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Computing is a high-level process of a physical

system. Recent interest in non-standard computing

systems, including quantum and biological

computers, has brought this physical basis of

computing to the forefront. There has been, however,

no consensus on how to tell if a given physical

system is acting as a computer or not; leading

to confusion over novel computational devices,

and even claims that every physical event is a

computation. In this paper, we introduce a formal

framework that can be used to determine whether

a physical system is performing a computation. We

demonstrate how the abstract computational level

interacts with the physical device level, in comparison

with the use of mathematical models in experimental

science. This powerful formulation allows a precise

description of experiments, technology, computation

and simulation, giving our central conclusion: physical

computing is the use of a physical system to predict the

outcome of an abstract evolution. We give conditions

for computing, illustrated using a range of non-

standard computing scenarios. The framework also

covers broader computing contexts, where there is

no obvious human computer user. We introduce the

notion of a ‘computational entity’, and its critical

role in defining when computing is taking place in

physical systems.

2014 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/3.0/, which permits unrestricted use, provided the original author and

source are credited.
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1. Introduction
Information science is one of the great advances of the past century. The technology that

developed from it is now integral to almost all aspects of day-to-day life in the developed world,

and advances in mobile telephone hardware have put a computer in (almost) every pocket. In

addition to the proliferation of semiconductor-based computers, non-standard (also known as

unconventional) computational systems continue to be proposed and used—from the differential

analysers of the early-twentieth century [1], through to the recent explosion of interest in quantum

computing [2,3], and other proposals such as quantum annealing [4], DNA [5,6] or chemical [7,8]

computational devices. The notion of computation, and its related system property, information,

has been imported into other fields in an attempt to describe and explain such diverse processes as

photosynthesis [9] and the conscious mind [10], and a strand of modern cross-discipline thought

has given us the claims that ‘everything is information’ [11] or ‘the universe is a [quantum]

computer’ [12].

In parallel with the technological and conceptual development of information science, its

foundations continue to be addressed. The definition of which mathematical, logical and

algorithmic structures constitute ‘a computation’ is a topic of ongoing research [13,14]. The

question of how to define information, both as a concept and a physical quantity, is being

investigated by philosophers, physicists and informatics researchers [15]. In this paper, we

address a third, equally important, and specifically physical, question: what is a computer? Given

some notion of a mathematical computation, what does it mean to say that some physical system

is ‘running’ a computation? If we want to use computational notions in physics, then what are

the necessary and sufficient conditions under which we can say that a particular physical system

is carrying out a computation? In short, when does a physical system compute?

There is currently no accepted answer to this question, and an absence of a worked out

formalism within which to determine whether a computation is happening physically gives rise

to a great deal of confusion when discussing non-standard forms of computation. We can all

agree that a laptop running a Matlab calculation and a server processing search engine queries are

physical systems performing computation. However, when we move beyond standard and mass-

produced technology, the question becomes more difficult to answer. Is a protein performing a

compaction computation as it folds [16]? Does a photon (quantum) compute the shortest path

through a leaf in photosynthesis [17]? Is the human mind a computer [18]? A dog catching a

stick [19]? A stone sitting on the floor [20]? One answer is that they all are—that everything that

physically exists is performing computation by virtue of its existence. Unfortunately, by thus

defining the universe and everything in it as a computer, the notion of physical computation

becomes empty. To state that every physical process is a computation is simply to redefine what is

meant by a ‘physical process’—there is, then, no non-trivial content to the assertion. A statement

such as ‘everything is computation’ is either false, or it is trivial; either way, it is not useful in

determining properties of physical systems in practice.

In this paper, we give a framework that can be used to determine whether a physical system

is computing or not. We define what it means for a physical system to compute a mathematically

defined computation, how the physical and mathematical levels in computing interact and give

necessary conditions for a physical system to be computing. Key to defining our framework is

the representation relation that is fundamental in the physical sciences, where physical systems are

represented by mathematical objects. We show how such a representation allows comparisons

to be made between physical processes and mathematically described computations, and how

this can then be used to define when a physical process is being used in such a relation. This

requires, explicitly, the notion of a ‘computational entity’ to be necessary for a computation to

proceed: we define such entities, show how such a definition does not require either intention

or a conscious (or human) user, and argue that such a contextual notion of computation is not

problematic for an account of a physically real process. In our framework, computation shares

formal and structural similarities with scientific experiments and engineering technology: we are

able to show precisely how they are related, and give exact definitions for each in terms of a
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Figure 1. Representation in physics. (a) Spaces of abstract and physical objects (here, an electron and awave function). (b) The

representation relation used as the modelling relationRmediating between the spaces.

single, underlying structure. In all cases, we are dealing with questions of representation: how is a

physical system represented mathematically, how do we test that representation and how can the

representation be ‘reversed’, so that a physical system can instantiate a mathematical description.

As well as computation, these are key issues in how we determine between scientific theories

by argument and experiment, and in turn, fit into broader questions of representation that are

fundamental to a number of different fields [21].

2. Physical computation
The question of when a physical system is computing is fundamentally a question about the

relationship of abstract mathematical/logical entities to physical ones [22]. A ‘computation’ is

a mathematical abstraction described in one of the logical formalisms developed by theoretical

computer scientists. A ‘computer’ is a physical system with actual constituent parts and its own

internal interactions that take it from one physical state to another. The computer is taken to stand

in a certain relation to the computation—if we can formulate this relation, then we can answer our

question of when a physical system is performing computation. To act as a computer is always

to be performing a specific computation, we therefore need to ask: when is this physical system

performing that (not always known) computation, and what is the relation required between the

physical system and the abstract computation that this can be determined?

The above gives us a view as in figure 1a: there is a space of abstract mathematical/logical

entities and a space of physical entities. A computation is an entity in the first, and a putative

computer in the second. So what is it that allows us to go between the two spaces? There is no

possible notion of causation between them (this is simply a category error); so how does the

abstract interact with the physical at all?

To answer this, we turn to the area where the question of the relation between abstract and

physical has most commonly been posed: physics. Physics operates by representing physical

systems abstractly, using abstract theory to predict the outcome of physical evolution, and

formulating physical experiments to test the outcome of theoretical predictions. Physics works

by constant and two-way interaction between abstract and physical. Exactly, how it does this

has been the subject of philosophical investigation for centuries, and while progress has been

made, there is no clear and definitive description of the scientific process [23–26]. However, there

are certain things that we can and cannot say about the specific question of the relationship

between abstract description and physical entity. We use these to build a framework in which

outstanding questions can be located, and which enables us to use what is known about the

process of physics to show the relationship between physics and computing, and thereby to

describe physical computation. It is important to note here that we are not claiming to solve the

problems of the philosophy of science. The framework we propose will hopefully be of interest

to people in this field, but it has been constructed with the aim not of solving current issues but

rather redescribing them.
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3. Physics and the representation relation
The key to the interaction between abstract and physical entities in physics is via the representation

relation [21,27]. This is the method by which physical systems are given abstract descriptions: an

atom is represented as a wave function, a billiard ball as a point in phase space, a black hole as a

metric tensor and so on. That this relation is possible is a prerequisite for physics: without a way

of describing objects abstractly, we cannot do science. We have given examples of mathematical

representation, but this is not necessary: it can be any abstract description of an object, logical,

mathematical or linguistic. Which type of representation has an impact on what sort of physics

is possible: if we have a linguistic representation of object weight that is simply ‘heavy’ or ‘light’,

then we are able to do much less precise physics than if we use a numerical amount of newtons.

The most important property of the representation relation is that it is the relation that takes

us across the divide between abstract and physical. The representation relation is unique in this

respect, allowing a map between physical and abstract spaces: when we represent the physical

and abstract as in figure 1 (and subsequent figures), we are referring to the spaces themselves, not

mathematical descriptions of them, and the representation relation is not a mathematical relation.

Precisely, what it is, how it exists (and indeed can possibly exist) is a matter of ongoing research for

philosophers of science; we know, nevertheless, that such a thing does exist. The representation

relation is the relation that allows us to deal with the physical world at an abstract level; without

it, any abstract reasoning about the physical world is not possible.

For a physicist, there is very little mystery in the representation relation: it is how physics

works. This relation is how we can write down |ψ〉 and think that we are talking about an

electron or a hydrogen atom or a Bose–Einstein condensate. Every time we use something abstract

to represent something physical, we use a representation relation. It is important to note that

the representation of any given system is not unique: for example, a rubidium atom can be

represented as a quantum bit (qubit), or as the solution to a master equation, or as a multi-level

system with many orbitals.

This initial use of the representation relation in physics is fundamentally the process of

modelling: an electron is modelled as a wave function, an aeroplane as a vector and so on [21, part

1]. The modelling relation R takes an individual physical entity p to its abstract model mp. We use

lower case for individual entities and uppercase for mappings between entities. Physical objects

are given by bold letters, abstract by italics. We now have a picture as in figure 1b. This is the most

basic use of representation, and we can immediately see that it is an asymmetric relation. Having

an abstract representation for certain physical systems does not, in general, tell us how to find

a physical system that matches a given abstract entity. When modelling, the physical system is

known to exist (it is that which is modelled). However, there is no a priori reason to suppose that

there is a physical system corresponding to every model. A theorist can write down, for example,

the qubit state |ψ〉 = α|0〉 + β|1〉; for an experimentalist, however, to discover and build a system

to which it corresponds is often no trivial matter. While these two directions of representation are

not absolutely disjoint, the exasperation sometimes expressed by experimentalists towards the

unrealistic demands of theorists has its roots in the asymmetries of the representation relation

between physical and abstract entities.

