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Abstract 29 

 30 

Evidence is emerging that earthworms can evolve tolerance to trace element enriched soils. However, few 31 

studies have sought to establish whether such tolerance is determined through adaption or plasticity. Here we 32 

report results from a combined analysis of mitochondrial (cytochrome oxidase II, COII), nuclear (amplified 33 

fragment length polymorphism, AFLP) variation and DNA methylation in populations of the earthworm 34 

Lumbricus rubellus from sites across an abandoned arsenic and copper mine. Earthworms from the mine site 35 

population demonstrated clear arsenic tolerance in comparison to a naïve  strain. COII and AFLP results 36 

suggest that L. rubellus from the unexposed and the adapted populations comprises two cryptic lineages 37 

(Linages A and B) each of which was present across all of the sites. AFLP analysis by lineage highlighted 38 

variations associated with soil metal/metalloid concentrations (most clearly for Lineage A) suggesting a 39 

genetic component to the observed tolerance. The methylation sensitive AFLP (Me-AFLP) identified a high 40 

genome methylation content (average 13.5%) in both lineages. For Lineage A, Me-AFLP analysis did not 41 

identify a strong association with soil arsenic levels. For Lineage B, however, a clear association of 42 

methylation patterns with soil arsenic concentrations was found. This suggests that Lineage B earthworms 43 

utilise epigenetic mechanisms to adapt to the presence of contamination. These fundamentally different 44 

genetic adjustments in the two clades indicate that the two lineages employ distinct adaptive strategies 45 

(genetic or epigenetic) in response to arsenic exposure. Mechanisms driving this variation may be founded 46 

within the colonisation histories of the lineages.   47 

 48 

 49 

 50 

 51 

 52 
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1. Introduction 54 

Many invertebrate species are able to maintain viable populations in polluted soils where total and 55 

potentially bioavailable metal/metalloid concentrations greatly exceed toxicity values (e.g. LC50s) for known 56 

naïve (and so sensitive) populations (laboratory strains). This suggests that under trace element exposure, 57 

some invertebrate populations develop metal tolerance through behaviour or physiological adaptive traits 58 

(Posthuma and Van Straalen, 1993; Van Straalen and Roelofs, 2007). Mechanisms underpinning this 59 

tolerance have in some cases been shown to involve heritable changes in coding or promoter regions of metal 60 

efflux pumps (Callaghan and Denny, 2002) and thiol-rich peptides involved in sequestration (glutathione-S-61 

transferases, phytochelatins, and metallothioneins) (Janssens et al., 2007; Vatamaniuk et al., 2005). In other 62 

cases, however, the mechanisms underlying tolerance remain unknown and/or unstudied.   63 

 64 

For earthworms, one of the most functionally important of soil taxa (Lavelle et al., 1997), indirect evidence 65 

for metal tolerance is provided by the fact that earthworms can be collected from soils containing residue 66 

levels that significantly exceed toxic effect concentrations  (Spurgeon and Hopkin, 1999a, b). However, 67 

difficulties in extrapolating toxicity data between the laboratory and field due to, for example, contaminant 68 

aging and speciation (Arnold et al., 2003; Arnold et al., 2007), mean that the mere presence of earthworms in 69 

these polluted soils is not alone confirmation that adaptation has occurred (Davies et al., 2003; Donner et al., 70 

2010). More directly in relation to tolerance, studies with successive generations of Eisenia fetida selected 71 

for tolerance to Zn over two generations found changes in the shape of concentration response relationships 72 

for survival that were indicative of tolerance development (Spurgeon and Hopkin, 2000). In the field, 73 

Langdon et al. (1999) noted that L. rubellus living in arsenic and copper polluted soil at two abandoned 74 

arsenic mines (Devon Great Consols, Carrock Fell) could survive in arsenic-spiked soil that was acutely 75 

toxic to earthworms from a clean site. This tolerance was preserved when the mine populations were reared 76 

on clean soil over two generations, suggesting a genetic basis for this phenotype (Langdon et al., 2009).  77 

 78 

Despite indications of trace metal and metalloid tolerance in earthworms, the extent to which there is a 79 

genetic and/or physiological basis of this trait has not been fully investigated. A study of isozyme specific 80 

polymorphisms within L. rubellus populations known to be adapted to combined metal and flooding stress 81 
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failed to identify adaptive variation (Simonsen and Klok, 2010), although the results of this study should be 82 

treated with some caution as enzymes known to be related to metal tolerance were not targeted. The only 83 

study that has, to date, identified a potential genetic basis for tolerance to adverse soil conditions in 84 

earthworms is that for L. rubellus living at a lead/zinc mine located at Cwmystwyth, mid Wales. For this 85 

population, Andre et al. (2010) used mitochondrial (COII) and amplified fragment length polymorphism 86 

(AFLP) genotyping to demonstrate that a mine spoil associated population showed little genetic overlap (in 87 

AFLP profile) with individuals within populations at two less polluted sites.  88 

