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We present a detailed account of the GW space-time
method. The method increases the size of systems whose
electronic structure can be studied with a computational im-
plementation of Hedin’s GW approximation. At the heart of
the method is a representation of the Green’s function G and
the screened Coulomb interaction W in the real-space and
imaginary-time domain, which allows a more efficient com-
putation of the self-energy approximation Σ = iGW . For
intermediate steps we freely change between representations
in real and reciprocal space on the one hand, and imaginary
time and imaginary energy on the other, using fast Fourier
transforms. The power of the method is demonstrated using
the example of Si with artificially increased unit cell sizes.
keywords: electronic structure, quasiparticle energies, self-
energy calculations, GW approximation

71.15.Th,71.20.-b,79.60.Jv

I. INTRODUCTION

Computational electronic structure theory for real ma-
terials depends on the use of simplifying approxima-
tions for the many-electron problem. Two successful
approaches have been the use of density functional the-
ory and many-body perturbation theory. The density
functional approach is overwhelmingly dominated by the
local-density approximation (LDA) of Kohn and Sham
[1], and extensions thereof, such as gradient corrections
or self-interaction corrections. The many-electron prob-
lem is mapped onto an effective non-interacting electron
problem and solved for the ground-state density and en-
ergy. The limitation of this approach lies in the fact that
in principle it gives no access to the excitation spectrum
of the system under study, even if approximations for the
exchange and correlation potential are further refined.
This limitation is felt particularly severely in semicon-
ductor physics, where many of the phenomena of inter-
est are centered on properties of the excited states. For
this class of materials Hybertsen and Louie [2,3] showed
that the GW approximation, first proposed by Hedin [4]
in 1965, allows computation of band gaps in remarkably
good agreement with experiment for a series of semicon-
ducting and insulating materials.

The GW approximation gives a comparatively sim-
ple expression for the self-energy operator, which allows
the one-particle Green’s function of an interacting many-
electron system to be described in terms of the Green’s
function of a hypothetical non-interacting system with

an effective potential. The Green’s function contains in-
formation not only about the ground state density and
energy but also about the quasiparticle spectrum. The
GW approximation has still proved computationally very
expensive and has mainly been used to determine the
quasiparticle spectrum of bulk semiconductors and insu-
lators [3,5,6], although progress has also been made in
the treatment of systems such as surfaces [7], clusters [8]
and simple polymers [9]. The issue of self-consistency has
only begun to be addressed fairly recently [10–13]. The
situation is similar for total energy calculations, where
thorough investigations so far have been made only for
the homogeneous electron gas [14]. First GW calcula-
tions of the charge density of Si and Ge have been per-
formed recently [15].

The method we describe in this paper substantially
reduces the computational effort needed to study larger
systems. The core idea was outlined in a Letter by Rojas,
Godby, and Needs [16]. Here we give a full account of the
method and detailed aspects of our implementation. The
improvements in efficiency over traditional implementa-
tions of the GW approximation in a reciprocal-space for-
malism result from choosing the representation most suit-
able to the computational step being undertaken, either
reciprocal space or real space on the one hand and imag-
inary time or imaginary energy on the other, and switch-
ing between representations easily with the help of fast
Fourier transforms (FFTs). The choice of representing
the time/energy dependence on the imaginary instead of
on the real axis allows us to deal with smooth, decaying
quantities which give faster convergence. To obtain the
self-energy eventually on the real energy axis, we fit a
model function to the computed self-energy on the imag-
inary axis, and continue it analytically to the real axis.

The paper is organised as follows: The second Section
reviews briefly the equations needed for implementation
of the GW approximation. Section III describes the es-
sential concepts of the GW space-time method. In the
fourth Section we outline detailed aspects of the imple-
mentation such as mesh discretisation and exploitation
of symmetry. In Section V we discuss the analytic con-
tinuation procedure for the self-energy, and subsequent
determination of the quasiparticle energies. In the sixth
Section we present results for bulk silicon and silicon with
artificially increased unit cell sizes, and discuss scaling
behaviour for these examples. A summary concludes the
paper. Atomic units are used throughout.
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II. THE GW APPROXIMATION

The central idea of Hedin’s GW approximation is to
approximate the self-energy operator Σ by

