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ABSTRACT 
Simulation-based techniques can be used to evaluate whether a 
particular NoC-based platform configuration is able to meet the 
timing constraints of an application, but they can only evaluate a 
finite set of scenarios. In safety-critical applications with hard 
real-time constraints, this is clearly not sufficient because there is 
an expectation that the application should be schedulable on that 
platform in all possible scenarios. This paper presents a particular 
NoC-based multiprocessor architecture, as well as a number of 
analytical methods that can be derived from that architecture, 
aiming to allow designers to check, for a given platform 
configuration, whether all application tasks and communication 
messages always meet their hard real-time constraints in every 
possible scenario. Experiments are presented, showing the use of 
the proposed methods when evaluating different task mapping and 
platform topologies.  

Categories and Subject Descriptors 
C.3 [Special-purpose and Application-based Systems]: Real-
time and embedded systems. 

General Terms 
Performance, Design. 

 

1. INTRODUCTION 

Embedded systems typically have to fulfil timing constraints that 
are related to their application domain and usage scenarios. 
Constraints are usually specified as the deadline to perform 
specific functions. For example, a high-definition video recorder 
must be able to capture, compress and store 25 video frames per 
second. In safety-critical applications, such constraints are said to 
be hard real-time constraints, as there is an expectation that they 
have to be met by the system in all possible scenarios. Therefore, 
embedded systems designers must be able to evaluate which 
design alternatives can fulfil those constraints and, for safety-
critical applications, guarantee real-time behaviour.  

In this paper, we present analytical methods to evaluate whether a 
multicore embedded system based on a Network-on-Chip (NoC) 
can fulfil all its timing constraints. A NoC-based system can have 
tens to hundreds of processing cores interconnected by an on-chip 
packet-switching network that allows data to be transferred 
between the local caches of each core and from/to external 
memory. Section 2 of the paper provides more detail on this type 
of system architecture. It will then become clear that the 
performance of the NoC interconnect is as critical as the 

performance of the processing cores when it comes to meet timing 
constraints.  

Throughout this paper, we will use the terms end-to-end timing 
constraint or end-to-end deadline of an application task-chain. 
Those terms denote constraints derived from the application 
domain (e.g. every video frame must be processed in 40 ms or 
less) that must be met by specific components of the application 
(i.e. chains of communicating tasks). Our goal is to establish 
whether all task-chains of an application have their end-to-end 
deadlines met by a particular NoC-based platform configuration, 
and this problem is referred in this paper as end-to-end 
schedulability test. Such test must consider the end-to-end latency 
of each task of a task-chain: the time it takes for a processing core 
to execute that task (computation latency) plus the time it takes 
for the NoC to transfer all data produced by that task to the next 
one on the chain (communication latency). In Section 3, precise 
definitions of all those concepts will be given, followed in Section 
4 by formulations of end-to-end schedulability tests that are 
tailored to NoC-based multicores with priority arbitration. 

Some of the schedulability tests presented in this paper are based 
on classic Response Time Analysis (RTA) [1] and on NoC traffic 
flow schedulability analysis [2]. Individually, those analyses 
cannot be used to evaluate and improve the schedulability of a 
NoC system. For example, the traffic flow schedulability analysis 
from [2] has been used in [3] to produce fully schedulable task 
mappings, but authors had to artificially limit the number of tasks 
mapped to each core, as the analysis does not directly consider the 
different interference patterns resulting from mapping the source 
of the traffic flows to different cores. Without a limitation on the 
maximum number of tasks per core, the mapping optimisation 
process would lead to solution with all tasks mapped to the same 
core (so all communications are local, instantaneous and therefore 
schedulable). Likewise, the evaluation of NoC schedulability 
using only RTA would be oblivious to the delays caused by 
network contention. Therefore, in this paper we discuss how to 
compose those two analytical methods to achieve correct upper 
bounds to the end-to-end latency, and show that the resulting 
analytical model is useful as a test to evaluate whether a specific 
task mapping is schedulable. 

Schedulability tests are not always used in industry and academia. 
Often, system designers address the schedulability problem by 
simulating the system under different scenarios and checking if 
the obtained figures for computation and communication latencies 
meet the constraints. There are two main limitations to that 
approach. Firstly, for a complex multicore embedded system, the 
simulation of a few seconds of an application’s execution may 
take hours or days [4], limiting the number of design alternatives 



that can be evaluated and the portion of the application lifetime 
that can be considered. Secondly, simulation can only verify 
whether constraints are met within the scenarios that are explicitly 
simulated. In complex embedded systems, the set of possible 
scenarios is too vast to be exhaustively covered, so it is not 
possible to check whether constraints are always met. For 
example, if application tasks can suffer release jitter, it would be 
necessary to simulate each and every possible value of jitter for 
each task in order to make sure that the timing constraints are met 
in every case. In Section 5, we use a number of benchmarks to 
evaluate the proposed schedulability tests, we compare the 
obtained figures with those obtained with simulation, and propose 
a design flow that benefits from the joint use of both techniques.  

