
This is a repository copy of End-to-End Schedulability Tests for Multiprocessor Embedded
Systems based on Networks-on-Chip with Priority-Preemptive Arbitration.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/93367/

Version: Submitted Version

Article:

Soares Indrusiak, Leandro orcid.org/0000-0002-9938-2920 (2014) End-to-End
Schedulability Tests for Multiprocessor Embedded Systems based on Networks-on-Chip
with Priority-Preemptive Arbitration. Journal of systems architecture. pp. 553-561. ISSN
1383-7621

https://doi.org/10.1016/j.sysarc.2014.05.002

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.sysarc.2014.05.002
https://eprints.whiterose.ac.uk/id/eprint/93367/
https://eprints.whiterose.ac.uk/

End-to-End Schedulability Tests for Multiprocessor
Embedded Systems based on Networks-on-Chip with

Priority-Preemptive Arbitration
Leandro Soares Indrusiak

Real-Time Systems Group - Department of Computer Science
University of York - York, United Kingdom

lsi@cs.york.ac.uk

ABSTRACT
Simulation-based techniques can be used to evaluate whether a
particular NoC-based platform configuration is able to meet the
timing constraints of an application, but they can only evaluate a
finite set of scenarios. In safety-critical applications with hard
real-time constraints, this is clearly not sufficient because there is
an expectation that the application should be schedulable on that
platform in all possible scenarios. This paper presents a particular
NoC-based multiprocessor architecture, as well as a number of
analytical methods that can be derived from that architecture,
aiming to allow designers to check, for a given platform
configuration, whether all application tasks and communication
messages always meet their hard real-time constraints in every
possible scenario. Experiments are presented, showing the use of
the proposed methods when evaluating different task mapping and
platform topologies.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-
time and embedded systems.

General Terms
Performance, Design.

1. INTRODUCTION

Embedded systems typically have to fulfil timing constraints that
are related to their application domain and usage scenarios.
Constraints are usually specified as the deadline to perform
specific functions. For example, a high-definition video recorder
must be able to capture, compress and store 25 video frames per
second. In safety-critical applications, such constraints are said to
be hard real-time constraints, as there is an expectation that they
have to be met by the system in all possible scenarios. Therefore,
embedded systems designers must be able to evaluate which
design alternatives can fulfil those constraints and, for safety-
critical applications, guarantee real-time behaviour.

In this paper, we present analytical methods to evaluate whether a
multicore embedded system based on a Network-on-Chip (NoC)
can fulfil all its timing constraints. A NoC-based system can have
tens to hundreds of processing cores interconnected by an on-chip
packet-switching network that allows data to be transferred
between the local caches of each core and from/to external
memory. Section 2 of the paper provides more detail on this type
of system architecture. It will then become clear that the
performance of the NoC interconnect is as critical as the

performance of the processing cores when it comes to meet timing
constraints.

Throughout this paper, we will use the terms end-to-end timing
constraint or end-to-end deadline of an application task-chain.
Those terms denote constraints derived from the application
domain (e.g. every video frame must be processed in 40 ms or
less) that must be met by specific components of the application
(i.e. chains of communicating tasks). Our goal is to establish
whether all task-chains of an application have their end-to-end
deadlines met by a particular NoC-based platform configuration,
and this problem is referred in this paper as end-to-end
schedulability test. Such test must consider the end-to-end latency
of each task of a task-chain: the time it takes for a processing core
to execute that task (computation latency) plus the time it takes
for the NoC to transfer all data produced by that task to the next
one on the chain (communication latency). In Section 3, precise
definitions of all those concepts will be given, followed in Section
4 by formulations of end-to-end schedulability tests that are
tailored to NoC-based multicores with priority arbitration.

Some of the schedulability tests presented in this paper are based
on classic Response Time Analysis (RTA) [1] and on NoC traffic
flow schedulability analysis [2]. Individually, those analyses
cannot be used to evaluate and improve the schedulability of a
NoC system. For example, the traffic flow schedulability analysis
from [2] has been used in [3] to produce fully schedulable task
mappings, but authors had to artificially limit the number of tasks
mapped to each core, as the analysis does not directly consider the
different interference patterns resulting from mapping the source
of the traffic flows to different cores. Without a limitation on the
maximum number of tasks per core, the mapping optimisation
process would lead to solution with all tasks mapped to the same
core (so all communications are local, instantaneous and therefore
schedulable). Likewise, the evaluation of NoC schedulability
using only RTA would be oblivious to the delays caused by
network contention. Therefore, in this paper we discuss how to
compose those two analytical methods to achieve correct upper
bounds to the end-to-end latency, and show that the resulting
analytical model is useful as a test to evaluate whether a specific
task mapping is schedulable.

Schedulability tests are not always used in industry and academia.
Often, system designers address the schedulability problem by
simulating the system under different scenarios and checking if
the obtained figures for computation and communication latencies
meet the constraints. There are two main limitations to that
approach. Firstly, for a complex multicore embedded system, the
simulation of a few seconds of an application’s execution may
take hours or days [4], limiting the number of design alternatives

that can be evaluated and the portion of the application lifetime
that can be considered. Secondly, simulation can only verify
whether constraints are met within the scenarios that are explicitly
simulated. In complex embedded systems, the set of possible
scenarios is too vast to be exhaustively covered, so it is not
possible to check whether constraints are always met. For
example, if application tasks can suffer release jitter, it would be
necessary to simulate each and every possible value of jitter for
each task in order to make sure that the timing constraints are met
in every case. In Section 5, we use a number of benchmarks to
evaluate the proposed schedulability tests, we compare the
obtained figures with those obtained with simulation, and propose
a design flow that benefits from the joint use of both techniques.