 89 

While the assumption often is that individual/population survival is based on selection for increased 90 

tolerance, there is evidence emerging that the plastic responses driven by chemical influences on the 91 

epigenome may also be an important mechanism of adaptation (Mirouze and Paszkowski, 2011; Ren et al., 92 

2011; Seong et al., 2011). Among the many epigenetic mechanisms, DNA methylation represents a key 93 

response. Given that earthworms have been recorded to possess a 13% methylated cytosine content in DNA 94 

(Regev et al., 1998), the potential for mediation of adaptive tolerance through epigenetic DNA methylation 95 

should be considered. Here, we report a combined toxicological and genetic study, using  mitochondrial 96 

(COII) and nuclear (AFLP) and DNA methylome analysis, for the earthworm L. rubellus sampled at sites of 97 

different metal pollution status within an As-contaminated mine complex - the Devon Great Consols (DGC) 98 

site in the UK. For the study, we sampled earthworms from a number of sites within DGC including one 99 

(Site 2 in this study) from which tolerant populations previously studied by Langdon et al. (2009; 1999) were 100 

collected. Adjacent and distant reference sites were also sampled. That arsenic, a major contaminant at the 101 

site, has been reported to induce epigenetic changes including hypo-and hyper-methylation of DNA (Ren et 102 

al., 2011; Zhong and Mass, 2001) makes the site particularly suited for the analysis of DNA methylation 103 

responses in earthworms. Initially the collected populations were screened to confirm that the tolerance 104 

previously reported for populations at study Site 2 was applicable to earthworms inhabiting this and other 105 

collection sites located in the mining area. Genetic analyses were then undertaken using these populations. 106 

The hypothesis tested was that L. rubellus populations from polluted sites that show evidence of tolerance, 107 

would include individuals with mitochondrial or nuclear genotypes and/or DNA methylation patterns that 108 

were distinct from those of intolerant earthworms from (adjacent) unpolluted locations.   109 
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2. Materials and Methods 110 

2.1 Site description, sampling and soil characterisation: This study was conducted at the abandoned Devon 111 

Great Consols mine complex located in the Tamar Valley, Devon, South-West UK (UK Ordnance Survey. 112 

Map coordinates for mine centre: SX426733 – N50:32:52 W4:13:25). This mine was worked for copper and 113 

arsenic from 1844-1900 and from 1915-1930. Across the site, the spoil from various extraction processes 114 

remain. The soils established on these wastes contain highly elevated concentrations of trace elements, 115 

including arsenic and copper. Earthworms (L. rubellus) were sampled from six locations in the region of the 116 

Devon Great Consols mine. Four locations (Sites 1-4) were situated on the mine and waste handling area (see 117 

Fig. 1). This included a location (Site 2 i.e. close to the area where arsenic was processed using the calciner 118 

method) from which the adapted population studied by Langdon et al. (2009; 1999) was collected. Two clean 119 

reference site populations were also sampled. These were at a site adjacent to the contaminated area, but 120 

which itself was not greatly enriched in arsenic and copper (Site Control - SC) and a site some 20 km distant 121 

from DGC which was outside the geological area of arsenic rich soils present in the Tamar Valley (Off-Site 122 

Control - OSC) (UK Ordnance Survey. Map coordinates SX 418901 N50:68:89 W4:24:03). 123 

 124 

At each site, approximately 30 fully clitellate adult L. rubellus were collected by digging and hand-sorting 125 

over two consecutive days in September 2010. To ensure that genome methylation patterns were not 126 

influenced by handling stress, all earthworms were washed and blotted dry on-site and then snap frozen in 127 

liquid nitrogen. Triplicate soil samples from surface to 5 cm depth were also collected from each location. 128 

These were subsequently oven dried at 80
o
C and sieved through a 2 mm mesh to remove large roots and 129 

stones. Total concentrations of arsenic, barium, calcium, cadmium, chromium, copper, iron, magnesium, 130 

nickel, strontium and zinc were determined in a 1 g sample of the processed soil following an aqua regia 131 

digestion protocol (Arnold et al., 2008). Digests were analysed on a Perkin Elmer Optima 7300 DV 132 

inductively coupled plasma optical emission spectrometry instrument. For quality control, an in house 133 

reference traceable to BCR-143R (Commission of the European Communities, Community Bureau of 134 

Reference) was included with each batch of digestions. Measured concentrations were always greater than 135 

75% of reference values and were above 95% for As. Organic matter content of each soil sample was 136 
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measured by proxy using loss on ignition following combustion at 500
o
C (Rowell, 1994) and pH was 137 

quantified by electrode from a 1:5 volume soil:water mix (International Standards Organisation, 2005). 138 

 139 

2.2. Toxicity tests to identify putative arsenic tolerance  140 

To identify potential tolerance, a 14 day exposure to a single pre-determined arsenic concentration was 141 

undertaken to compare survival patterns of earthworms from sites located within and adjacent to the 142 