2. NOC-BASED MULTICORES 

NoCs are a common architectural template for processors with 
dozens of cores, and it has the potential to scale with the increase 
of the core count up to hundreds or thousands. Figure 1 shows a 
simplified representation of a NoC architecture. It has 16 cores, 
each of them represented together with their own local cache as a 
white rectangle. Cores are directly connected to NoC switches 
(grey rectangles), which route data packets towards a destination 
(which may be another core, an interface to off-chip memory, a 
custom hardware accelerator, etc.).  

Many components of the NoC template can be parameterized to 
better meet design goals, such as the number and type of cores, 
buffering, routing and arbitration policies, among others. In this 
paper, our choice of a specific subset within such a large number 
of alternatives was based on three criteria: (i) adopt architectural 
features that are widely used in industry and academia, (ii) use on-
chip resources efficiently, and (iii) privilege techniques that are 
amenable to the type of schedulability tests we are investigating. 

  

Figure 1. NoC architecture with detail of the router structure 

Following criterion (i), we concentrate on the widely used 2D 
mesh topology [5][6][7][8]. Criterion (ii) motivates the use of 
wormhole switching, as its buffer overhead is much smaller than 
store-and-forward (SAF) approaches, and its link allocation is 
more efficient than circuit switching approaches: there is no need 
to reserve the complete path of a packet, and NoC links are only 
allocated on the segments of the path where there is data ready to 
be transferred. Finally, criterion (iii) requires some level of 
predictability on resource sharing policies, so we limit our 
approach to NoCs with non-adaptive routing and priority 
arbitration such as QNoC [7] or Hermes [9]. The most common 
implementation of priority arbitration is based on virtual channels 
(VCs) [10], which allow packets with higher priority to preempt 
the transmission of low priority ones, making it easier to predict 
the outcome of network contention scenarios. Figure 1 shows a 
detailed view of a NoC switch with priority-arbitrated VCs: in 
each input port, a different FIFO buffer stores data words (flits) of 
packets arriving through different VCs (one for each priority 
level). The routing component assigns an output port for each 
incoming packet according to their destination. A credit-based 
approach [10] guarantees that data is only forwarded from a router 
to the next when there’s enough buffer space to hold it at the right 
VC. At any time, a flit of a given packet will be sent through its 
respective output port if it has the highest priority among the 
packets being sent out through that port, and if it has credits (that 
is, buffer space on the respective buffer of the neighbouring node 
connected to that output port). If the highest priority packet can’t 
send data because it is blocked elsewhere in the network, the next 
highest priority packet can access the output link. 

3. SYSTEM MODEL AND NOTATION 

In this paper, we investigate ways to determine whether 
application tasks executing and communicating over a specific 
NoC-based multicore can meet all application-specific timing 
constraints. Therefore, we need a system model that covers the 
application as well as the NoC-based platform and its 
configurations.  

For the application model, we recall the sporadic task model and 
define an application as a taskset Γ = {τ1, τ2,…, τn} where each 
task τi is a 6-tuple {Ci, Ti, Di, Ji, Pi, φi} indicating respectively its 
worst case computation time, period (i.e. minimum inter-release 
time interval), deadline, release jitter and priority. The sixth 
element of the tuple is the only proposed addition to the sporadic 
task model, and represents a communication message sent by τi. 
Our initial assumption is that each task produces a single message 
φi which is sent immediately after it finishes its computation. The 
message is defined as a 3-tuple {τd , Zi, Ki} representing its 
destination task, size and maximum release jitter. A task-chain Χ 
= {τ1, τ2,…, τx} is an ordered subset of Γ where each task sends a 
message to the subsequent task in X, and all of them have the 
same period Tx. We assume that all task-chains in a particular 
application Γ are disjoint subsets of Γ, and that loops are not 
allowed (i.e. the sixth element of the tuple of the final task τx of 
every task-chain is the empty set ø). 

The model of the NoC platform is composed of a set of processing 
cores Π = {πa, πb,…, πz}, a set of switches Ξ = {ξ1, ξ2,…, ξm}, and 
a set of unidirectional links Λ = {λa1, λ1a, λ12, λ21,…, λzm, λmz}. 
Links can connect cores to switches, or switches with each other, 
allowing for all possible direct and indirect NoC topologies. For 
example, the architecture shown in Fig. 1 has 16 cores πa … πp, 
each of them connected to one of the 16 switches ξ1 … ξ16 via two 
unidirectional links (e.g. λa1 and λ1a). The switches, in turn, are 

priority ID 

… 

highest priority 
with remaining credit 

data_in data_out 

credit_in 

… 

routing 
& 

transmission 

control 

  e   f   h   g 

  i  j   l   k 

  a   b   d   c 

priority ID 

… 

highest priority 
with remaining credit 

… 

routing 
& 

transmission  
control 

 m   n   p   o 

1           2          3           4 

5           6          7           8 

9          10         11        12 

13        14         15        16 

credit_out 



connected to each neighbouring switch by two links (e.g. λ21, λ12, 
λ23, λ32, λ26 and λ62 are the links attached to switch ξ2).  

NoCs forward packets from source to destination according to a 
routing algorithm. We define a function route(πa, πb) = {λa1, 
λ12,…, λmb} denoting the subset of Λ used to transfer packets from 
core πa to core πb. A route will include links connecting the source 
and destination cores to their respective switches, and all the links 
between switches along the way. The cardinality of a route is 
defined as |route(πa, πb)| and will be informally referred as its hop 
count. For the example in Fig. 1, route(πe, πg) = {λe5, λ56, λ67, λ7g} 
and |route(πe, πg)| = 4 for most commonly used routing 
algorithms.  