2. NOC-BASED MULTICORES

NoCs are a common architectural template for processors with
dozens of cores, and it has the potential to scale with the increase
of the core count up to hundreds or thousands. Figure 1 shows a
simplified representation of a NoC architecture. It has 16 cores,
each of them represented together with their own local cache as a
white rectangle. Cores are directly connected to NoC switches
(grey rectangles), which route data packets towards a destination
(which may be another core, an interface to off-chip memory, a
custom hardware accelerator, etc.).

Many components of the NoC template can be parameterized to
better meet design goals, such as the number and type of cores,
buffering, routing and arbitration policies, among others. In this
paper, our choice of a specific subset within such a large number
of alternatives was based on three criteria: (i) adopt architectural
features that are widely used in industry and academia, (ii) use on-
chip resources efficiently, and (iii) privilege techniques that are
amenable to the type of schedulability tests we are investigating.

Figure 1. NoC architecture with detail of the router structure

Following criterion (i), we concentrate on the widely used 2D
mesh topology [5][6][7][8]. Criterion (ii) motivates the use of
wormhole switching, as its buffer overhead is much smaller than
store-and-forward (SAF) approaches, and its link allocation is
more efficient than circuit switching approaches: there is no need
to reserve the complete path of a packet, and NoC links are only
allocated on the segments of the path where there is data ready to
be transferred. Finally, criterion (iii) requires some level of
predictability on resource sharing policies, so we limit our
approach to NoCs with non-adaptive routing and priority
arbitration such as QNoC [7] or Hermes [9]. The most common
implementation of priority arbitration is based on virtual channels
(VCs) [10], which allow packets with higher priority to preempt
the transmission of low priority ones, making it easier to predict
the outcome of network contention scenarios. Figure 1 shows a
detailed view of a NoC switch with priority-arbitrated VCs: in
each input port, a different FIFO buffer stores data words (flits) of
packets arriving through different VCs (one for each priority
level). The routing component assigns an output port for each
incoming packet according to their destination. A credit-based
approach [10] guarantees that data is only forwarded from a router
to the next when there’s enough buffer space to hold it at the right
VC. At any time, a flit of a given packet will be sent through its
respective output port if it has the highest priority among the
packets being sent out through that port, and if it has credits (that
is, buffer space on the respective buffer of the neighbouring node
connected to that output port). If the highest priority packet can’t
send data because it is blocked elsewhere in the network, the next
highest priority packet can access the output link.

3. SYSTEM MODEL AND NOTATION

In this paper, we investigate ways to determine whether
application tasks executing and communicating over a specific
NoC-based multicore can meet all application-specific timing
constraints. Therefore, we need a system model that covers the
application as well as the NoC-based platform and its
configurations.

For the application model, we recall the sporadic task model and
define an application as a taskset Γ = {τ1, τ2,…, τn} where each
task τi is a 6-tuple {Ci, Ti, Di, Ji, Pi, φi} indicating respectively its
worst case computation time, period (i.e. minimum inter-release
time interval), deadline, release jitter and priority. The sixth
element of the tuple is the only proposed addition to the sporadic
task model, and represents a communication message sent by τi.
Our initial assumption is that each task produces a single message
φi which is sent immediately after it finishes its computation. The
message is defined as a 3-tuple {τd , Zi, Ki} representing its
destination task, size and maximum release jitter. A task-chain Χ
= {τ1, τ2,…, τx} is an ordered subset of Γ where each task sends a
message to the subsequent task in X, and all of them have the
same period Tx. We assume that all task-chains in a particular
application Γ are disjoint subsets of Γ, and that loops are not
allowed (i.e. the sixth element of the tuple of the final task τx of
every task-chain is the empty set ø).

The model of the NoC platform is composed of a set of processing
cores Π = {πa, πb,…, πz}, a set of switches Ξ = {ξ1, ξ2,…, ξm}, and
a set of unidirectional links Λ = {λa1, λ1a, λ12, λ21,…, λzm, λmz}.
Links can connect cores to switches, or switches with each other,
allowing for all possible direct and indirect NoC topologies. For
example, the architecture shown in Fig. 1 has 16 cores πa … πp,
each of them connected to one of the 16 switches ξ1 … ξ16 via two
unidirectional links (e.g. λa1 and λ1a). The switches, in turn, are

priority ID

…

highest priority
with remaining credit

data_in data_out

credit_in

…

routing
&

transmission

control

 e f h g

 i j l k

 a b d c

priority ID

…

highest priority
with remaining credit

…

routing
&

transmission
control

 m n p o

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

credit_out

connected to each neighbouring switch by two links (e.g. λ21, λ12,
λ23, λ32, λ26 and λ62 are the links attached to switch ξ2).

NoCs forward packets from source to destination according to a
routing algorithm. We define a function route(πa, πb) = {λa1,
λ12,…, λmb} denoting the subset of Λ used to transfer packets from
core πa to core πb. A route will include links connecting the source
and destination cores to their respective switches, and all the links
between switches along the way. The cardinality of a route is
defined as |route(πa, πb)| and will be informally referred as its hop
count. For the example in Fig. 1, route(πe, πg) = {λe5, λ56, λ67, λ7g}
and |route(πe, πg)| = 4 for most commonly used routing
algorithms.

Task mapping is a critical part of the design of multicore systems.
It defines which application tasks should be mapped onto which
processing core (i.e. on which core each task will execute). Many
different approaches to task mapping have been proposed, taking
into account the time when the mapping occurs, whether tasks can
be remapped (or migrated) during execution, and which metrics
should be considered when making a mapping decision. We
therefore define a surjective function map(τi) = πa to denote the
core onto which a task is mapped. Its inverse is defined as
map-1(πa) = {τi,…, τn} and represents the tasks mapped to a given
core. Likewise, the mapping of a message map(φi) =
route(map(τi), map(τd)) denotes the route of its packets over the
NoC, and the inverse map-1(λ) = {φi,…, φn} represents the
messages mapped over a given link.

