K→∞

1

2

∑

16k6K∧L

k ∧N
k2

cos (k(u− t)) =
1

2

∑

k>1

k ∧N
k2

cos (k(u− t)) .

The same computation with S̃t := Im logZX(t) gives exactly the same equality, namely

EU(N)

(
S̃tS̃u

)
=

1

2

∑

k>1

k ∧N
k2

cos (k(u− t))

It is therefore sufficient to only show the calculations for St, as those for S̃t are identical.
Setting α = µ

N
and using this last formula, we can write

EU(N)

(
R2

0

)
= EU(N)

(
(Sα − S0)

2) = 2EU

(
S2
0 − SαS0

)

=
∑

k>1

k ∧N
k2

(1− cos (kα))

=
∑

k>1

k ∧N
k2

−
∑

k>1

k ∧N
k2

cos

(
kµ

N

)
.

We have

∑

k>1

k ∧N
k2

=
N∑

k=1

1

k
+N

∑

k>N

1

k2
= logN + γ +O

(
1

N

)
+N

(
1

N
+O

(
1

N2

))

and using Euler-Maclaurin summation, we have the following result (see [8], p.37 for the
details), that uniformly on α ∈ [−π, π]
∑

k>1

k ∧N
k2

cos(kα) = − log

∣∣∣∣2 sin
(α
2

) ∣∣∣∣+ Ci (N |α|) + cos (Nα)− π

2
N |α|+Nα Si (Nα)

+O

(
1

N

)
,



22 Y. BARHOUMI-ANDRÉANI, C.P. HUGHES, J. NAJNUDEL, AND A. NIKEGHBALI

where

Si (z) :=

∫ z

0

sin x

x
dx =

π

2
− cos z

z
+

∫ ∞

z

cos x

x2
dx

and

Ci (z) = −
∫ ∞

z

cosx

x
dx = γ − log z +

∫ z

0

cos x− 1

x
dx.

Let us denote f (µ) := log µ + π
2
µ − cosµ − Ci (µ) − µSi (µ). We therefore have, for N

going to infinity,

EU(N)

(
R2

0

)
= logN + 1 + γ + f(µ)− log µ+ log

∣∣∣∣2 sin
( µ

2N

) ∣∣∣∣+O

(
1

N

)

= logN + 1 + γ + f(µ)− log µ+ log

(
2
µ

2N

(
1 +O

(( µ
N

)2)))
+O

(
1

N

)

= 1 + γ + f(µ) +O

(( µ
N

)2)
+O

(
1

N

)
. (12)

Let us now study the behavior of the function f .

f(µ) = log µ− cosµ+ µ
(π
2
− Si (µ)

)
− Ci (µ)

= log µ− cosµ+ µ

(
cosµ

µ
−
∫ ∞

µ

cos x

x2
dx

)
−
(
γ − log µ+

∫ µ

0

cosx− 1

x
dx

)

= −γ − µ

∫ ∞

µ

cos x

x2
dx+

∫ µ

0

cosx− 1

x
dx.

Bounding the integrals uniformly in µ > 0 one has that

f(µ) = −γ − µO

(∫ ∞

µ

1

x2
dx

)
+O

(∫ µ

0

(
1

x
∧ 1

)
dx

)

= −γ +O (1) +O (1 + log(µ ∨ 1)) = O
(
log
( µ
2π

∨ 2
))

,

where we have used the standard notation µ ∨ 1 to mean the maximum of µ and 1.
Substituting this into (12) yields

EU(N)

(
R2

0

)
= O

(
log
( µ
2π

∨ 2
))

= O (logM) . (13)
�

3.6. Control in probability of the mean oscillation of the logarithm of the char-

acteristic polynomials.

Lemma 3.8. Given n ∈ N, consider an i.i.d. sequence (Uj)16j6n of random matrices

following the Haar measure on SU(N), and let

Lj(θ) :=
log
∣∣ZUj

(θ)
∣∣

√
1
2
logN

.
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For δ ∈ (0, 1/2), consider the random set

Eδ :=
n⋃

i=1

(
{
θ ∈ [0, 2π] / |Li(θ)| > δ−1

}
∪
⋃

j 6=i

{θ ∈ [0, 2π] / |Lj(θ)− Li(θ)| 6 δ}
)
.

