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Abstract

Associative classification is a promising classification approach that utilises association rule mining to construct accurate classification
models. In this paper, we investigate the potential of associative classifiers as well as other traditional classifiers such as decision trees and
rule inducers in solutions (data sets) produced by a general-purpose optimisation heuristic called the hyperheuristic for a personnel
scheduling problem. The hyperheuristic requires us to decide which of several simpler search neighbourhoods to apply at each step while
constructing a solutions. After experimenting 16 different solution generated by a hyperheuristic called Peckish using different classifi-
cation approaches, the results indicated that associative classification approach is the most applicable approach to such kind of problems
with reference to accuracy. Particularly, associative classification algorithms such as CBA, MCAR and MMAC were able to predict the
selection of low-level heuristics from the data sets more accurately than C4.5, RIPPER and PART algorithms, respectively.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Heuristic and metaheuristic approaches have been
applied widely in personnel-scheduling problems (Blum &
Roli, 2003; Cowling, Kendall, & Han, 2002). A metaheuris-
tic could be defined as a recursive process which directs a
simpler local search method by using different concepts
for exploring and exploiting the search space in order to
achieve good enough solutions (Blum & Roli, 2003). There
are several different metaheuristic strategies for solving
scheduling and optimisation problems such as local search,
tabu search, simulated annealing and variable neighbour-
hood search.

Hamiez and Hao (2001) have used a tabu search-based
method to solve the sport league scheduling problem
(SLSP). Their implementation of the enhanced tabu
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search algorithm was able to schedule a timetable for up
to 40 teams and its performance in term of the CPU time
was excellent if compared with previous algorithms such
as that of (McAloon, TretKoff, & Wetzel, 1997) that
had been used for solving the same problem. Aicklen
and Dowsland (2000) have used Genetic algorithms to
deal with a nurse rostering problem in major UK hospi-
tals, and Hansen and Mladenovic (1997) have showed
that variable neighbourhood search is an effective
approach for solving optimisation problems in which it
generates good or sometimes near-optimal solutions in a
moderate time.

Cowling, Kendall, and Soubeiga (2000) and Cowling
et al. (2002) argued that metaheuristic and heuristic
approaches tend to be knowledge rich and require exten-
sive experience in the problem domain and the selected
heuristic techniques, and therefore they are expensive in
term of their implementation. A new general framework
to deal with large and complex optimisation and schedul-
ing problems, called a hyperheuristic, has been proposed
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by Cowling et al. (2000). It tends to robustly find good
solutions for large and complex scheduling problems
and has been proven to be effective in many experiments
(Cowling & Chakhlevitch, 2003; Cowling et al., 2002).

A hyperheuristic approach can be described as a super-
visor, which controls the choice of which local search
neighbourhood to choose while constructing a solution/
schedule. A local search neighbour, also known as a low-
level heuristic, is a rule or a simple method that generally
yields a small change in the schedule. Often these low-level
heuristics are based on normal methods of constructing a
schedule such as adding an event, deleting an event or
swapping two events. Fig. 1 represents the general hype-
rheuristic framework that at each iteration, selects and
applies the low-level heuristic that has the largest improve-
ment on the objective function, i.e. LLHS in the figure
shown below. The arrows going from and to the hyper-
heuristyic in Fig. 1 represent the selected low-level heuris-
tics improvement values on the objective function
obtained after trying them by the hyperheuristic.

The training scheduling problem that we consider in this
paper is a complex optimisation problem for a large finan-
cial service company (Cowling et al., 2002). It involves a
number of events, trainers, and locations to be scheduled
over a period of time. The task is to create a timetable of
courses distributed over several locations in a specific
period of time using a known number of trainers. A more
detailed description of the problem is presented in the next
section.

In this paper, our aim is to determine an applicable data
mining technique to the problem of deciding which
low-level heuristic to apply in a given situation, using infor-
mation about heuristic performance derived earlier. In
particular, we would like to answer questions like: which
learning algorithm can derive knowledge that could direct
the search in order to produce good solutions?

