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In a recognition context, discriminating agents decide whether to accept or to reject. In the honeybee, en-
trance guards distinguish between nestmates and intruders. Those below a threshold of dissimilarity are
accepted. However, the threshold is dependent on ecological conditions and may shift to become either
restrictive or permissive, depending on the frequency of intrusion and cost of admitting an intruder. Pre-
vious research on the honeybee has shown that both the number of guards and their acceptance threshold
to conspecific non-nestmates can change dramatically over weeks owing to changing nectar availability
and robbing intensity. This project investigated whether these changes could also occur rapidly, over min-
utes, in response to sudden increases in conspecific intruders (robber bees). We induced high levels of in-
trusion at nest entrances and determined changes in the number of guards, the number of fights per guard,
and the acceptance thresholds of guards. Our results show a rapid response within 15 min. At the level of
individual guards, acceptance declined from 83 to 55% for nestmates and 67 to 43% for conspecific non-
nestmates. Also, per individual guard, mean fights increased from 0.005 to 0.06 fights/guard. At the colony
level, the mean number of guards at the entrance rose from 1.9 to 2.3, and overall acceptance in a 3-min
trial declined from 74 to 52% for nestmates and 59 to 30% for conspecific non-nestmates. These results
show that honeybees can make rapid behavioural shifts at both the colony and the individual levels.

© 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
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Animals may increase their fitness by making appropriate
recognition decisions. For example, recognizing kin may
provide both direct and indirect positive benefits (for
reviews, see Hamilton 1964; Fletcher & Michener 1987;
Waldman 1988; Hepper 1991; Holmes 2004; for some
examples, see Cheney & Seyfarth 1982, vervet monkeys;
Mateo 2003, rodents; Mehdiabadi et al. 2006, social mi-
crobe, Dictyostelium purpureum; and Schausberger 2007,
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predatory mites, Phytoseiulus persimilis, in which kin are
helped more than nonkin). Alternatively, it is equally im-
portant to recognize potential threats and to act aggres-
sively (Sherman et al. 1997), which is especially relevant
for vulnerable locations like a nest entrance. This is evi-
dent within the social insects, as they normally possess
entrance guards to recognize and exclude intruders while
allowing nestmates to enter (termites, Wilson 1971; ants,
Holldobler & Wilson 1990; wasps, Gamboa et al. 1996;
and honeybees, Butler & Free 1952; Moore et al. 1987;
Breed et al. 1990). Honeybees are a good model system
in which to study recognition because colonies and indi-
vidual bees show adaptive shifts in their recognition be-
haviour in response to changing threats.

Honeybees from different colonies will rob from one
another’s honey supplies (Free 1977), which could lead to
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the death of the victim colony. This makes the guard and
her recognition abilities critical for colony survival. The
threat of robbing from conspecific non-nestmates is
greater when nectar is in short supply (Seeley 1985). Dur-
ing these times, victim colonies respond adaptively, and at
the colony level, more guards are recruited to the nest en-
trance (Downs & Ratnieks 2000). However, each individ-
ual guard will also respond. Guards base their acceptance
or rejection on a comparison between the odour of each
incomer with a colony odour ‘template’ (Getz 1982;
Lacy & Sherman 1983; Couvillon et al. 2007). They accept
individuals that are below a threshold of dissimilarity
(Reeve 1989; Crozier & Pamilo 1996). When nectar is in
short supply and robbing is a threat, guards adopt a non-
permissive acceptance threshold and reject many incom-
ers, which include almost all conspecific non-nestmates
and even some nestmates (Downs & Ratnieks 2000).

In a field study in southern Florida, U.S.A., these
changes in guard number and in individual guard accep-
tance thresholds occurred over several weeks during the
gradual shift from nectar dearth to nectar abundance. As
citrus trees came into bloom, robbing by conspecifics
diminished from a high frequency to zero (Downs & Rat-
nieks 2000). These results represented the first field data to
support the predictions of the acceptance threshold
model, which describes a context-dependent response to
recognition that is based on the frequency of intruder con-
tact and cost of errors (Reeve 1989). However, it was not
previously known if honeybee guards are also capable of
responding rapidly, in minutes, to increased threats of
robbing.

Here we induced sudden increases in the number of
conspecific robbers at hive entrances during a period of
nectar dearth. Within minutes, there was an increase in
the number of guards and in the number of fights per
guard and the acceptance threshold of each individual
guard quickly became less permissive. The honeybee
colonies showed a rapid, adaptive response to increased
numbers of robbers, and this response occurred at both
the individual and the colony levels.