Once the mapping of all tasks of Γ is defined, it is possible to
calculate the basic communication latency Li of every message φi.
It represents the time taken by the message to be completely
transferred from its source to its destination, assuming no
contention over the NoC links (i.e. as if the message is the only
one using the NoC). The actual value of Li will depend on
implementation-specific characteristics of the NoC (e.g. link
width, time required for a packet header to cross a router, and for
a flit to cross a link). A common formulation is the following:
Li = |map(φi)| . lhop + (|map(φi)| -1) . lrouter + (Zi / width). lhop,
where the first term represents the time it takes for the packet
header to traverse all the NoC links, expressed as the product of
the message hop count and the latency lhop for the header to
traverse a single link; the second term represents the time it takes
for the packet header to traverse all NoC routers, and is expressed
as the product of the number of routers along the path (which is
usually the number of hops minus one in most direct networks)
and the latency lrouter for the header to traverse a router; the third
term represents the time taken by the packet payload to follow the
header in a wormhole fashion all the way to the destination,
expressed by the message length Zi (in bits) divided by the link
width (which results in the number of payload flits), multiplied by
the single link latency lhop.

4. END-TO-END SCHEDULABILITY

TESTS FOR NOC-BASED MULTICORES

A schedulability test is able to discern system configurations that
are schedulable, that is, able to meet their timing constraints even
in the worst case scenario. In this paper, we assume that a system
is schedulable iff all its task chains meet their end-to-end
deadlines. To check this property, we first revisit a number of
existing techniques that can be used as necessary schedulability
tests.

4.1 Schedulability of tasks over a processing

core

A processor utilisation test can be used to check whether all tasks
mapped to a particular core πa do not exceed its capacity: ∑ 𝐶𝑖𝑇𝑖τ𝑖 ∈ 𝑚𝑎𝑝−1(π𝑎) ≤ 1

This test is necessary but obviously not sufficient because even
though the core πa may be capable to run all the tasks, it may not
be able to run all of them within their deadlines. Response Time
Analysis (RTA) [1] is the standard technique to evaluate how
much the interference from higher priority tasks can delay the
completion time of task τi: 𝑅𝑖 = 𝐶𝑖 + ∑ ⌈𝑅𝑖𝑇𝑗 ⌉∀τ𝑗 ∈ ℎ𝑝(τ𝑖) 𝐶𝑗
where the function hp(τi) denotes the set of all tasks that can
preempt τi: those mapped to the same core and that have a higher
priority. Formally, hp(τi) includes every task τj ∈ Γ where map(τi)
= map(τj) and Pi < Pj. With the help of Eq. 2, it is possible to
calculate the longest possible time interval between the release of
τi and its termination. This is done by adding τi‘s computation
time 𝐶𝑖 and the computation times 𝐶𝑗 of all releases of tasks τj that

could preempt it. The result of that sum is referred as τi’s worst
case response time and is represented by 𝑅𝑖. As 𝑅𝑖 appears in both
sides of Eq. 2, an iterative solution was proposed in [1]. RTA has
been widely used to test schedulability of uniprocessor and
statically mapped multiprocessor systems with fixed priorities.

More advanced tests have been reviewed in [11], considering
more advanced task models that support task migration (global
scheduling), dynamic priorities and different constraints on
deadlines. However, the tests described and referenced above do
not explicitly consider inter-task communication. Instead, most
assume that all communication latencies can be combined with
the worst case computation time Ci of the respective tasks. For
uniprocessor systems with uniform memory access times, such
assumption can be acceptable as the communication overhead can
be predictable and usually small compared with the computation
time. In NoC-based systems, however, the communication latency
introduced by the NoC when tasks access memory or exchange
messages depends heavily on the task mapping, the application
communication patterns and resulting network congestion (which
is particularly hard to predict in the case of wormhole switching
NoCs). This leads to high variability in communication latencies,
which can be of the same order of magnitude of the computational
time Ci of the tasks (or even higher). Therefore, we make a case to
explicitly consider communication times when analysing
schedulability of NoC-based systems.

4.2 Schedulability of packets over a NoC and

end-to-end schedulability of communicating

tasks

To address the schedulability of packets transmitted over a NoC,
we rely on the work proposed by Shi and Burns [2], which in turn
builds on RTA. Their work assumes that packets are released into
the NoC sporadically, i.e. a series of packets (referred in [2] as a
traffic flow) has a minimum inter-release interval which is known
at design time. The maximum size of each packet is also known a
priori. On the platform side, the main assumption is that the NoC

(2)

(1)

routers perform deterministic routing, and that the link arbiters
can preempt packets when higher-priority packets request the
output link they are using. Such assumption is valid for the type of
NoC architectures described in Section 2. The worst case latency 𝑆𝑖 of a packet transmitted over such a NoC can be found using Eq.
3, which has been rewritten from the original in [2] to follow the
notation presented in Section 3. To simplify the notation, we
assume that there is a one-to-one relationship between application
messages and packets sent over the NoC, and therefore use the
same symbol φ for both.

 𝑆𝑖 = ∑ ⌈𝑆𝑖 + 𝐾𝑗 + 𝐾𝑗𝐼𝑇𝑗 ⌉ 𝐿𝑗 + 𝐿𝑖∀φ𝑗 ∈ interf(φ𝑖)

The function interf(φi) denotes the direct interference set of φi,
which is the set of all packets that can preempt φi, which are those
whose routes at have at least one NoC link in common with φi‘s
route and that have higher priority. Formally, interf(φi) includes
every packet φj where map(φi) ∩ map(φj) ≠ ∅ and Pi < Pj. The
intuition behind Eq. 3 is similar to what was presented for Eq. 2.
The value of 𝑆𝑖 can be found by adding φi‘s basic latency 𝐿𝑖 and
the latencies 𝐿𝑗 of all releases of packets φj that could preempt it.