DGC complex to those for a known naïve population. The soil concentration used for this assay was 143 

derived from a preliminary study conducted to assess survival of the naïve population at 150 and 144 

300 mg/kg arsenic. The earthworms used were taken from a culture established from a field 145 

collected population (Lasebo BV, Nijkerkerveen, The Netherlands). At each tested concentration, 146 

15 replicate containers, each including 200 g dry weight of a clay loam soil (Broughton Loams, 147 

Kettering, UK) (see Spurgeon et al., 2003), were spiked with sodium arsenate solution (Santa Cruz 148 

Biotechnology Inc., Santa Cruz, California, US) to give the required metalloid concentration and a 149 

soil moisture content of approximately 50% of field capacity. After a one week stabilisation period, 150 

one adult L. rubellus was added to each replicate and kept at 13 1 °C under constant light for seven 151 

days. Earthworms were observed daily and mortality recorded. Based on these findings, a screening 152 

concentration of 300 mg/kg arsenic was selected for the definitive tolerance assay, since this 153 

concentration resulted in progressive mortality of the naïve earthworms over the exposure period. 154 

Thus the definitive assay was conducted using the 300 mg/kg concentration with 15 earthworms 155 

from each of the DGC sites (Sites 1-4) and the SC reference population. The exposure was extended 156 

to 14 days to allow the potential to identify survival patterns in more tolerant populations.  157 

 158 

2.3 Mitochondrial cytochrome oxidase II (mtCOII)) sequencing: 159 

DNA was purified from ~10 mg of tissue from the anterior of each individual using the DNAzol reagent 160 

(Life Technologies, Paisley, UK). PCR amplification of the cytochrome oxidase II (COII) mitochondrial 161 

gene made use of forward (TAGCTCACTTAGATGCCA) and reverse (GTATGCGGATTTCTAATTGT) 162 
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primers and was conducted following Andre et al. (2010). PCR products were assessed electrophoretically 163 

prior to purification and sequencing using ABI PRISM
®
 BigDye v3.1 Terminator technology (Applied 164 

Biosystems, USA). Obtained sequences were aligned by ClustalW prior to tree construction using the 165 

Maximum Likelihood (ML) and Bayesian methods in Mega v5.01 and MRBAYES v3.2, respectively. ML 166 

estimation incorporated the Tajima-Nei model, supported by bootstrap analyses over 1000 iterations. 167 

Bayesian analyses were conducted using a General Time Reversible model with a proportion of invariable 168 

sites and a gamma-shaped distribution over 2 independent runs. Four Markov Chains were run over 2 million 169 

iterations and sampled every 1000 generations, with the first 500 trees discarded as burn-in. Both 170 

phylogenetic estimates incorporated outlier sequences from Lumbricus castaneus and Lumbricus terrestris as 171 

well as sequences that represent previously recognised L. rubellus clades (Andre et al., 2010).  172 

 173 

2.4 AFLP and methylation sensitive AFLP profiling: A combined AFLP and Me-AFLP protocol was 174 

optimised in a pilot methylation study and was based on parallel use of methylation- and non-methylation-175 

sensitive restriction enzymes (HapII and MspI) to treat DNA samples prior to primer ligation and 176 

amplification (Xiong et al., 1999). Both HapII and MspI recognize a CCGG sequence; however, while MspI 177 

is able to cut methylated recognition sites (as well as unmethylated ones), HapII is unable to cut at such 178 

locations when they are methylated (i.e. only unmethylated recognition sites are cut). The extent of 179 

methylation of restriction sites can therefore be ascertained by recording bands amplified by MspI but not 180 

HapII. Such bands can be used to compare individual methylation patterns. AFLP analysis was conducted 181 

for individuals from the six collection locations using pre-selective primers and analysis on an Applied 182 

Biosystems 3130 x 1 fragment analyser (Andre et al., 2010). Cumulative AFLP fragment profiles were 183 

transformed to a binary form and principal coordinates (PCO) analysis used to visualise the genetic 184 

relationship between individuals using GenAlEx 6.4.1. 185 

 186 
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3. Results  187 

Soil analyses highlighted the extent and severity of the arsenic (and copper) contamination at DGC. Arsenic 188 

and copper levels were greatly elevated in soils from all sites on the mining area (Sites 1-4), with cobalt also 189 

higher than SC and OSC soils by at least a factor of two at the sites (Table 1). The most polluted arsenic soil 190 

(Site 4) contained almost 20,000 mg/kg of arsenic, over 900 mg/kg copper and also elevated cobalt, 191 

cadmium and lead levels. The remaining three mine spoil contaminated sites each contained over 4000 192 

mg/kg As and over 500 mg/kg copper. As expected, the lowest concentrations of arsenic and copper and 193 

other trace metals were found at the SC and OSC reference sites. Levels at SC were in the 300 mg/kg As 194 

range, a concentration still elevated above background arsenic levels for British soils (Emmett et al., 2010). 195 