To achieve our goal, we compare three associative classi-
fication techniques CBA (Liu, Hsu, & Ma, 1998), MCAR
(Thabtah, Cowling, & Peng, 2005), MMAC (Thabtah,
Cowling, & Peng, 2004) and two popular traditional
classification techniques (PART (Frank & Witten, 1998)
and RIPPER (Cohen, 1995)) on data sets generated
using a hybrid hyperhueristic called Peckish (Cowling &
Chakhlevitch, 2003), for the trainer scheduling problem.

We analyse data from several solutions of the Peckish
hyperheuristic that combines greedy (best first) and ran-
dom approaches. We identify that the learning task
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Fig. 1. Hypreheuristic general framework.

involves classifying low-level heuristics in terms whether
they improved the objective function in old solutions in
order to produce useful rules. These rules then will be used
to decide the class attribute “low-level heuristic” while con-
structing new solutions. We use the classification algo-
rithms mentioned above to learn the rules.

The training scheduling problem and different hyperheu-
ristic approaches utilised to solve it are discussed in Section
2. Section 3 is devoted to the applicability of data mining
classification algorithms to predict the behaviour of
low-level heuristics used by the Peckish hyperheuristic.
Data sets, their features and experimental results are
presented in Section 4 and finally conclusions are given in
Section 5.

2. The training scheduling problem and hyperheuristics

A much simpler version of the training scheduling prob-
lem has been solved in Cowling et al. (2002) using a Hyper-
Genetic algorithm. A larger and more complex problem,
which has been described in Cowling and Chakhlevitch
(2003) is summarised in this section. It involves a number
of events, trainers, and locations to be scheduled over a
period of time. The task is to create a timetable of geo-
graphically distributed courses over a period of time using
different trainers, and the aim is to maximise the total pri-
ority of courses and to minimise the amount of travel for
each trainer. The problem is associated with a large num-
ber of constraints such as:

e Each event is to be scheduled at one location from the
available number of locations.

e Each event must start within a specified time period.

e Each event can occur at most once.

e Each event to be delivered by competent trainers from
the available trainers.

e Each location has a limited number of rooms and rooms
have different capacities and capabilities.

The data used to build the solutions of the training
scheduling problem is real data provided by a financial firm
where training is given by 50 trainers over a period of 3
months in 16 different locations. Further, there are about
200 events to be scheduled and 95 different low-level heuris-
tics that can be used to build each solution. However, solu-
tions given to us by the authors of Cowling and
Chakhlevitch (2003) have been constructed using only 10
low-level heuristics, where each low-level heuristic repre-
sents local search neighbourhoods. For example, selecting
a location with the lowest possible travel penalty for a par-
ticular trainer to deliver a course as early as possible corre-
sponds to a low-level heuristic.

In solving the trainer scheduling problem, three hype-
rheuristic approaches, random, greedy and hybrid, have
been used. All of these approaches aim to manage the
choice of which low-level heuristics to choose during the
process of building the solution. The random approach
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selects a low-level heuristic at random from the available
ones in the problem. At each choice point in the search
space, commonly all low-level heuristics have an equal
chance to be selected. On the other hand, the greedy
approach selects the low-level heuristic that yields the big-
gest improvement in the objective function. If none of the
available ones improve the objective function then the
algorithm will be trapped in a local optimum. The hybrid
approach is named Peckish and consists of a combination
of greedy and random approaches. It builds a solution by
selecting a single low-level heuristic during each iteration
in the search in order to apply. The choice is based on
the low-level heuristic that has the largest improvement
on the objective function in the problem (if one exists).
In the case that none of the available low-level heuristics
improve upon the objective function value, then the choice
is random.