Task mapping is a critical part of the design of multicore systems. 
It defines which application tasks should be mapped onto which 
processing core (i.e. on which core each task will execute). Many 
different approaches to task mapping have been proposed, taking 
into account the time when the mapping occurs, whether tasks can 
be remapped (or migrated) during execution, and which metrics 
should be considered when making a mapping decision. We 
therefore define a surjective function map(τi) = πa to denote the 
core onto which a task is mapped. Its inverse is defined as          
map-1(πa) = {τi,…, τn} and represents the tasks mapped to a given 
core. Likewise, the mapping of a message map(φi) = 
route(map(τi), map(τd)) denotes the route of its packets over the 
NoC, and the inverse map-1(λ) = {φi,…, φn} represents the 
messages mapped over a given link. 

Once the mapping of all tasks of Γ is defined, it is possible to 
calculate the basic communication latency Li of every message φi. 
It represents the time taken by the message to be completely 
transferred from its source to its destination, assuming no 
contention over the NoC links (i.e. as if the message is the only 
one using the NoC). The actual value of Li will depend on 
implementation-specific characteristics of the NoC (e.g. link 
width, time required for a packet header to cross a router, and for 
a flit to cross a link). A common formulation is the following:     
Li = |map(φi)| . lhop + (|map(φi)| -1) . lrouter + (Zi / width). lhop, 
where the first term represents the time it takes for the packet 
header to traverse all the NoC links, expressed as the product of 
the message hop count and the latency lhop for the header to 
traverse a single link; the second term represents the time it takes 
for the packet header to traverse all NoC routers, and is expressed 
as the product of the number of routers along the path (which is 
usually the number of hops minus one in most direct networks) 
and the latency lrouter for the header to traverse a router; the third 
term represents the time taken by the packet payload to follow the 
header in a wormhole fashion all the way to the destination, 
expressed by the message length Zi (in bits) divided by the link 
width (which results in the number of payload flits), multiplied by 
the single link latency lhop. 

4. END-TO-END SCHEDULABILITY 

TESTS FOR NOC-BASED MULTICORES 

A schedulability test is able to discern system configurations that 
are schedulable, that is, able to meet their timing constraints even 
in the worst case scenario. In this paper, we assume that a system 
is schedulable iff all its task chains meet their end-to-end 
deadlines. To check this property, we first revisit a number of 
existing techniques that can be used as necessary schedulability 
tests. 

4.1 Schedulability of tasks over a processing 

core 

A processor utilisation test can be used to check whether all tasks 
mapped to a particular core πa do not exceed its capacity: ∑ 𝐶𝑖𝑇𝑖τ𝑖 ∈ 𝑚𝑎𝑝−1(π𝑎) ≤ 1 

This test is necessary but obviously not sufficient because even 
though the core πa may be capable to run all the tasks, it may not 
be able to run all of them within their deadlines. Response Time 
Analysis (RTA) [1] is the standard technique to evaluate how 
much the interference from higher priority tasks can delay the 
completion time of task τi:   𝑅𝑖 = 𝐶𝑖 + ∑ ⌈𝑅𝑖𝑇𝑗 ⌉∀τ𝑗 ∈ ℎ𝑝(τ𝑖) 𝐶𝑗  
where the function hp(τi) denotes the set of all tasks that can 
preempt τi: those mapped to the same core and that have a higher 
priority. Formally, hp(τi) includes every task τj ∈ Γ where map(τi) 
= map(τj)  and Pi < Pj. With the help of Eq. 2, it is possible to 
calculate the longest possible time interval between the release of 
τi and its termination. This is done by adding τi‘s computation 
time 𝐶𝑖 and the computation times 𝐶𝑗  of all releases of tasks τj that 

could preempt it. The result of that sum is referred as τi’s worst 
case response time and is represented by 𝑅𝑖. As 𝑅𝑖 appears in both 
sides of Eq. 2, an iterative solution was proposed in [1]. RTA has 
been widely used to test schedulability of uniprocessor and 
statically mapped multiprocessor systems with fixed priorities. 

More advanced tests have been reviewed in [11], considering 
more advanced task models that support task migration (global 
scheduling), dynamic priorities and different constraints on 
deadlines. However, the tests described and referenced above do 
not explicitly consider inter-task communication. Instead, most 
assume that all communication latencies can be combined with 
the worst case computation time Ci of the respective tasks. For 
uniprocessor systems with uniform memory access times, such 
assumption can be acceptable as the communication overhead can 
be predictable and usually small compared with the computation 
time. In NoC-based systems, however, the communication latency 
introduced by the NoC when tasks access memory or exchange 
messages depends heavily on the task mapping, the application 
communication patterns and resulting network congestion (which 
is particularly hard to predict in the case of wormhole switching 
NoCs). This leads to high variability in communication latencies, 
which can be of the same order of magnitude of the computational 
time Ci  of the tasks (or even higher). Therefore, we make a case to 
explicitly consider communication times when analysing 
schedulability of NoC-based systems. 