OSC soils contained arsenic levels consistent with these background concentrations. 196 

 197 

Measured site soil LOI and pH values are presented in Table 1. Whilst the pH of all four sites located on the 198 

mine area and the OSC was similar acidic (pH 4.1 - 4.8), the SC site had a pH of 5.6. Overall, there was 199 

minimal pH variation between sites, and no correlation with soil arsenic or copper concentration (Pearson 200 

correlation, p > 0.05). The absence of a correlation indicates that soil pH influences are unlikely to confound 201 

attempts to link genetic variation to soil contaminant levels. For LOI, the lowest values in the mining site 202 

soils (4.2 - 17.2%) were found at Sites 1 and 4, while the remaining two soils had higher LOI values (29.7 – 203 

49.6%). This may reflect the vegetation of the sites: open in the case of Sites 1 and 4, wooded at Sites 2 and 204 

3. The two control site soils had %LOI levels intermediate within the range of the two pairs of mine 205 

sampling locations.  206 

 207 

Exposure of the naïve population to 300 mg/kg of arsenic in soil resulted in a progressive mortality, 208 

culminating in only 7% survival after 14 days of exposure (Fig. 2). In the SC population progressive 209 

mortality over time was also seen. This, however, proceeded at a slower rate than for the naïve earthworms, 210 

culminating in 46% survival after 14 days. These variations in mortality rates resulted in different LT50 211 

estimates from Weibull models fits (SigmaPlot 12.0) for the naïve and SC populations; these being 5.3 (95% 212 

Confidence Intervals 4.9-5.6) and 12.4 (95% Confidence Intervals 11.6-13.3) days respectively. In the four 213 

DGC mine site populations there was observable mortality in the Site 1 population, although 73% survival 214 
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after 14 days was higher than for either the naïve or SC earthworms. Populations from the remaining three 215 

DGC mine sites show low mortality, with 100%  survival for Site 2 and 4 earthworms and 85% survival for 216 

Site 3 earthworms.  217 

 218 

The mtDNA COII analysis indicated the presence of two distinct lineages (A and B) within the sampled L. 219 

rubellus (Fig. 3a). The two cryptic lineages show a 18% and 14% genetic divergence from L. castaneus and 220 

L. terrestris respectively. Average difference between lineages was 10.3%. Internal within the lineages, the 221 

Lineage A earthworms have a maximum 1.4% genetic difference, while for Lineage B earthworms this was 222 

0.06%. This high level of divergence between the two major lineage branches identifies L. rubellus as a 223 

complex of cryptic lineages as found previously (Andre et al., 2010). A comparison of the frequency of 224 

lineage occurrence at each sampled site identified differences in population COII haplogroup composition. 225 

Populations at two sites, Site 4 and Site OSC, included 90% or more of individuals from Lineage B; while in 226 

contrast the Site 3 populations included 76% of Lineage A individuals. The remaining three sites each had an 227 

approximately equal proportion of each lineage, with Lineage A slightly dominant at Site SC (57%) and Site 228 

1 (54%) and Lineage B at Site 2 (64%). That both lineages were found at all sites, often in similar 229 

proportions, and also that the two sites showing greatest lineage selection (dominance of Lineage B at both 230 

Site 4 and Site OSC) included both the most and least arsenic contaminated soils, is indicative of an absence 231 

of a mitochondrial lineage association with soil contamination status.   232 

 233 

Standard AFLP analysis conducted using MspI (which cuts at all recognition sites independent of 234 

methylation status) reemphasised the presence of two L. rubellus lineages as indicated by the mitochondrial 235 

markers. All mine site earthworms fell clearly into one of the two major lineages, but apparent inter-lineage 236 

individuals were observed among SC and OSC earthworms. These hybrids show AFLP genotypes 237 

intermediate between the two lineages on PC1 and divergent on PC2 (Fig. 3b). The presence of hybrids is in 238 

agreement with previous observation of AFLP profiles in L. rubellus (Andre et al., 2010). The dominance of 239 

the lineage effects within a PCO analysis of the AFLP data meant it was not possible to visualise site effects 240 

within the complete data-set. Consequently independent lineage-based analyses were conducted (n.b. 241 

putative hybrid individuals were excluded from these analyses).  242 
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 243 

Within Lineage A, PCO highlighted a site dependent effect on AFLP marker patterns. Within the PC1 and 244 

PC2 scores plot, SC earthworms were clearly separated from earthworms collected from Sites 2 and 3, with 245 

the Site 1 individuals intermediate and closer to the SC earthworms (Fig. 4a). Scores for PC2 (and also PC3), 246 

but not PC1 within the PCO were significantly correlated with site soil arsenic concentration (Pearson 247 

correlation p < 0.01). This significant association suggests that soil arsenic concentrations, as well as 248 

possibly the concentration of other co-correlated metals such as Cu, are an important driver of genome 249 

structure in Lineage A L. rubellus across the DGC site and surrounding area.  250 