There exists c3 > 0, depending only on n, such that for all N > 4

E(λ2π(Eδ)) 6 c3δ log(1/δ),

where λ2π denotes the normalised Lebesgue measure on [0, 2π].

Proof. One has

ESU(N)(λ2π(Eδ)) =

∫ 2π

0

dθ

2π
PSU(N) (θ ∈ Eδ)

6

n∑

i=1

∫ 2π

0

dθ

2π
PSU(N)

(
|Li(θ)| > δ−1

)
+

∑

16i 6=j6n

∫ 2π

0

dθ

2π
PSU(N) (|Lj(θ)− Li(θ)| 6 δ) .

In the last second sum, since i 6= j, Li(θ) is independent of Lj(θ), and hence, conditioning
on Li(θ), one gets

PSU(N) (|Lj(θ)− Li(θ)| 6 δ) = ESU(N)(H(Li(θ)))

where
H(x) = PSU(N) (|Lj(θ)− x| 6 δ)

One deduces that for all i 6= j

PSU(N) (|Lj(θ)− Li(θ)| 6 δ) 6 sup
θ∈[0,2π],x∈R

PSU(N)

(
|log |ZX(θ)| − x| 6 δ

√
1

2
logN

)

Using Markov’s inequality, i.e. P (X > t) 6 E (X) /t for all t > 0 and all random variables
X > 0, one thus obtains

ESU(N)(λ2π(Eδ)) 6 n

∫ 2π

0

dθ

2π
PSU(N)

(
|log |ZX(θ)|| > δ−1

√
1

2
logN

)

+ n(n− 1) sup
θ∈[0,2π],x∈R

PSU(N)

(
|log |ZX(θ)| − x| 6 δ

√
1

2
logN

)

6 nc1e
− δ−1

√
2

(
δ−1
√
2
∧

√
logN
2

)

+ n(n− 1)C(δ/
√
2) log(

√
2/δ).

Now,

e
− δ−1

√
2

(
δ−1
√
2
∧

√
logN
2

)

6 e
− δ−1

√
2

(
2√
2
∧

√
log 2
2

)

6 e−
δ−1

5 = O(δ log(1/δ))

and

δ log(
√
2/δ) 6 δ log(

√
δ−1/δ) =

3δ

2
log(1/δ),

which gives Lemma 3.8. �
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3.7. Control in expectation of the oscillation of the logarithm of the characteris-

tic polynomials on a small period. In what follows, assume the dimension N > 4. Let
K be an integer such that 2 6 K 6 N/2, defined as a function of N which is asymptotically
equivalent to N/(logN)3/64 when N goes to infinity. We denote

M := N/K > 2,

which is asymptotic to (logN)3/64, and we also define a parameter δ ∈ (0, 1/4) as a function
of N , asymptotic to (logN)−3/32 when N goes to infinity. For θ0 ∈ [0, 2π], we denote, for
0 6 k 6 K.

θk := θ0 +
2πk

K
= θ0 +

2πkM

N
,

and for 0 6 k 6 K − 1,

∆ := θk+1 − θk =
2π

K
=

2πM

N
.

The angle θ0 is chosen in such a way that the following technical condition is satisfied:

K−1∑

k=0

ESU(N)

(∣∣∣Im logZX(θk + (1−
√
δ)∆)− Im logZX(θk +

√
δ∆)

∣∣∣
)

6 KESU(N)

(∫ 2π

0

dθ

2π

∣∣∣Im logZX(θ + (1−
√
δ)∆)− Im logZX(θ +

√
δ∆)

∣∣∣
)
.

This choice is always possible. Indeed, if the converse (strict) inequality were true for all
θ0, then one would get a contradiction by integrating with respect to θ0 ∈ [0, 2π/K). We
then define the interval J := [θ0, θ0 + 2π) = [θ0, θK). Note that all the objects introduced

here can be defined only as a function of N . Moreover, by applying Lemma 3.7 to θ+
√
δ∆

and µ = N(1− 2
√
δ)∆ 6 2πM , we deduce that the assumption made on θ0 implies that

K−1∑

k=0

ESU(N)

(∣∣∣Im logZX(θk + (1−
√
δ)∆)− Im logZX(θk +

√
δ∆)

∣∣∣
)
= O

(
K
√

logM
)
.

(14)
We now introduce the 2-oscillation of the real and imaginary parts of the logarithm of

the characteristic polynomial.

