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ABSTRACT 

The highly dynamic nature of voltage-gated Na
+
 channel (VGSC) expression and its 

controlling mechanism(s) are not well understood. In this study, we investigated the 

possible involvement of nerve growth factor (NGF) in regulating VGSC activity in 

the strongly metastatic Mat-LyLu cell model of rat prostate cancer (PCa). NGF 

increased peak VGSC current density in a time- and dose-dependent manner. NGF 

also shifted voltage to peak and the half-activation voltage to more positive potentials, 

and produced currents with faster kinetics of activation; sensitivity to the VGSC 

blocker tetrodotoxin (TTX) was not affected. The NGF-induced increase in peak 

VGSC current density was suppressed by both the pan-trk antagonist K252a, and the 

protein kinase A (PKA) inhibitor KT5720. NGF did not affect the Nav1.7 mRNA 

level, but the total VGSC α-subunit protein level was upregulated. NGF potentiated 

the cells’ migration in Transwell assays, and this was not affected by TTX. We 

concluded that NGF upregulated functional VGSC expression in Mat-LyLu cells, 

with PKA as a signalling intermediate, but enhancement of migration by NGF was 

independent of VGSC activity. 
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INTRODUCTION 

Voltage-gated Na
+
 channels (VGSCs) are expressed not just in ‘excitable’ tissues 

(nerve and muscle), but also in a variety of ‘non-excitable’ cells, including 

lymphocytes (DeCoursey et al., 1985), endothelial cells (Gordienko and Tsukahara, 

1994), fibroblasts (Bakhramov et al., 1995), and glial cells (Chiu and Ritchie, 1984). 

Importantly, VGSC expression is highly dynamic, although the underlying 

mechanisms are not well understood (Diss et al., 2004). Nerve growth factor (NGF) is 

a member of the neurotrophin (NT) family of secreted proteins, which are well known 

for their involvement in neuronal growth promotion, survival, differentiation, 

plasticity and functional maintenance (Kovalchuk et al., 2004; Lu et al., 2005). 

Among the functional targets of NGF signalling are VGSCs (Dib-Hajj et al., 1998; 

Hilborn et al., 1997; Toledo-Aral et al., 1995). NGF may be associated with a variety 

of downstream signalling intermediates, including protein kinase A (PKA) 

(D'Arcangelo et al., 1993; Kalman et al., 1990). 

VGSC upregulation has been found in human prostate cancer (PCa) in vitro 

and in vivo, and correlated with metastatic progression (Diss et al., 2005). In vitro, 

VGSC activity has been shown to potentiate a variety of cell behaviours associated 

with the metastatic cascade, including morphological development and cellular 

process extension (Fraser et al., 1999), galvanotaxis (Djamgoz et al., 2001), lateral 

motility (Fraser et al., 2003), endocytic membrane activity (Krasowska et al., 2004; 

Mycielska et al., 2003), gene expression including activity-dependent regulation 

(Brackenbury and Djamgoz, 2006; Mycielska et al., 2005), and invasion (Bennett et 

al., 2004; Grimes et al., 1995; Laniado et al., 1997; Smith et al., 1998). These findings 

imply that VGSCs are tonically active in metastatic PCa cells, and enhance metastatic 
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cell behaviour. In fact, functional VGSC expression was considered to be “necessary 

and sufficient” for potentiation of PCa cell invasiveness (Bennett et al., 2004). 

In the strongly metastatic Dunning rat PCa Mat-LyLu cell line, VGSC/Nav1.7 

α-subunit mRNA was upregulated over 1000-fold, compared to the isogenic weakly 

metastatic AT-2 cells (Diss et al., 2001). Although the mechanism responsible for the 

VGSC upregulation is not yet known, serum concentration was found to modify 

VGSC current amplitude and kinetics, raising the possibility of modulation of VGSC 

expression/activity by growth factor(s) (Ding and Djamgoz, 2004). Interestingly, 

prostate contains one of the highest levels of NGF outside the nervous system 

(MacGrogan et al., 1992; Murphy et al., 1984). NGF also plays a significant role in 

proliferation, differentiation and apoptosis in a variety of cancers (Nakagawara, 

2001). As regards PCa, it has been shown that anchorage-independent growth of 

weakly metastatic human LNCaP cells can be stimulated by NGF (Delsite and 

Djakiew, 1999). Furthermore, NGF secretion has been detected in the strongly 

metastatic DU145 and PC-3 cell lines, and this enhanced the cells’ invasive capacity 

in vitro (Djakiew et al., 1993; Geldof et al., 1997). 