The two directions of the representation relation, modelling from physical to abstract,

and instantiation from abstract to physical, lie at the heart of our questions around when a

physical system computes. In physics, we represent the physical world using abstract and

mathematical/logical concepts. In physical computation, we want to take an abstract entity, a

computation and represent it physically. Put simply, abstract models may be created at will,

whereas physical objects cannot. Without a simple relation that takes us from abstract to physical,

how do we use the physical to instantiate the abstract?

In order to answer this, we first need to consider the interaction between theory and

experiment in physics. To do this, we give a framework in which the relationship between

theoretical models and experiments can be understood. This then forms the basis for a formal

framework in which we define physical computation.
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4. Theory and experiment in physics
The basic purpose of experiments in science is to test a modelling relation: is the model a good

model? At this stage of testing a theory, the only available representation relation is this modelling

relation: we have a theory that takes us from physical to abstract, but not vice versa.

The models that are used in physics are not isolated, but rather located within specific, abstract,

physical theories: an electron has a representation as a wave function in standard quantum

mechanics, but as a point-mass in classical mechanics and as a vector in Fock space in quantum

field theory. This is an important point: the representation relation is theory-dependent. When we

test physical theories, we are testing, among other things, the representation that they give for

physical objects. We therefore write the modelling relation as RT , where T is the theory in which

it is located.

The model of a specific physical system, what we might call the kinematical representation,

is then subjected to the dynamics of the abstract theory. For example, the wave function

ψ of an electron in a Stern–Gerlach apparatus would be described as interacting under a

given Hamiltonian dependent on the magnetic field strength. This can be worked out purely

mathematically. Note that we are using the term ‘dynamics’ somewhat loosely; any theory of the

physical system that produces output states from input states is applicable, whether it be couched

in terms of evolution over time, or least-action principles, etc.

We now have the situation at the abstract level given in figure 2a: a physical system p is given

an abstract representation mp by the modelling representation relation RT . This is then evolved

using the dynamics of theory T , CT , resulting in the abstract system m′
p, as shown in figure 2b.

Now, the physical system p is not, in general, static: it undergoes its own evolution in the physical

world, H. The resultant physical system, after evolution, is p′, as shown in figure 2c. We now

have the question about the relationship of p′ to m′
p. m′

p is the abstract description, probably

mathematical, of how the theory T thinks our physical system p should have evolved. How

do we tell if T has got it right or not? To do this, we need some way to compare p′ with m′
p.

With only a modelling relation, we cannot construct a physical system from m′
p and compare

it with p′; however, we can construct a mathematical entity from p′, using RT , and compare

it with m′
p.

This gives us the situation in figure 2d: at the abstract level, we now have the abstractly evolved

system m′
p and the abstract representation of the physically evolved system mp′ . Two abstract

objects created by the same representation relation RT can now be directly compared.

What we expect of a ‘good’ physical theory is that it produces a commuting diagram from

figure 2d. In other words, the theory T is such that we can either let a system undergo physical

evolution, or evolve it abstractly, and still reach the same place in the diagram corresponding to

the ‘correct’ answer. This not a full specification of what it means to be a good physical theory,

but simply a minimal requirement: that the prediction of the theory, m′
p, is what we obtain in

reality. An absolutely commuting diagram therefore requires that m′
p = mp′ , and it would seem,

at first sight, that this is the requirement given in experimental physics: if the mathematical

representation of the experiment outcome is not identical to the prediction, then the theory falls

under suspicion. Compare, for example, the diagram used by Ladyman et al. to define their

‘L-machine’ [28], which uses non-directional representation and requires absolute commutation.

However, this is a much more stringent requirement than is used in practice. Experimental

error and limitations of modelling mean that we are content if m′
p and mp′ are ‘close enough’:

|m′
p − mp′ | < ǫ. Exactly how big or small ǫ can be to be ‘good enough’ depends very much on the

context of the experiment: an undergraduate finding the energy levels of a well-studied SQuID

for an assignment will probably impose a less strict closeness requirement than a team testing

whether they have found the Higgs boson. The outcome in terms of the diagram, however, is

the same: for the practical purposes to which it will be put, for the accuracy at which it has

been tested, the theory T is such that the diagram commutes. Abstract predictions may then

be made of physical evolution, which are the same as the abstract representations of the evolved

physical systems.
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Figure 2. Parallel evolution of theory and experiment. (a) Physical system p is represented abstractly by mp using the

modelling representation relationRT of theory T . (b) Abstract dynamics CT (mp) give the evolved abstract state m′
p.

(c) Physical dynamicsH(p) give the final physical statep′. (d)RT is used again to representp′ asmp′ .

It is worth emphasizing again exactly what is involved in diagrams such as figure 2, and

those for the Layman L-machine. These are diagrams indicating representation of physical

objects (below the line) by abstract ones (above). Physical objects themselves are indicated

below the line, not a mathematical representation of them. This contrasts with another set

of diagrams that look at first sight very similar: those of abstract interpretation, where the

concrete (operational) semantics for a computer is related to the abstract semantics for its

programming [29]. While structurally similar to the diagrams here, abstract interpretation (as its

name suggests) concerns entirely mathematical objects (the concrete and abstract semantics). The

relations between them are straightforwardly mathematical relations. The representation relation,

however, is not mathematical: therein lies the difference between the treatment of computers in

theoretical computer science and our present concern to deal with them explicitly as objects in the

physical world.

5. Commuting diagrams
We have spoken above somewhat loosely about a theory T producing a commuting diagram for

experiments. We now detail exactly what T consists of, and its relationship to the representation

and dynamics, RT and CT , used in our diagrams. First of all, though, we should note that we

have not taken up a stance on what is needed for an experiment to confirm or refute a theory: all

we are claiming is that any reasonable description of the scientific process must produce a de facto

commuting diagram.

Let us consider an experiment to test a physical theory Ttest (figure 3). The physical set-up

is denoted by p as before, and comprises the entire experiment. To take a specific example,

consider a rubidium atom in a cavity that is being excited by laser light in order to test a theory

of when its excited state will decay for a certain wavelength of incoming photons. p comprises

both the atom that is being investigated and the apparatus (cavity, laser, detection devices, etc.):

p = ptest + papparatus. The apparatus is described by a theory Tapparatus. The abstract description

of the experimental set-up, mp, is produced using the representation relation corresponding to

the theory of the apparatus, RT (apparatus).

The experiment then proceeds: the laser is fired, the atom excited and a decay event timed.

The entire physical system evolves to p′, as before. The evolution of the abstract system must

now be worked out to find the prediction against which the experimental outcome will be

measured. The combination of the theories of the apparatus and the theory being tested produces

a set of dynamical equations (or other abstract representation that takes initial to final states).
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Figure 3. A ‘good enough’ commuting diagram for an experiment to test a theory. See text for details.

This combined theory, T , we can write as T = Ttest + Tapparatus. The complete set of dynamics it

produces is CT . Applying these to the specific system model mp to predict its evolution entails

calculating the evolution CT (mp). The result is the prediction m′
p.

We now reach the final stage of the experiment. The entire experiment, apparatus plus atom,

has evolved to its outcome state. In order to compare with the prediction, an abstract description

of this final state is needed. This is produced by another use of the modelling relation for the

apparatus, RT (apparatus). This is the step that takes us from, for example, current surges in a

detector to a description that a photon was detected at a certain time. We rely on our theory

of the experimental apparatus to say that such an observed effect came from a photon, not any

other kind of event. The fact that we must make use of RT (apparatus) to represent the outcome of

experiments is known in the philosophy of science as the theory-ladenness of observation [30]. There

are no ‘basic’ observations that are unmediated by any kind of theory, all the way down to the

level that when we see, hear or touch something we must form the theory that our senses are not

deceiving us in order to correlate sense data with external objects.

Let us assume that the experiment was a success, and mp′ is close enough (by whatever

criteria we are using) to m′
p. The theory that then lives to fight another day is the combined

theory T = Ttest + Tapparatus under the particular circumstances of the experiment which used the

dynamics CT (mp) of the combined system p = ptest + papparatus. What has actually been tested in

this experiment is this very specific set of dynamics and representation: we have a commuting

diagram for RT (apparatus) and CT (mp)—not T itself. This is the reason why multiple experiments

on many different systems are considered necessary in order to argue for the correctness of a

theory T (the process by which this actually happens being one of the foundational problems of

the philosophy of science that we are not attempting to solve).

Moreover, T = Ttest + Tapparatus, and so if we want to use the experiment to test Ttest, we need

to be sure about Tapparatus. This means that Tapparatus must previously itself have been subjected to

testing by a series of experiments, each of which formed their own commuting diagrams. These

will be tests of both the dynamics and the model of the apparatus. If the theory of the apparatus,

in either dynamics or modelling, is incorrect, then the experiment is flawed. An example of an

incorrect theory of apparatus was the 2011 announcement of faster-than-c neutrino speed by the

OPERA experiment [31]. A cable connected in an unexpected manner meant that the theory of the

apparatus was incorrect, and hence that the representation RT (apparatus) to find the arrival time

measurement was flawed [32]. This gave an incorrect abstract description mp′ to the experimental

outcome (in that specific case, an incorrect time stamp to a detection event). As a consequence, an

incorrect argument was made that the failure of T = Trelativity + Tapparatus was owing to a failure

of Trelativity rather than, as turned out to be the case, a failure of Tapparatus.