Σ(r, r′; ω) =
i

2π

∞
∫

−∞

dω′ W (r, r′; ω′) G(r, r′; ω + ω′)eiω′δ,

(2.1)

where δ is an infinitesimally small positive time, W is the
screened Coulomb interaction,

W (r, r′; ω) =

∫

d3r′′v(r − r′′) ǫ−1(r′′, r′; ω) (2.2)

where v(r−r′′) is the Coulomb interaction 1/|r−r′′| and
G is the one-particle Green’s function. G itself depends
on Σ through the Dyson equation and should arguably
be determined self-consistently. In practice, however, in
almost all calculations for real systems G has been ap-
proximated by the non-interacting Green’s function at
the LDA level, i. e.,

GLDA(r, r′; ω) =
∑

nk

Ψnk(r) Ψ∗
nk(r′)

ω − ǫnk − iη
(2.3)

where η is a positive (negative) infinitesimal for occupied
(unoccupied) one-particle states. The wavefunctions Ψnk

in this equation are eigenfunctions, with eigenvalues ǫnk,
determined from a self-consistent LDA calculation for the
system under consideration.

For the inverse dielectric function in Eq. (2.2) one has
to rely on suitable approximations. We use the random
phase approximation (RPA),

ǫRPA(r, r′; ω) = δ(r − r′) (2.4)

−

∫

dr′′v(r − r′′) P 0(r′′, r′; ω)

with the irreducible polarization propagator P 0 at RPA
level given by

P 0(r, r′; ω) (2.5)

= −
i

2π

∞
∫

−∞

dω′ GLDA(r, r′; ω′) GLDA(r, r′; ω′ − ω).

Part of the efficiency of our method derives from the
fact that the convolutions Eqs. (2.1) and (2.5) in the
frequency domain become simple multiplications in the
time domain (real or imaginary): see next section. For
real times the Green’s function Eq. (2.3) becomes

GLDA(r, r′; τ) (2.6)

=















i
occ
∑

nk

Ψnk(r)Ψ∗
nk(r′) exp(−iǫnkτ), τ < 0,

−i
unocc
∑

nk

Ψnk(r)Ψ∗
nk(r′) exp(−iǫnkτ), τ > 0.

For imaginary times our expression for GLDA (see Eq.
(3.3) later) corresponds to analytically continuing the
τ < 0 form (the retarded Green’s function) to the positive
imaginary time axis, and the τ > 0 form (the advanced
Green’s function) to the negative imaginary axis.

Once the self-energy operator is known we can employ
first-order perturbation theory in

〈

Σ − V LDA
xc

〉

to com-
pute quasiparticle corrections to the LDA eigenenergies
(see Section VB).

III. THE GW SPACE-TIME METHOD

A. Mathematical formulation

The traditional way to set up and solve the equations
for the GW approximation has been to express and com-
pute all quantities in the reciprocal-space and energy do-
main, using a plasmon-pole model for the energy depen-
dence of W [3]. To compute P 0 (Eq. (2.5)) and Σ (Eq.
(2.1)) this involves sums scaling with the fourth power
of the number of plane waves NG used to represent the
wavefunctions and quadratically with the number of en-
ergy points Nω used to represent the energy dependence,
whereas the scaling in the real space and time domain
is quadratic in NG and linear in Nω, since convolutions
in the reciprocal-space and energy domain become sim-
ple multiplications in the real-space and time domain.
The expressions for ǫ and W , on the other hand, are
more efficiently calculated in a reciprocal-space and en-
ergy representation. As fast Fourier transforms permit
us to switch between representations with a numerical
cost that scales like N log N , where N is the number of
points involved in the FFT, we can efficiently exploit the
advantages offered by the one or other representation.