The available data, taken together, would raise the possibility, therefore, that 

NGF could be involved in VGSC regulation in PCa cells. In the present study, we 

investigated this possibility, using the rat Mat-LyLu cell model of metastatic PCa.  

 

 

MATERIALS AND METHODS 

 

Cell culture and pharmacological treatments 
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Mat-LyLu cells were cultured as described before (Grimes and Djamgoz, 1998). Prior 

to addition of any pharmacological agent, including NGF, cells were seeded in normal 

medium for 24 h, then washed 5 times in serum-free RPMI 1640. For some migration 

assays, cells were maintained for an additional 24 h in serum-free RPMI 1640 prior to 

addition of compounds. The following agents were used, added to serum-free RPMI 

1640: NGF (1-100 ng/ml; Alomone), K252a (100 nM; Calbiochem), KT5720 (500 

nM; Calbiochem), tetrodotoxin (TTX; 1 µM; Alomone). K252a is a general inhibitor 

of trk (including NGF) receptors (Mallei et al., 2004; Shimazu et al., 2005; Turner et 

al., 2004). KT5720 has previously been shown to inhibit PKA in a range of cells, 

including cancer (Ungefroren et al., 1997; Yang et al., 2003; Yoshida et al., 2005). 

We have previously shown that KT5720 would completely inhibit PKA activity in 

Mat-LyLu cells (Brackenbury and Djamgoz, 2006). All pharmacological agents used 

were non-toxic at their working concentrations, as described previously (Fraser et al., 

2003). 

 

Electrophysiology 

Whole-cell patch clamp recordings were performed on single cells as described 

previously (Grimes and Djamgoz, 1998). Three voltage-clamp protocols were used 

(holding potential = -100 mV): 

1. Basic current-voltage (I-V) protocol: Cells were depolarised to test potentials 

within the range -70 to +70 mV in 5 mV steps. The test pulse duration was 60 

ms; the interpulse duration was 2 s. 

2. Steady-state inactivation protocol: Prepulses in the range -130 to -10 mV were 

applied in 10 mV steps for durations of 1 s. A test pulse of -10 mV was 

immediately applied for 80 ms. The interpulse duration was 2 s. 
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3. TTX protocol: One test pulse of -10 mV (duration 60 ms) was applied while 

cell was perfused with normal external bath solution. TTX (1 nM - 6 µM) was 

applied to the cell for 30 s and then the test pulse was repeated. Reversibility 

of the effect of TTX was tested after returning to normal external bath solution 

and presenting a final test pulse.  

Recordings were obtained from up to 20 cells per condition, from at least 3 repeat 

treatments. Data from individual dishes were combined to provide an overall mean 

and standard error (SEM). 

 

Real-time PCR 

Extraction of total RNA, cDNA synthesis and real-time PCR were performed as 

before (Mycielska et al., 2005). Cytochrome b5 reductase (Cytb5R) gene, shown 

previously to be unchanged in rat PCa, was the ‘internal’ control gene (Diss et al., 

2001). The following primer pairs were used: 

1. Nav1.7: 5’-TTCATGACCTTGAGCAACCC-3’  

and 5’-TCTCTTCGAGTTCCTTCCTG-3’; annealing temperature, 60 ˚C; 

2. Cytb5R: 5’-ACACGCATCCCAAGTTTCCA-3’  

and 5’-CATCTCCTCATTCACGAAGC-3’; annealing temperature, 60 ˚C. 