4.2 Schedulability of packets over a NoC and 

end-to-end schedulability of communicating 

tasks 

To address the schedulability of packets transmitted over a NoC, 
we rely on the work proposed by Shi and Burns [2], which in turn 
builds on RTA. Their work assumes that packets are released into 
the NoC sporadically, i.e. a series of packets (referred in [2] as a 
traffic flow) has a minimum inter-release interval which is known 
at design time. The maximum size of each packet is also known a 
priori. On the platform side, the main assumption is that the NoC 

(2) 

(1) 



routers perform deterministic routing, and that the link arbiters 
can preempt packets when higher-priority packets request the 
output link they are using. Such assumption is valid for the type of 
NoC architectures described in Section 2. The worst case latency 𝑆𝑖 of a packet transmitted over such a NoC can be found using Eq. 
3, which has been rewritten from the original in [2] to follow the 
notation presented in Section 3. To simplify the notation, we 
assume that there is a one-to-one relationship between application 
messages and packets sent over the NoC, and therefore use the 
same symbol φ for both. 

     𝑆𝑖 =  ∑ ⌈𝑆𝑖 + 𝐾𝑗 + 𝐾𝑗𝐼𝑇𝑗 ⌉ 𝐿𝑗 + 𝐿𝑖∀φ𝑗 ∈ interf(φ𝑖)     
 

The function interf(φi) denotes the direct interference set of φi, 
which is the set of all packets that can preempt φi, which are those 
whose routes at have at least one NoC link in common with φi‘s 
route and that have higher priority. Formally, interf(φi) includes 
every packet φj where map(φi) ∩ map(φj) ≠ ∅ and Pi < Pj. The 
intuition behind Eq. 3 is similar to what was presented for Eq. 2. 
The value of 𝑆𝑖 can be found by adding φi‘s basic latency 𝐿𝑖 and 
the latencies 𝐿𝑗  of all releases of packets φj that could preempt it. 

The same iterative solution proposed in [1] can be used here. 

It is worth noticing that the release jitter of φj can influence how 
many times it can preempt φi. In Eq. 3, we consider two types of 
release jitter: 𝐾𝑗  which is caused by the execution of the task τj 

that releases φj, and 𝐾𝑗𝐼 which is caused by indirect interference 

(i.e. packets that can preempt φj but cannot interfere on φi because 
they don’t share any links, see [2] for a detailed definition).[2][1]  

Since the value of 𝐾𝑗  must be the maximum amount of time 

elapsed between the start of φj‘s period and its actual release, and 
since we have defined that a packet is released immediately after 
its respective task has finished computation, we can clearly state 
that 𝐾𝑗  = 𝑅𝑗. Finally, from [2] we have that 𝐾𝑗𝐼 =  𝑆𝑗 − 𝐿𝑗.      

Thus, the worst case end-to-end response time of a task τi is given 
by 𝐸𝐸𝑅𝑖 = 𝑅𝑖 + 𝑆𝑖, which composes its worst-case computation 
response time and its worst case communication latency (Figure 
2). Its end-to-end schedulability can be tested by checking 
whether 𝐸𝐸𝑅𝑖 ≤ 𝐷𝑖. 
4.3 End-to-end schedulability of task chains  

To test the schedulability of a task chain X, we need to consider 
the individual end-to-end response times of all tasks τ𝑖 ∈ 𝑋. 
Before we can do that, we must discriminate three modes of 
execution for task chains over multiple processing elements: 
sequential, parallel and pipelined.  

In a sequential execution, a task chain will be executed 
completely, in one or more processors, before it can be executed 
again. In other words, only a single task τ𝑖 ∈ 𝑋 can be executing 
at a given point in time.  

In a parallel execution over multiple processors, there are no 
constraints over the execution of task chains, and arbitrarily many 
jobs of a task chain can be executing at the same time. 

 

Figure 2. End-to-end response time of a communicating task 

A pipelined execution is a special kind of parallel execution which 
allows multiple jobs of the same task chain to be executed 
simultaneously over different processors, but disallows the 
simultaneous execution of more than one job of the same task. A 
common pattern for pipelined execution is to have a number of 
jobs of a task chain X running concurrently, each of them released 
after Tx time units after the preceding one, in a phase-shifted way. 
We refer to this pattern as a synchronous pipeline. Figure 3 shows 
an example of a task chain executing as a synchronous pipeline. It 
includes three tasks τ1, τ2 and τ3 running on separate cores (each of 
them represented on a separate timeline), their respective 
communications over NoC links (also shown over separate 
timelines), occasionally suffering interference from higher priority 
tasks and packets (not shown in the figure). Curved arrows show 
the functional dependencies between the computation and 
communication components of one chain, making it easier to see 
that those dependencies will always be satisfied as long as each 
task meets its end-to-end deadline constraint. 

 

Figure 3. Example of a 3-task chain executed in a synchronous 

pipeline over 3 processors  

In this paper, we concentrate on the synchronous pipeline case. 
We argue that it can be analysed by the end-to-end schedulability 
test described in subsection 4.2. Let us assume that the end-to-end 
deadline Dx of a synchronously pipelined task chain X, which is 
the maximum tolerated amount of time elapsed between the 
release of its first task and the delivery of the output of its last 
task, is equal to the number x of tasks in the chain multiplied by 
the chain period Tx. In a synchronous pipeline, we can partition 
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Dx equally among all tasks of the chain, so the end-to-end 
deadline Di of each individual task is equal to Tx. This enables a 
task chain X with x tasks to produce its output x periods after its 
release, but once the pipeline is filled each of its jobs will produce 
an output at every period.  