The time- or energy-dependence of the quantities in-
volved shows a structure that is not easily represented
on an equidistant grid suitable for an FFT. However,
we can rigorously analytically continue the quantities to
the imaginary time or energy axes where the structure is
much smoother and therefore amenable to a representa-
tion on an equidistant grid. This point is illustrated by
Fig. 1 of Ref. [16] which shows the energy dependence on
the real and imaginary axis of the imaginary part of the
self-energy Σ(k, ω) of jellium with a density parameter
of rs = 2.0. The rather ragged shape on the real energy
axis contrasts with the smooth shape on the imaginary
energy axis. We emphasise that, while the same amount
of physical information is contained for Σ or similar func-
tions on the real or imaginary time or energy axis, to
obtain a well converged final answer for quantities that
go through several Fourier transformations, the impor-
tant information is more easily represented in imaginary
time/energy, in much the same way that the choice of
basis set can reduce the effort needed to satisfactorily
represent wavefunctions. This is also shown in plots of
the self-energy in Section VI, where it can be seen that
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the smooth form of the self-energy on the imaginary axis
still allows stable and accurate reproduction of the more
complicated behaviour on the real axis.

Using the imaginary time/energy representation allows
us to explicitly take the time- or energy-dependence into
account without having to rely on a plasmon-pole or
other model for most of the calculation. Only after the
full imaginary-energy dependence of the expectation val-
ues of the self-energy operator has been established do we
use a fitted model function (whose sophistication may be
increased as necessary with negligible expense), which
we then analytically continue to the real energy axis to
compute the quasiparticle energies.

The Fourier transforms between the complex axes work
like their counterparts on the real axes, except that ad-
ditional factors of ±i have to be included:

F (iτ) =
i

2π

∞
∫

−∞

dωF (iω) exp(iωτ), (3.1)

F (iω) = −i

∞
∫

−∞

dτF (iτ) exp(−iωτ). (3.2)

Mathematically they can be understood as Laplace trans-
forms followed by analytic continuation to the imaginary
axis.

The computational steps which are successively under-
taken in the GW space-time method are in detail:

1. Construction of the Green’s function in real space
and imaginary time: [17]

GLDA(r, r′; iτ) (3.3)

=























i
occ
∑

nk

Ψnk(r)Ψ∗
nk(r′) exp(ǫnkτ), τ > 0,

−i
unocc
∑

nk

Ψnk(r)Ψ∗
nk(r′) exp(ǫnkτ), τ < 0,

2. formation of the RPA irreducible polarizability in
real space and imaginary time:

P 0(r, r′; iτ) = −iGLDA(r, r′; iτ)GLDA(r′, r;−iτ),

(3.4)

3. Fourier transformation of P 0 to reciprocal space
and imaginary energy and construction of the sym-
metrised dielectric matrix [18] in reciprocal space,

ǫ̃(k,G,G′; iω) = δGG′

−
4π

|k + G| |k + G′|
P 0(k,G,G′; iω), (3.5)

4. inversion of the symmetrised dielectric matrix for
each k point and each imaginary energy in recipro-
cal space,

5. calculation of the screened Coulomb interaction in
reciprocal space:

W (k,G,G′; iω) =
4π

|k + G| |k + G′|

× ǫ̃−1(k,G,G′; iω), (3.6)

6. Fourier transformation of W to real space and
imaginary time,

7. computation of the self-energy operator:

Σ(r, r′; iτ) = iG(r, r′; iτ)W (r, r′; iτ), (3.7)

8. evaluation of the expectation values:

〈Ψnk|Σ(iτ)|Ψnk〉 , (3.8)

9. Fourier transformation of the expectation values to
imaginary energy,

10. fitting of a model function to the expectation val-
ues of the self-energy, allowing analytic continua-
tion onto the real energy axis,

11. evaluation of the quasiparticle corrections to the
LDA eigenvalues by first-order perturbation theory
in

〈

Σ − V LDA
xc

〉

.

B. Discretisation of the equations

A practical implementation on a computer requires the
integrals described in the last section to be discretised
and suitably truncated. Exploitation of symmetry can
help to keep the computational cost for real materials
down. These issues will be addressed in this section.