Experimental science then usually proceeds by using apparatus about whose theory we are

reasonably confident to test theories of specific systems about which we are not so confident.

As the OPERA result showed, this is, in practice, usually a messy affair, not a straightforward
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progression through progressively more ‘true’ theories. An experimentalist whose apparatus does

not spring nasty behavioural surprises on them on a regular basis is fortunate indeed. We can

therefore think of the whole process in terms of multiple interconnected diagrams, each of which

is a specific experimental instance, for different theories (for example, Tapparatus + Ttest apparatus

to test the theory of the apparatus using another apparatus). Whatever the method turns out to

be by which scientific theories are chosen (confirmation, refutation, explanatory power. . . ), the

desired outcome is all these diagrams commuting. The scientific process can therefore be thought

of as solving, by whatever method, this many-diagram satisfiability problem. The outcome of this

process is then a set of theories that give rise to commuting diagrams in known cases, which we

have confidence (however gained) will also produce commuting diagrams given other specific

instances of a physical system p and its dynamics.

6. Reversing the modelling relation: prediction and technology
A theory producing a set of commuting diagrams is not the end of the scientific process. Once

armed with a ‘good’ physical theory, it is then put to use (with the proviso, again, that we make

no claim about the method by which theories are chosen as ‘good’). The theory itself can be seen as

an explanation of physical phenomena already known (the physical systems p that were modelled

as mp and then used in the original experiments). The next step is to use the theory as a predictive

tool, inferring the existence of phenomena, or even physical objects, about which we were

previously ignorant.

There are two stages to prediction in science. The first is the use of the modelling relation to

give an abstract object that is then evolved. Based on a good theory, confidence that the complete

diagram, figure 4a would commute means that the physical evolution is not run: the abstract

evolution alone suffices to give the abstract representation of the physically evolved system. This

is the ‘predict cycle’ (figure 4b): abstract evolution is used instead of physical to find the result

mp′ ≈ m′
p.

If what is required out of a theory is an abstract prediction, then the cycle stops here. However,

there is a second stage. The abstract theory has now been used to describe an abstract object

different from the abstract descriptions of currently known physical objects. To what physical

object does the abstract one correspond? Stated in terms of the modelling relation, this question

becomes: what physical system, when modelled using our theory, will render this abstract object?

In other words, we want to be able to reverse the modelling relation, to find a physical object

corresponding to our new abstract description.

Reversing the modelling relation then requires us to have at our disposal an entire set of

commuting diagrams, so that we can find the correct one to obtain a representation that in effect

‘runs in reverse’ from abstract to physical. This is a highly skilled and creative task for both

theorists and experimentalists. There are many levels of interlocking diagrams that are involved

in developing and testing a theory, and that are then produced when a theory is used to predict

outside the range of physical events used to test it. While a reasonable level of confidence in

a tested theory is needed in order to predict, prediction-and-instantiation diagrams, figure 4c,

also become part of the many-diagram satisfiability problem that is the scientific process, as

noted above.

Instances of prediction and subsequent discovery using scientific theories are, of course,

numerous. One famous example is Dirac’s prediction of positrons [33]. By starting with a theory

that had been experimentally tested using many physical systems, and using knowledge of the

way in which the theory would model situations other that those that had been tested, the

prediction was made that a particular abstract object in the theory (a hole in a sea of negative

energy electrons) would correspond to a physical object (a positron). This prediction allowed a

standard experimental cycle to be set up, and the diagram was found to commute.

The construction and testing of a scientific theory that is robust enough to have predictive

as well as explanatory power is the endpoint of the scientific process. However, the well-tested

commuting diagrams can then be put to use in order not just to discover new physical systems,
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but to construct them. This is the realm of technology: using our theories to precision-engineer

physical systems to desired specifications. This is the final element needed in order, for us, to use

this set of commuting diagrams as a framework in which to describe computation.

Engineering and technology are reversals of the modelling relation in a very specific manner.

They start from the point of having a well-developed physical theory T , which we have sufficient

confidence in to expect that it will produce diagrams that commute outside the situations in

which it was tested. Within the representation of this theory, there is an abstract specification

of the physical system that we wish to construct, which we will (leadingly) call mp′ . The aim

of technology is to construct the corresponding physical system, p′, effectively reversing the

modelling relation.

The process of technology to produce this reversal consists of finding a physical system p,

the theory T and a specific set of evolutions H that will perform the evolution p −→ p′ such

that, when p′ is represented using RT , it becomes the desired mp′ . The physical system p is thus

engineered using the process H to produce the desired physical system p′. An example would be

taking a set of steel girders and building a bridge out of them.

A key consideration is how p, T and H are to be found. With a reliable theory, they can

be discovered using abstract tools: in our bridge example, rather than physical trial and error

of different materials and construction techniques, a given starting point p can be modelled

abstractly as mp, then evolved to a final abstract state m′
p. If this is close enough to the desired

mp′ , then the corresponding p and H are good candidates for building the system. This is not a

mechanical or algorithmic process: the correct p, T and H can be checked (at the very least, the

bridge can be built, and we can see if it falls down), but there is no straightforward process to

select those for testing in the first place. This is an important fact about reversing the modelling

relation: it requires ingenuity and skill on the part of the scientists and engineers involved. We

can talk about a ‘reversed modelling relation’, or an ‘instantiation relation’, but only with the

understanding that this is a shorthand for a whole sequence of preconditions. We write as a

shorthand R̃T , understanding that R̃T ≡ f (RT , T ) relies both on the theory T that has been

developed, and on the primitive modelling relation RT . The equivalence is given in figure 5: the

physical system p evolves under H to p′ which is represented in T as the desired mp′ ; T is such

that the representation of p evolves abstractly to m′
p and m′

p ≡ mp′ . The conjunction of these three

conditions is that the full diagram commutes. We can, then, reverse the modelling relation with

technology, but only when the theory T is sufficiently advanced confidently to give commuting

diagrams in all the cases we wish to consider.

7. When does a physical system compute?
We are now in a position to demonstrate how computation fits into this framework of physical

theory, experiment, prediction and technology. We argue that a ‘computer’ is a physical system

about which we have a set of physical theories from which we derive both the full representation
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relation {RT , R̃T } and the dynamics CT . We are sufficiently confident in our theory T that we can

assume that it gives rise to commuting diagrams even when the exact starting states, p and mp,

and the precise evolutions, CT (mp) and H(p), are different from the states and evolutions used

in testing. Only when our physical theory of the computational device is sufficiently advanced

that we can argue that all diagrams commute (in the scenarios, we will use it for) can the physical

system be used as a computer. In this situation, as when the theory is used for prediction, we

must have a sufficiently advanced and good theory that the representation relation can run in

either direction.

The first distinction between computing and experimental science in this framework is the

initial state. Previously, the physical state p has been the starting point; however, in a computation,

the initial impetus is not a physical system that needs to be described, but rather an abstract object

that we wish to evolve. An abstract problem is the reason why a physical computer is used.

We therefore start immediately with the problem of a reversed representation relation. The

abstract initial state mp must be instantiated in a physical system p: right from the beginning,

we see that a computer is fundamentally an item of technology. Even to begin the process

of computation, we require a well-understood and well-tested system. The reversal of the

representation relation at the start of a computation is the process of encoding abstract data in

the physical system. It relies fundamentally on knowing exactly how the physical system works;

on having a good enough physical theory to predict how data encodings will work. The encoding

representation, R̃T , is not only dictated by the physics of the computer, but also by our choice

of how to represent abstract computational objects such as numbers in physical systems. For

example, system designers in a standard semiconductor-based computer chose the modelling

representation ‘voltage high → 1, voltage low → 0’. A crucial part of this choice is to make a

modelling relation RT that is easy to ‘reverse’ to obtain the R̃T needed for encoding at the initial

stage of computation. Another example of an RT that is easy to ‘effectively reverse’ is the dial

input on a Babbage engine [34]. An initial p that is the dial set to a certain angle is then represented

as ‘0’, another angle as ‘1’, another as ‘2’ and so on. With appropriate markings on the dial, it is

easy for the user to set up an initial physical situation that is represented as the desired number. In

contrast, an example of a representation that is extremely difficult to ‘effectively reverse’ is given

by the old-fashioned computers that used punch cards. A pattern of holes on a card determined

the input (and indeed the program). Knowing exactly which holes to punch where (i.e. the exact

physical state p to produce) such that it had the desired abstract representation (such as ‘01’) was

considered extremely tedious and error-prone, requiring a great deal of skill and experience. In

more recent times, anyone who has struggled to push the right buttons on their smartphone to

do the simplest task has experienced a representation relation that was difficult to reverse, giving

a difficult-to-use encoding relation. Making RT sufficiently easy and intuitive to in-effect reverse

is a core component of designing and building a physical computing device.

There is one final element to a full computation. This is the process by which an abstract

problem (which may not even be posed mathematically) is put into a form such that it can be

manipulated by a computer. This is the (abstract) process of embedding the abstract problem in the

abstract description of the physical system (figure 6a). To take a simple example, imagine you are

very bad at mental arithmetic, and are splitting a £50 restaurant bill equally between six friends
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Compare with figure 4c.

using a calculator app. You embed this problem in the decimal division problem ‘50/6’, and then

encode this into the phone by pressing the correct buttons. The embedded problem, ms, is the

reason why we are interested in instantiating the specific set-up of the computational device that

is abstractly represented as mp. For now, we will take the embedding as read and deal just with

mp; embedding will be discussed in more detail below, §8a.