The schedulability test for this particular case is a simple check of 
whether ∀ τ𝑖 ∈ 𝑋, 𝐸𝐸𝑅𝑖 ≤ 𝑇𝑥. This assumes that there will be 
acceptable deadline misses for the first x jobs of the task chain X 
while the pipeline is being filled, and guarantees that the system 
will never miss a deadline after that. The intuition behind this 
approach is that each task of the chain will be triggered every Tx 
time units, and has to finish computing and communicating with 
the next task of the chain before the end of the period, so that the 
following task will have all the data it needs before it can run at 
the next periodic tick.  

4.4 Link utilisation tests  

Similarly to Eq. 1, a utilisation test can be applied to each of the 
NoC links, aiming to check whether the messages mapped to each 
of them will not exceed their bandwidth: ∑ 𝐿𝑖𝑇𝑖φ𝑖 ∈ 𝑚𝑎𝑝−1(λ𝑎1) ≤ 1 

Again, this test is necessary but not sufficient because even 
though the link λa1 may be capable to transmit all messages 
mapped to it without starvation, they might not meet their 
deadlines. 

By considering the multi-hop nature of NoCs, we identify another 
utilisation test that addresses the direct interference set interf(φi) 
of a message φi:  ∑ 𝐿𝑗𝑇𝑗φ𝑗 ∈ 𝑖𝑛𝑡𝑒𝑟𝑓(φi) ≤ 1 

The intuition behind this test is the following: if a message φj can 
interfere and hinder the progress of another message φi over the 
NoC, this happens regardless of the link where the contention 
happens. In other words, the complete route of a message can be 
seen as a single resource with exclusive access, and if a higher 
priority message needs to use any part of that route the whole 
transmission of φi will be halted. For example, if φi is routed over 
n different links and it suffers interference from φj which also uses 
one or more of those links and has a higher priority, the time φi 
waits for the shared link(s) will be the same if they share link λ1, 
λ2, …, λn, or any combination of them, as in every case φi will not 
be able to progress in a pipelined fashion towards its destination. 
The same intuition can be extended to other higher priority 
messages that share any possible combination of links with φi. 
Therefore, we conclude that the direct interference set interf(φi) 
determines all contenders for the route of a message φi, and the 
overall utilisation of that route has to be less than 1 due to the 
exclusive access. 

The proof that this test is tighter than the test in Eq. 4 lies on the 
fact that the direct interference set interf(φi) is a superset of each 
of the sets including the messages that share any of the links φi is 
mapped to, and that can interfere with it: ∀ λ ∈ map(φi),        
hp(map-1(λ)) ∈ interf(φi), where hp({φi … φn }) denotes the subset 
of messages that have higher priority than φi. Actually, from the 
definition given in Section 4.2 it is easy to see that the direct 
interference set is actually the union of all those sets: 𝑖𝑛𝑡𝑒𝑟𝑓(𝜑𝑖) =  ⋃ ℎ𝑝(𝑚𝑎𝑝−1(𝜆))λ ∈ 𝑚𝑎𝑝(𝜑𝑖) . Thus, the utilisation 

test given in Eq. 5 will cover, when applied to the lowest priority 
message of each link, the test given in Eq. 4. 

In any case, both utilisation tests identified in this subsection are 
necessary, but not sufficient. While they are useful to discriminate 
unschedulable mappings, they cannot guarantee schedulability. 
They are nonetheless useful to prune large mapping spaces, as 
they are less computationally expensive than the tests described in 
subsections 4.2 and 4.3.   

5. EXPERIMENTAL WORK 

To evaluate the correctness and usefulness of the schedulability 
tests described in the previous section, we devised two types of 
experiment. In subsection 5.1, we will compare the figures for 
computation and communication response times found using the 
proposed schedulability tests with figures obtained through 
simulation of predefined configurations of a NoC-enabled 
embedded system. In subsection 5.2, we will then show that the 
proposed tests can be used as a fitness function within a search-
based optimisation heuristic. 

5.1 Joint end-to-end schedulability analysis 

and simulation   

In this series of experiments, we analyse the schedulability of a 
benchmark application over a specific NoC-based embedded 
platform.  

The platform follows the architecture described in Section 2, with 
homogeneous cores running priority-preemptive task schedulers, 
distributed memory, 2D-mesh NoC interconnect with XY 
dimension routing, credit-based flow control, 8 virtual channels 
with 3-flit input buffers per port and priority-preemptive link 
arbitration. It is worth noticing that the schedulability tests 
proposed in Section 4 would support alternatives on most of those 
architectural choices, but priority-preemptive arbitration at the 
cores and NoC links is a requirement. 

The chosen benchmark application is based on the autonomous 
vehicle (AV) introduced in [12], including 39 communicating 
tasks performing functionality such as navigation control, 
vibration control and obstacle detection through stereo 
photogrammetry. Task periods vary between 0.04 to 1 second, and 
communication volumes vary between 1 and 76 kbytes. 