The threshold amplification cycles were determined using the Opticon Monitor 2 

software (MJ Research) and then analysed by the 2
-∆∆CT

 method (Livak and 

Schmittgen, 2001). The level of Nav1.7 mRNA was compared relative to untreated 

control cells, for three separate treatments. 

 

Western blotting 
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Western blots were performed as described previously (Laniado et al., 1997). The 

primary antibodies used and their dilutions were as follows: 

1. Pan-VGSC antibody (1 µg/ml; Upstate), and 

2. Anti-actinin antibody (1 µl/ml; Sigma). 

The secondary antibodies were peroxidase-conjugated swine anti-rabbit, and goat 

anti-mouse, respectively (Dako). Densitometric analysis was performed using Image-

Pro Plus software (Media Cybernetics). Signal intensity was normalised to anti-

actinin antibody as a loading control/reference, for at least 3 separate treatments. 

 

Immunocytochemistry and confocal microscopy 

Immunocytochemistry was performed as described previously (Chioni et al., 2005). 

Cells were labelled first with fluorescein isothiocyanate (FITC)-conjugated 

concanavalin A (Sigma) for 20 min as a plasma membrane marker, and then 

permeabilised in saponin (0.1 %) for 5 min. Cells were incubated with the pan-VGSC 

primary antibody for 1 h. The secondary antibody was Alexa567-conjugated goat 

anti-rabbit IgG (Dako) and mounting was in Vectashield (Vector Laboratories). 

Samples were viewed using a Leica DM IRBE microscope (with a X100 objective) 

with a confocal laser scanner (Leica TCS-NT with Ar/Kr laser). 

 

Digital image analysis 

Densitometric analysis was performed using the LCS Lite software (Leica), as 

follows: 

1. Protein distribution was determined using the “straight line profile” function 

drawn across the cytoplasm avoiding the nucleus, as described previously 

(Brackenbury and Djamgoz, 2006). Signal intensity in plasma membrane 
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region, set to cover 1.5 µm inward from the edge of concanavalin A staining, 

was compared with cytoplasmic signal intensity within the central 30 % of the 

line profile. Measurements were taken from ≥ 6 cells (randomly chosen) per 

condition, for three repeat treatments. 

2. Cell surface VGSC expression was determined using the “freeform line 

profile” function drawn around the cell surface, determined by concanavalin A 

staining. Measurements were taken from 30 cells per condition, for three 

repeat treatments. 

3. Internal protein level was assessed in 4.8 µm
2
 rectangular sections using the 

“area histogram” function. Measurements were taken from 30 cells per 

condition, for three repeat treatments. 

 

Migration assay 

In order to achieve steady-states, cells were maintained for 24 h in serum-free 

medium, prior to treatment with NGF (20 ng/ml) and/or TTX (1 µM) for a further 24 

h. Cells (1.5 x 10
5
 cells/ml) were then plated onto 12 µm-pore Transwell filters in a 

12-well plate, according to the manufacturer’s instructions (Corning), in a 0.1-1 % 

FBS chemotactic gradient. The number of cells migrating over 7 h was determined 

using the MTT assay (Grimes et al., 1995). Results were compiled as the mean of five 

repeats containing at least two platings. 

 

Curve fitting and data analysis 

Conductance-voltage relationships and curve fitting were performed as described 

previously (Ding and Djamgoz, 2004). TTX dose-response data were fitted using 
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Excel (Micosoft) and Origin (OriginLab, Northampton, MA) software to a Langmuir 

adsoption isotherm: 

y = 1 / ( 1 + [TTX] / IC50 ) 

where IC50 is the concentration of TTX for 50 % VGSC blockage. All quantitative 

data are presented as means ± standard errors, unless stated otherwise. Statistical 

significance was determined with Student's t test, or ANOVA followed by Newman-

Keuls post hoc analysis, as appropriate. Results were considered significant at P < 

0.05 (*). 