METHODS
Study Details

We conducted this study in an apiary in Sheffield, U.K,,
using a behavioural assay of discrimination by natural
entrance guards (Downs & Ratnieks 2000; M. Couvillon,
G. G. F. Roy, & E L. W. Ratnieks, unpublished data). We
captured returning foragers without pollen in individual
vials and chilled them until they could move but not fly.
We then allowed them about 1 min to warm to ambient
temperature and placed them, one at a time using forceps,
on the entrance platform (approximately 20 x 10 cm) of
a discriminator colony. We then observed the reaction of
the guards for 3 min. The entrance observer, blind to the
source of the introduced bee (Gamboa et al. 1991), scored
the introduction as a rejection if the guards stung, grap-
pled, pulled, or bit the introduced bee. We scored the in-
troduction as acceptance if the introduced insect was left

alone or allowed to enter the hive after being inspected
by one or more guards. We classed any bee that was not
inspected during the 3 min on the platform or that en-
tered the colony without inspection as an acceptance. In
most cases (>95%), introduced bees were immediately
contacted by guards and either accepted or rejected. We
used seven hives in total, five of which acted as discrimi-
nator hives and received nestmate and non-nestmates in-
troductions. The remaining two hives served as either the
robber hive (hive X) or a source of control non-nestmates
worker bees (hive Y).

Data Collection

Quantifying guard numbers and intruder intensity

We collected data from 2 to 24 October 2006, from 1030
to 1600 hours, on days when the temperature was at least
13 °C and foragers were active. This time of year was ideal
for the experiment. The autumn weather was warm
enough for the bees to fly, but there was little nectar avail-
able. The lack of nectar meant that it was easy to stimulate
robbing (see below) and that guards were unlikely to ac-
cept all intruders (Downs & Ratnieks 2000). The prerob-
bing acceptance levels were similar to those previously
reported for this time of year (Downs et al. 2000; Couvil-
lon et al. 2007, unpublished data).

To investigate changes in guarding intensity and natural
intrusions, it was necessary to quantify the numbers of
guards and natural fights (as a proxy for intrusion)
between guards and intruders observed on the entrance
platforms at the start of each series, both before and
during the robbing. We identified guards by their charac-
teristic posture of standing with raised forelegs and for-
ward-facing antennae (Butler & Free 1952) and other
behavioural idiosyncrasies, specifically not flying away
and behaving aggressively towards bees attempting to en-
ter the hive. We counted fights for two reasons. First, an
increase in fights on the platform was a measure of in-
creased robbing. Second, the total number of fights and
the number of fights per guard were measures of the col-
ony and individual level responses. In particular, it was
important to determine whether the increase in counted
fights was due simply to more guards (colony response)
or to each individual guard rejecting/fighting more (indi-
vidual response).

Quantifying acceptance threshold of guards

We determined acceptance of both nestmate and non-
nestmates workers both before and after the induction of
frequent robbing by hive X. In one series of introductions,
each of the five discriminator hives (A—E) received in
random order one nestmate, one non-nestmate from the
robbing hive (X), and one non-nestmate from the control
hive (Y), making a total of 15 introductions. We used non-
nestmates from two hives, one of which was induced to
rob, to determine if guards learn to recognize and
selectively reject workers from the robber hive.

We performed four trials, each taking 2 consecutive
days. The first day established baseline, prerobbing,
acceptance levels through six series of introductions. On



the second day, we completed two additional series in the
morning, before high robbing was induced, to confirm
that the guards were accepting at levels similar to the
previous day. We then immediately stimulated robbing by
placing a shallow dish with 100 ml of 2 M sucrose solution
on the entrance platform of the robber hive (hive X). The
platform was covered with a piece of glass to prevent for-
agers from other hives from finding the syrup. Foragers
from hive X, upon discovering this rich and nearby food
source, would re-enter their hive and perform recruitment
dances (von Frisch 1967), recruiting many foragers to
leave the hive and to examine the nearby area, which in-
cluded the five discriminator hives located 1—4 m away.
Data collection resumed 15 min later. We performed eight
postrobbing series of introductions. We refilled the 2 M su-
crose solution as needed throughout the afternoon to
maintain high robbing levels. At the end of the day, we re-
moved the sucrose solution.

We then left the hives undisturbed for at least 1 week
before performing the next trial, to allow guarding
behaviour to return to prerobbing levels. Based on the
life cycle of honeybees (Seeley 1985) and evidence that
guard turnover happens frequently, with each guard work-
ing on average for a day (Breed et al. 1992), the guards
present in each trial should be different so that the data
from different trials are independent. The use of five dis-
criminator hives also ensured adequate replication. A total
of 960 bees were introduced throughout the entire
experiment.