The quantities we are dealing with in real space, such
as G, P , W , and Σ are non-local operators that decay
as their two spatial arguments move apart. With the ex-
ception of W , which will receive some extra attention,
the non-locality is short-ranged, i.e, decaying faster than
|r − r′|−2. This suggests that the distance the two vari-
ables are allowed to move apart can be restricted suitably
and the functions can be assumed zero beyond this range.
We call this range the interaction cell (IC). Furthermore,
by the symmetry of the crystal, one of the arguments of
any of these operators, which shall be symbolically de-
noted here by F (r, r′), can be restricted to the irreducible
wedge of one unit cell (IUC). The coarseness of the grid
and the size of the interaction cell determine the pre-
cision. A shape of interaction cell which is compatible
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with the fast Fourier transforms and preserves symme-
try at the same time is the Wigner-Seitz cell of a lattice
whose defining vectors are multiples of the primitive vec-
tors of the crystal lattice. We call this lattice the IC
lattice (ICL) (see Figure 1). We choose equal spacing for
the IUC and IC grids. They could be offset from each
other which would avoid the singularity of the Coulomb
potential in real space but requires the handling of ad-
ditional phase factors. We therefore normally choose the
two grids to have no offset between them and deal with a
single real-space grid (RSG), which is defined by vectors
which are integer fractions of the primitive lattice vec-
tors. The treatment of the singularity of the Coulomb
potential is discussed in sections IVB and IVC below.

To summarise: the crystal is defined by the three prim-
itive vectors a1, a2, a3, the ICL by the three vectors

li = NR
i ai, i = 1, 2, 3, (3.9)

and the RSG by three vectors

si = ai/N
r
i , i = 1, 2, 3. (3.10)

In the example shown in Fig. 1 the NR
i are 2 and the N r

i

are 3.
The grid vectors x in the IC are integer linear combi-

nations of the si and fulfil the Wigner-Seitz condition

x · L ≤
1

2
L2, (3.11)

for any vector L that is an integer linear combination of
the vectors l. Only one of possibly several vectors for
which the equality in Eq. (3.11) holds and which differ
only by a lattice vector of the ICL must be contained in
the IC, or, expressed differently, only half the surface of
the Wigner-Seitz cell defined by Eq. (3.11) is part of the
IC. The integers NR

i in Eq. (3.9) determine the shape
and size of the interaction cell in real space and the k-
point grid in reciprocal space, as explained below. If
there is no reason to believe that the non-locality of the
operators has a very different range in one direction than
in another, they should be chosen in such proportion to
each other that the shape of the IC is as close to a sphere
as possible.

The first argument r of the functions of type F (see
above) is again an integer linear combination of the vec-
tors s and can be restricted to the irreducible wedge of
one unit cell of the crystal lattice. This unit cell can in
principle have any shape, but it helps to avoid having to
deal with phase factors when applying symmetry opera-
tions if this unit cell is also chosen to have Wigner-Seitz
shape, i. e.,

r · R ≤
1

2
R2, (3.12)

where R is any crystal lattice vector and of any two r

which are connected by a symmetry operation in the crys-
tal’s space group only one is kept.

The choice of lattices in real space uniquely deter-
mines conjugate lattices in reciprocal space and vice
versa, if one follows the rule that the discrete approxi-
mation to the Fourier transform must leave the functions
unchanged if applied forwards and backwards in succes-
sion. In reciprocal space, functions of type F (see above)
are functions of the two variables G and K, where G

is a reciprocal lattice vector and K can be written as
K = k + G′, where G′ is again a reciprocal lattice vec-
tor and k a reciprocal vector in the first Brillouin Zone
(BZ). K is restricted to the Wigner-Seitz cell of the re-
ciprocal lattice of the RSG, which we shall call simply
the reciprocal-space cell (RC) and G is restricted to its
irreducible wedge (IRC). The spacing of the k is deter-
mined by the primitive vectors of the reciprocal ICL and
we shall call the grid that is defined that way the K grid
(KG) [19].

The transformation from real-space to reciprocal-space
representation of F is given by

F (G,K) = (3.13)

1

NIC

IUC
∑

r

star(r)
∑

ρ

IC(r)
∑

r′

F (r, r′)e−iρr·Geiρ(r′−r)·K.

ρ denotes a point group element (including possibly a
non-primitive translation in non-symmorphic symmetry
groups) and the sum over ρ runs over all symmetry op-
erations that generate the full star of r, i. e., the set of
all RSG points in the Wigner-Seitz cell that are obtained
by applying symmetry operations of the crystal to this
particular RSG point r in the IUC. NIC is the number
of RSG points contained in the IC. The reverse transfor-
mation is given by

F (r, r′) = (3.14)

1

NUC

IRC
∑

G

star(G)
∑

ρ

RC
∑

K

F (G,K)eiρr·Ge−iρ(r′−r)·K.