 

 

RESULTS 

 

NGF increased VGSC functional expression in a dose-dependent manner 

Pre-incubation of Mat-LyLu cells in NGF (20 ng/ml) for 24 h significantly increased 

peak VGSC current density by 62 %, from -30.8 ± 5.6 pA/pF to -49.9 pA/pF (P < 

0.05; n = 20 for each; Figure 1A, B). Lower (1 ng/ml) and higher (100 ng/ml) 

concentrations of NGF had no effect (Figure 1B). Accordingly, 20 ng/ml NGF was 

adopted as the working concentration in the remainder of the experiments. Short-term 

(30 min) incubation with 20 ng/ml NGF had no effect on peak VGSC current density.  

The effect of 24 h incubation with NGF (20 ng/ml) on VGSC characteristics 

was studied further (Table I). NGF significantly depolarised voltage for current peak 

(Vp) from -5.0 ± 2.1 mV to 2.3 ± 2.1 mV (P < 0.05; n = 20 for each) and also 

depolarised the half-activation voltage (V1/2) from -19.7 ± 1.6 mV to -15.3 ± 1.4 mV 

(P < 0.05; n = 20 for each; Figures 1C, 2A). There was no effect on activation voltage, 

activation slope factor, or steady-state inactivation (Table I). There was a window 
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current between -55 mV and -10 mV in control cells, and this changed slightly to 

between -50 mV and -20 mV in NGF-treated cells (Figure 2A inset). The NGF 

treatment partially reduced the voltage dependency of time to peak (Tp; Figure 2B, 

Table I). There was no effect on fast (τf) and slow (τs) time constants of inactivation at 

10 mV, derived from double-exponential fits (Table I). Similarly, NGF had no effect 

on the cells’ TTX sensitivity profile (Figure 2C), and the IC50 was unchanged at ~21 

nM (Table I). 

Incubation with K252a (100 nM), a pan-trk receptor inhibitor (Mallei et al., 

2004; Shimazu et al., 2005; Turner et al., 2004) for 24 h had no effect on peak VGSC 

current density (P = 0.19; n = 20 for each). However, co-application of K252a with 

NGF (20 ng/ml) blocked the increasing effect of NGF on peak current density (P = 

0.58 compared with K252a alone; n > 19 for each). 

In summary, the 24 h NGF treatment upregulated VGSC functional 

expression. TTX sensitivity was unchanged, consistent the VGSC isoform expression 

profile remaining the same. 

 

Inhibition of PKA abrogated the effect of NGF on VGSC current enhancement 

Treatment with KT5720 (500 nM), a PKA inhibitor (Brackenbury and Djamgoz, 

2006; Cabell and Audesirk, 1993) for 24 h also had no effect on peak VGSC current 

density (P = 0.51; n > 19 for each; Figure 3). However, when co-applied with NGF 

(20 ng/ml), KT5720 blocked the effect of NGF on peak VGSC current density (P = 

0.54, cf. KT5720 alone; P < 0.01 cf. NGF alone; n > 19; Figure 3). 

 These data are consistent with NGF increasing VGSC functional expression 

via PKA activity. We next analysed at what level(s) (mRNA, protein, post-

translational modification) the VGSC upregulation occurred. 
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NGF had no effect on Nav1.7 mRNA expression but increased VGSC protein 

level 

Mat-LyLu cells were treated with NGF and/or K252a for 24 h, after which the mRNA 

level of Nav1.7, the predominant VGSC isoform expressed in PCa cells (Diss et al., 

2001), was assessed by real-time PCR. NGF (20 ng/ml) did not significantly affect the 

Nav1.7 mRNA level (P = 0.53; n = 3; Figure 4A). Similarly, K252a (100 nM) had no 

effect, either when applied alone, or when co-applied with NGF (P = 0.56 and 0.30, 

respectively; n = 3; Figure 4A). 

 Treatment with NGF for 24 h increased the total VGSC α-subunit protein 

level, detected by Western blot with a pan-VGSC antibody, by 49 % (P < 0.05; n = 3; 

Figure 4B). Consistent with this, confocal immunocytochemistry with the pan-VGSC 

antibody also revealed that NGF increased the VGSC α-subunit protein level (Figure 

5A). After treatment with NGF for 24 h, the level of internal and plasma membrane 

VGSC α-subunit protein levels increased by 35 ± 0.5 % and 59 ± 0.5 %, respectively 

(P < 0.001 for both; n = 90 cells for each; Figure 5A-C).  