To model the benchmark as task chains, a number of tasks of the 
original application had to be partitioned (i.e. to break tree-like 
structures when a task receives data from multiple sources). 
Furthermore, we had to introduce the notion of “sink tasks” to 
model DMA transfers to the local memory of the core where 
specific tasks are mapped to. In those cases, the destination task 
does not require any computation overhead (e.g. last task of a 
chain writes to a memory-mapped actuator, so it does not load the 
destination core, but used the bandwidth of the NoC links all the 
way to the destination interface).  

To maintain the realism of the benchmark, we constrained all 
mappings used in the paper in such a way that all partitions of a 
task, as well as its respective sink, are mapped to the same core 
(so that only possible mappings of the application were 
considered). Table I shows the complete set of tasks, showing 
which chain they belong to (chains have lengths between 2 and 5 
tasks), their names (first four letters indicate the original task 
name from [12], with an appendix if the task is a partition or a 
sink of one of the original tasks), destination task, computation 

(4) 

(5) 



time (in milliseconds), period (in milliseconds), priority, and 
communication volume (in bytes). 

 

Table I – Autonomous Vehicle benchmark   

task 

 

chain 

 

name 

 

dest 

task 

comp  

(ms) 

period 

(ms) 

pri 

 

comm  

(bytes) 

1 A POSI-A 2 5 500 31 2048 

2 A NAVC-A 3 10 500 32 4096 

3 A OBDB-A 42 150 500 33 32768 

4 B OBDB-B 33 150 1000 34 65536 

5 C NAVC-C 40 20 100 24 1024 

6 C SPES-C 5 5 100 25 1024 

7 D NAVC-D 40 10 100 26 2048 

8 E FBU3-E 47 10 40 1 76800 

9 F FBU8-F 48 10 40 2 76800 

10 G VOD1 42 20 500 3 1024 

11 H VOD2 42 20 500 4 1024 

12 I FBU1 20 10 40 5 76800 

13 J FBU2 21 10 40 6 76800 

14 K FBU3 22 10 40 7 76800 

15 L FBU4 23 10 40 8 76800 

16 M FBU5 24 10 40 9 76800 

17 N FBU6 25 10 40 10 76800 

18 O FBU7 26 10 40 11 76800 

19 P FBU8 27 10 40 12 76800 

20 I BFE1 28 20 40 13 4096 

21 J BFE2 43 20 40 14 4096 

22 K BFE3 43 20 40 15 4096 

23 L BFE4 43 20 40 16 4096 

24 M BFE5 29 20 40 17 4096 

25 N BFE6 44 20 40 18 4096 

26 O BFE7 44 20 40 19 4096 

27 P BFE8 44 20 40 20 4096 

28 I FDF1 30 10 40 21 16384 

29 M FDF2 51 10 40 22 16384 

30 I STPH 43 30 40 23 8192 

31 Q POSI-Q 43 5 500 35 2048 

32 R USOS 43 5 100 27 2048 

33 B OBMG-B 41 20 1000 37 8192 

34 S TPMS 36 5 500 36 4096 

35 T VIBS 38 5 100 28 1024 

36 S STAC-S 46 10 1000 38 4096 

37 U SPES-U 45 5 100 29 2048 

38 T STAC-T 44 10 100 30 2048 

39 V OBMG-V 41 0.5 1000 39 4096 

40 sink DIRC-X - - - - - 

41 sink OBDB-X - - - - - 

42 sink NAVC-X - - - - - 

43 sink OBMG-X - - - - - 

44 sink THRC-X - - - - - 

45 sink STAC-X - - - - - 

46 sink TPMS-X - - - - - 

47 sink VOD1-X - - - - - 

48 sink VOD2-X - - - - - 

49 sink FDF1-X - - - - - 

50 sink FDF2-X - - - - - 

51 sink STPH-X - - - - - 

 

We selected one platform configuration (a 4x4 mesh) and three 
different task allocations, and applied equations 2 and 3 to find the 
worst-case end-to-end response time of each of the 39 
communicating tasks under each mapping. Figures 4.a, 4.b and 4.c 
show the results for mappings M1, M2 and M3 respectively. 

The worst-case end-to-end response time of each task is plotted 
with a brown cross, and their individual deadline is shown as a red 
horizontal line. Mappings M2 and M3 are fully schedulable, as all 
EER values are below the respective deadlines. M1, however, has 
a number of unschedulable tasks, denoted by the brown crosses 
plotted at the upper margin of Figure 4.a (the actual worst case 

response times in those cases were not found, as our 
implementation stops iterating towards a solution once a deadline 
is missed). 

                      (a) 

 
                      (b) 

 
                    (c) 

 

Figure 4. End-to-end response times (in ms) for all 39 

communicating tasks under alternative mappings: (a) M1, (b) 

M2 and (c) M3. 