With embedding and encoding relations in place, let us consider as a simple example a digital

computer running an algorithm that adds two 2-bit numbers, for example 01 + 10 = 11. We first

state how each of the individual pieces fit into the diagram of figure 2d, and then show how

computation proceeds.

The elements of the example are given in figure 6b. The abstract initial state, mp = {01, 10}

is encoded, through the reversed representation relation (the encoding relation), in the physical

system p. This is the step of initialization: p is the initial state of the computer hardware (voltage

across semiconductors, etc.). The representation relation has been derived from the theory we

have about the physical components of device, of current and how it changes under voltage

changes. Detecting a high voltage corresponds to representing a ‘1’, and low voltage is ‘0’. The

initial physical set-up therefore instantiates an initial abstract state. In our example, two parts of

the hardware are designated by RT as ‘registers’, and the voltages in the components of those

areas correspond to the representation of the initial state as ‘01’ and ‘10’ (the two numbers we

wish to add).

At the abstract level, the initial state is used as the input to an algorithm: in this example, it is a

sequence of gate operations CT that takes the input ‘01, 10’ and adds them. An important part of

computation as actually used is that the result of the abstract evolution (here described in terms

of gate operations) is not necessarily known prior to the computation. The final abstract state,

m′
p = (11), is not, in fact, evolved abstractly. Instead, at the physical level, a physical evolution

H(p) is applied to the state, producing the final physical state p′. In our example, this will be the

hardware manipulation of voltages. Finally, an application of RT takes the final physical state

and represents it abstractly as some mp′ .

This final use of the representation relation is the decoding step: the physical state of the

system is decoded as an abstract state. This is frequently simply the encoding step reversed, as

in the above examples; however, it need not be. For example, NMR (classical) computing uses

a heterogeneous representation. For a particular gate, the input bits are encoded as phases and

time delays in the radio frequency pulses used to operate the gate, with different choices for each

input ‘wire’; the output bit is decoded from the value of the observed integrated spectral intensity

[35]. Note also that different decodings can give rise to different computations being performed

overall even when everything else in the system stays the same [36].

After the final decoding step, if the computer has the correct answer, then m′
p = (11). If we have

confidence in the theory of the computer, then we are confident that mp′ = m′
p, and that this would

be the outcome of the abstract evolution.
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We can now see what it means to be performing a computation rather than to be an experiment.

As we have seen, in experimental physics, a physical system is set up to parallel the abstract

situation in order to test the abstract. The upper half of the diagram has been worked out in detail,

and we run the lower half to compare with it. Once we have a commuting diagram, however, we

no longer need to ‘run’ both halves: as long as the diagram commutes, and as long as our theory

allows us to run the representation relation in both directions, we can proceed from initial state to

final state by either abstract working or by physical evolution. Prediction and instantiation took us

by an upper route from physical system to physical system via abstract prediction. Computation

takes the lower route, starting in the abstract and ending in the abstract, via the physical computer.

This is physical computing: the use of a physical system to predict the outcome of an abstract evolution. The

‘compute cycle’, figure 6c, is an inverse of prediction and instantiation, in contrast to the latter’s

use of abstract theory to predict the outcome of physical events.

We can now give the following as a set of necessary requirements for a physical system to be

capable of being used as a computer.

— A theory T of the physical computational device that has been tested in relevant

situations and about which we are confident.

— A representation {RT , R̃T } of the physical system that is used for representing the initial

state of the physical system (encoding using R̃T ) and also for the final state, so that output

is produced from the computation (decoding using RT ).

— At least one fundamental physical computational operation that takes input states to

output states.

— The theory, representation and fundamental operation(s) satisfy the relevant sequence of

commuting diagrams.

All of these elements must be present in order for a physical system to be identified as acting

as a computer.

8. Physical dynamics and computer programs
Up to now, we have considered the dynamics of the computer and the abstract computation as

a single, indivisible evolution. We now look more closely at the structure of this evolution, as in

general (and particularly in the case of universal computing), it is made up of smaller units. In

a standard, digital, computer these are logic gates; other types of computation use units such as

relaxation to a ground state (quantum annealing), or other dynamical operations (as in the case of

the differential analyser). In the standard, gate-based, case the input is separate from the program,

but in other cases, the initialization of the system can contain both the program and the input. In

that case, all the work is done by the representation RT , and the theoretical dynamics C and

physical evolution H do not change for different algorithms. The fundamental issues remain the

same in both cases and, for the sake of concreteness, we use the example here of a gate-based

programmable computer. In this case, the first use of RT determines initialization and the input;

C is then the abstract program to be run, and H is the physical dynamics that will implement it.

We have referred to C here as both ‘algorithm’ and ‘program’, and we now need to make

precise what we mean by this. An algorithm is a very high-level concept, detailing what is to be

performed on an input, such as addition. However, in order to actually implement an algorithm,

it needs to be broken down into components, and each of these components represented by

fundamental operations—standardly, these are basic gate operations. This is the process of

refinement and compilation. Once the basic operations have been determined for the algorithm,

if there is a sequence of operations (as in standard gate-based computers), then they are composed

to be run on the physical computer.

In §7, we discussed the embedding of an abstract problem into the physical computer. It is that

process that we are now expanding. The embedding relation can be viewed as a composition of

many different abstract embeddings, starting with embedding a problem into an algorithm, and
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then the refinement and composition of the algorithm into machine descriptions that can then be

encoded in the physical computer.

(a) Refinement

Refinement (or reification) is the computational process of taking an abstract algorithm, and

producing a suitably equivalent concrete algorithm that is implementable on a computer [37]. The

requirements for correct refinement (that the concrete design faithfully implements the abstract

specification) also involve commuting diagrams; in this case, however, the diagrams live entirely

in the abstract realm. As an example, consider the algorithm for decimal addition. Figure 7a

shows the process of refinement from the abstract concept of mathematical base ten addition,

through a more concrete concept of an algorithm for binary addition, to the most concrete (for this

example) level of an assembly language program implementation of binary addition. Each level

is in the mathematical realm, and can be proved correct with respect to the higher level. Some

steps (usually the higher level ones) may require human design ingenuity; lower level steps can

be performed automatically (computed) by an interpreter, compiler or assembler. Refinement of

conventional computational algorithms stops in the mathematical realm, and assumes that the

underlying physical device correctly implements the lowest level. Figure 7 shows the standard

levels of refinement, positioned on top of our diagram for the underlying device: a physical

assembly language computer. The relevant theory is that of the binary arithmetic. Accompanying

theories that need to be developed are those of any relevant compilers and interpreters. Some of

these accompanying theories can be purely mathematical (as they ‘implement’ formal refinement

steps), but some of them have to cross the mathematical–physical divide.

For unconventional computational devices, where the lowest square commutes only ‘up to ǫ’,

the traditional refinement approach of sequencing many computations would have to take error

propagation into account.

The dividing line between the physical and mathematical realms is a design choice:

more sophisticated physical devices can be engineered to perform appropriate refinement

computations. Figure 7b shows the same abstract calculation, here refined only to the level of

binary addition, and being implemented on a physical binary adder. Now, the relevant theory is

that of the binary addition computer. This might be a combination of the theories of the assembly

language computer and the relevant assembler.

Figure 7c shows the same abstract calculation, now with no refinement level, being

implemented on a physical arithmetic computer. Now, the relevant theory is that of the physical

arithmetic computer. This might be a combination of the theories of the assembly language

computer, the relevant software assembler and an interpreter or compiler.
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These diagrams all assume that the refinement described is possible. This need not be the case:

there may be no possible embedding available, at one or more levels. This is the situation in which

it is not possible to perform the desired computation on the given hardware. For example, there

is no embedding that will allow an arbitrary billion digit integer to be represented in a machine

with only a million bytes of memory: the machine simply is not large enough. The availability

or otherwise of embedding steps tells us about the physical capabilities of our necessarily finite

computers, as opposed to the arbitrarily large computations that can be described abstractly.

(b) Composition

The output of a refined and compiled process is a sequence of fundamental abstract operations

that compose to produce the desired abstract process (the algorithm). Where a computation is

composed of more than one fundamental operation, there are two parts to this: the fundamental

operations themselves, and the rules by which they compose. For example, the set of operations

could be AND, OR and NOT, and the composition rules will tell you, for example, what happens

when an OR is followed by a NOT. We now look first at what it means to implement one of the

fundamental operations in a physical system, and then at their composition where these are now

all being run as physical computations.

A gate is an abstract evolution Ci. When applied to a particular (abstract) input x it produces

the (abstract) output y = Ci(x). It is then the top line of a diagram of its own. To implement

this gate physically is to produce a physical system, a representation relation, and a dynamics

of the physical system such that the resultant diagram commutes. To do this, the hardware

designer uses exactly the same process of theory and experiment that we detailed above as

experimental physics: the system is tested with multiple inputs, the representation and the

dynamics scrutinized, and finally a theory Ti of the gate produced. This theory tells us that when

data are represented in such a way in the physical system then the dynamics produces such

an output after the final representation. Confidence in this ‘gate theory’ means confidence that

whenever the input is given in a specified way, the physical dynamics Hi that have been chosen

by this process of experimentation give rise to a commuting diagram.