In this paper, we choose a low-level heuristic from a can-
didate list of good low-level heuristics. By changing the
length of this candidate list and considering how it is
merged, we can trade off the degree of greediness and ran-
domness in the Peckish hyperheuristic. As a result, several
different solutions produced by the Peckish hyperheuristic
are investigated.

We analysed the strategy used by the Peckish hyperheu-
ristic to construct a solution and observed that all available
low-level heuristics in the problem must be tested in order
to record their effect on the objective function at each iter-
ation and apply only a single one. Data mining could pro-
vide a much quicker prediction of effective low-level
heuristics at each iteration. In the next section, we investi-
gate some of the popular data mining techniques for learn-
ing the sets of low-level heuristics that improve the
objective function and have been applied by the Peckish
hyperhueristic.

3. Data mining for the selection of low-level heuristics

Since we are aiming to use knowledge derived from old
solutions of the problem, data mining seems an appropri-
ate technique to extract that knowledge. The next task is
to identify which data mining method is applicable to
extract knowledge from solutions generated by the Peck-
ish hyperheuristic. As mentioned earlier, the Peckish hype-
rheuristic usually selects and applies the low-level heuristic
that leads to the largest improvement on the objective
function and this is the class we want to find. In other
words, we can learn rules that predict the performance
of low-level heuristics in some solution runs and use these
rules to forecast which low-level heuristics the hyperheu-
ristic should choose in other runs. Since we are predicting
a particular attribute (low-level heuristic), as a result,
supervised learning approaches such as classification are
appropriate.

There are many classification approaches for extracting
knowledge from data that have been studied in the litera-
ture Cendrowska (1987), Quinlan (1993) and Cohen

(1995). Three common approaches, divide-and-conquer
(Quinlan, 1987), rule induction (Cohen, 1995; Furnkranz
& Widmer, 1994) and associative classification (Li, Han,
& Pei, 2001; Liu et al., 1998) have been selected for our
base comparison. Further, five classification techniques
related to such approaches have been compared, which
are PART (Frank & Witten, 1998), RIPPER (Cohen,
1995), CBA (Liu et al., 1998), MCAR (Thabtah et al.,
2005) and MMAC (Thabtah et al., 2004). Our choice of
these methods is based on the different schemes they use
in learning rules from data sets. In the next subsection,
we briefly survey these algorithms.

3.1. Associative classification

Associative classification techniques employ association
rule discovery methods to find the rules. This approach was
introduced in 1997 by Ali, Manganaris, and Srikant (1997)
to produce rules for describing relationships between attri-
bute values and the class attribute and not for prediction,
which is the ultimate goal for classification. In 1998, asso-
ciative classification has been successfully employed to
build classification models (classifiers) by Liu et al. (1998)
and later attracted many researchers, e.g. (Yin & Han,
2003), from data mining and machine learning communi-
ties. In this subsection we survey associative classification
techniques used in this paper to generate rules from the
hyperheuristic data.

3.1.1. Classification based on association (CBA)

The idea of using association rule mining in classifica-
tion problems was first introduced in Liu et al. (1998), in
which an algorithm called CBA is proposed, which oper-
ates in three main steps. Firstly, if the intended data set
contains any real or integer attributes, it is disctretised
using multi-interval discretisation method of Fayyad and
Irani (1993). Secondly, the Apriori candidate generation
step (Agrawal & Srikant, 1994) is adopted to find the
potential rules. Apriori candidate generation method
necessitates multiple passes, where the potential rules
found in the previous pass are used for the generation of
potential rules in the current pass. This repetitive scans
requires high CPU time and main memory. Once all poten-
tial rules are produced, the subset that leads to the least
error rate against the training data set is selected to from
the classifier. The selection of such subset is accomplished
using the database coverage heuristic, which ensures that
every rule in the classifier must cover correctly at least
one training data object.