Definition 3.9. For θ ∈ J and µ ∈ [0, 2πM ], and for the canonical matrix X ∈ U(N), the
2-oscillations of Re logZX and Im logZX are defined by

∆µRθ :=
1√

log(M)

∣∣∣Re logZX

(
θ +

µ

N

)
− Re logZX(θ)

∣∣∣

∆µIθ :=
1√

log(M)

∣∣∣ Im logZX

(
θ +

µ

N

)
− Im logZX(θ)

∣∣∣

In case of several matrices (Xj)16j6n, we denote the corresponding 2-oscillations by

∆µR
(j)
θ and ∆µI

(j)
θ .
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Now, we need to introduce several random sets. The most important ones can be infor-
mally described as follows:

(1) A set N1 of indices k such that the average of the 2-oscillations ∆µRθ and ∆µIθ of
the logarithm of the characteristic polynomials for θ ∈ [θk, θk+1] and µ ∈ [0, 2πM ]
is sufficiently small.

(2) For k ∈ N1, a subset Gk of [θk, θk+1] for which the average of the 2-oscillations with
respect to µ ∈ [0, 2πM ] is small enough.

(3) A subset N2 of N1 of “good” indices, such that there exists θ ∈ [θk, θk +
√
δ∆],

both in Gk and E c
δ . This last set, introduced in Lemma 3.8, corresponds to the fact

that the logarithms of the absolute values of the characterize polynomials are not
too large and not too close from each other. It is from this last condition that we
can define the “carrier wave”.

(4) For k ∈ N2, and for some θ∗k ∈ [θk, θk +
√
δ∆] ∩ Gk ∩ E c

δ , a subset Yk of [0, 2πM ]
such that the 2-oscillations ∆µRθ∗k

and ∆µIθ∗k are sufficiently small. This condition
will ensure that the carrier wave index corresponding to θ = θ∗k + µ/N does not
depend on µ ∈ Yk.

(5) From this property, we deduce that, for each pair of consecutive gaps between zeros
of the carrier wave, which are sufficiently large to contain an angle of the form
θ∗k + µ/N for k ∈ N2 and µ ∈ Yk (“roomy gaps”), one can find, with the notation
of the introduction, a sign change of iNeiNθ/2FN(e

−iθ), and hence a zero of FN .

All these sets will be precisely defined later in this paper. They are constructed in a
way such that their measure is “large” with “high” probability (again, in a manner to be
made precise). The corresponding estimates will then be used to prove our main result,
Theorem 1.1.

Lemma 3.10. Let P
(n)
SU(N) be the n-fold product of the Haar measure on SU(N), E

(n)
SU(N) the

corresponding expectation, and (Xj)16j6n the canonical sequence of n matrices in SU(N).
Then:

(1) There exists a random set N1 ⊂ J0, K − 1K such that E
(n)
SU(N)(|N1|) > (1− δ)K and

P
(n)
SU(N)-a.s., ∀ (j, k) ∈ J1, nK × N1,

∫ θk+1

θk

∫ 2πM

0

∆µR
(j)
θ

dµ

2πM

dθ

2π
= O

(
1

δK

)

and ∫ θk+1

θk

∫ 2πM

0

∆µI
(j)
θ

dµ

2πM

dθ

2π
= O

(
1

δK

)

(2) P
(n)
SU(N)-a.s., ∀ k ∈ N1, ∃Gk ⊂ [θk, θk+1) such that λ2π (Gk) > (1 − δ)/K and,

∀ θ ∈ Gk, j ∈ J1, nK,
∫ 2πM

0

∆µR
(j)
θ

dµ

2πM
= O

(
1

δ2

)
and

∫ 2πM

0

∆µI
(j)
θ

dµ

2πM
= O

(
1

δ2

)
(15)
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Here, the implied constant in the O(·) symbols depends only on n.

Proof. By (13) and the similar estimate for the imaginary part, we have uniformly (with
a universal implied constant),

EU(N)

(
(∆µR0)

2)+ EU(N)

(
(∆µI0)

2) = O(1).

The Cauchy-Schwarz inequality ensures that

EU(N)(∆µR0) + EU(N)(∆µI0) = O(1),

i.e. ∫

J

ESU(N)(∆µRθ +∆µIθ)
dθ

2π
= O(1),

which implies ∫

J

∫ 2πM

0

ESU(N)(∆µRθ +∆µIθ)
dµ

2πM

dθ

2π
= O(1).