The sum over ρ runs here over all symmetry operations
that generate the full star of G and NUC is the number
of RSG points contained in one unit cell.

Because of the symmetry of the problem and the fact
that K = k + G′, F can in reciprocal space be alter-
natively written as a square matrix Fk(G,G′) with k

restricted to the irreducible wedge of the Brillouin Zone
and G and G′ given everywhere in the RC. k is here
written as an index to emphasise the matrix nature of F
in this representation.

It should be briefly mentioned that the ‘natural’ cell
form for a three-dimensional FFT is a parallelepiped and
not a Wigner-Seitz cell such as we are dealing with. How-
ever, there is a unique mapping between the two shapes
using translations by vectors of the lattice defining the
Wigner-Seitz cell in question, because F is invariant un-
der such translations by construction.
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Apart from the real-space and reciprocal-space repre-
sentations we will occasionally use a mixed-space repre-
sentation. This is defined by

Fk(r, r′) =
IC
∑

R

FR(r, r′) exp (−ik · R), (3.15)

with the reverse transformation

FR(r, r′) =
1

NR

∑

k

Fk(r, r′) exp (ik · R). (3.16)

When we use the mixed-space representation, r and r′

are always understood to be confined to the UC (or its
irreducible wedge, see below). The notation FR(r, r′) is
another way of writing F (r + R, r′) and has been chosen
to emphasise that any point on the RSG in the IC can
be written as the sum of a crystal lattice vector R and
a vector in the UC. The sum in Eq. (3.15) runs over all
crystal lattice vectors in the IC. The k are vectors in the
first BZ of the crystal and are the conjugate vectors of
the R. Symmetry can be exploited to reduce the number
of points needed to represent F in mixed space. For
example, r can be restricted to the irreducible wedge of
the UC while r′ is given for every point of the RSG in
the UC and k on every point of the KG within the first
BZ, or k can be restricted to the irreducible wedge of the
first BZ, with r then given on every RSG point in the
UC.

A mixed-space (MS) formalism was used by Blase et
al. [20] for calculating the polarizability and dielectric
function of periodic systems. A mixed-space representa-
tion was also used and described by Godby, Sham and
Schlüter [21] for GW calculations, albeit without refer-
ring to it by that name. Blase et al. [20] discuss the
computational efficiency of the MS scheme in compari-
son with a direct real-space (RS) approach. In Fig. 2
of Ref. [20] they show how the number of (r, r′) pairs
which have to be computed in order to set up the polar-
izability P 0

k(r, r′) for one k in the MS method (using a
4 × 4 × 4 Monkhorst-Pack k grid) depends on the range
of interaction (non-locality range) Rmax. They compare
this to the number of (r, r′) pairs obtained by confining
|r − r′| to a sphere of radius Rmax which is assumed to
be the corresponding number of pairs to be computed in
a RS method. This is somewhat misleading since – as is
discussed above – the size of the IC in real space is deter-
mined by the size of the k grid of the conjugate mixed- or
reciprocal-space quantity. Hence it does not make sense
to increase the interaction sphere beyond the boundaries
of this IC which correspond to a non-locality range of
Rmax=14.5 a.u. for a 4× 4× 4 k grid. Furthermore, the
real-space quantity P 0(r, r′) contains information on all
k points. So for a proper comparison between the two
methods the number of pairs given in Ref. [20] for the
MS approach has to be multiplied by the number of spe-
cial k points which is 10 for a 4× 4× 4 Monkhorst-Pack
grid. The statement made in Ref. [20] that the calcula-
tion of P 0(r, r′, ω) requires a double BZ summation in

the real-space scheme - as opposed to a single BZ sum-
mation in the MS scheme - does not hold any more if
the Green’s function is set up in mixed space and then
Fourier transformed to real space, as described in section
IVA below.