The distribution of VGSC immunoreactivity along cellular cross-sections was 

quantified and two regions were compared: (1) ‘plasma membrane’ and (2) ‘internal’ 

(Brackenbury and Djamgoz, 2006). The relative level of VGSC protein in both 

regions was unaffected by the NGF treatment, consistent with there being no change 

in the trafficking (P = 0.48 and P = 0.93, respectively; n = 20 cells for each; Figure 

5D). We concluded that NGF increased VGSC α-subunit protein expression, without 

affecting the Nav1.7 mRNA level, or the cycling balance of VGSC proteins. 

 

NGF increased migration in vitro 
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Pre-treatment of Mat-LyLu cells with NGF (20 ng/ml) for 24 h increased migration 

by 49 % (P < 0.05; n = 12; Figure 6). In contrast, under these conditions, TTX (1 µM) 

had no effect compared to control (P = 0.134; n = 12). In the presence of TTX, NGF 

could still increase migration (P < 0.001 cf. TTX alone; n = 12). In fact, there was no 

difference between the effects of NGF alone, and NGF + TTX (P = 0.83; n = 12). It 

was concluded that in serum-free growth medium, NGF increased migration, without 

any VGSC involvement. 

 

 

DISCUSSION 

 

The main conclusions of this study are as follows: (1) NGF increased total and plasma 

membrane VGSC protein levels in Mat-LyLu cells, without affecting the level of 

Nav1.7 mRNA, or the balance of protein cycling. (2) NGF increased VGSC current 

density, via trk receptor(s). (3) The NGF-induced increase in VGSC current density 

was dependent on PKA activity. (4) NGF increased migration in vitro, independent of 

VGSC activity. 

 

Involvement of trk receptors and PKA 

Treatment with NGF for 24 h increased VGSC peak current density in a bell-shaped 

dose-dependent manner, as reported before for growth factors (e.g. Meng et al., 2006; 

Neal et al., 2003; Wei et al., 2004). Co-application of the pan-trk receptor inhibitor 

K252a (Mallei et al., 2004; Shimazu et al., 2005) with NGF prevented the NGF-

induced increase in VGSC current density, consistent with the NGF effect being 

mediated by trk receptor activation. TrkA receptors were previously shown to be 
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expressed in various Dunning cell lines and the K252a analogue CEP-751 inhibited 

their in vivo growth (Dionne et al., 1998).  

Importantly, in Mat-LyLu cells, the NGF-induced increase in VGSC current 

density was blocked completely by the PKA inhibitor KT5720 (Figure 3). It has also 

been reported elsewhere that NGF could increase VGSC functional activity by 

activating PKA. For example, in PC12 cells, treatment with NGF or activation of 

PKA (with forskolin or 8-Br-cyclic AMP) for 1-10 days, increased VGSC current 

density (Bouron et al., 1999; Furukawa et al., 1993), and this could be via activation 

of PKA (D'Arcangelo et al., 1993; Kalman et al., 1990). 

 

Effects of NGF on VGSC mRNA and protein levels 

Treatment for 24 h with NGF did not significantly affect the mRNA level of Nav1.7, 

the predominant isoform expressed in Mat-LyLu cells (Diss et al., 2001). However, 

similar treatment increased the total VGSC protein level and membrane current 

density. These data suggested that NGF induced de novo VGSC protein synthesis, 

also consistent with ‘short-term’ (30 min) treatment having no effect. The extent of 

the VGSC protein increase was similar for both the cytoplasm and the plasma 

membrane. This could be due to the following: (1) The effect of NGF was 

transcriptional, but included de novo synthesis of mRNA of VGSC isoform(s) other 

than Nav1.7. For example, NGF has previously been shown to induce Nav1.2 mRNA 

expression in PC12 cells (D'Arcangelo et al., 1993). (2) The effect of NGF on 

transcription of Nav1.7 and/or other VGSC isoforms was transient, and occurred prior 