Splitting the interval J into K equal pieces and applying this estimate to n independent
matrices (Xj)16j6n following the Haar measure on SU(N), one gets

1

n

n∑

j=1

K−1∑

k=0

E
(n)
SU(N)

(∫ θk+1

θk

∫ 2πM

0

(∆µR
(j)
θ +∆µI

(j)
θ )

dµ

2πM

dθ

2π

)
= O(1). (16)

Applying Markov’s inequality, we deduce that there exists a universal constant κ > 0, such
that

E
(n)
SU(N)

(
card

{
(j, k) ∈ J1, nK × J0, K − 1K :

∫ θk+1

θk

∫ 2πM

0

∆µR
(j)
θ

dµ

2πM

dθ

2π
>
κn

Kδ

})
6
δK

2

and

E
(n)
SU(N)

(
card

{
(j, k) ∈ J1, nK × J0, K − 1K :

∫ θk+1

θk

∫ 2πM

0

∆µI
(j)
θ

dµ

2πM

dθ

2π
>
κn

Kδ

})
6
δK

2
.

Setting

N1 :=
n⋂

j=1

{
k ∈ J0, K − 1K :

∫ θk+1

θk

∫ 2πM

0

∆µR
(j)
θ

dµ

2πM

dθ

2π
6
κn

Kδ
,

∫ θk+1

θk

∫ 2πM

0

∆µI
(j)
θ

dµ

2πM

dθ

2π
6
κn

Kδ

}

we thus get

E
(n)
SU(N)(|N1|) > (1− δ)K. (17)

Now, for k ∈ N1, let us set

Gk := [θk, θk+1) ∩
n⋂

j=1

{∫ 2πM

0

∆µR
(j)
.

dµ

2πM
6

2κn2

δ2
,

∫ 2πM

0

∆µI
(j)
.

dµ

2πM
6

2κn2

δ2

}
.
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Applying Markov’s inequality again, we get that P
(n)
SU(N)-a.s. we have

λ2π (Gk) > (1− δ)/K. (18)
�

Definition 3.11 (Good indices). An index k ∈ J0, K − 1K is said to be good if:

(1) k ∈ N1,

(2) E c
δ ∩ Gk ∩ [θk, θk +

√
δ∆) 6= ∅.

We denote by N2 the set of good indices, that is

N2 :=
{
k ∈ N1

/
E

c
δ ∩ Gk ∩ [θk, θk +

√
δ∆) 6= ∅

}
. (19)

An index is said to be bad if it is not good.

Lemma 3.12. With the notation above, the set of good indices satisfies

E
(n)
SU(N)(|N2|) = K

(
1−O

(√
δ log(1/δ)

))
,

where the implied constant in the O(·) symbol depends only on n.

Proof. If k ∈ N c
2 , either k ∈ N c

1 , or k ∈ N1 and E c
δ ∩ Gk ∩ [θk, θk +

√
δ∆) = ∅. This is,

N c
2 = N c

1 ∪ Ñ1 where

Ñ1 :=
{
k ∈ N1 : Gk ∩ [θk, θk +

√
δ∆) ⊂ Eδ

}
.

By (17), we have E
(n)
SU(N)(|N c

1 |) 6 δK.

For all k ∈ Ñ1, we have Eδ ⊃ Gk ∩ [θk, θk +
√
δ∆), i.e. Eδ ⊃

⋃
k∈Ñ1

Gk ∩ [θk, θk +
√
δ∆),

where the union is disjoint, and thus, λ2π (Eδ) >
∣∣∣Ñ1

∣∣∣mink λ2π

(
Gk ∩ [θk, θk +

√
δ∆)

)
.

By (18) we have, P
(n)
SU(N)-a.s.,

λ2π

(
Gk ∩ [θk, θk +

√
δ∆)

)
> λ2π (Gk) + λ2π

(
[θk, θk +

√
δ∆)

)
− λ2π ([θk, θk +∆))

>
1

K

(
(1− δ) +

√
δ − 1

)
.

Now, since δ < 1/4, we obtain P
(n)
SU(N)-a.s.