Each individual gate Ci is therefore tested, and the physical theory (which gives the encoding

and decoding) Ti developed of the gate produces its own commuting diagram with a given

physical system pi, representation RTi and physical dynamics Hi. We also require, as well as

individual theories of gates, a theory TC that describes how they compose (making sure that

they do not, for example, contradict each other). As with all physical theories, this compositional

theory will be produced by the interaction of theory and experiment, and give rise to its own

commuting diagrams with the physical system that is being used as a computer.

The theory of the physical computer is therefore developed in order to predict the outcome in

situations that are unknown—exactly as we use theories in physics. This theory is then extended

and tested further, in exactly the same way that any physical theory is developed. The end

result of this testing and development is a computer, and the theory that governs it, T = {TC, Ti}.

What confidence in T gives is confidence that, within the limits of T , any diagram that can be

written (i.e. any input and any program), will commute. The physical system, the computer, can

then with confidence be used to find the result of abstract evolutions written as compositions

of the fundamental gates. When any (Turing) computable abstract evolution can be so written,

the computer is (Turing) universal [14, ch. 3]. A universal computer has the property that the

hard work of experimentally producing commuting diagrams need only be done once, then the

computer can be used for any computation.

9. Computational entities
We now have a set of elements and a framework necessary for identifying when a physical

system is performing a computation. Two important parts of this framework are the initial and

final steps of encoding and decoding. At the beginning of the computation, the representation
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relation is used to encode abstract data and programs in the physical system, and then at the

end it is used to decode the state of the physical system into an abstract output. Without the

encode and decode steps, there is no computation; there is simply a physical system undergoing

evolution. This, then, is one of the key ways in which this frameworks distinguishes between

a physical system ‘going about its business’, and the same physical system undergoing the

same physical evolution, but this time being used to compute. This is how we can escape

from falling into the trap of ‘everything is information’ or ‘the universe is a computer’: a

system may potentially be a computer, but without an encode and a decode step it is just a

physical system.

The question of whether a given physical system is acting as a computer then becomes a

question of representation at two different levels. Can we represent what is going on, physically

and abstractly, as including an encode and decode step, i.e. as including representation? A

necessary condition of there being representation present is that there is, as well as the computer,

an entity capable of establishing a representation relation. That is, an entity that represents

this specific physical system as this specific abstract object, encoding and decoding data into

it. Something must always be present that is capable of encoding and decoding: if there is a

computer, what is using it?

The necessary existence of a computational entity is a fundamental and integral part of

the framework presented here. Without this requirement, there is no differentiation between

computation and ordinary physical evolution. It also, at first sight, goes completely against the

grain of objective science. Perhaps the most important conceptual breakthrough of information

science at its inception was the separation of information as a quantity from its meaning [38].

The former could be discussed independent of any person or thing performing the computation,

whereas the latter was irredeemably subjective. If we are now saying that computational

processes cannot be described independently of computation entities (human or otherwise), then

an immediate concern is that the act of computation then becomes wholly subjective, possibly

subjected to the intent of the entity running the computer, and not something that can be dealt

with by an objective scientific theory of computation. This is an important concern, which we

now address.

The first thing to note is that all the requirements we have given, including the requirement

that a computational entity responsible for representation be present, are objective requirements.

It is simply an objective fact of the matter whether or not a computational entity is part of

the system. Consider, for example, that you are watching a student work out a problem using

a calculator. There is nothing subjective about the existence of the student. Furthermore, the

requirements on the computational entity are not subjective (there is no requirement, for example,

for an intent to compute or any subjective position to be taken up towards the computational

device): the requirement is that an encoding and a decoding are present, an objective fact of the

matter. By close observation of the student, you can determine whether information is being

encoded into and decoded from the calculator. You as the observer can formulate and test

the hypothesis that the student and calculator form a computing system. If you and another

observer differ in your theories, there is a fact of the matter as to which of you is correct

(although, as with any scientific theory, you may not have all the data required to settle the

question). Fundamentally, the question of computational entities comes down to the question of

the objective existence or otherwise of encoding and decoding. The entities are required only,

because encoding/decoding cannot be defined otherwise, not because encoding/decoding is

subjective or perspectival.

Computational entities are a requirement for physical computing as opposed to abstract

computation. The occurrence of representation is a vital part of physical computing, and

computational entities are the ones performing it. This is the central reason that they are

required within a computing system: computational entities are the physical entities that locate

the representation relation. Without representation, encoding and decoding do not happen.

Computation considered as a purely abstract process, as in theoretical computer science, does not

require a computational entity; however, when the abstract is instantiated in a physical computing
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device, the computational entity responsible for the representation relation between abstract and

physical must be physically realized.

There is a very close and important relationship here with another branch of computational

theory: communication theory, and how it uses the parties in a transmission to describe the

transmission of information. Usually termed Alice and Bob, the communicating entities are

responsible for encoding information into a signal at one end, and decoding it at the other.

While a theoretical treatment of a communication scenario need deal only with the transmitted

signals, actually sending a message requires Alice and Bob. We can, in fact, locate communication

entirely within our framework for computing: the encode and decode steps remain (usually

performed by distinct spatio-temporally separated entities), and the evolution of the physical

system is an identity computation (the message remains the same between sender and receiver).

The definitions of computational and communicating entities coincide.

As with a communicating entity, there is nothing in the definition of a computational entity

that requires it to be human. There is also no need to bring in ill-defined descriptions such as

‘conscious’ or not. Communication theorists refer as a matter of course to computer terminals,

or circuits, or photodetectors as the communicating entities. Simply, anything that is capable of

encoding and decoding information is a computational entity. Whether or not any given entity is

capable of this is an objective fact of the matter about which hypotheses can be formulated, tested

and argued over. Part of the objective description of the computational entity is the sophistication

of the encoding and decoding operation that it is capable of supporting. If the computational

entity is a human being, then we are fairly certain about what representations it is capable of.

If, for example, a person were writing a computer program to solve a second-order differential

equation, then we would happily describe the encoding and decoding operation as just that. If,

on the other hand, a cat walked across the keyboard and randomly touched exactly the right keys

to type out that same program, then it would not be a good hypothesis that it was calculating a

differential equation. To argue that it was would require the cat to be capable of a complexity of

encoding and decoding (including a knowledge of differential equations) that we usually describe

as outwith a cat’s intellectual capacity. This is not something that is subjective or a matter of

opinion: it is a matter of fact about which hypotheses can be formed and tested.

As can be seen from this example, it is also sometimes the case that a degree of argument is

needed to settle if something is or is not a computation. Again, this is a situation familiar from

communication theory. Take for example the gradual acceptance in the 1960s of the information

transmission nature of a bee’s ‘waggle dance’ [39]. This had not previously been recognized as an

instance of communication, and it was only after much debate that a description of the situation

as containing an encoding and decoding of information was accepted. This is, however, a matter

of fact not of opinion: that argument was required to settle the matter does not make it subjective.

The relationship with communication also illuminates another situation that might otherwise

be considered problematic. Entities are required to encode and decode data in the computation;

what happens if, say, the computational entity is removed before the decode step? Is computing

still happening? The confusion can arise, because the physical computer is undergoing the

same evolution as during a computation but, in the absence of a decode operation, it is not

computing. An example of an exactly equivalent situation with communication helps us see why

not. Consider the case of Egyptian hieroglyphics: after the loss of the language, and before the

Rosetta stone was deciphered, did a hieroglyphic inscription perform a communication? It was

potentially a communication, just as a physical system can potentially be a computer. However,

until a decode was possible, it did not in actuality perform communication (no one could read

it). Once the language was understood, the decoding relation was in place, and communication

could occur.

Encoding and decoding information in physical objects is something that does not, in itself,

restrict computational entities even to being biological. It is perfectly coherent for a computer itself

to encode and decode information in another object. For example, we could replace the student in

the above situation with a pre-programmed artificial intelligence (AI). While it would probably

not be the most efficient use of its processing power, it could certainly use the calculator to find the
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answers to problems that it did not work out internally. Again, it would be an objective fact of the

matter whether it was setting up an encoding and decoding between itself and the computational

device, and hence if the physical system (the calculator in this case) were computing.

One final point should be made about computational entities. It is important to be clear exactly

what in a computational system is performing the encoding and decoding for the computation.

For example, just because a human being is involved in the system does not mean that they are the

computational entity. A good example of this is where a human is performing a computational

evolution without having access to the encode or decode steps. This was, in fact, the case in

the original ‘computers’, which were groups of people performing small repetitive tasks which,

when taken as a whole, comprised a computation [40]. The ‘computers’ were not there the

computational entities. A more recent example is the many ‘crowd-sourcing’ games, such as those

for circuit optimization in quantum computers [41] or gene sequencing in ash trees [42]. In both

cases, human players can become part of the computational evolution without knowledge of

the encoding or decoding (in the philosophical literature, this is the position of the inhabitant of

Searle’s ‘Chinese room’ [43]). As a consequence, they are not computational entities. Instead, the

computational entities are the human scientists using the games to compute problems that they

have encoded in the games. It would not be impossible, in fact, for an AI-programmed computer

to make use of such a game, in that case the AI would be the computational entity, and the human

players part of the computer.

10. Computation and simulation
We now turn to a specific type of computation, the simulation of the physical dynamics of

a system. While physical computation is a straightforward replacement of physical evolution

for abstract computation, it can cause confusion when a physical system is the subject of a

computation as well as a physical system being used to perform a computation.

We consider the situation where a physical system (the computer), s, is to be used to simulate

the behaviour of another physical system, p. We show this as in figure 8a. The aim is to build a

commuting diagram similar to those given above for standard computation, where the dynamics

of s is used instead of the dynamics of p.