Comparing acceptance of ‘first contact’ guards with
overall acceptance

For over half of the trials, in addition to the overall
‘verdict’ (accept/reject) in the 3 min following the intro-
duction of a nestmate or non-nestmate, we also separately
recorded the reaction of the first guard that contacted the
introduced bee. This was done, as well as scoring the in-
crease in fights per guards, to investigate differences in in-
dividual- and colony-level responses. We wished to
determine whether the cumulative decrease in the propor-
tion of nestmates and conspecific non-nestmates accepted
was due to changes in the number of guards (i.e. more
guards make it harder for conspecifics to be accepted) or
shifts in the threshold of individual guards towards being
less permissive.

Statistics

We used a generalized linear mixed model (GLMM) with
binomial error structure and the free software environ-
ment R for statistical computing and analysis. This allows
for both fixed and random factors to be investigated and is
well suited to nonparametric data. To test for the effect of
frequent robbing on acceptance, we compared the accep-
tance of introduced nestmates and non-nestmates before
and after robbing was induced. The dependent variable
was whether or not an introduced bee was accepted. The
model is presented in more detail in the supplementary
online information (Table S1).

COUVILLON ET AL.: RAPID RESPONSE TO ROBBING

RESULTS

Guards became significantly less accepting after robbing
by hive X was induced (GLMM: tg46 = —5.44, P < 0.0001,
Fig. 1, Supplementary Table S1). This decrease in overall
acceptance was seen for both nestmate (from 74 to 52%)
and conspecific non-nestmate (from 59 to 30%) bees
(Fig. 1). This effect was verified in the model by the non-
significant interaction between nestmate status and rob-
bing (GLMM: tg45=—-0.78, P=0.44, Supplementary
Table S1), meaning that robbing caused a decrease in ac-
ceptance of both nestmates and non-nestmates. Addition-
ally, acceptance or rejection of the introduced bees by the
first guard to contact it did not significantly differ from
the overall acceptance or rejection of the introduced bee
(nestmates: x% =0.004, P=0.95; non-nestmates:
%3 = 0.306, P = 0.58), showing that the acceptance thresh-
old of individual guards became less permissive when rob-
bing increased. In particular, the increased rejection of
introduced bees was not simply because there were more
guards and a greater chance of being rejected. We were
able to pool the data across trials in this analysis because
the GLMM showed that there was no effect of trial or
type of non-nestmate (see below).

As shown above, guards showed a highly significant
ability to discriminate nestmates from non-nestmates
(GLMM: to46 = —6.07, P < 0.0001, Fig. 1). However, there
was no significant difference in the acceptance of non-
nestmate worker bees from hive X, the robbing hive, versus
hive Y, the nonrobbing hive (GLMM: (f49=—0.71,
P = 0.48, Supplementary Table S1). There was also no effect
of trial (GLMM: t469 = —0.90, P=0.37) or day (GLMM:
tye0 = 0.57, P =0.57), which allowed us to remove these

O Low robbing nestmate
@ Low robbing non-nestmate
B High robbing both
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Figure 1. Overall guard acceptance per hive over 3 min significantly
declines after robbing from a nearby hive is stimulated. Data are
pooled across trials. For each hive, the first two bars are for nestmates
and the last two bars are for non-nestmates. Error bars indicate the
standard deviation between trials of the means calculated from the
pooled data.
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factors from the model. The nonsignificance of day indi-
cates that the two prerobbing series performed on the sec-
ond day of each trial were not significantly different from
the six prerobbing series of the first day of the trial. There
was an effect of hive, with two hives being significantly
less accepting, so hive was retained as a factor in the model.
However, even though two hives were more discriminat-
ing, all five discriminator hives displayed the significant
trend of decreasing acceptance following the increase in
robbing, showing that we observed a general result (Fig. 1).
The number of guards at a hive entrance increased
significantly, but only by approximately 20%, from an
average of 1.9 before robbing was induced to 2.3 after
(ti50 = 2.89, P =0.004, Fig. 2). The number of simulta-
neous fights on the entrance platform increased approxi-
mately 1000%, from an average of 0.005 to 0.06 fights
per guard at any one time (Wilcoxon signed rank:
T=99.0, N = 14, P = 0.004, Fig. 3). Therefore, both guard
number and fights per guard increased with robbing.
The effect of robbing was seen immediately. Average
overall acceptance decreased from 80 to 58% for nest-
mates and 61 to 34% for non-nestmates in series 7 and 8,
the last prerobbing series performed on the second day,
versus series 9 and 10, the first performed postrobbing
series (Wilcoxon signed rank: T = 53.0, N= 10, P = 0.01).