λ2π

(
Gk ∩ [θk, θk +

√
δ∆)

)
>

√
δ

2K
. (20)

This implies that P
(n)
SU(N)-a.s.

∣∣∣Ñ1

∣∣∣ 6 2K√
δ
λ2π (Eδ) .

Now, by Lemma (3.8), E
(n)
SU(N)

(∣∣∣Ñ1

∣∣∣
)
= O

(
K
√
δ log(1/δ)

)
and so

E
(n)
SU(N)(|N c

2 |) 6 E
(n)
SU(N)(|N c

1 |) + E
(n)
SU(N)

(∣∣∣Ñ1

∣∣∣
)
6 δK +O

(
K
√
δ log(1/δ)

)
. �
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3.8. Speed of the good oscillation of the logarithm of the characteristic polyno-

mials.

Lemma 3.13. With the notation above, and P
(n)
SU(N)-a.s., ∀ k ∈ N2, there exists a random

set Yk ⊂ [0, 2πM ], and θ∗k ∈ E c
δ ∩ Gk ∩ [θk, θk +

√
δ∆), such that

λ2πM (Yk) = 1−O
(
δ−2(logN)−1/4(logM)1/2

)
,

where λ2πM is 1/(2πM) times the Lebesgue measure, and for all j ∈ J1, nK, µ ∈ Yk,

∆µR
(j)
θ∗k

= O

(
(logN)1/4

(logM)1/2

)
and ∆µI

(j)
θ∗k

= O

(
(logN)1/4

(logM)1/2

)
. (21)

Again, the implied constant in the O(·) symbol depends only on n.

Proof. Let k ∈ N2 and θ∗k ∈ E c
δ ∩ Gk ∩ [θk, θk +

√
δ∆). Set

Yk :=
n⋂

j=1

{
∆.R

(j)
θ∗k

6 ε, ∆.I
(j)
θ∗k

6 ε
}

where

ε :=
(logN)1/4

(logM)1/2
.

Applying Markov’s inequality, we get

λ2πM (Y c
k ) 6 λ2πM

(
n⋃

j=1

{
∆.R

(j)
θ∗k

> ε
})

+ λ2πM

(
n⋃

j=1

{
∆.I

(j)
θ∗k

> ε
})

6
2n

ε
max
16j6n

(∫ 2πM

0

∆µR
(j)
θ∗k

dµ

2πM
∨
∫ 2πM

0

∆µI
(j)
θ∗k

dµ

2πM

)
=

1

ε
O
(
δ−2
)
,

by (15), which gives the announced result. �

3.9. The number of sign changes.

Let us go back to Theorem 1.1. We need to estimate the number of zeros of FN on the
unit circle, or equivalently, the number of values of θ ∈ J such that the following quantity
vanishes:

iNeiNθ/2FN(e
−iθ) = iNeiNθ/2

n∑

j=1

bjΦUN,j
(e−iθ) =

n∑

j=1

bji
NeiNθ/2ZUN,j

(θ). (22)

Using the fact that UN,j ∈ SU(N), one checks that iNeiNθ/2ZUN,j
(θ) is real, and then the

number of zeros of FN on the unit circle is bounded from below by the number of sign
changes, when θ increases from θ0 to θ0 + 2π, of the real quantity given by the right-hand
side of (22). Now, the order of magnitude of log |ZUN,j

(θ)| is √logN and more precisely,
Lemma 3.8 informally means that for most values of θ, the values of log |ZUN,j

(θ)| for
1 6 j 6 n are pairwise separated by an interval of length of order

√
logN . Hence, one of

the terms in the sum at the right-hand side of (22) should dominate all the others. If j0 is
the corresponding index, one can expect that the sign changes of (22) can, at least locally,
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be related to the corresponding sign changes of iNeiNθ/2ZUN,j0
(θ), which are associated to

the zeros of the characteristic polynomial ZUN,j0
. This should give a lower bound on the

number of sign changes of (22).
This informal discussion motivates the following definition.

Definition 3.14. With the notation of the previous subsections, for all k ∈ N2, we define
the carrier wave index by:

jk := Argmax
j

{
Re logZXj

(θ∗k)
}
,

where θ∗k is the random angle introduced in Lemma 3.13. Moreover, to each k ∈ N2 we
associate the interval

Jk :=
[
θ∗k, θ

∗
k + (1−

√
δ)∆

]
.