We are, in fact, in an exactly analogous situation to the introduction of the representation

relation: what we want is for system s to represent system p. There is no way of comparing

two physical objects without forming a representation of them—even basic, apparently

representation-free, comparisons such as ‘hold side by side and see if they are the same

dimensions’ in fact require us to represent parts of the external world by identifying individual

objects and a set of properties that are its dimensions (this is a foundational issue in science and

metaphysics; [21, chapters 1,2]). Abstract representations of the physical systems are created and

then used in order to compare the two systems.

Just as when we looked at diagrams for computers, we start first with the diagram for setting

up a simulator and testing that it indeed does what we want. This is given in figure 8b. The

steps in the diagram marked ‘E’ and ‘D’ are embedding steps: we wish to embed the abstract

description of system p in the abstract description of system s. For example, if s is a scale model

of p, then this embedding is the relevant scale factor. We saw the process of embedding first with

straightforward computation, where an abstract problem is embedded in the abstract description

of the physical computer. Here, the abstract problem is itself the abstract description of a second

physical process: that is the problem that the computer is being used to solve. As with the

refinement process, performing the embedding may itself require computation, in this example,

multiplying by the scale factor. In this way, the abstract object ns is used to represent the abstract

object mp, analogous to an abstract object being used to represent a physical one.

For system s to be a good simulator of system p, all relevant diagrams of the form of figure 8b

must commute, closing the gap at the end between mp′ and m′
p. This is discovered in the same

way that commuting diagrams for standard computation are found: a sufficiently good theory

of the devices is needed such that we are confident that all diagrams will commute and that the
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Figure 8. (a) Two separate physical systems,p and s. (b) Commuting diagram when testing the ability of s to simulatep.
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Figure 9. System s running as a simulator for systemp, constructed as a compute cycle nested within a predict cycle: (a) the

predict cycle usingC(p) to find the abstract prediction for the evolution of systemp; (b) embeddingC(p) in the simulator
model dynamics,C(s); (c) adding the compute cycle: the physical simulator s now determines the abstract evolutionC(s).

representation can be run in either direction. With this in place, we can then change from testing

the simulator to using it.

Full use of system s to simulate system p is shown in figure 9c. The aim is to reach the abstract

outcome m′
p ≈ mp′ without going through the physical evolution p → p′. Instead, three levels of

representation are used to achieve the result using the physical system s:

1. The physical system to be simulated, p, is represented abstractly, mp.

2. mp is embedded into an abstract initial state of the physical system s, ns.

3. The abstract description ns is instantiated as a physical initial state of the simulator, s.

At the end, the state of s′ is decoded to find the output of the simulator, ns′ . This is then de-

embedded to represent an output state of system p, m′
p. Overall, the abstract description of the

simulator is used to represent the abstract description of the system to be simulated, and then the

physical simulator device is used to represent its own abstract description.

Figure 9 shows a point that is key to understanding simulation: what is simulated is the model of

the physical system mp, not p itself. The simulator and the physical system under simulation interact

only at the abstract level.

There are several, qualitatively different, ways in which simulation is used, which we can

show within this framework. Consider the decomposition of a simulation shown in figure 9.

Simulation is viewed as form of prediction, by comparison with figure 4b: the aim is to find the

outcome of the physical evolution of p without actually evolving p to p′. However, rather than

the prediction being performed purely abstractly, the abstract evolution is worked out using a

computation. Simulation of one system by another is therefore a compute cycle nested within

a predict cycle. Importantly, the physical evolution p′ is taken to match up abstractly with the

computational evolution, m′
p ≈ mp′ . This is the case when the simulation is accepted as a good

guide to the physical evolution; examples include when novel hardware is simulated for the

purposes of testing and programming before it is built.
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An alternative way of viewing this figure is to consider the dynamics of the simulator, C(s),

and the dynamics being simulated, C(p). The compute cycle is on this view the fundamental part,

the computer being used to determine the dynamics C(p); this is the computation that is being

run. It just so happens that C(p) is an abstract representation of another physical system. These

dynamics are then embedded into the abstract dynamics of the simulator, C(s)—for example,

into an algorithm. This is then run as a compute cycle, with the relevant encoding and decoding

into the physical computer. If the final diagram is known to commute, then this is an equivalent

description to those given above. However, there is also a case where this form of simulation is

used but we do not know whether in the end m′
p ≈ mp′ . This is the case of computational physics,

where computers are used to simulate behaviour in a physical system during an experiment.

Comparing with figure 3, in this situation, the abstract dynamics CT (mp) are embedded in the

simulator and the outcome of this theoretical model is computed using a physical computer. The

decoded and de-embedded result of simulating the model is then compared with the abstract

description of the experimental outcome. This whole situation is then a compute cycle nested

within an experiment cycle.

This framework for simulation is not restricted to the case where the simulating system s is

a standard computer, such as a supercomputer being used to simulate molecular properties of

materials. There are other ways in which simulation of a system can be run, where something

that is not usually considered to be ‘a computer’ can simulate another physical system. Aircraft

designers use wind tunnels and models to simulate the effect of flying on aeroplane parts. A

pendulum can be used to simulate a spring and discover oscillation periods. Single-purpose

physical simulators have a long history prior to the widespread use of programmable computers,

and all of these fit within the framework we have given.

When considering these ‘non-standard’ simulators, one situation that must be addressed is

when a simulator is simulating itself. It is often given out as a truism that ‘everything simulates

itself’. It should be clear by now that this is not the case within our framework: just as not

every physical evolution is a computation, not every physical event is a simulation. Just as

with computation, in the absence of embedding, and of encoding and decoding operations,

simulation is not occurring. It is important to note that, in the case of simulation, there are three

embedding/encoding operations that must be identified. First, the system being simulated must

have an abstract representation. Second, that abstract representation must be embedded in the

abstract representation of the simulator. The final encoding and decoding, into and out of the

physical simulator device, is the same as for computation. Without all these steps being present,

there is no simulation.

We can now consider the case of a system being used to simulate itself. For example, a

pendulum can simulate the same pendulum in a different gravitational field, or a laptop can

simulate itself through a virtual environment. In these cases, the places marked ‘E’ and ‘D’ in

figure 9a do the work: the embedding is scaling, or virtual software, and so on, even when s and

p become the same physical system. Note also that the representations used for s and p need not

be identical even when the physical systems are.

Finally, we can push this all the way and consider a situation where not only are the physical

systems identical, but so are the representations, and also the embeddings at ‘E’ and ‘D’ are the

identity. Do we then have a description by which any physical system is self-simulating? If we

look at the resulting diagram, figure 10, then the answer is clearly ‘no’. We have either a compute

cycle, if the abstract theory is well enough known, or part of an experiment. In either case, we still

have initial and final representations. In the absence of these representational stages, a system

does not simulate itself.

11. Non-standard computing: computation or experiment?
We now turn to our main motivation for developing this framework for computing: the analysis

of physical devices to see if they are being used as computers. As noted previously, the use

of a physical system as a computer is first and foremost a use of technology: computers are
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Figure 10. A system simulating itself (compare with figure 8c).

highly engineered devices. We have considered science both in its process of experimentally

testing theories, and its ability to predict based on commuting abstract/physical representation

diagrams. Engineering is different in the following way. Consider figure 2d, in the case of an

unacceptably large ǫ. In science, we have some given p, and are attempting find a good abstract

characterization C. If ǫ is too large, we need to change C: we need to find a better characterization.

In engineering, we have a given C that we wish to physically instantiate, and the goal is to find p,

given C. If ǫ is too large, we need to change p: we need to re-engineer our candidate system.

The essential difference then is the degree of confidence we have in our physical theory of

the device: if ǫ is too big in an experiment then the theory may be disproved; by contrast, in

engineering, it is the system that is taken to be at fault. Of course, there are frequent cases where

this is not a clear-cut distinction. An example is in the earthquake proofing of buildings, where

the technology is built according to theory, but cannot be tested at scale. Data collected from each

actual earthquake are then used to refine the theory, which is then used in the next generation

of technological construction. In general, though, technology stands or falls on the confidence in

the underlying theory. Among other things, this confidence is that the theory works outside the

situations in which it has been tested (note that any subsequent use of a theory after it has been

tested is a use outside the testing situation: at the very least it differs in time).

The use of the theory outside the domain in which it has been tested is fundamental to

computing: this is prediction. As we saw in §7, physical computing is in a sense the inversion

of mathematical science, using a physical system to predict the outcome of an abstract dynamics

(rather than an abstract model predicting physical dynamics). Without this predictive element, a

physical system is not a computer, in the same way that a set of mathematical equations is a bad

physical model if it has no predictive power.

A common, and unfortunate, method of ascribing computational ability to a non-standard

system is as follows. A novel computing substrate is proposed (a stone, a soap bubble, a large

interacting condensed-matter system, etc.). The physical substrate is ‘set going’ and an evolution

occurs. At a certain point, the end of the process is declared and measurements taken. The

initial and final states of the system are compared, and then a computation and a representation

picked such that if the initial state, and final states are represented in such a way then such a

computation would abstractly connect them. The system is then declared to have performed such

a computation: the stone has evaluated the gravitational constant, the soap bubble has solved a

complex optimization problem and so on.

Such arguments, without any further testing or evidence, are rightly treated with suspicion.

Given the vast range of representation for physical systems available, almost any computation

can be made to fit the difference of initial and final physical states of a system. If such arguments

really were correct, we would not only have to conclude that everything in the universe

computes, but that everything computes every possible computation all of the time. Such extreme

pancomputationalism is even less useful than the usual kind.