3.1.2. MCAR: multi-class classification based on association
rule

A recently developed associative classification algo-
rithm called MCAR (Thabtah et al., 2005) employs tid-
list intersections to quickly find the rule. This algorithm
consists of two main phases: rules generation and a clas-
sifier builder. In the first phase, the training data set is
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scanned once to discover the potential rules of size one,
and then MCAR intersects the potential rules tid-lists of
size one to find potential rules of size two and so forth.
This rules discovery method does no require passing over
the training data multiple times. In the second phase,
rules created are used to build a classifier by considering
their effectiveness on the training data set. Potential rules
that cover certain number of training objects will be kept
in the final classifier. Finally, MCAR adds upon previous
rule ranking approaches in associative classification,
which are based on (confidence, support, rule length) by
looking at the class distribution frequencies in the training
data and prefers rules that are associated with dominant
classes. Experimental results showed that MCAR rule
ranking method reduces rule random selection during
the process of ranking the rules especially for dense clas-
sification data.

3.1.3. Multi-class, multi-label associative classification
(MMAC)

The MMAC algorithm consists of three steps: rules gen-
eration, recursive learning and classification. It passes over
the training data in the first step to discover and generate a
complete set of rules. Training instances that are associated
with the produced rules are discarded. In the second step,
MMAC proceeds to discover more rules that pass user pre-
defined thresholds denoted by minimum-support and mini-
mum-confidence from the remaining unclassified instances,
until no further potential rules can be found. Finally, rule
sets derived during each iteration are merged to form a glo-
bal multi-label classifier that then is tested against test data.
The distinguishing feature of MMAC is its ability of gener-
ating rules with multiple classes from data sets where each
of their data objects is associated with just a single class.
This provides decision makers with useful knowledge dis-
carded by other current associative classification
algorithms.

3.2. Traditional classification approaches

3.2.1. C4.5

C4.5 algorithm was created by Quinlan (1993) as a deci-
sion tree method for extracting rules from a data set. C4.5
is an extension of the ID3 algorithm (Quinlan, 1979), which
accounts for missing values, continuous attributes and
pruning of decision trees. As for the ID3 algorithm, C4.5
uses information gain to select the root attribute. The algo-
rithm selects a root attribute from the ones available in the
training data set. C4.5 makes the selection of the root
based on the most informative attribute and the process
of selecting an attribute is repeated recursively at the so-
called child nodes of the root, excluding the attributes that
have been chosen before, until the remaining training data
objects can not be split any more (Quinlan, 1979). At that
point, a decision tree is outputted where each node corre-
sponds to an attribute and each arc to a possible value of
that attribute. Each path from the root node to any give

leaf in the tree corresponds to a rule. One of the major
extensions of the ID3 algorithm that C4.5 proposed is that
of pruning. Two known pruning methods used by C4.5 to
simplify the decision trees constructed are sub-tree replace-
ment and pessimistic error estimation (Witten & Frank,
2000).

3.2.2. Repeated incremental pruning to produce error
reduction algorithm (RIPPER)

RIPPER is a rule induction algorithm that has been
developed in 1995 by Cohen (1995). It builds the rules set
as follows: The training data set is divided into two sets, a
pruning set and a growing set. RIPPER constructs the
classifier using these two sets by repeatedly inserting rules
starting from an empty rule set. The rule-growing algorithm
starts with an empty rule, and heuristically adds one condi-
tion at a time until the rule has no error rate on the growing
set.

In fact, RIPPER is a refined version of an ecarlier
developed algorithm called Incremental Reduced Error
Pruning (IREP) (Furnkranz & Widmer, 1994) that adds
a post pruning heuristic on the rules. This heuristic has
been applied to the classifier produced by IREP as an
optimisation phase, aiming to simplify the rule set fea-
tures. For each rule r; in the rule set, two alternative rules
are built; the replacement of r; and the revision of r;. The
replacement of r; is created by growing an empty rule 7
and then pruning it in order to reduce the error rate of
the rules set including »; on the pruning data set. The revi-
sion of r; is constructed similarly except that the revision
rule is built heuristically by adding one condition at a
time to the original r; rather than to an empty rule. Then
the three rules are examined on the pruning data to select
the rule with the least error rate. The integration of IREP
and the optimisation procedure forms the RIPPER
algorithm.