As θ∗k ∈ E c
δ , we have that for all j 6= jk, Re logZXj

(θ∗k) 6 Re logZXjk
(θ∗k) − δ√

2

√
logN .

From (21), we deduce that for all j 6= jk and for all µ ∈ Yk we have

Re logZXj

(
θ∗k +

µ

N

)
6 Re logZXjk

(
θ∗k +

µ

N

)
− δ√

2
(logN)1/2 +O

(
(logN)1/4

)
. (23)

Now, since
1/δ = O((logN)1/10),

with a universal implied constant, we then get, for a universal c > 0,∣∣ZXj

(
θ∗k +

µ
N

)∣∣
∣∣∣ZXjk

(
θ∗k +

µ
N

)∣∣∣
6 exp

(
−2c(logN)4/10 +O

(
(logN)1/4

))
6 exp

(
−c(logN)4/10

)
,

for N large enough, depending only on n. This implies∣∣∣∣∣
∑

j 6=jk

bjZXj

(
θ∗k +

µ

N

)∣∣∣∣∣ 6
∑

j |bj|
minj |bj|

∣∣∣bjkZXjk

(
θ∗k +

µ

N

)∣∣∣ exp
(
−c(logN)4/10

)

6
1

2

∣∣∣bjkZXjk

(
θ∗k +

µ

N

)∣∣∣
for N > N0, where N0 depends only on n, b1, . . . , bn. Hence, for k ∈ N2, µ ∈ Yk and
θ = θ∗k + µ/N , the quantity

G(θ) :=
n∑

j=1

bji
NeiNθ/2ZXj

(θ),

which is P
(n)
SU(N)-a.s. real, has the same sign as its term of index jk.

Theorem 1.1 is proven if we show that the expectation of number of sign changes of G(θ)

for θ ∈ J , under P
(n)
SU(N), is bounded from below by N − o(N). Hence, it is sufficient to get

E
(n)
SU(N)

(
∑

k∈N2

Sk

)
> N − o(N),
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where Sk is the number of sign changes of bjki
NeiNθ/2ZXjk

(θ), for θ ∈ Jk∩{θ∗k+ µ
N
, µ ∈ Yk}.

Now, for k ∈ N2, let αk,1 6 αk,2 6 · · · 6 αk,νk be the eigenangles, counted with
multiplicity, of Xjk in the interval Jk. The sign of bji

NeiNθ/2ZXjk
alternates between

the different intervals (αk,1, αk,2), (αk,2, αk,3), . . . , (αk,νk−1, αk,νk). Hence, for each pair of
consecutive intervals containing an angle θ = θ∗k +

µ
N
, µ ∈ Yk, we get a contribution of at

least 1 for the quantity Sk.
Every element of Jk can be written as θ∗k +

µ
N
, for

0 6 µ 6 (1−
√
δ)N∆ 6 N∆ = 2πM.

The Lebesgue measure of the elements of Jk for which µ /∈ Yk is then bounded by

1

N
λ(Y c

k ) =
2πM

N
λ2πM(Y c

k ),

where λ denotes the standard Lebesgue measure. Hence, if an interval (αk,ν , αk,ν+1) has a
length strictly greater than this bound, it necessarily contains some θ = θ∗k +

µ
N

for which
µ ∈ Yk. For some c′ > 0 depending only on n, this condition is implied by

αk,ν+1 − αk,ν > c′
M

N
δ−2(logN)−1/4(logM)1/2.

We will say that (αk,ν , αk,ν+1) is a roomy gap if this inequality is satisfied, and a narrow

gap if

αk,ν+1 − αk,ν 6 c′
M

N
δ−2(logN)−1/4(logM)1/2.

By the previous discussion, Sk is at least the number of pairs of consecutive roomy gaps
among the intervals (αk,1, αk,2), (αk,2, αk,3), . . . , (αk,νk−1, αk,νk). If there is no narrow gap,
the number of such pairs is (νk−2)+ > νk−2. Moreover, if among the intervals, we replace
a roomy gap by a narrow gap, this removes at most two pairs of consecutive roomy gaps.
Hence, we deduce, for all k ∈ N2, that

Sk > νk − 2− 2ψk,

where νk is the number of zeros of ZXjk
in the interval Jk and ψk the number of narrow

gaps among these zeros. Hence, we get the lower bound:

E
(n)
SU(N)