The same iterative solution proposed in [1] can be used here.

It is worth noticing that the release jitter of φj can influence how
many times it can preempt φi. In Eq. 3, we consider two types of
release jitter: 𝐾𝑗 which is caused by the execution of the task τj

that releases φj, and 𝐾𝑗𝐼 which is caused by indirect interference

(i.e. packets that can preempt φj but cannot interfere on φi because
they don’t share any links, see [2] for a detailed definition).[2][1]

Since the value of 𝐾𝑗 must be the maximum amount of time

elapsed between the start of φj‘s period and its actual release, and
since we have defined that a packet is released immediately after
its respective task has finished computation, we can clearly state
that 𝐾𝑗 = 𝑅𝑗. Finally, from [2] we have that 𝐾𝑗𝐼 = 𝑆𝑗 − 𝐿𝑗.

Thus, the worst case end-to-end response time of a task τi is given
by 𝐸𝐸𝑅𝑖 = 𝑅𝑖 + 𝑆𝑖, which composes its worst-case computation
response time and its worst case communication latency (Figure
2). Its end-to-end schedulability can be tested by checking
whether 𝐸𝐸𝑅𝑖 ≤ 𝐷𝑖.
4.3 End-to-end schedulability of task chains

To test the schedulability of a task chain X, we need to consider
the individual end-to-end response times of all tasks τ𝑖 ∈ 𝑋.
Before we can do that, we must discriminate three modes of
execution for task chains over multiple processing elements:
sequential, parallel and pipelined.

In a sequential execution, a task chain will be executed
completely, in one or more processors, before it can be executed
again. In other words, only a single task τ𝑖 ∈ 𝑋 can be executing
at a given point in time.

In a parallel execution over multiple processors, there are no
constraints over the execution of task chains, and arbitrarily many
jobs of a task chain can be executing at the same time.

Figure 2. End-to-end response time of a communicating task

A pipelined execution is a special kind of parallel execution which
allows multiple jobs of the same task chain to be executed
simultaneously over different processors, but disallows the
simultaneous execution of more than one job of the same task. A
common pattern for pipelined execution is to have a number of
jobs of a task chain X running concurrently, each of them released
after Tx time units after the preceding one, in a phase-shifted way.
We refer to this pattern as a synchronous pipeline. Figure 3 shows
an example of a task chain executing as a synchronous pipeline. It
includes three tasks τ1, τ2 and τ3 running on separate cores (each of
them represented on a separate timeline), their respective
communications over NoC links (also shown over separate
timelines), occasionally suffering interference from higher priority
tasks and packets (not shown in the figure). Curved arrows show
the functional dependencies between the computation and
communication components of one chain, making it easier to see
that those dependencies will always be satisfied as long as each
task meets its end-to-end deadline constraint.

Figure 3. Example of a 3-task chain executed in a synchronous

pipeline over 3 processors

In this paper, we concentrate on the synchronous pipeline case.
We argue that it can be analysed by the end-to-end schedulability
test described in subsection 4.2. Let us assume that the end-to-end
deadline Dx of a synchronously pipelined task chain X, which is
the maximum tolerated amount of time elapsed between the
release of its first task and the delivery of the output of its last
task, is equal to the number x of tasks in the chain multiplied by
the chain period Tx. In a synchronous pipeline, we can partition

2 2 2

3 3 3

1 1 1

Dx

x x x

1 2 1 2 1 2

2  3 2 3 2 3

period T

computation

response time R
communication

latency S

end-to-end response time EER

execution time C communication time L

computation

interference
communication

interference (3)

Dx equally among all tasks of the chain, so the end-to-end
deadline Di of each individual task is equal to Tx. This enables a
task chain X with x tasks to produce its output x periods after its
release, but once the pipeline is filled each of its jobs will produce
an output at every period.

The schedulability test for this particular case is a simple check of
whether ∀ τ𝑖 ∈ 𝑋, 𝐸𝐸𝑅𝑖 ≤ 𝑇𝑥. This assumes that there will be
acceptable deadline misses for the first x jobs of the task chain X
while the pipeline is being filled, and guarantees that the system
will never miss a deadline after that. The intuition behind this
approach is that each task of the chain will be triggered every Tx
time units, and has to finish computing and communicating with
the next task of the chain before the end of the period, so that the
following task will have all the data it needs before it can run at
the next periodic tick.

4.4 Link utilisation tests

Similarly to Eq. 1, a utilisation test can be applied to each of the
NoC links, aiming to check whether the messages mapped to each
of them will not exceed their bandwidth: ∑ 𝐿𝑖𝑇𝑖φ𝑖 ∈ 𝑚𝑎𝑝−1(λ𝑎1) ≤ 1

Again, this test is necessary but not sufficient because even
though the link λa1 may be capable to transmit all messages
mapped to it without starvation, they might not meet their
deadlines.

By considering the multi-hop nature of NoCs, we identify another
utilisation test that addresses the direct interference set interf(φi)
of a message φi: ∑ 𝐿𝑗𝑇𝑗φ𝑗 ∈ 𝑖𝑛𝑡𝑒𝑟𝑓(φi) ≤ 1

The intuition behind this test is the following: if a message φj can
interfere and hinder the progress of another message φi over the
NoC, this happens regardless of the link where the contention
happens. In other words, the complete route of a message can be
seen as a single resource with exclusive access, and if a higher
priority message needs to use any part of that route the whole
transmission of φi will be halted. For example, if φi is routed over
n different links and it suffers interference from φj which also uses
one or more of those links and has a higher priority, the time φi
waits for the shared link(s) will be the same if they share link λ1,
λ2, …, λn, or any combination of them, as in every case φi will not
be able to progress in a pipelined fashion towards its destination.
The same intuition can be extended to other higher priority
messages that share any possible combination of links with φi.
Therefore, we conclude that the direct interference set interf(φi)
determines all contenders for the route of a message φi, and the
overall utilisation of that route has to be less than 1 due to the
exclusive access.