DISCUSSION

The results show clearly that honeybee colonies and
individual bees can make rapid adaptive shifts in guarding
behaviour in response to sudden increases in robbing
intensity. Frequent robbing caused guard numbers to
increase significantly, although only by 20%. However,
we saw a significant, 10-fold increase in the number of
fights per guard, indicating that the increase in fights was
not just from more guards being present on the platform.
Additionally, our technique of inducing robbing provides
a novel method of changing the frequency of interactions
with undesirable recipients, which is predicted to be
a catalyst for shifting acceptance thresholds (Reeve 1989;
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Figure 2. The average number of guards significantly increased in all
five hives after robbing. Data were averaged across all four trials. Er-
ror bars indicate the standard deviation between trials.
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Figure 3. The average number of fights per guard increased in all five
hives. ‘0’ indicates where there were no fights. For the purposes of
this graph, data were pooled for trials, and error bars indicate the
standard deviation between trials.

Downs & Ratnieks 2000). Context-dependent shifts in ac-
ceptance have been previously shown (Starks et al. 1998;
Holen & Johnstone 2004; Liebert & Starks 2004). How-
ever, our study shows that the changes might occur in
a matter of minutes for both the individual guard and
the colony as a whole.

The likelihood of acceptance of introduced bees by the
guards became significantly less, resulting in 22% fewer
nestmates and 29% fewer conspecific non-nestmates being
accepted. This decrease in overall acceptance (i.e. whether
an incoming bee was accepted over 3 min by all guards)
was also reflected in the behaviour of the first guard to con-
tact the incomer. Acceptance decreased by 20 and 16%, for
nestmates and conspecific non-nestmates, respectively.
These proportions were not significantly different from
the overall decrease, showing that the overall decreased
acceptance was not just due to more guards being around
potentially to reject. Given that there was only a 20% in-
crease in the number of guards, the main component of
the increased overall rejection of incomers was the less per-
missive acceptance threshold of individual guards.

As expected, the less permissive acceptance threshold
following the increase in robbing resulted in the rejection
of more nestmates as well as non-nestmates. This is
expected because nestmates and conspecific non-nest-
mates should have overlapping cue distributions (Lacy &
Sherman 1983; Reeve 1989; Couvillon et al., unpublished
data). A restrictive acceptance threshold is predicted to af-
fect both nestmates and non-nestmates, resulting in an in-
crease in rejection errors of nestmates and a decrease in
acceptance errors of non-nestmates (Couvillon & Ratnieks
2008).

Our results showed no difference in the treatment of
non-nestmates from the robbing hive (X) versus those
from the nonrobbing hive (Y). This may be because guards
were unable to distinguish these two categories of workers.
However, even if they could be distinguished, a more
adaptive response may simply be to become more globally
rejecting, as the presence of a robber is usually indicative
of a time period when robbing is likely, which is predicted



to cause the acceptance threshold to shift to a less
permissive position (Reeve 1989; Sherman et al. 1997).
The latter seems more likely, especially as it was noted
how nestmate acceptance also decreased.

Having a response at both the level of the individual
and the colony level is a property frequently described in
social insects (Robinson 1992; Gordon 1996; Bonabeau
et al. 1997; Jones et al. 2004). Each individual insect re-
sponds to her local cues; however, there emerges at the
colony level a response that is not the simple summation
of the interactions (Camazine et al. 2001). The upregula-
tion in defensive behaviour described here is a good exam-
ple of this property.

Once an intruder is detected, does an individual guard
change her own behaviour, or is a signal given to the
colony that increased security is needed? That we observed
an individual and a colony level response suggests both
might occur. A guard might herself monitor the frequency
of intrusions and change her behaviour, depending on
experience. Additionally, however, the increase in guard
number makes it likely that signalling is occurring, prob-
ably via alarm pheromones. When a guard bee is disturbed,
she often will respond by raising her abdomen and
extruding her stinger, a behaviour known to release alarm
pheromone (Free 1987). One response from the release of
alarm pheromone is the increase of bees at the entrance
(Maschwitz 1964). A recruited guard, upon detecting the
pheromone, might immediately adopt a nonpermissive ac-
ceptance threshold. One way to test this hypothesis is to
divide guards into one group that will be contacted by sev-
eral intruders and another group that will not be con-
tacted. The latter group could be isolated while the first
group experiences intruder introductions. If the noncon-
tact guards then display an a priori nonpermissive accep-
tance threshold, this would suggest that intruder
monitoring is not essential and, instead, that the need
for increased security is communicated in other ways.

Honeybees live in fluctuating environments, especially
regarding nectar availability, which translates into differ-
ent levels of threats to security. These circumstances select
for workers that are able to respond rapidly on multiple
levels to changes in the defensive environment. Nestmate
recognition is a good model for studying multilevel
organization in honeybees because responses can be
quantified. Further research is needed to understand the
mechanisms involved in this complex response.
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