to the PCR assay at 24 h. (3) The NGF effect was mainly post-transcriptional, 

upregulating the level of VGSC proteins. Whilst these could include Nav1.7, TTX-

resistant VGSCs (Nav1.5, Nav1.8 and Nav1.9) can be ruled out since the IC50 for 
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TTX did not change. Regulation of mRNA and protein levels may be separate and 

independent (Gu et al., 2006; Martin and Zukin, 2006; Orphanides and Reinberg, 2002; 

Pfeiffer and Huber, 2006; Ropponen et al., 2001; Schedel et al., 2004; Sola et al., 

1999). Furthermore, mRNA localisation/degradation, and translational control 

processes may be involved (Ben Fredj et al., 2004; St Johnston, 2005; Tiedge et al., 

1999). Interestingly, PKA itself has been found to control localised protein synthesis 

from docked mRNA (Smith et al., 2005). (4) The NGF/PKA-induced upregulation of 

VGSC protein level was caused by an increase in protein stability, e.g. by reducing 

ubiquitination (Hino et al., 2005). Further work would be required to evaluate these 

possibilities, and to confirm these effects in other PCa cell lines, including those of 

human origin. 

 

NGF, VGSC activity and control of migration 

Overall, the data taken together with the published evidence are consistent with NGF 

increasing VGSC functional expression in Mat-LyLu cells, as follows: 

NGF à Trk receptor à PKA activation (Bouron et al., 1999; D'Arcangelo et 

al., 1993; Kalman et al., 1990) à VGSC α-subunit protein upregulation à increased 

functional VGSC availability (Wada et al., 2004; Yuhi et al., 1996; Zhou et al., 2000). 

This scheme does not exclude the possibility that the pro-migratory effect of NGF 

could occur through PKA. 

Pre-treatment of Mat-LyLu cells in serum-free growth medium with NGF for 

24 h enhanced migration by ~50 %, in general agreement with the potentiating role of 

NGF in PCa metastasis (Geldof et al., 1997; Montano and Djamgoz, 2004; Sortino et 

al., 2000). Interestingly, similar pre-treatment with TTX did not significantly reduce 

migration in the presence or absence of NGF, suggesting that in serum-free 
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conditions, VGSC activity was not involved in potentiating migration, and that the 

enhancement by NGF was independent of VGSC activity. However, other ion 

channels may play a role, e.g. voltage-gated K
+
 channels (Kim et al., 2004; O'Grady 

and Lee, 2005). In contrast, we have previously shown that when Mat-LyLu cells 

were grown in 1 % serum, TTX inhibited migration (Brackenbury and Djamgoz, 

2006). Thus, different serum factor(s) may be required for the VGSC-dependent 

potentiation of migration and/or the NGF-induced upregulation of VGSC activity 

could enhance other component(s) of the metastatic cascade. 
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TITLES AND LEGENDS TO FIGURES 

 

Figure 1 

NGF increased peak VGSC current density. (A) Typical whole-cell VGSC currents 

elicited by 60 ms depolarising voltage pulses between -70 mV and +70 mV applied 

from a holding potential of -100 mV: (i) a control cell; (ii) a cell pre-treated with 20 

ng/ml NGF for 24 h. (B) Quantitative comparison of peak current densities recorded 

in control cells and cells pre-treated with 1-100 ng/ml NGF for 24 h. (C) Mean 

current-voltage relationships for control cells (dark circles) and cells pre-treated with 

20 ng/ml NGF for 24 h (light circles). Data are presented as mean ± SEM (n = 20). 

Significance: (*) P < 0.05; ANOVA with Newman-Keuls. 