The proof that this test is tighter than the test in Eq. 4 lies on the
fact that the direct interference set interf(φi) is a superset of each
of the sets including the messages that share any of the links φi is
mapped to, and that can interfere with it: ∀ λ ∈ map(φi),
hp(map-1(λ)) ∈ interf(φi), where hp({φi … φn }) denotes the subset
of messages that have higher priority than φi. Actually, from the
definition given in Section 4.2 it is easy to see that the direct
interference set is actually the union of all those sets: 𝑖𝑛𝑡𝑒𝑟𝑓(𝜑𝑖) = ⋃ ℎ𝑝(𝑚𝑎𝑝−1(𝜆))λ ∈ 𝑚𝑎𝑝(𝜑𝑖) . Thus, the utilisation

test given in Eq. 5 will cover, when applied to the lowest priority
message of each link, the test given in Eq. 4.

In any case, both utilisation tests identified in this subsection are
necessary, but not sufficient. While they are useful to discriminate
unschedulable mappings, they cannot guarantee schedulability.
They are nonetheless useful to prune large mapping spaces, as
they are less computationally expensive than the tests described in
subsections 4.2 and 4.3.

5. EXPERIMENTAL WORK

To evaluate the correctness and usefulness of the schedulability
tests described in the previous section, we devised two types of
experiment. In subsection 5.1, we will compare the figures for
computation and communication response times found using the
proposed schedulability tests with figures obtained through
simulation of predefined configurations of a NoC-enabled
embedded system. In subsection 5.2, we will then show that the
proposed tests can be used as a fitness function within a search-
based optimisation heuristic.

5.1 Joint end-to-end schedulability analysis

and simulation

In this series of experiments, we analyse the schedulability of a
benchmark application over a specific NoC-based embedded
platform.

The platform follows the architecture described in Section 2, with
homogeneous cores running priority-preemptive task schedulers,
distributed memory, 2D-mesh NoC interconnect with XY
dimension routing, credit-based flow control, 8 virtual channels
with 3-flit input buffers per port and priority-preemptive link
arbitration. It is worth noticing that the schedulability tests
proposed in Section 4 would support alternatives on most of those
architectural choices, but priority-preemptive arbitration at the
cores and NoC links is a requirement.

The chosen benchmark application is based on the autonomous
vehicle (AV) introduced in [12], including 39 communicating
tasks performing functionality such as navigation control,
vibration control and obstacle detection through stereo
photogrammetry. Task periods vary between 0.04 to 1 second, and
communication volumes vary between 1 and 76 kbytes.

To model the benchmark as task chains, a number of tasks of the
original application had to be partitioned (i.e. to break tree-like
structures when a task receives data from multiple sources).
Furthermore, we had to introduce the notion of “sink tasks” to
model DMA transfers to the local memory of the core where
specific tasks are mapped to. In those cases, the destination task
does not require any computation overhead (e.g. last task of a
chain writes to a memory-mapped actuator, so it does not load the
destination core, but used the bandwidth of the NoC links all the
way to the destination interface).

To maintain the realism of the benchmark, we constrained all
mappings used in the paper in such a way that all partitions of a
task, as well as its respective sink, are mapped to the same core
(so that only possible mappings of the application were
considered). Table I shows the complete set of tasks, showing
which chain they belong to (chains have lengths between 2 and 5
tasks), their names (first four letters indicate the original task
name from [12], with an appendix if the task is a partition or a
sink of one of the original tasks), destination task, computation

(4)

(5)

time (in milliseconds), period (in milliseconds), priority, and
communication volume (in bytes).

Table I – Autonomous Vehicle benchmark

task

chain

name

dest

task

comp

(ms)

period

(ms)

pri

comm

(bytes)

1 A POSI-A 2 5 500 31 2048

2 A NAVC-A 3 10 500 32 4096

3 A OBDB-A 42 150 500 33 32768

4 B OBDB-B 33 150 1000 34 65536

5 C NAVC-C 40 20 100 24 1024

6 C SPES-C 5 5 100 25 1024

7 D NAVC-D 40 10 100 26 2048

8 E FBU3-E 47 10 40 1 76800

9 F FBU8-F 48 10 40 2 76800

10 G VOD1 42 20 500 3 1024

11 H VOD2 42 20 500 4 1024

12 I FBU1 20 10 40 5 76800

13 J FBU2 21 10 40 6 76800

14 K FBU3 22 10 40 7 76800

15 L FBU4 23 10 40 8 76800

16 M FBU5 24 10 40 9 76800

17 N FBU6 25 10 40 10 76800

18 O FBU7 26 10 40 11 76800

19 P FBU8 27 10 40 12 76800

20 I BFE1 28 20 40 13 4096

21 J BFE2 43 20 40 14 4096

22 K BFE3 43 20 40 15 4096

23 L BFE4 43 20 40 16 4096

24 M BFE5 29 20 40 17 4096

25 N BFE6 44 20 40 18 4096

26 O BFE7 44 20 40 19 4096

27 P BFE8 44 20 40 20 4096

28 I FDF1 30 10 40 21 16384

29 M FDF2 51 10 40 22 16384

30 I STPH 43 30 40 23 8192

31 Q POSI-Q 43 5 500 35 2048

32 R USOS 43 5 100 27 2048

33 B OBMG-B 41 20 1000 37 8192

34 S TPMS 36 5 500 36 4096

35 T VIBS 38 5 100 28 1024

36 S STAC-S 46 10 1000 38 4096

37 U SPES-U 45 5 100 29 2048

38 T STAC-T 44 10 100 30 2048

39 V OBMG-V 41 0.5 1000 39 4096

40 sink DIRC-X - - - - -

41 sink OBDB-X - - - - -

42 sink NAVC-X - - - - -

43 sink OBMG-X - - - - -

44 sink THRC-X - - - - -

45 sink STAC-X - - - - -

46 sink TPMS-X - - - - -

47 sink VOD1-X - - - - -

48 sink VOD2-X - - - - -

49 sink FDF1-X - - - - -

50 sink FDF2-X - - - - -

51 sink STPH-X - - - - -

We selected one platform configuration (a 4x4 mesh) and three
different task allocations, and applied equations 2 and 3 to find the
worst-case end-to-end response time of each of the 39
communicating tasks under each mapping. Figures 4.a, 4.b and 4.c
show the results for mappings M1, M2 and M3 respectively.