3.2.3. PART

Unlike the C4.5 and RIPPER techniques that operate in
two phases, the PART algorithm generates rules one at a
time by avoiding extensive pruning (Frank & Witten,
1998). The C4.5 algorithm employs a divide-and-conquer
approach, and the RIPPER algorithm uses rule induction
approach to derive the rules. PART combines both
approaches to find and generate rules. It adopts rule induc-
tion approach to generate a set of rules and uses divide-
and-conquer to build partial decision trees. The way PART
builds and prunes a partial decision tree is similar to that of
C4.5, but PART avoids constructing a complete decision
tree and builds partial decision trees. PART differs from
RIPPER in the way rules are created, where in PART, each
rule corresponds to the leaf with the largest coverage in the
partial decision tree. On the other hand, RIPPER builds
the rule in a greedy fashion, starting from an empty rule,
it adds conditions, until the rule has no error rate and
the process is repeated. Missing values and pruning tech-
niques are treated in the same way as C4.5.
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4. Data and experimental results
4.1. Data sets and their features

Data from 16 different solutions produced by Peckish
hyperheuristic for the training scheduling problem were
provided by the authors of Cowling and Chakhlevitch
(2003). Each solution represents 500 iterations of applied
low-level heuristics and is given in a text file. Twelve of
the data files each represents only a single solution,
whereas, each of the remaining four files represents ten
combined solutions. Ten different low-level heuristics
(LLH 1, LLH 2, LLH 20, LLH 27, LLH 37, LLH 43,
LLH 47, LLH 58, LLH 68, LLH 74) have been used to
produce each solution. Each file consists of 15 different
attributes and 5000 instances. One iteration in a single solu-
tion is shown in Table 1 where the bold row indicates that
low-level heuristic number 74 was applied by the Peckish
hyperheuristic because it has the largest improvement on
objective function.

In Table 1, column LLH represents the low-level tested,
ESM and RSM columns stand for event and resource
selection methods, respectively which specify how an event
is scheduled. SE indicates the selected event number to be
scheduled. UE reflects whether another event is a conflict
with currently scheduled event, i.e. they share the same
trainer, location, or timeslot. EID corresponds to the event
identification number and R stands for rescheduled, which
means, if swapping unscheduled event from the schedule
with the selected event is possible, then, it is possible to
reschedule back the removed event from the schedule.

OP, NP, OPE and NPE correspond to old priority, new
priority, old penalty and new penalty, respectively. The
new priority and new penalty values represent the total pri-
ority and penalty of the schedule after applying a low-level
heuristic. The difference between the new priority and new
penalty values gives the value of the objective function.
IMP stands for amount of improvement and represents
the change in value on the objective function after a low-
level heuristic has been applied. CPU is the time in search
for the low-level heuristic to be applied and SC reflects
whether or not the current schedule has been changed,

i.e. whether the current low-level heuristic had any effect
at all, (‘1’ changed or ‘0’ not changed). Finally AP column
indicates whether or not the current low-level heuristic has
been applied (‘1 applied or ‘0’ not applied) by the
hyperheuristic.

After analysing the data in each file, we identified that
six attributes have some correlation to the class attribute
(LLH), which are (OP, NP, OPE, NPE, IMP, AP). How-
ever, we are interested to learn rules that represent useful
sequence of applied low-level heuristics at different itera-
tions and lead to improvement on the objective function.
Therefore, solutions generated by the Peckish hyperheuris-
tic have been filtered to retain certain iterations where
improvements have occurred upon the objective function.
Furthermore, a PL/SQL program has been designed and
implemented to generate a new structure of each solution
in order to enable the extraction of rules that represent
the sequence of applied low-level heuristics. In other words,
each training instance in the new structure should contain
the low-level heuristics that improved the objective func-
tion in the current iteration along with others applied in
the previous iterations. Specifically, in each solution run
and for each iteration, we record low-level heuristics
applied in the previous three iterations along with the ones
that improved the objective function in the current
iteration.