 251 

For Lineage B PCO analysis did not identify a separation of populations within a PC1 and PC2 scores plot, 252 

although a partial separation of Site 1 and 4 was evident (data not shown). Both of these populations, 253 

however, overlap with profiles from the SC and OSC earthworms within this plot. Correlation of PC1 and 254 

PC2 scores with soil arsenic concentrations were not significant. Only for the PC3 score was a significant 255 

correlation found (Pearson correlation p < 0.02) indicating a weak separation underpinned by the distribution 256 

particularly of the Site 2 and Site 4 individuals on this component (Fig. 4b). These results identify that while 257 

soil metals such as arsenic and correlated elements are a driver for genome structure in Lineage B, these 258 

factors are less important than for Lineage A with effects only observed for the lower contribution PCs.  259 

 260 

To assess the patterns of genome methylation in individual earthworms, a second AFLP analysis was 261 

conducted using the MspI methylation sensitive restriction enzyme. Me-AFLP indicated that the genome of 262 

L. rubellus had an approximate 13.5% methylated cytosine (m5C) residue content. Across the mine sampling 263 

locations, the average extent of genome methylation ranged from 10.6% in earthworms at Site 1 to 22.1% for 264 

Site 4. Even though the highest average genome methylation content was at the most arsenic polluted site, 265 

the fact that earthworms from the two reference sites had intermediate average methylation levels (SC 266 

19.4%, OSC 13.2%) meant there was no clear correlation (Pearson correlation p > 0.05) between methylation 267 

level and soil arsenic concentration. This suggests that in the mine soils, arsenic does not have a strong 268 

global hyper- or hypo-methylation effect for the resident earthworms.  269 

 270 
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Within the Me-AFLP analysis the presence of two distinct L. rubellus lineages was reconfirmed. 271 

Consequently, lineage-specific Me-AFLP profiles were analysed, with the hybrid individuals excluded. For 272 

the Lineage A PCO analysis, a segregation of individuals collected from Site 2 and Site 4 was identified 273 

within the PC1 and PC2 score plot (Fig. 4c). The remaining sites showed substantial overlap between 274 

individual profiles. Correlations of PC1, PC2 and PC3 scores with measured soil arsenic concentration were 275 

non-significant in all cases (Pearson correlation p > 0.05). This suggests that soil arsenic was not the 276 

principal driver of methylation pattern difference between individuals. For Lineage B, there was a partial 277 

separation of profiles of earthworms from the SC and OSC locations from individuals collected from each 278 

sampled mine site population (Fig. 4d). Correlation of PC1, PC2 and PC3 scores with measured site soil 279 

arsenic concentration indicated a significant correlation for the first principle component (Pearson correlation 280 

p < 0.02). This indicates that soil arsenic (and co-correlated trace metals) represents a potentially significant 281 

driver of earthworm genome methylation status for lineage B earthworms.  282 

 283 

284 
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4. Discussion 285 

Soil contamination by mineral extraction, fossil fuel consumption, waste disposal and pesticide use is a 286 

common problem (Hall et al., 2006). Among trace elements, arsenic represents one of the greatest hazards 287 

because of its widespread distribution and toxicity to humans and wildlife (Chen et al., 2009; Thomas et al., 288 

2001). The toxicity of arsenic has been established for earthworms. Meharg et al. (1998) determined an LC50 289 

of approximately 100 mg/kg As for Lumbricus terrestris after 8 days and Fischer and Koszorus (1992) found 290 

that a 25 mg/kg potassium arsenate exposure reduced growth and cocoon production in Eisenia fetida. For L. 291 

rubellus, Langdon et al. (2001) found an LC50 of 96 mg/kg As for a clean site population, although 292 

populations from mine sites (including DGC) gave higher values (up to 1,510 mg/kg) suggesting tolerance. 293 

Building on this work, Langdon et al. (2009) revealed that the adaptation in the mine site earthworms was 294 

maintained when earthworms were bred for two generations on clean soil. Cross-tolerance to copper was also 295 

found (Langdon et al., 2001).  296 

 297 

In the test to assess the presence of potential tolerance in L. rubellus collected from the DGC line complex 298 

area sites, there was a clear indication that the populations inhabiting the DGC site locations substantially 299 

enriched in arsenic display a tolerance phenotype. Earthworms sampled from the populations at Site 1-4 all 300 

showed low mortality on exposure to a soil arsenic concentration that induced acute toxicity in earthworms 301 

from a naïve population and also in the SC reference population. Interestingly the different rates of mortality 302 

in naïve and SC earthworms, as highlighted by differences in LT50s for these populations suggest that SC 303 

earthworms possess a partial arsenic tolerant phenotype. This may be related to the presence of arsenic 304 

concentrations that greatly exceed accepted background concentrations in SC soil (Emmett et al., 2010).  305 