We then used the tool flow presented in [13] and the simulation 
models presented in [14] to obtain latency figures for the 
execution of the benchmark application over the platform under 
all three mappings. We simulated each scenario for a target time 
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of 200 seconds, which allows for a good coverage of the 
application lifetime (the shortest period is of the video processing 
tasks, that must execute every 0.04 seconds to achieve 25 VGA 
frames per second, and the longest period is of 1 second for the 
tyre pressure control task). Figure 4 also shows, for each mapping, 
the best, worst and average end-to-end latency observed during 
simulation for each of the 39 communicating tasks. The plots 
show that the worst case response times found by our 
schedulability tests are effectively an upper bound to all results 
found with simulation. They also show that while M2 and M3 are 
fully schedulable mappings, M2 has higher worst case and 
maximum observed latencies (specially in communications 4, 7 
and 37). Taking that into account, mapping M3 would be 
preferable as its results allow for larger safety margins. 

5.2 Using end-to-end schedulability tests as 

fitness within search-based optimisation 

As shown in Figure 4, the end-to-end timeliness of applications is 
affected by the way tasks and flows are mapped onto the NoC 
platform. Finding optimal mappings, or even acceptable ones, is a 
challenge in most NoC systems, and a significant amount of 
research was dedicated to this topic [15]. Heuristic search-based 
mapping is one of the mapping techniques reviewed by [15], and 
its distinctive feature is a fitness function to evaluate solutions 
over a given search space, aiming to converge towards solutions 
with increasing fitness. A common practice in such cases is to 
simulate the NoC platform with a given mapping for a specific 
amount of time, and use some aggregate of the latencies of all 
packets obtained through the simulation as the fitness of that 
mapping [16]. This process is then repeated for many different 
mappings across the search space until a mapping is found that 
fulfils the requirements (e.g. average latency of all packets below 
a given threshold). 

In this subsection, we show that the schedulability tests described 
in Section 4 can be used to solve two problems found in search-
based mappers with simulators as fitness function, specifically 
when it comes to optimise hard real-time systems. As discussed in 
Section 1, simulators cannot easily find worst-case packet 
latencies, and the time they take to run can be very high when 
evaluating complex NoCs. In search-based mappers, the second 
problem is particularly severe, because the search heuristic may 
have to simulate hundreds or thousands of different mapping 
before an acceptable solution can be found. 

To solve those problems, we have implemented a search-based 
algorithm that uses the approach described in subsection 4.3 to 
find whether, given a particular mapping, how many of an 
application’s tasks are end-to-end schedulable. Like in [16], our 
search-based heuristic follows an evolutionary approach, 
modelling a particular mapping as a chromosome representing on 
each gene the processing core where each task should be mapped 
(Figure 5.a). The evolution is performed across generations of a 
population of 100 individuals, each represented by one of such 
chromosomes. The initial population can be randomly generated, 
but subsequent generations are produced by applying crossover 
and mutation operations over the fittest chromosomes of the 
preceding one (Figure 5.b). In our implementation, crossovers 
were implemented by creating a new chromosome from the first 
and second halves of two existing chromosomes. Similarly, 
mutations created new chromosomes by swapping the contents of 
any two genes of an existing chromosome. The chosen 
chromosomes for crossover and mutation were those that, when 

evaluated using the technique described in 4.3, would have the 
lowest number of unschedulable tasks.  

Ideally, after a number of generations the population will contain 
at least one individual with a chromosome representing a mapping 
that meets our constraints, i.e. has zero tasks that are end-to-end 
unschedulable. A detailed study on how different chromosome 
formats, population sizes, mutation and crossover styles and rates 
affect the convergence of the genetic algorithm towards a full 
schedulable solution can be found in [17]. 

τ1 τ2 τ3 τ4  …  τn 

πc πa πk πc  …  πb 

 

(a) 

 

(b) 

Figure 5. Evolutionary mapping: (a) chromosome format and 

(b) evolutionary search process. 

We have used this evolutionary mapping algorithm to search for 
schedulable mappings of the AV application over 3x3, 4x4 and 
5x5 mesh NoC platforms. Figure 6 shows the number of end-to-
end unschedulable tasks of the best mapping of each generation. It 
can be seen that mappings for the 5x5 platform can be found very 
easily (as there are more resources and therefore less 
interference), reaching a fully schedulable mapping in 8 
generations. For the 4x4 platform, the situation is slightly more 
difficult, but the evolutionary mapper is capable to find a fully 
schedulable mapping in 11 generations. Finally, for a 3x3 
platform, the evolutionary mapping cannot find a fully 
schedulable mapping after 50 generations (because the utilization 
of the application exceeds the available capacity of the 3x3 
platform), but it can clearly show improvements over generations, 
reaching a minimum of 12 end-to-end unschedulable tasks. 
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Figure 6. Number of end-to-end unschedulable tasks at each 

generation of the evolutionary mapping, for three different 

NoC platforms: 3x3, 4x4 and 5x5. 

 

5.2.1 Performance comparison 

The performance of the proposed schedulability test, when used as 
a fitness function of a search-based heuristic, shows a significant 
improvement over simulation-based fitness functions such as 
those used by [16]. A simple Java-based implementation of the 
proposed test takes 0.13 seconds to evaluate the schedulability of 
a single mapping of the AV application over a 4x4 NoC. This is at 
least one order of magnitude faster than simulation, as reported in 
[14], and consistently reinforced by our experiments reported in 
subsection 5.1. The time it takes to simulate 2 seconds of a single 
mapping of the AV application is 7.89 seconds, for a fast 
simulator operating at TLM (Transaction Level Modelling) level. 
For a cycle-accurate simulation of the same scenario, the time 
elapsed is 2895.69 seconds. 