Table 2 represents part of a solution run (data) gener-
ated in the new structure after applying the PL/SQL pro-
gram on the initial solution features, where columns
LLH_3, LLH 2 and LLH_1 represent the low-level heu-
ristics applied at the previous three iterations. Column
LLH represents the current low-level heuristic that
improved the objective function and column Imp repre-
sents the improvement on the objective function value.
Finally column Apply represents whether or not the
selected low-level heuristic has been applied by the hype-
rheuristic. As shown in Table 2, data generated by the
hyperheuristic have multiple labels, since there could be
more than one low-level heuristic that improve the objec-
tive function at any give iteration. Hence, each training
instance in the scheduling data may associate with more
than one class.

Table 1
One iteration of the Peckish hyperheuristic for the training scheduling problem
LLH ESM RSM SE UE EID R NP OPE NPE IMP CPU SC AP
1 0 1 1 0 -1 -1 72,999 72,999 830 830 0 0.03 0 0
2 0 2 128 0 -1 -1 72,999 72,999 830 830 0 0.02 0 0
20 4 0 12 0 -1 61 72,999 72,999 830 830 0 0.02 0 0
27 0 2 36 -1 -1 -1 72,999 72,999 830 830 0 0 0 0
37 1 2 70 -1 -1 58 72,999 72,999 830 830 0 0 0 0
43 1 8 142 -1 -1 -1 72,999 72,999 830 830 0 0 0 0
47 2 2 22 -1 -1 -1 72,999 72,999 830 830 0 0 0 0
58 3 3 18 -1 -1 -1 72,999 72,999 830 830 0 0 0 0
68 4 3 25 -1 -1 -1 72,999 72,999 830 830 0 0 0 0
74 4 9 57 -1 -1 -1 72,999 73,099 830 830 100 0 1 1
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Table 2

Sample of optimisation data

Iteration LLH 3 LLH 2 LLH 1 LLH Imp Apply
1 58 68 58 20 100 1
1 58 68 58 43 25 0
2 20 27 43 74 50 1
2 20 27 43 2 10 0
2 20 27 43 58 8 0
3 43 27 58 68 875 1
4 37 20 2 37 1055 1
4 37 20 2 2 950 0
4 37 20 2 74 69 0
4 37 20 2 58 9 0

4.2. Experimental results

In this section, we describe the experiments to evaluate
classification accuracy and rules features produced by dif-
ferent rule learning algorithms from the optimisation data
sets. We have performed a number of experiments using
ten-fold cross validation on 16 different data files derived
by the Peckish hyperheuristics for the trainer scheduling
problem. The sizes of the data files after applying the PL/
SQL program vary. There are 12 data files, each contains
182-750 training instances, where each file represents only
one single run of the Peckish hyperheuristic. The remaining

50.00%

four data files contain 1500-2400 training instances and
represent ten combined solutions. Two popular traditional
classification algorithms (PART, C4.5) and three associa-
tive classification techniques (CBA, MCAR, MMAC) have
been compared in terms of accuracy. The experiments of
PART and C4.5 have been conducted using Weka software
system (WEKA, 2000) and CBA experiments have been
performed using a VC++ version provided by the authors
of CBA (1998). Finally MCAR and MMAC algorithms
were implemented in Java under Windows XP on 1.7
Ghz, 256 RAM machine.