So far we have established the nature of the grids in
real and reciprocal space that are suitable for use with
the discrete Fourier transform. These grids fill a Wigner-
Seitz-cell shaped volume which in turn can be uniquely
mapped onto a parallelepiped, the shape that is required
by the discrete Fourier transforms. However, the starting
point of the GW calculation is the output of a standard
LDA calculation using plane waves and pseudopotentials
which determines the Fourier coefficients of the wave-
functions Ψnk(G) for all reciprocal lattice vectors that
lie within a sphere defined by (k + G)2 less than some
cutoff. The RC must therefore be big enough to comprise
all of these ‘shifted spheres’. The volume of the small-
est possible such cell will be typically 2 to 4 times larger
than the volume of the individual spheres. Furthermore,
to strictly prevent aliasing in the steps where we replace
a convolution in one representation by a multiplication
in the conjugate representation, we would have to choose
the grid for the FFTs twice as large as this minimal cell
in every dimension, increasing the volume by a factor
of eight. This means that the FFT grid would have to
comprise between 16 and 32 times more points than the
initial LDA calculation had reciprocal lattice vectors. We
have found that in practice aliasing effects are very small
once we choose enough plane waves for good overall con-
vergence, and in the limit of an infinite number of plane
waves any aliasing effects vanish strictly along with any
other error caused by truncation of the set of recipro-
cal lattice vectors. Therefore it would not be justified
to accept the huge overhead imposed by the doubling of
the grid size in all dimensions, and we usually restrict
our FFT grid to the minimum Wigner-Seitz cell as de-
fined above, leaving us with an FFT grid with between 2
and 4 times as many points as the LDA calculation used
reciprocal lattice vectors.

The computational effort can be further reduced by
physical considerations. The FFT grid fills a Wigner-
Seitz cell shaped volume in either space. However, if
we assume in real space that the range of non-locality
is uniform in all directions we can neglect all the points
in the interaction cell outside the largest possible sphere
inscribed into it. Similarly we can usually assume that
the Fourier coefficients in reciprocal space fall to zero
after an equal length in all directions and thus we can
cut back in reciprocal space to the largest possible sphere
inscribed into the RC lattice. It has to be kept in mind
that for symmetry reasons it is the vectors k + G which
must fit into the sphere and not merely the vectors G.
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IV. NUMERICAL ASPECTS AND SCALING
WITH SYSTEM SIZE

As the GW space-time method is primarily designed
to enable larger systems to be studied within the frame-
work of the GW approximation, in this section we study
the scaling of the computational cost with system size.
To gauge the cost of a calculation, we first look at the
real-space, imaginary-time representation. What mat-
ters here is the number of points in the irreducible wedge
of the unit cell, the number of points in the interaction
cell and the number of points on the imaginary time axis.
We will discuss the time dependence of the operators in
the next section and concentrate here on the spatial di-
mensions. Since in our setup the grid spacing in the
unit cell and in the interaction cell are chosen equal, the
three factors determining the cost of the calculation are
the size of the IUC, which is a system property, and the
size of the interaction cell and the grid spacing, which
are convergence parameters.

A. Green’s function and polarizability

The setting up of the Green’s function is the starting
point for the GW calculation. We take the Fourier coeffi-
cients of the lattice-periodic part of the Bloch functions,
unk(G), and the eigenvalues ǫnk from a previous stan-
dard LDA calculation. The eigenvalues are expressed on
an energy scale with zero at the Fermi energy, which for
semiconductors and insulators is taken to be in the mid-
dle of the band gap. The wavefunctions unk are trans-
formed via an FFT to real space and the Green’s function
initially computed in mixed space:

GLDA
k (r, r′; iτ) (4.1)

=























i
occ
∑

n
Ψnk(r)Ψ∗

nk(r′) exp(ǫnkτ), τ > 0,

−i
unocc
∑

n
Ψnk(r)Ψ∗

nk(r′) exp(ǫnkτ), τ < 0.

The number of unoccupied bands included in the
Green’s function for τ < 0 is a convergence parameter.
Because of the rapid decay of the exponentials for higher
energies it suffices to set a cutoff energy for bands in-
cluded in the sum that is considerably smaller than the
largest LDA eigenvalue, but this cutoff must be several
times larger than the highest quasi-particle energy to be
computed. We denote the total number of bands, occu-
pied and unoccupied, included in the sum as Nbands.

The Green’s function can then be transformed from
mixed space to real space using an FFT:

GLDA
R (r, r′; iτ) =

1

NR

∑

k

GLDA
k (r, r′; iτ) exp(ik ·R),

(4.2)

where the sum goes over the k grid in the Brillouin zone
corresponding to the interaction cell (see III(B) earlier).