Such numbers show that even if it would be feasible to identify 
the worst-case release scenario for all tasks and packets, a state-
of-the-art NoC simulator would take 60 times longer (or up to 
20000 times longer, if full accuracy must be achieved) to evaluate 
the fitness of one specific mapping. Recalling that in a typical 
search-based mapping heuristic one must check the fitness of 
thousands of mappings, we can clearly see the advantage of the 
proposed approach (e.g. in the experiments described above we 
needed 1100 application of the fitness function to find a fully 
schedulable mapping for a 4x4 platform, i.e. 11 generations of a 
population of 100 individuals). 

6. RELATED WORK 

Besides RTA and its derivatives, other analytical models have 
also been used to evaluate schedulability in NoCs.  

Beekooij et al. [18] have proposed an extension to dataflow 
analysis (originally proposed by Lee and Messerschmitt [19]) that 
can model the behaviour of a homogeneous synchronous dataflow 
(HSDF) application performing computation and communication 
over a specific type of NoC (i.e. statically scheduled time-division 
multiplexing of links). They assume that the worst-case 
computation time of each application task is known (just like in 
this paper, as referred as Ci in Section 3). However, due to the 
nature of their underlying NoC architecture, they can assume that 
there is no contention over NoC links, and thus the delay 

introduced by the NoC to each data transfer can be established 
independently for each task chain. Therefore, the worst case end-
to-end latency of a task-chain can be found by dataflow analysis, 
which can calculate the latest arrival time of the data token at the 
output of the last task of the chain. 

Qian et al. [20] proposed the use of network calculus [21] to 
calculate worst-case packet latency bounds in wormhole NoCs, as 
long as all traffic can be modelled as an arrival curve and all NoC 
routers can be modelled by a service curve. Such curves abstract 
the actual behaviour of the application and the NoC by the 
bandwidth required or provided, respectively, at each point in 
time. The calculation of latency bounds is done through algebraic 
operations over all arrival curves at a given router, as well as the 
router’s service curve. The main challenge of this approach is to 
represent the behaviour of a sequence of specific routers (with 
their particular buffering and arbitration schemes) as a service 
curve. The modelling of the application traffic as arrival curves is 
also challenging, specially if the variations on the source task’s 
execution are taken into account (e.g. execution time variability or 
interference from tasks running on the same core), and this is 
currently an open problem preventing the use of network calculus 
on the evaluation of NoC end-to-end schedulability. 

Other approaches to evaluate NoC schedulability are surveyed by 
in [22], all of them based on dataflow analysis, network calculus 
or RTA. The survey also states the difficulty to compare different 
analytical methods based on distinct formalisms, as they have 
fundamentally different assumptions. Still, they provide a 
summary of strengths and weaknesses of each type of analysis. 
Their assessment of dataflow and network calculus models has 
similar views as the ones we provided above, emphasizing the 
restrictions that must be imposed on the application behaviour and 
the NoC resource sharing disciplines. Their assessment of RTA 
and its derivatives, however, states that the main weakness is the 
inability to represent dependencies between flows, which is an 
issue that we have directly addressed in this paper and solved for 
the restricted case of synchronous pipelines. 

          

7. CONCLUSIONS AND FUTURE WORK 

In this paper, we investigated ways to determine whether 
application tasks executing and communicating over a specific 
NoC-based multicore can meet all application-specific timing 
constraints. We have identified a number of schedulability tests, 
and have shown their utility within distinct steps of an embedded 
system design flow. By combining them with simulation, 
designers can obtain a more detailed understanding of the 
overheads that are needed to guarantee performance in the worst 
case, as opposed to the average case. And by using them as fitness 
in search-based optimisation, we enabled a faster coverage of the 
typically large design spaces given by the multiple design 
alternatives in this kind of system. 

For the sake of simplicity, we assumed an application model 
where tasks require all data to be available locally before they 
execute, and can send a single message only after they finish their 
computation. While restrictive, this model supports the widely 
used Actor model (i.e. read-execute-write) and can represent 
applications based on task chains. A more general formulation 
that allows tasks to send an arbitrary number of messages can be 
easily derived, but was left to future work, and would enable the 
representation of and tree-like structures. Even in the case of 
simple task chains, we have only addressed the restricted case of 
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synchronous pipelines. Extensions to the presented tests to 
address general pipeline and sequential execution are currently 
under investigation, and so is the use of deadline decomposition 
approaches (such as in [23] and [24]) and schedulability tests 
supporting release offsets (such as [25]). 

Additional future work can take advantage of the utilisation tests 
presented in subsections 4.1 and 4.4 to accelerate the design space 
exploration by quickly pruning away mappings with over-utilised 
cores or links. Such approach could improve even further the 
performance reported in subsection 5.2.1, where the substantially 
heavier schedulability test presented in subsection 4.3 was used 
throughout the whole optimisation. 

Finally, the proposed platform model assumes homogeneous 
cores, switches and links. Interesting avenues of research can also 
be opened by lifting such restrictions. 
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