The worst-case end-to-end response time of each task is plotted
with a brown cross, and their individual deadline is shown as a red
horizontal line. Mappings M2 and M3 are fully schedulable, as all
EER values are below the respective deadlines. M1, however, has
a number of unschedulable tasks, denoted by the brown crosses
plotted at the upper margin of Figure 4.a (the actual worst case

response times in those cases were not found, as our
implementation stops iterating towards a solution once a deadline
is missed).

 (a)

 (b)

 (c)

Figure 4. End-to-end response times (in ms) for all 39

communicating tasks under alternative mappings: (a) M1, (b)

M2 and (c) M3.

We then used the tool flow presented in [13] and the simulation
models presented in [14] to obtain latency figures for the
execution of the benchmark application over the platform under
all three mappings. We simulated each scenario for a target time

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

deadline wc max avg min

of 200 seconds, which allows for a good coverage of the
application lifetime (the shortest period is of the video processing
tasks, that must execute every 0.04 seconds to achieve 25 VGA
frames per second, and the longest period is of 1 second for the
tyre pressure control task). Figure 4 also shows, for each mapping,
the best, worst and average end-to-end latency observed during
simulation for each of the 39 communicating tasks. The plots
show that the worst case response times found by our
schedulability tests are effectively an upper bound to all results
found with simulation. They also show that while M2 and M3 are
fully schedulable mappings, M2 has higher worst case and
maximum observed latencies (specially in communications 4, 7
and 37). Taking that into account, mapping M3 would be
preferable as its results allow for larger safety margins.

5.2 Using end-to-end schedulability tests as

fitness within search-based optimisation

As shown in Figure 4, the end-to-end timeliness of applications is
affected by the way tasks and flows are mapped onto the NoC
platform. Finding optimal mappings, or even acceptable ones, is a
challenge in most NoC systems, and a significant amount of
research was dedicated to this topic [15]. Heuristic search-based
mapping is one of the mapping techniques reviewed by [15], and
its distinctive feature is a fitness function to evaluate solutions
over a given search space, aiming to converge towards solutions
with increasing fitness. A common practice in such cases is to
simulate the NoC platform with a given mapping for a specific
amount of time, and use some aggregate of the latencies of all
packets obtained through the simulation as the fitness of that
mapping [16]. This process is then repeated for many different
mappings across the search space until a mapping is found that
fulfils the requirements (e.g. average latency of all packets below
a given threshold).

In this subsection, we show that the schedulability tests described
in Section 4 can be used to solve two problems found in search-
based mappers with simulators as fitness function, specifically
when it comes to optimise hard real-time systems. As discussed in
Section 1, simulators cannot easily find worst-case packet
latencies, and the time they take to run can be very high when
evaluating complex NoCs. In search-based mappers, the second
problem is particularly severe, because the search heuristic may
have to simulate hundreds or thousands of different mapping
before an acceptable solution can be found.

To solve those problems, we have implemented a search-based
algorithm that uses the approach described in subsection 4.3 to
find whether, given a particular mapping, how many of an
application’s tasks are end-to-end schedulable. Like in [16], our
search-based heuristic follows an evolutionary approach,
modelling a particular mapping as a chromosome representing on
each gene the processing core where each task should be mapped
(Figure 5.a). The evolution is performed across generations of a
population of 100 individuals, each represented by one of such
chromosomes. The initial population can be randomly generated,
but subsequent generations are produced by applying crossover
and mutation operations over the fittest chromosomes of the
preceding one (Figure 5.b). In our implementation, crossovers
were implemented by creating a new chromosome from the first
and second halves of two existing chromosomes. Similarly,
mutations created new chromosomes by swapping the contents of
any two genes of an existing chromosome. The chosen
chromosomes for crossover and mutation were those that, when

evaluated using the technique described in 4.3, would have the
lowest number of unschedulable tasks.

Ideally, after a number of generations the population will contain
at least one individual with a chromosome representing a mapping
that meets our constraints, i.e. has zero tasks that are end-to-end
unschedulable. A detailed study on how different chromosome
formats, population sizes, mutation and crossover styles and rates
affect the convergence of the genetic algorithm towards a full
schedulable solution can be found in [17].

τ1 τ2 τ3 τ4 … τn

πc πa πk πc … πb

(a)

(b)

Figure 5. Evolutionary mapping: (a) chromosome format and

(b) evolutionary search process.

We have used this evolutionary mapping algorithm to search for
schedulable mappings of the AV application over 3x3, 4x4 and
5x5 mesh NoC platforms. Figure 6 shows the number of end-to-
end unschedulable tasks of the best mapping of each generation. It
can be seen that mappings for the 5x5 platform can be found very
easily (as there are more resources and therefore less
interference), reaching a fully schedulable mapping in 8
generations. For the 4x4 platform, the situation is slightly more
difficult, but the evolutionary mapper is capable to find a fully
schedulable mapping in 11 generations. Finally, for a 3x3
platform, the evolutionary mapping cannot find a fully
schedulable mapping after 50 generations (because the utilization
of the application exceeds the available capacity of the 3x3
platform), but it can clearly show improvements over generations,
reaching a minimum of 12 end-to-end unschedulable tasks.