(
∑

k∈N2

Sk

)
> E

(n)
SU(N)

(
∑

k∈N2

νk − 2K − 2ψ

)
, (24)

where ψ is the total number of narrow gaps among the zeros in [0, 2π) of all the functions
(Zj)16j6n.
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Now, P
(n)
SU(N)-a.s., for all k ∈ N2, we have

νk =
∣∣∣{θ ∈

[
θ∗k, θ

∗
k + (1−

√
δ)∆

]
, Zjk(θ) = 0}

∣∣∣

>

∣∣∣{θ ∈
[
θk +

√
δ∆, θk + (1−

√
δ)∆

]
, Zjk(θ) = 0}

∣∣∣

=
N(1− 2

√
δ)∆

2π
+

1

π

(
Im logZXjk

(θk + (1−
√
δ)∆)− Im logZXjk

(θk +
√
δ∆)

)

>
N

K
(1− 2

√
δ)− 1

π

n∑

j=1

∣∣∣
(
Im logZXj

(θk + (1−
√
δ)∆)− Im logZXj

(θk +
√
δ∆)

)∣∣∣ ,

the second equality coming from Proposition 2.5.
Adding this inequality for all k ∈ N2, and taking the expectation yields the estimate

E
(n)
SU(N)

(
∑

k∈N2

νk

)
>
N

K
(1− 2

√
δ)E

(n)
SU(N)(|N2|)

−
n∑

j=1

K−1∑

k=0

E
(n)
SU(N)

[∣∣∣
(
Im logZXj

(θk + (1−
√
δ)∆)− Im logZXj

(θk +
√
δ∆)

)∣∣∣
]

and using (14) to estimate the terms on the right-hand side we therefore conclude that

E
(n)
SU(N)

(
∑

k∈N2

νk

)
>
N

K
(1− 2

√
δ)K(1−O(

√
δ log(1/δ)) +O(K

√
logM)

> N(1−O(
√
δ log(1/δ)) +O

(
N
√
logM

M

)
. (25)

It remains to estimate

E
(n)
SU(N)[2ψ] = 2nESU(N)[χ] = 2nEU(N)[χ],

where χ denotes the number of narrow gaps between the eigenvalues of the canonical
unitary matrix X. The replacement of SU(N) by U(N) is possible since the notion of
narrow gap is invariant by rotation of the eigenvalues. Note that this estimate of the
number of narrow gaps is the analog of the assumption made by Bombieri and Hejhal on
the proportion of small gaps between zeros of L-functions. Now, the last expectation can
be estimated by the following result:

Lemma 3.15. For N > 1 and ǫ > 0, let U be a Haar-distributed matrix on U(N) and

let χε be the number of pairs of eigenvalues of U whose argument differ by at most ε/N .

Then, E[χε] = O(Nε3).
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Proof. For θ1, θ2 ∈ R, the two-point correlation density of the eigenvalues of U at eiθ1 and
eiθ2 , with respect to the Haar probability measure on the unitary group, is given by

ρ(eiθ1 , eiθ2) = N2

[
1−

(
sin[N(θ2 − θ1)/2]

N sin[(θ2 − θ1)/2]

)2
]
.

Now,

N | sin[(θ2 − θ1)/2]| 6 N |θ2 − θ1|/2
and then (

sin[N(θ2 − θ1)/2]

N sin[(θ2 − θ1)/2]

)2

>

(
sin x

x

)2

for x = N(θ2 − θ1)/2. Now, for all x ∈ R, | sin x| > sin |x| > |x| − |x|3/6, which implies
(
sin x

x

)2

>

(
1− x2

6

)2

> 1− x2

3

and

ρ(eiθ1 , eiθ2) 6 N2

[
1−

(
sin x

x

)2
]
6
N2x2

3
=
N4(θ2 − θ1)

2

6
.