 306 

Tolerance to chemical exposure can classically take two forms. Most simply, it can be the result of 307 

phenotypic plasticity. In this case, exposure to a substance upregulates biochemical pathways (e.g. metal 308 

binding proteins, mono-oxygenases and multi-drug resistance transporters), which work to detoxify or 309 

eliminate the substance. If the exposure is removed, upregulation of detoxification systems can persist, 310 

predisposing individuals to deal with a future chemical challenge. This plasticity has been widely reported in 311 

human subjects subjected to long-term drug exposure (Stewart and Badiani, 1993) and also in species 312 
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exposed to toxicants in the field (Rajamohan and Sinclair, 2009; Romach et al., 2000). Maintenance of 313 

elevated protein levels and the widely reported effects of stressor exposure on the epigenome (Martinez-314 

Zamudio and Ha, 2011), including arsenic (Ren et al., 2011), can provide a mechanism through which such 315 

tolerance may be temporally conserved. 316 

 317 

A second mechanism of tolerance development exploits adaptive variation within populations. There is good 318 

evidence that this kind of adaptive selection can occur in response to long term chemical exposure. One 319 

example is driven by the selection of alleles coding for amino acids associated with active sites of 320 

detoxification enzymes. Pesticide resistance is frequently underpinned by this mechanism, with polymorphic 321 

cytochrome P450 genes often the selection target (Karunker et al., 2008; Miyo and Oguma, 2010). For 322 

metals, selection for metallothionein promoter alleles and other trans-acting genetic factors has been found to 323 

underpin cadmium tolerance in the collembolan Orchesella cincta (Janssens et al., 2007; Roelofs et al., 2006; 324 

van Straalen et al., 2011).  325 

 326 

Characterisation of metallothionein promoter alleles of earthworms collected from metalliferous and 327 

unpolluted soils has so far failed to detect adaptive variation (Stürzenbaum et al., 2004). With evidence for 328 

targeted selection absent, a logical next step is to move to genome wide analysis (Baird et al., 2008; 329 

Hohenlohe et al., 2010). Using a combined approach applying mitochondrial genotyping and conventional 330 

and methylation-sensitive AFLPs, an analysis of both genotypic and epigenetic associations of the confirmed 331 

adapted and putative reference populations of L. rubellus with different metal/metalloid exposure histories 332 

was conducted. The aim was to assess the basis of the arsenic tolerance observed in the toxicity test. The 333 

mitochondrial genotyping and AFLP profiling (using both methylation sensitive and insensitive enzymes) all 334 

indicated that L. rubellus comprises two distinct lineages that differ by over 10% in their mitochondrial COII 335 

sequence. This reflects the presence of two cryptic lineages within the morphospecies (Andre et al., 2010). 336 

Hybrid individuals were found although only at the two reference sites. This prevalence in uncontaminated 337 

soils does not support a role of pollution in the breakdown of species boundaries as found by Vonlanthen et 338 

al. (2012).  339 

 340 
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As in a previous study with L. rubellus from polluted landscapes (Andre et al., 2010), there was no evidence 341 

of a lineage or intra-lineage haplotype association with either polluted or unpolluted sites. This supports the 342 

decision to move to a more detailed analysis of population structure. The AFLP analysis conducted for 343 

Lineage A indicated a clear separation of earthworms between sites, with the most important principal 344 

components associated with soil pollution status. For Lineage B, an influence of soil arsenic on AFLP profile 345 

was also found, albeit in this case within one of the more minor principle components (PC3). Such 346 

associations that link genetic distance to pollution status have been observed in previous field studies of 347 

aquatic invertebrates (Martins et al., 2009) and for both genetic units of the phylogeographically divergent 348 

metallophyte Arabidopsis halleri (Pauwels et al., 2012). Such relationships point to a genetic component that 349 

may underpin the previous observations of arsenic tolerance in L. rubellus collected at Site 3 by Langdon et 350 

al. (2009; 1999), especially given the high frequency of Lineage A individuals at this site.  351 

 352 

Although sequence driven differentiation between populations can clearly be important, there is emerging 353 

evidence that epigenetic effects can also play a role in adaptation to local environmental conditions.  Known 354 

epigenetic mechanisms include DNA methylation, histone modifications, and small interfering (siRNA), and 355 

micro RNAs (miRNA). Of these, DNA methylation has so far been most widely studied in animals (Suzuki 356 

and Bird, 2008). Studies have identified that metals and metalloids can perturb DNA methylation including 357 

hypomethylation by Cd (Takiguchi et al., 2003) and targeted gene silencing via hypermethylation by Ni (Lee 358 

et al., 1995). For arsenic, the potential competition with DNA for methyl groups for respectively methyl 359 

metabolites and DNA modification can create an interplay between hypomethylation (Arita and Costa, 2009; 360 

Zhao et al., 1997) and hypermethylation (Jensen et al., 2008) in arsenic toxicology (Ren et al., 2011).  361 