53 2
9 41 9

5 3 6
4 7

8

5
9 9

5 6
7

8

initialisation termination

evaluate fitness

select the fittest

breed pairs / crossover

mutations

replace old population

Figure 6. Number of end-to-end unschedulable tasks at each

generation of the evolutionary mapping, for three different

NoC platforms: 3x3, 4x4 and 5x5.

5.2.1 Performance comparison

The performance of the proposed schedulability test, when used as
a fitness function of a search-based heuristic, shows a significant
improvement over simulation-based fitness functions such as
those used by [16]. A simple Java-based implementation of the
proposed test takes 0.13 seconds to evaluate the schedulability of
a single mapping of the AV application over a 4x4 NoC. This is at
least one order of magnitude faster than simulation, as reported in
[14], and consistently reinforced by our experiments reported in
subsection 5.1. The time it takes to simulate 2 seconds of a single
mapping of the AV application is 7.89 seconds, for a fast
simulator operating at TLM (Transaction Level Modelling) level.
For a cycle-accurate simulation of the same scenario, the time
elapsed is 2895.69 seconds.

Such numbers show that even if it would be feasible to identify
the worst-case release scenario for all tasks and packets, a state-
of-the-art NoC simulator would take 60 times longer (or up to
20000 times longer, if full accuracy must be achieved) to evaluate
the fitness of one specific mapping. Recalling that in a typical
search-based mapping heuristic one must check the fitness of
thousands of mappings, we can clearly see the advantage of the
proposed approach (e.g. in the experiments described above we
needed 1100 application of the fitness function to find a fully
schedulable mapping for a 4x4 platform, i.e. 11 generations of a
population of 100 individuals).

6. RELATED WORK

Besides RTA and its derivatives, other analytical models have
also been used to evaluate schedulability in NoCs.

Beekooij et al. [18] have proposed an extension to dataflow
analysis (originally proposed by Lee and Messerschmitt [19]) that
can model the behaviour of a homogeneous synchronous dataflow
(HSDF) application performing computation and communication
over a specific type of NoC (i.e. statically scheduled time-division
multiplexing of links). They assume that the worst-case
computation time of each application task is known (just like in
this paper, as referred as Ci in Section 3). However, due to the
nature of their underlying NoC architecture, they can assume that
there is no contention over NoC links, and thus the delay

introduced by the NoC to each data transfer can be established
independently for each task chain. Therefore, the worst case end-
to-end latency of a task-chain can be found by dataflow analysis,
which can calculate the latest arrival time of the data token at the
output of the last task of the chain.

Qian et al. [20] proposed the use of network calculus [21] to
calculate worst-case packet latency bounds in wormhole NoCs, as
long as all traffic can be modelled as an arrival curve and all NoC
routers can be modelled by a service curve. Such curves abstract
the actual behaviour of the application and the NoC by the
bandwidth required or provided, respectively, at each point in
time. The calculation of latency bounds is done through algebraic
operations over all arrival curves at a given router, as well as the
router’s service curve. The main challenge of this approach is to
represent the behaviour of a sequence of specific routers (with
their particular buffering and arbitration schemes) as a service
curve. The modelling of the application traffic as arrival curves is
also challenging, specially if the variations on the source task’s
execution are taken into account (e.g. execution time variability or
interference from tasks running on the same core), and this is
currently an open problem preventing the use of network calculus
on the evaluation of NoC end-to-end schedulability.

Other approaches to evaluate NoC schedulability are surveyed by
in [22], all of them based on dataflow analysis, network calculus
or RTA. The survey also states the difficulty to compare different
analytical methods based on distinct formalisms, as they have
fundamentally different assumptions. Still, they provide a
summary of strengths and weaknesses of each type of analysis.
Their assessment of dataflow and network calculus models has
similar views as the ones we provided above, emphasizing the
restrictions that must be imposed on the application behaviour and
the NoC resource sharing disciplines. Their assessment of RTA
and its derivatives, however, states that the main weakness is the
inability to represent dependencies between flows, which is an
issue that we have directly addressed in this paper and solved for
the restricted case of synchronous pipelines.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated ways to determine whether
application tasks executing and communicating over a specific
NoC-based multicore can meet all application-specific timing
constraints. We have identified a number of schedulability tests,
and have shown their utility within distinct steps of an embedded
system design flow. By combining them with simulation,
designers can obtain a more detailed understanding of the
overheads that are needed to guarantee performance in the worst
case, as opposed to the average case. And by using them as fitness
in search-based optimisation, we enabled a faster coverage of the
typically large design spaces given by the multiple design
alternatives in this kind of system.

For the sake of simplicity, we assumed an application model
where tasks require all data to be available locally before they
execute, and can send a single message only after they finish their
computation. While restrictive, this model supports the widely
used Actor model (i.e. read-execute-write) and can represent
applications based on task chains. A more general formulation
that allows tasks to send an arbitrary number of messages can be
easily derived, but was left to future work, and would enable the
representation of and tree-like structures. Even in the case of
simple task chains, we have only addressed the restricted case of

0

5

10

15

20

25

30

1 3 5 7 9 1113151719212325272931333537394143454749

#
 e

n
d

-t
o

-e
n

d
 u

n
sc

h
e

d
u

la
b

le
 t

a
sk

s

generation

3x3

4x4

5x5

synchronous pipelines. Extensions to the presented tests to
address general pipeline and sequential execution are currently
under investigation, and so is the use of deadline decomposition
approaches (such as in [23] and [24]) and schedulability tests
supporting release offsets (such as [25]).