Integrating the correlation function for θ1 ∈ [0, 2π) and θ′ := θ2 − θ1 ∈ [−ε/N, ε/N ] gives

E[χε] 6

∫ 2π

0

dθ

2π

∫ ε/N

−ε/N

dθ′

2π

N4(θ′)2

6
6 N4

∫ ε/N

−ε/N

(θ′)2dθ′ = O
(
N4(ε/N)3

)
. �

From this result, applied for

ε = c′Mδ−2(logN)−1/4(logM)1/2

we get the estimate

E
(n)
SU(N)[2ψ] = O(Nε3) = O

(
NM3δ−6(logN)−3/4(logM)3/2

)
. (26)

Substituting the estimates (25) and (26) into (24), and recalling that M := N/K so
2K = O(N/M), we find that

E
(n)
SU(N)

(
∑

k∈N2

Sk

)

> N

[
1−O

(√
δ log(1/δ) +

√
logM

M
+M3δ−6(logN)−3/4(logM)3/2

)]
.

From the values taken for δ and M , we get
√
δ log(1/δ) = O

(
(logN)−3/64 log logN

)
,

√
logM

M
= O

(√
log logN(logN)−3/64

)
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and

M3δ−6(logN)−3/4(logM)3/2 = O
(
(logN)9/64(logN)18/32(logN)−3/4(log logN)3/2

)

= O
(
(logN)−3/64(log logN)3/2

)
.

Finally, we get

E
(n)
SU(N)

(
∑

k∈N2

Sk

)
= N

(
1−O

(
(logN)−1/22

))
,

which completes the proof of Theorem 1.1. �

Acknowledgment. We thank Brian Conrey and David Farmer for encouraging us to
investigate this problem.

References

1. J. Andrade, J. Keating Conjectures for the integral moments and ratios of L-functions over function

fields J. Number Theory 142 (2014), 102–148.
2. E. Bogomolny, O. Bohigas, P. Leboeuf Quantum chaotic dynamics and random polynomials, Journal

of Statistical Physics, 85 (1996), 639–679.
3. E. Bombieri, D. Hejhal, On the distribution of zeros of linear combinations of Euler products, Duke

Math. J., 80 (1995), 821–862.
4. P. Bourgade, C. Hughes, A. Nikeghbali, M. Yor, The characteristic polynomial of a random unitary

matrix : a probabilistic approach, Duke Math. J., 145 (2008), 45–69.
5. P. Bourgade, J. Najnudel , A. Nikeghbali, A unitary extension of virtual permutations, Int. Math. Res.

Notices, 2013 (2013), 4101–4134.
6. D. Bump, A. Gamburd, On the averages of characteristic polynomials from classical groups, Comm.

Math. Phys. 265 (2006), 227–274.
7. P. Diaconis, M. Shahshahani, On the eigenvalues of random matrices, In Studies in Applied Probabil-

ity; J. Gan (Ed.), Jour. Appl. Probab.: Special Vol. 31A (1994), 49–62.
8. C. Hughes, On the characteristic polynomial of a random unitary matrix and the Riemann zeta func-

tion, University of Bristol, PhD thesis, (2001).
9. C. Hughes, J. Keating, N. O’Connell, On the characteristic polynomial of a random unitary matrix,

Comm. Math. Phys., 220 (2001), 429–451.
10. C. Hughes, A. Nikeghbali, Zeros of random polynomials cluster uniformly near the unit circle, Com-

positio Mathematica, 144 (2008), 734–746.
11. J. Jacod, E. Kowalski, A. Nikeghbali Mod-Gaussian convergence: new limit theorems in probability

and number theory, Forum Mathematicum, 23 (2011), 835–873.
12. N. Katz, P. Sarnak, Random Matrices, Frobenius Eigenvalues and Monodromy, AMS Colloquium

Publications, 45 (1999), 1–26.
13. N. Katz, P. Sarnak, Zeros of zeta functions and symmetry, Bull. Amer. Math. Soc., 36 (1999), 1–26.
14. J. Keating, N. Snaith, Random matrix theory and ζ(1/2+ it), Comm. Math. Phys., 214 (2000), 57–85.
15. J. Keating, N. Snaith, Random matrix theory and L-functions at s = 1/2, Comm. Math. Phys., 214

(2000), 91–110.
16. R. Killip, I. Nenciu, Matrix models for circular ensemble, Intern. Math. Res. Not., 2004 (2004),

2665–2701.
17. E. Kowalski, A. Nikeghbali Mod-Gaussian convergence and the value distribution of ζ(1/2 + it) and

related quantities, J. London Math. Soc. (2), 86 (2012), 291–319.
18. E. Meckes, M. Meckes, Concentration and convergence rates for spectral measures of random matrices,

Probab. Theory Related Fields, 156 (2013), 145–164.
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