 362 

To date relatively little is known about the role of DNA methylation as a component of adaptive variation in 363 

invertebrate organisms. Studies on a range of invertebrate species have highlighted extensive variation in the 364 

5-methyl cytosine content of the genome (Regev et al., 1998). Thus, while some species, including the 365 

nematode Caenorhabditis elegans and fruitfly Drosophila melanogaster, have low to negligible 5-methyl 366 

cytosine levels (Bird, 2002; Regev et al., 1998), some taxa possess methylation levels in the 10-15% range. 367 

Me-AFLP indicated an approximate 13.5% methylated cytosine (m5C) residue content in the L. rubellus 368 
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genome. This represents a high level of DNA methylation for an invertebrate species, but is consistent with 369 

previous results for the earthworm Aporrectodea caliginosa (Regev et al., 1998). This suggests that DNA 370 

methylation may have an important role in annelids, although to date relatively little is known about how 371 

such methylation is controlled. For example, a study on the marine annelid species Chaetopterus 372 

variopedatus was able to identify a protein that had a high homology to known invertebrate 373 

methyltransferases, but could not confirm a role of this protein in ‘de-novo' methylation of double stranded 374 

DNA (del Gaudio et al., 1999). 375 

 376 

On exposure to arsenic (and co-contaminant metals), an analysis of methylation patterns using the MeAFLP 377 

approach showed a site-specific influence. For Lineage A earthworms, separation between sites for the 378 

MeAFLP profiles was seen. This separation could not, however, be significantly associated with soil arsenic 379 

concentration as was the case for the standard AFLP analysis for this Lineage. This may indicate that other 380 

soil, biotic and local scale climatic factors may instead be modifying the epigenome. For Lineage B 381 

earthworms, pattern of DNA methylation could be significantly related to soil arsenic levels, suggesting a 382 

potential role of trace element exposure, although it is also feasible that environmental factors (e.g. soil 383 

texture, soil moisture, food availability), that are co-correlated to soil pollutant levels, could also be 384 

important. Evidence from detailed analysis of stress associated genes, such as metallothionein in the snail 385 

Helix pomatia, has already identified the presence of genomic regions that confer a high potential for 386 

epigenetic regulation indicating a potential role for epigenetic mechanisms in metal responses (Egg et al., 387 

2009). Further, in D. melanogaster stress exposure has been shown to result in epigenetic heterochromatic 388 

disruption that is transmissible in a non-Mendelian fashion (Seong et al., 2011). The association of DNA 389 

methylation patterns with arsenic exposure observed here suggests a potential role of epigenetic mechanisms 390 

in stress adaptation in earthworms that concur with the evidence available for other taxa.   391 

 392 

To extend the understanding of the role of genetic and epigenetic modification, a fruitful avenue for 393 

extending this novel study from a strong associative appreciation to a mechanistic understanding of arsenic-394 

mediated  molecular-genetic adaptations would entail assaying the transcription levels of specific genes 395 

known to be involved in metal/metalloid trafficking and metabolism. Moreover, establishing whether 396 
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epigenetic marks are preferentially targeted to such genes and their regulatory regions in earthworms 397 

exposed to elevated levels of methylation-modifying arsenic in their native field soils is also a matter of 398 

priority. Such work clearly has the potential to link genotype to phenotype in adapted populations, so 399 

providing insight into the functional basis of adaptive traits in a key soil dwelling taxon.  400 

 401 

The variation in lineage-specific responses observed across the genome and epigenome raises the intriguing 402 

prospect that the two L. rubellus cryptic lineages may employ different strategies to response to long-term 403 

arsenic exposure. The strong AFLP based separation of Lineage A earthworms in relation to soil arsenic 404 

concentrations across major PCs suggests that in this Lineage substantial genome modification has occurred 405 

as a result of long-term exposure. In contrast, the evidence for sequence modification is somewhat less 406 

compelling in Lineage B and therefore changes in genome methylation status seem to play a role in 407 

facilitating plasticity in response to soil arsenic concentration as indicated by the Me-AFLPs. Previous 408 

studies have identified differences in sensitivity between closely related lineages or species to chemical 409 

exposure. An example is the role of biotransformation capacity for determining the sensitivity of Capitella 410 

capitata “species” to PAH exposure (Bach et al., 2005). However, to date we are not aware of any studies 411 

that have identified such divergent genome responses to chemical exposure within two genetic lineages of a 412 

known morphospecies. The detailed basis for the evolution of distinct genetic and/or epigenetic mechanisms 413 

that drive arsenic adaptation in the two L. rubellus lineages, thus, emerge as potential models that could be 414 

further exploited to understand species plasticity in response to long-term chemical stress.  415 