Additional future work can take advantage of the utilisation tests
presented in subsections 4.1 and 4.4 to accelerate the design space
exploration by quickly pruning away mappings with over-utilised
cores or links. Such approach could improve even further the
performance reported in subsection 5.2.1, where the substantially
heavier schedulability test presented in subsection 4.3 was used
throughout the whole optimisation.

Finally, the proposed platform model assumes homogeneous
cores, switches and links. Interesting avenues of research can also
be opened by lifting such restrictions.

8. ACKNOWLEDGEMENTS

The author would like to thank Zheng Shi, Alan Burns, Osmar
Marchi dos Santos and Borislav Nikolic for the discussions on the
tests presented in Section 4; and Paris Mesidis, Adrian Racu and
Norazizi Sayuti for the discussions and help with the experimental
work supporting subsection 5.2.

9. REFERENCES

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings, “Applying new scheduling theory to static priority pre-
emptive scheduling,” Software Engineering Journal, vol. 8, no. 5,
pp. 284–292, 1993.

[2] Z. Shi and A. Burns, “Real-Time Communication Analysis for On-
Chip Networks with Wormhole Switching,” in ACM/IEEE Int
Symposium on Networks-on-Chip (NOCS), 2008, pp. 161–170.

[3] Z. Shi and A. Burns, “Schedulability analysis and task mapping for
real-time on-chip communication,” Real-Time Syst, vol. 46, no. 3,
pp. 360–385, Sep. 2010.

[4] N. Genko, D. Atienza, G. De Micheli, L. Benini, J. M. Mendias, R.
Hermida, and F. Catthoor, “A novel approach for network on chip
emulation,” in IEEE Int Symposium on Circuits and Systems
(ISCAS), 2005, pp. 2365–2368 vol. 3.

[5] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost,
“HERMES: an infrastructure for low area overhead packet-
switching networks on chip,” Integration, the VLSI Journal, vol. 38,
no. 1, pp. 69–93, Oct. 2004.

[6] A. Agarwal, “The Tile Processor: A 64-Core Multicore for
Embedded Processing,” in 11th Annual Workshop on High
Performance Embedded Computing (HPEC), Lexington,
Massachusetts, USA, 2007.

[7] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” Journal of
Systems Architecture, vol. 50, no. 2–3, pp. 105–128, Feb. 2004.

[8] D. Wiklund and Dake Liu, “SoCBUS: switched network on chip for
hard real time embedded systems,” in Int Parallel and Distributed
Processing Symposium (IPDPS), 2003.

[9] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual
channels in networks on chip: implementation and evaluation on

hermes NoC,” in 18th Annual Symposium on Integrated Circuits and
Systems Design (SBCCI), Florianopolis, Brazil, 2005, pp. 178–183.

[10] T. Bjerregaard and J. Sparso, “Virtual channel designs for
guaranteeing bandwidth in asynchronous network-on-chip,” in
Norchip Conference, 2004, pp. 269–272.

[11] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp.
35:1–35:44, Oct. 2011.

[12] Z. Shi, A. Burns, and L. S. Indrusiak, “Schedulability Analysis for
Real Time On-Chip Communication with Wormhole Switching,”
IJERTCS, vol. 1, no. 2, pp. 1 – 22, Jun. 2010.

[13] L. S. Indrusiak, I. Quadri, I. Gray, N. Audsley, and A. Sadovykh, “A
MARTE subset to enable application-platform co-simulation and
schedulability analysis of NoC-based embedded systems,” in 2012
7th International Workshop on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), 2012, pp. 1–7.

[14] L. S. Indrusiak and O. M. dos Santos, “Fast and Accurate
Transaction-Level Model of a Wormhole Network-on-Chip with
Priority Preemptive Virtual Channel Arbitration,” in Proc Design
Automation and Test in Europe (DATE), Grenoble, France, 2011,
pp. 1089–1094.

[15] P. K. Sahu and S. Chattopadhyay, “A survey on application mapping
strategies for Network-on-Chip design,” Journal of Systems
Architecture, vol. 59, no. 1, pp. 60–76, Jan. 2013.

[16] G. Ascia, V. Catania, and M. Palesi, “A Multi-objective Genetic
Approach to Mapping Problem on Network-on-Chip,” Journal of
Universal Computer Science, vol. 12, no. 4, pp. 370–394, 2006.

[17] A. Racu and L. S. Indrusiak, “Using genetic algorithms to map hard
real-time on NoC-based systems,” in 2012 7th International
Workshop on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), 2012, pp. 1–8.

[18] M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak, B.
Mesman, J. Mol, S. Stuijk, V. Gheorghita, and J. Meerbergen,
“Dataflow Analysis for Real-Time Embedded Multiprocessor
System Design,” in Dynamic and Robust Streaming in and between
Connected Consumer-Electronic Devices, 2005, pp. 81–108.

[19] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[20] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds
for best-effort communication in wormhole networks on chip,” in
3rd ACM/IEEE International Symposium on Networks-on-Chip,
2009. NoCS 2009, 2009, pp. 44–53.

[21] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Berlin, Heidelberg:
Springer-Verlag, 2001.

[22] A. E. Kiasari, A. Jantsch, and Z. Lu, “Mathematical Formalisms for
Performance Evaluation of Networks-on-chip,” ACM Comput. Surv.,
vol. 45, no. 3, pp. 38:1–38:41, Jul. 2013.

[23] T. F. Abdelzaher and K. G. Shin, “Combined task and message
scheduling in distributed real-time systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 10, no. 11, pp. 1179–1191,
1999.

[24] M. Saksena and S. Hong, “An engineering approach to decomposing
end-to-end delays on a distributed real-time system,” in 4th Int
Workshop on Parallel and Distributed Real-Time Systems, 1996, pp.
244–251.

[25] I. Bate and A. Burns, “Schedulability analysis of fixed priority real-
time systems with offsets,” in 9th Euromicro Workshop on Real-
Time Systems, 1997, pp. 153–160.