The relative prediction accuracy, which corresponds to
the difference of the classification accuracy of CBA, PART
and C4.5 algorithms with respect to (MCAR, MMAC) are
shown in Figs. 24, respectively. Fig. 2 for instance signifies
the difference of the accuracy between CBA classifiers rela-
tive to those derived by (MCAR, MMAC) on the 16
optimisation data sets. The relative prediction accuracy

figures shown are computed using the formulae

(Accuracyycar —Accuracycpa) and (Accuracyyvac—Accuracycpa ) for CBA
Accuracycga Accuracycpa :

The same sort of formulae has been used for PART and
C4.5 algorithms, respectively. We used a minsupp of 2%
and a minconf of 30% in the experiments of CBA, MCAR
and MMAC algorithms. The label-weight evaluation mea-
sure (Thabtah et al., 2004) has been used to calculate the
accuracy for MMAC algorithm in the figures.
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Label-weight evaluation method assigns each class in a
multi-label rule a value based on its number of occurrences
with rule’s consequent (left-hand-side) in the training data.
To clarify, a training object may belong to several classes
where each one associated with it by a number of occur-
rences in the training data set. Each class can be assigned
a weight according to how many times that class has been
associated with the training object. Thus, unlike the error-
rate method (Witten & Frank, 2000), which considers only
one class for each rule in computing the correct predictions,
label-weight gives a value for each possible class in a rule
according to its frequency in the training data. This gives
the top ranked class in a rule the highest weight and not
all the weight as error-rate method does.

The accuracy results shown in the graphs indicated that
associative classification algorithms outperformed the other
learning techniques over the majority of test instances.
Particularly, CBA, MCAR and MMAC outperformed the
other learning algorithms on 5, 6, 7 and 5 benchmark
problems, respectively. The won-loss-tied record of MCAR
against CBA, C4.5 and PART are 11-5-0, 10-6-0 and 11-5-0,
respectively. The MMAC won-loss-tied records against
CBA, C4.5 and PART are, 10-6-0, 9-7-0 and 11-5-0, res-
pectively. These figures show that associative classifica-
tion approach is able to produce more accurate classifiers
than decision trees and rule induction approaches, res-
pectively.

It should be noted that CBA, PART and C4.5 algorithms
outperformed (MCAR, MMAC) on data set number 14 in
Figs. 2-4, respectively. After analysing the data in this par-
ticular set, it turned out that classes in this set are not evenly
distributed. For example, class LLH2 and LLH20 were fre-
quently applied by the hyperheuristic in this data set,
whereas, classes LLH27, LLH37, LLH43 and LLH58 were
rarely been used by the hyperheuristic. This is compound by
the limited number of training instances in this particular
data set (182 training data objects).

Analysis of the classifiers produced revealed consistency
in the accuracy of both PART and C4.5 because the differ-
ence on average in the accuracy between them in all exper-
iments is less than 1.6 %. This supports research works
conducted in Frank and Witten (1998), where they show

that despite the simplicity of PART, it generates rules as
accurately as C4.5 and RIPPER. Also C4.5 and PART
algorithms showed consistency in the number of rules
produced.

Analysis of the rules features generated from the hyper-
huristic data has been carried out. Fig. 5 shows the number
of rules extracted from nine data sets, categorised by the
number of classes. MMAC is able to extract rules that
are associated with up to four classes for this data. This
is one of the principle reasons for improving the accuracy
within applications. Fig. 5 also demonstrates that the
majority of rules created from each solution are associated
with one or two class labels. It turns out that this reflects
accurately the nature of the hyperheuristic data, since dur-
ing each iteration, normally only one or two low-level heu-
ristics improve on the objective function in the scheduling
problem. Thus, each training instance usually corresponds
to just one or two classes.

The additional classes discovered by MMAC algorithm
from the real data represent useful knowledge discarded by
CBA, PART and RIPPER algorithms. The fact that
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Fig. 5. Distribution of the rules with regards to their labels.
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MMAC is able to extract rules with multiple classes enables
domain experts to benefit from this additional useful infor-
mation. In addition, these multi-label rules can contribute
in the prediction step, possibly improving upon the classi-
fication accuracy.