 416 

The genetic structure evident within the putative L. rubellus lineages is consistent with expectations in 417 

relation to survival within glacial refugia and subsequent recolonisation, as has been demonstrated for other 418 

species (Hewitt, 1999; Provan and Bennett, 2008). Patterns of recolonisation during the Holocene, including 419 

recent human-mediated dispersal, may have resulted in different lineages reaching the DGC area over 420 

different timeframes. Andre et al. (2010) inferred that the two L. rubellus lineages have very different 421 

evolutionary histories with Lineage A representing a stationary population that has experienced multiple 422 

introductions and bottleneck episodes with expansion estimated to have occurred about 250,000 years BP, 423 

while Lineage B comprises an unimodal mismatch distribution with an estimated post-glacial population 424 
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expansion time of approximately 17,000 years BP. It is perhaps this differential in the timescale for 425 

adaptation to local arsenic contamination that has determined the lineage specific balance between adaptive 426 

variation and plasticity for the two lineages at sites across the DGC mine.   427 

 428 

429 
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Table 1. Summary data for trace element concentrations, soil pH and wt% loss on ignition (%LOI) for soil samples collected from sites across the 660 

Devon Great Consols mine complex located in south-west England. For site locations see Fig. 1. Values are means of triplicate subsamples, standard 661 

deviations are given in brackets.                              662 

 663 

                          664 

Al As Ba Cd Co Cr Cu Fe Mn Ni Pb Zn pH %LOI

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

Site 1 9430 4620 47.2 0.7 19.5 10.8 529 48000 430 16.4 61 134 4.5 4.2

(6720) (2020) (32.4) (0.4) (11.5) (9.8) (266) (24600) (335) (15.8) (35) (74) (0.1)

Site 2 6060 5220 70.0 < 0.2 52.7 6.9 606 99200 802 28.4 191 164 4.1 49.6

(720) (470) (2.5) (4.8) (0.3) (27) (9300) (96) (2.8) (21) (22) (0.4)

Site 3 17300 6270 45.9 0.18 25.7 17.8 2647 79600 630 22.3 225 277 4.8 29.7

(3900) (1010) (8.4) (0.09) (5.4) (3.6) (606) (2600) (135) (4.0) (53) (43) (0.3)

Site 4 13600 19200 71.2 10.2 < 3.6 20.0 910 65900 262 9.5 148 63 4.6 17

(2060) (3470) (8.9) (1) (3.3) (120) (10600) (33) (1.8) (15) (8) (0.0)

SC 21500 310 45.5 0.41 < 3.6 31.7 107 45800 585 27.5 68 140 5.6 17.2

1800 (70) (2.8) (0.4) (4.2) (16) (6350) (103) (9.1) (8) (34) (0.2)

OSC 7840 <50 37.0 < 0.2 < 3.6 10 14 1420 427 3.7 21 69 4.4 14.5

(4770) (20.7) (6.0) (8) (8650) (234) (2.8) (12) (35) (0.2)
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FIGURE LEGENDS 665 

 666 

Figure 1:  Aerial images showing the location of the Devon Great Consols mine site in the South West UK 667 

(top right insert panel) and locations of the 5 sampling locations (Site 1-4 and Site SC) situated in the area 668 

on, and immediately adjacent to, the Devon Great Consols mine workings.  669 

 670 

Figure 2: Temporal patterns of survival of L. rubellus collected at five locations of contrasting geochemistry  671 

(4 polluted and 1 site reference) within the Devon Great Consols mine complex and surrounding area and a 672 

known naïve population following  exposure to 300 mg/kg of arsenic in a spiked clay loam soil over 14 days. 673 

 674 

Figure 3:  Mitochondrial and nuclear analysis of L. rubellus population structure and corresponding 675 

mitochondrial mismatch distributions of collected L. rubellus. Panel A: shows a phylogenetic tree of 676 

mitochondrial COII genotype showing branching of major lineage (Left and right hand branches of the 677 

network are denoted Lineage B & A respectively) and the numbers of individuals from each site within the 678 

lineages. Panel B: AFLP multi-locus profiling PCO analysis showing individuals from the six sample 679 

stations. Lineage A individuals cluster to the right on PC1, Lineage B to the left. Hybrids (found at SC and 680 

OSC only) lie between and above the two Lineage Groups.  681 

 682 

Figure 4:  Nuclear genome analysis of L. rubellus collected at six sites (4 polluted and 2 reference) of 683 

contrasting geochemistry within the Devon Great Consols mine complex and surrounding area. Panel (i) 684 

shows the result of a PCO of AFLP profiles for L. rubellus unambiguously ascribed to Lineage A, Panel (ii) 685 

shows the result of a PCO of AFLP profiles for L. rubellus unambiguously ascribed to Lineage B, Panel (iii) 686 

shows the result of a PCO of methylation sensitive AFLP analysis of L. rubellus unambiguously ascribed to 687 

Lineage A, Panel (iv) shows the result of a PCO of methylation sensitive AFLP analysis of L. rubellus 688 

unambiguously ascribed to Lineage B.  689 



 

28 

Fig. 1. 690 
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Fig.  2. 694 
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Fig.  3. 698 
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Fig. 4. 701 
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