Our framework enables us to see why such arguments are not valid. If a computational

description of a physical evolution can only be applied post-hoc, then the system has not acted as
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a computer. Such descriptions may be used in the experiment and testing cycles for developing a

system to use as a computer, but if the final state of the system is needed in order to decide which

calculation it has run, the system is not being used to predict anything. In such situations, the

outcome of the abstract computation needs to be known in advance in order to fit the computation

to the physical evolution: the physical evolution cannot then be used to give any further data.

A post hoc-only description of computation also fails to predict as the representation needs to be

adjusted in order to fit to the computation, and different representations are frequently needed

for each ‘instance of computation’. For a true computer, a general representation for encoding and

decoding of data is needed (that does not require post hoc adjustment to make the computation

work), and a relevant degree of predictability. A computer is used to predict; the challenge then for

non-standard computation is to demonstrate that the theory of the device, and the representation

of data within it, is known and stable enough to use the physical device to predict the desired

abstract computation.

Classical digital computers are highly engineered silicon devices with an extremely well

developed physical theory in which we have a great deal of confidence. We are confident that

we know what they are doing during a computation, and can also predict how they will act

in situations outside the usual range. Scaling the system is a matter of correct composition of

gates, about which we also have a well developed and good theory. The digital nature of the

computers is particularly useful, allowing systems on which long computations can run to be

designed without having to cope with accumulation of smaller errors. Despite all this confidence,

hardware bugs do still occur, one well-known example being the Intel Pentium floating point unit

bug [44]. Technically, this was caused by a software bug that was then frozen into the hardware

design; the boundary between software and hardware is not sharp. Another example is that of

modern multicore implementations that can exhibit unexpected behaviours: the computational

abstractions have not developed in step with the physical implementations [45].

In contrast to the highly developed and scalable theories of classical computers, non-standard

computing devices generally have a theory that is much less well developed. This leads to

problems of scale, composition and confidence that cast doubt on the use of a system as a

computer. Among unconventional paradigms, quantum computing has the best-characterized

physical theory. As with classical digital computers, quantum computers are highly engineered,

with quantum states used to represent ‘qubits’, the smallest unit of quantum information [2,46].

Despite the excellent physical theory of quantum mechanics available, however, there is still

argument over whether certain specific systems are truly implementing quantum computation.

Consider, for example, the D-wave machines [4,47,48]. Originally presented as implementing

a relatively simple quantum annealing paradigm, the consensus has shifted (not least within

D-wave itself) that this physical theory is not a good fit for predicting the computational abilities

of the machines. Work is now underway to characterize the devices at a mathematical and

phenomenological level, treating them as black boxes [49,50].

This characterization process crops up frequently in unconventional computing: rather

than describing all the physics, as with classical computing, outputs are matched to inputs

mathematically. This phenomenological theory can have predictive power (this input is taken

to that output); however, the fact that it is only phenomenological directly impacts on the

degree of confidence with which the theory is held. Without an underlying physical theory, a

phenomenological theory has to do a lot more work to convince that all relevant changes have

been taken into account and that the computation can be relied on. Furthermore, different-sized

systems must be characterized separately, as there is no scalable underlying theory of the device.

Without a reliable theory, in what way can the physical evolution of the device predict the abstract

evolution of the computation that is supposed to be being run?

In the end, the question of whether or not an unconventional system can be used as a computer

comes down to a simple question: what is the confidence that the abstract/physical diagram for

the computation commutes? Without this confidence, it is not computing. There are two options

for what is happening, based on the consequence of a mismatch between theory and physical

system (i.e. a large ǫ): if the conclusion is that the system must be redesigned, then the system
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is being engineered; if the theory of the fundamental dynamics is taken as at fault, then what is

happening is an experiment. Either way, it is not computing.

Phenomenological models are widely used to develop new physical substrates for

unconventional computation, often by adapting devices originally designed for other purposes.

In [51], a liquid crystal display (LCD) was configured as a computational device not through

engineering design, but through the use of an evolutionary search algorithm to determine the

correct configuration. As a consequence, the physical model of the substrate is simply unknown.

As before, one may develop a descriptive physical model within the experimental domain, and

exploit that model to compute within the domain, possibly making use of continuity arguments.

However, we cannot meaningfully compute with the device outside that domain, because we

have no means to extrapolate the model: the descriptive nature of the physical model means the

LCD device cannot be scaled with any confidence.

Another example of a purely descriptive physical model is slime moulds. These have,

famously, been used to compute minimal path lengths and other geometrical properties [52],

but with no firm understanding of the underlying physics/biology/chemistry. It is worth noting

here that these examples, of slime moulds and evolved LCD computing, help demonstrate

that the physical computer does not need to be intelligently designed: it can be naturally (or

even computationally) evolved. Hence, living organisms of all sorts can potentially perform

information processing, and can potentially be exploited to perform their computations for us.

Another major problem arising from the use of such substrates for unconventional

computation is that of scaling. As we have seen, digital computers scale simply through

composition of small elements; slime moulds and LCD devices, however, scale by using bigger

versions of the same system (this is also arguably true of the D-wave machine). With only a

phenomenological model of performance, there is no guarantee that a scaled-up system will act

in the desired way. Even if some scaling behaviour is found experimentally at smaller scales, it is

notoriously difficult to project this to larger sizes.

Not all non-standard computing relies on phenomenological models. Sometimes,

unconventional devices do have a physical model behind them, but this is not in fact the

actual physical behaviour (especially at large scales). Soap films are often described as finding

a minimum energy, minimum length, state and thereby performing an analogue computation

of minimal Steiner trees. However, soap films do not always find minimal states [53]: it is, after

all, the principle of stationary action, not minimal action, and soap films, as with other physical

systems, can and do get trapped in local minima. In this case, we have a bug in the physical

implementation, not because it has been incorrectly engineered, but because the underlying

simplistic physical model is wrong.

One final note is that, even for unconventional substrates, the computational model C is often

that of classical boolean logic. There are only three computational models that claim universality:

classical Turing machines, quantum Turing machines [54] and the general purpose analogue

computer [1]. Although computation does not require universality, one interesting area of future

research is to develop novel computational models that can be implemented by engineered

unconventional substrates. Until then, we can use the framework developed here to distinguish

when we are computing with novel substrates and with what degree of confidence, and when we

are performing experiments on them.

12. Conclusion
We have developed a formal framework for computing, showing how the physical and abstract

levels of a computation connect through the representation relation. This relation is the same as

governs the interrelation of physical systems and their mathematical description in experimental

science, and is key to the scientific process. We have seen how physical science progresses through

the experimental realization of diagrams that commute across the abstract/physical divide,

allowing abstract theory to predict the outcome of physical experiments. These diagrams then

form the basis for our framework for computation, where the physical evolution of a computer is
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used to find the outcome of an abstract computation. We are able to use this framework to give

conditions on when a physical system is performing a computation: we require a good physical

theory of the computer; representation that allows the encoding and decoding of information;

and at least one fundamental dynamical operation (such as gates). The requirement for encoding

and decoding to be present in the system leads to the requirement that computational entities be

present. Their job is physically to locate the representation relation, which is required for physical

computing rather than abstract computation. We saw that the requirement for computational

entities does not impact on the objective nature of the conditions for computing. The definition is

also broad, including biological, non-biological and artificial entities.

The range of potential applications of this framework is huge. Previously, discussion of

whether a system is a computer or not has been marked by a large amount of confusion and a

correspondingly small amount of consensus. There has simply not previously been the language

in which to frame these questions adequately, and to pick apart what is being discussed as an

abstract computation, and what as a physical computer. The framework we have presented,

including its powerful diagrams, allows us now to define precisely what is being asked. We

have seen in this paper some of the first results from this new expressive capability. Physical

computing is seen as interacting at a very basic level with experimental science and we are able to

show precisely, within the same framework, the processes of theoretical and experimental science,

computation and engineering, and the use of technology. One particular area at the interface

between science and computing is the simulation of physical systems by computers. This is an

area that often causes a large amount of confusion regarding what is being simulated and by

what, and how the simulation and the physical system are related. By locating simulation within

our framework, we showed straightforwardly how it relates to computation and theoretical

predication, and also how different types of simulation relate to each other. The interaction

of different layers through representation was again key: as well as the encoding/decoding

operations needed for computing to be occurring, simulation also requires the embedding of

abstract models to be taking place. Without these stages, simulation (even of a system of itself)

does not occur. Bringing this clarity to such a previously confusing area demonstrates the power

of our approach.

Another area that this framework clarifies is that of unconventional computing devices. By

considering the theory of the physical device and its limits, we showed that there is a strong

danger of misunderstanding what is taking place when these devices are used. It is often the case

that the systems are not being used as computers at all, when the theory has not been developed

far enough for users to be confident that computational diagrams will commute. In these cases,

users are experimenting on the devices, to develop their potential to act as computers, rather than

using them to compute per se. This is now the challenge to researchers in non-standard computing:

to develop their device theory sufficiently that the elements within this framework are present in

the system. Then, it will be possible to argue with much more confidence than previously that the

system is in fact performing computation.