The numbers of rules produced by C4.5, PART, CBA
and MCAR algorithms are listed in Table 3. Since MMAC
produces rules with multiple classes, we did not record their
numbers of rules generated for fair comparison. The values
in Table 3 show that C4.5 always generates more rules than
PART, CBA and MCAR. This contradicts some earlier
results reported in Liu et al. (1998) and Thabtah et al.
(2005) on classifier sizes obtained against UCI data collec-
tion (Merz & Murphy, 1996), which show that associative
classification approaches like CBA and MCAR normally
generate more rules than decision trees. For this reason,
we performed extensive analysis on the classifiers derived
by C4.5 from the optimisation data sets.

After analysing the decision trees constructed by C4.5
algorithm at each iteration, we observed that many rules
are generated, which do not cover any training data.
We found out that the reason for these many useless rules
appear to be the attribute that C4.5 splits the training
instances on, if that attribute has many distinct values
and only few of these values appear in the training data,
then a rule for each branch will be generated, and hence
only some of these branches cover training instances.
The rest will represent rules that cover not even a single
training instance. In other words, when the training data
set consists of attributes that have several distinct values
and a split occurs, the expected number of rules to be
derived by C4.5 can be large. Since data sets used to
derive the results in Table 3 contain four attributes where
each one of them has 10 different values (low-level heuris-
tics) and some of these low-level heuristics are never result
in solution improvement for the hyperheuristic, this
explains the large numbers of rules derived by C4.5.

Table 3
Number of rules of C4.5, PART, CBA and MCAR on the optimisation
data sets

Data C4.5 PART CBA MCAR
1 11 3 3 14
2 55 16 18 32
3 46 19 12 28
4 82 17 11 33
5 46 17 10 31
6 19 16 23 31
7 91 69 1 20
8 100 51 3 9
9 163 71 2 12

10 163 145 1 21

11 46 21 10 22

12 64 19 22 37

13 46 19 6 33

14 64 24 23 42

15 55 23 16 31

16 64 56 5 18

5. Conclusions

In this paper, we have studied data sets produced from a
complex personnel scheduling problem, called the training
scheduling problem. These data sets represent solutions
generated by a general hybrid approach, called the Peckish
hyperheuristic, which is a robust and general-purpose opti-
misation heuristic that requires us to decide which of sev-
eral simpler low-level heuristic techniques to apply at
each step while building the schedule. Our study focused
on analysing the behaviour of low-level heuristics that were
selected by the hyperheuristic and improved upon the qual-
ity of the current solution in order to extract useful rules.
These rules can be used later to quickly predict the appro-
priate low-level heuristics to call next. For this purpose, we
have compared five data mining classification algorithms,
(PART, C4.5, CBA, MCAR, MMAC) on 16 different solu-
tions produced by Peckish hyperheuristic.

The experimental tests showed a better performance for
associative classification techniques (MCAR, MMAC,
CBA) over decision trees (C4.5), rule induction (RIPPER)
and PART algorithm with reference to the accuracy of pre-
dicting the appropriate set of low-level heuristics. Since the
MMAC algorithm was able to produce rules with multiple
classes, including very useful information that the hype-
rheuristic can use in forecasting the behaviour of low-level
heuristic while constructing a new solution. It is the most
applicable data mining approach, which can be used to pre-
dict low-level heuristic performance within the Peckish
hyperheuristic.

Furthermore, C4.5 generated more rules than the other
rule learning algorithms since useless rules were extracted
by the C4.5 algorithm, which have not even a single repre-
sentation in the training data. The reason of these useless
rules turn out to be the training data attributes, in which
when some of these attributes are associated with many
distinct values and only a subset of these values have suf-
ficient representation in the training data, there will be
valid rules for this subset and the rest will represent useless
rules.
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