 

Figure 2 

NGF decreased time to peak but did not affect TTX sensitivity. (A) Mean availability-

voltage (squares) and relative conductance (G/Gmax)-voltage relationships (circles) for 

control cells (dark symbols) and cells pre-treated with 20 ng/ml NGF for 24 h (light 

symbols). Control (solid lines) and NGF data (dotted lines) are fitted with Boltzmann 

functions. Inset magnifies a window in which current is activated and not fully 

inactivated. (B) Dependence of time to peak on membrane voltage for control cells 

(dark squares), and cells treated with 20 ng/ml NGF for 24 h (light squares). Control 

(solid line) and NGF data (dashed line) are fitted with single exponential functions. 

(C) Reduction of VGSC current by TTX for control cells (dark circles), and cells 

treated with 20 ng/ml NGF for 24 h (light circles). Control (solid line) and NGF data 

(dashed line) are fitted to Langmuir adsoption isotherms. Data are presented as mean 

± SEM (n > 17). Significance: (*) P < 0.05; Student’s t test. 
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Figure 3 

The PKA inhibitor KT5720 reversed the potentiating effect of NGF on peak current 

density. Peak current densities were recorded after pre-treatment for 24 h in control 

conditions, or with NGF (20 ng/ml) and/or KT5720 (500 nM). Data are presented as 

mean and SEM (n > 19). Significance: (X) P > 0.05 cf. control; (*) P < 0.05; ANOVA 

with Newman-Keuls. 

 

Figure 4 

NGF did not affect the Nav1.7 mRNA level, but increased the total VGSC protein 

level. (A) Relative Nav1.7 mRNA levels in control cells and cells treated for 24 h 

with NGF (20 ng/ml), K252a (100 nM), and NGF (20 ng/ml) + K252a (100 nM). The 

Nav1.7 level was normalised to cytochrome-b5 reductase (Cytb5R) by the 2
-∆∆Ct

 

method. Errors are propagated through the 2
-∆∆Ct

 analysis. Inset, typical gel images of 

PCR products for Nav1.7 and Cytb5R. Lanes: 1, control; 2, pre-treated for 24 h with 

NGF (20 ng/ml); 3, K252a (100 nM); 4, NGF (20 ng/ml) + K252a (100 nM). (B) 

Relative total VGSC protein level in control cells and cells treated with NGF (20 

ng/ml) for 24 h. The VGSC α-subunit protein level was normalised to the actinin 

control. Inset, Western blot with 60 µg of total protein per lane from cells treated with 

or without NGF (20 ng/ml) for 24 h, using a pan-VGSC antibody, and an actinin 

antibody as a control for loading. Data are presented as mean and SEM (n = 3). 

Significance: (X) P > 0.05; (*) P < 0.05; (A) ANOVA with Newman-Keuls; (B) 

Student’s t test. 

 

Figure 5 
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NGF increased VGSC immunoreactivity internally and at the plasma membrane. (A) 

Typical confocal images of control cells, and cells treated with NGF (20 ng/ml) for 24 

h, immunolabelled with pan-VGSC α-subunit antibody. Scale bar, 15 µm. (B) 

Relative internal VGSC protein level in control cells, and cells treated with NGF (20 

ng/ml) for 24 h. (C) Relative peripheral VGSC protein level in control cells, or cells 

treated with NGF (20 ng/ml) for 24 h. (D) VGSC protein distribution along 

subcellular cross-sections (%). Left-hand bars, 1.5 µm sections measured inward from 

edge of concanavalin A staining; Right-hand bars, middle 30 % of cross-section. PM, 

plasma membrane; INT, internal. Data are presented as mean and SEM (B, C n = 90; 

D, n = 20). Significance: (X) P > 0.05; (***) P < 0.001; Student’s t test. 

 

Figure 6 

NGF increased the relative number of cells migrating through a Transwell chamber 

over 7 h. Cells were grown for 24 h in serum-free medium, or with NGF (20 ng/ml), 

TTX (1 µM), or NGF (20 ng/ml) + TTX (1 µM), prior to the Transwell assay. Data 

are presented as mean and SEM (n = 12). Significance: (X) P > 0.05, (*) P < 0.05; 

ANOVA with Newman-Keuls. 
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