The implications of this formalism go wider even than this. The framework shows the

interaction of physical objects and the representations that we give them, in science, technology

and computing. By formalizing this relationship, we now have a precise language in which

to describe and understand how logical, mathematical and computational structures interface

with the physical objects of the world around us. This is the language of computing as standing

on the boundaries between the physical theories of the underlying objects and interactions used,

the technology that comes from engineering systems, and the mathematics and logic of the

abstract computation. The study of physical computing has its own unique representation of

physical systems and processes, and now has the foundational formalism in which to describe

and determine its own domain, and its relation to the physics, chemistry and biology of physical

systems. Computer science takes its place as a natural science.

Acknowledgements. C.H. acknowledges very helpful discussion with James Ladyman, and also thanks members

of the Oxford quantum nanoscience project for comments on an earlier version of this work. We thank

 on March 6, 2015http://rspa.royalsocietypublishing.org/Downloaded from 



24

rspa.royalsocietypublishing.org
P
ro
c.
R
.So

c.
A
470:20140182

...................................................

anonymous referees for valuable feedback and textual suggestions, and also thank Hacker News user sense

for reference [19].

Funding statement. R.C.W. was supported by the UK Engineering and Physical Sciences Council; V.K. was

supported by a UK Royal Society University Research Fellowship. C.H. is supported by the CHIST-ERA

DIQIP project, and by the FQXi Large Grant ‘Time and the structure of quantum theory’. S.S. acknowledges

partial funding by the EU FP7 FET Coordination Activity TRUCE (Training and Research in Unconventional

Computation in Europe), project reference number 318235.

References
1. Shannon CE. 1941 Mathematical theory of the differential analyzer. J. Math. Phys. MIT 20,

337–354.
2. Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL. 2010 Quantum

computers. Nature 464, 45–53. (doi:10.1038/nature08812)
3. Nielsen M, Chuang I. 2000 Quantum computation and quantum information. Cambridge, UK:

Cambridge University Press.
4. Johnson M et al. 2011 Quantum annealing with manufactured spins. Nature 473, 194–198.

(doi:10.1038/nature10012)
5. Adleman LM. 1994 Molecular computation of solutions to combinatorial problems. Science

266, 1021–1024. (doi:10.1126/science.7973651)
6. Amos M. 2005 Theoretical and experimental DNA computation. Berlin, Germany: Springer.
7. Kuhnert L, Agladze KI, Krinsky VI. 1989 Image processing using light-sensitive chemical

waves. Nature 337, 244–247. (doi:10.1038/337244a0)
8. Adamatzky A, De Lacy Costello B, Asai T. 2005 Reaction–diffusion computers. Amsterdam, The

Netherlands: Elsevier.
9. Ball P. 2011 Physics of life: the dawn of quantum biology. Nature 474, 272–274. (doi:10.1038/

474272a)
10. Penrose R. 1995 Shadows of the mind. London, UK: Vintage.
11. Vedral V. 2012 Decoding the universe. Oxford, UK: Oxford University Press.
12. Lloyd S. 2004 Programming the universe. New York, NY: Alfred A. Knopf.
13. Burkholder L. 2000 Computing. In A companion to the philosophy of science (ed. WH Newton-

Smith), pp. 44–52. London, UK: Blackwell.
14. Feynman R. 1996 The Feynman lectures on computation. Harlow, UK: Addison Wesley

Publishing Company.
15. Adriaans P. 2013 Information, The Stanford encyclopedia of philosophy (ed. EN Zalta). See

http://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=information.
16. Dill KA, Banu Ozkan S, Scott Shell M, Weikl TR. 2008 The protein folding problem. Annu. Rev.

Biophys. 37, 289–316. (doi:10.1146/annurev.biophys.37.092707.153558)
17. Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A. 2008 Environment-assisted quantum

walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106. (doi:10.1063/1.3002335)
18. Penrose R. 1989 The emperor’s new mind. Oxford, UK: Oxford University Press.
19. Pennings TJ. 2003 Do dogs know calculus? College Math. J. 34, 178–182. (doi:10.2307/3595798)
20. Chalmers DJ. 1996 Does a rock implement every finite-state automaton? Synthese 108, 309–333.

(doi:10.1007/BF00413692)
21. Van Fraassen BC. 2008 Scientific representation. Oxford, UK: Oxford University Press.
22. Copeland BJ. 1996 What is computation? Synthese 108, 335–359. (doi:10.1007/BF00413693)
23. Popper K. 1959 The logic of scientific discovery. New York, NY: Routledge.
24. Kuhn TS. 1962 The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
25. Van Fraassen BC. 1980 The scientific image. Oxford, UK: Oxford University Press.
26. French S. 2007 Science: key concepts in philosophy. New York, NY: Continuum.
27. Friggs R. 2006 Scientific representation and the semantic view of theories. Theoria 55, 37–53.
28. Ladyman J, Presnell S, Short AJ, Groisman B. 2007 The connection between logical and

thermodynamic irreversibility. Stud. Hist. Philos. Sci. B, Stud. Hist. Philos. Mod. Phys. 38, 58–79.
(doi:10.1016/j.shpsb.2006.03.007)

29. Cousot P, Cousot R. 1977 Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 238–
252. New York, NY: ACM Press.

 on March 6, 2015http://rspa.royalsocietypublishing.org/Downloaded from 



25

rspa.royalsocietypublishing.org
P
ro
c.
R
.So

c.
A
470:20140182

...................................................

30. Kordig CR. 1975 The theory-ladenness of observation. In The justification of scientific change,
volume 36 of Synthese Library, pp. 1–33. Dordrecht, The Netherlands: Springer.

31. The OPERA Collaboration. 2011 Measurement of the neutrino velocity with the OPERA
detector in the CNGS beam. (http://arxiv.org/abs/1109.4897)

32. The OPERA Collaboration. 2012 Measurement of the neutrino velocity with the OPERA
detector in the CNGS beam. J. High Energy Phys. 1210, 093.

33. Dirac PAM. 1931 Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133,
60–72. (doi:10.1098/rspa.1931.0130)

34. Swade D. 2002 The difference engine. New York, NY: Penguin.
35. Roselló-Merino M, Bechmann M, Sebald A, Stepney S. 2010 Classical computing in nuclear

magnetic resonance. Int. J. Unconv. Comput. 6, 163–195.
36. Clark JA, Stepney S, Chivers H. 2005 Breaking the model: finalisation and a taxonomy

of security attacks. Electron. Notes Theor. Comput. Sci. 137, 225–242. (doi:10.1016/j.entcs.
2005.04.033)

37. He J, Hoare CAR, Sanders JW. 1986 Data refinement refined (resume). In ESOP 86 (eds B
Robinet, R Wilhelm). LNCS, vol. 213, pp. 187–196. Springer.

38. Shannon CE. 1948 A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423.
(doi:10.1002/j.1538-7305.1948.tb01338.x)

39. Von Frisch K. 1967 The dance language and orientation of bees. Cambridge, MA: Harvard
University Press.

40. Grier DA. 2007 When computers were human. Princeton, NJ: Princeton University Press.
41. MeQuanics. http://www.qis.ex.nii.ac.jp/mequanics/en/ (accessed 09-2013).
42. The Open Ash Dieback Project. http://oadb.tsl.ac.uk (accessed 09-2013).
43. Searle J. 1980 Minds, brains and programs. Behav. Brain Sci. 3, 417–457. (doi:10.1017/S01405

25X00005756)
44. Halfhill TR. 1995 The truth behind the Pentium bug: an error in a lookup table created the

infamous bug in Intel’s latest processor. BYTE 20, 163–164.
45. Sarkar S, Sewell P, Alglave J, Maranget L, Williams D. 2011 Understanding power

multiprocessors. In Proc. the 32nd ACM SIGPLAN Conf. Programming Language Design and
Implementation, vol. 46, pp. 175–186. New York, NY: ACM Press.

46. Van Meter R, Horsman C. 2013 A blueprint for building a quantum computer. Commun. ACM
56, 84–93. (doi:10.1145/2494568)

47. D-Wave Systems. http://www.dwavesys.com (accessed 09-2013).
48. Boixo S, Rønnow TF, Isakov SV, Wang Z, Wecker D, Lidar DA, Martinis JM, Troyer M.

2014 Quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218–224.
(doi:10.1038/nphys2900)

49. Smith G, Smolin J. 2013 Putting ‘quantumness’ to the test. Physics 6, 105. (doi:10.1103/
Physics.6.105)

50. Rønnow TF, Wang Z, Job J, Boixo S, Isakov SV, Wecker D, Martinis JM, Lidar DA, Troye M.
2014 Defining and detecting quantum speedup. (http://arxiv.org/abs/1401.2910)

51. Harding SL, Miller JF, Rietman EA. 2008 Evolution in materio: exploiting the physics of
materials for computation. Int. J. Unconv. Comput. 4, 155–194.

52. Adamatzky A. 2010 Physarum machines: computers from slime mould. Singapore: World
Scientific.

53. Aaronson S. 2005 NP-complete problems and physical reality. ACM SIGACT News 36, 30–52.
(doi:10.1145/1052796.1052804)

54. Deutsch D. 1985 Quantum theory, the Church-Turing principle and the universal quantum
computer. Proc. R. Soc. Lond. A 400, 97–117. (doi:10.1098/rspa.1985.0070)

 on March 6, 2015http://rspa.royalsocietypublishing.org/Downloaded from 


	Introduction
	Physical computation
	Physics and the representation relation
	Theory and experiment in physics
	Commuting diagrams
	Reversing the modelling relation: prediction and technology
	When does a physical system compute?
	Physical dynamics and computer programs
	Refinement
	Composition

	Computational entities
	Computation and simulation
	Non-standard computing: computation or experiment?
	Conclusion
	References