To set up the function in mixed space (Eq. (4.1)) we
need NIUC ×NUC ×Nbands multiplications in the spatial
dimensions. The transformation to real space brings in
another factor of NR, the number of unit cells contained
in the interaction cell, (disregarding the additional fac-
tor of log NR from the FFT), so that the overall scal-
ing is like NIUC × NIC × Nbands. Since the number of
bands is determined by a cutoff energy that is constant
for a given material, Nbands will grow linearly with sys-
tem size. The computational cost at this stage therefore
scales quadratically with system size assuming a fixed
size of interaction cell (i. e., fixed range of non-locality).
Additional care is necessary once the unit cell outgrows
the range of non-locality. In this case there is only a single
k point necessary and the transformation between mixed
and real space is redundant. To prevent a crossover to
cubic scaling the interaction cell must be kept constant
at its converged size and will then not be a multiple of
the unit cell size, but smaller than it.

The next stage, where the irreducible polarizability is
formed in real space according to Eq. (3.4), scales lin-
early.

B. Dielectric matrix

The formula for the dielectric function in real space
and on the imaginary energy axis reads

ǫ(r, r′; iω) = δ(r − r′) −

IC(r′)
∑

r′′

v(r − r′′)P 0(r′′, r′; iω).

(4.3)

Here r′ is restricted to the IUC, r to within an IC around
r′, and r′′ in the sum on the right hand side runs over an
interaction cell around r′. The right hand side contains
a convolution that can be more efficiently handled in re-
ciprocal space where it becomes a simple multiplication.
As only one of the two spatial arguments of the dielectric
function is involved, we can write

ǫ(K, r′) = v(K)P 0(K, r′), (4.4)

where K is the conjugate variable of x = r′−r in recipro-
cal space. (The imaginary-energy argument is suppressed
here and until the end of this subsection.) Again we can
see that for a given interaction cell size the computational
effort to set up the dielectric function scales linearly with
the number of points in the IUC.

The long-range behaviour of the dielectric function re-
quires some special consideration. Eq. (4.3) contains the
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convolution of the long-ranged Coulomb potential with
the short-ranged non-locality of P 0. In fact, for any r′

∫

drP 0(r, r′) = 0, (4.5)

whereas
∫

drv(r) = ∞. (4.6)

The analytic convolution of the two functions over all
space yields a function whose integral over all space is
finite, meaning that the Fourier coefficient for K = 0
has a finite, non-zero value. To preserve this behaviour,
which is important if one is actually interested in comput-
ing the value of the dielectric constant but also for fast
convergence with respect to interaction cell size of the
quasiparticle energies, one has to use a modified Coulomb
interaction in Eq. (4.3). By construction, the property
expressed by Eq. (4.5) is within our discrete and strictly
finite range approximation compressed into the interac-
tion cell:

IC(r′)
∑

r

P 0(r, r′) = 0. (4.7)

To obtain the right dielectric constant, we have to com-
press the property expressed by Eq. (4.6) into the finite
interaction cell as well. A natural way to do this is to
use the reciprocal-space definition of v:

v(K) =
4π

K2
. (4.8)

Transforming to real space, through a discrete Fourier
transform restricted to one interaction cell, yields an ex-
pression that contains correction terms to the simple 1/r
form that will vanish in the limit of infinitesimal grid
spacing and infinite IC size. Since, in practice, we evalu-
ate the convolution Eq. (4.3) as a multiplication in recip-
rocal space, there is no need to explicitly transform Eq.
(4.8) to real space.

In practice, to deal with the divergence of the Coulomb
potential at zero wavevectors, we follow the procedure
described in the literature [22,18], i. e., we employ k · p
perturbation theory for calculating the head (k = G =
G′ = 0) and wings (k = G = 0; G′ 6= 0) of the sym-
metrised dielectric matrix Eq. (3.5). The matrix elements
of type 〈Ψnq|e

−ik·r|Ψn,q−k〉 appearing in the expression
for the RPA polarizability in reciprocal-space represen-
tation (cf. Eq. (18) of Ref. [22]) are evaluated by expand-
ing the wavevector dependence of the wavefunctions and
the exponential for small k. This yields the lowest-order
(in k) terms for head and wings of the polarizability.
The head of the polarizability goes to zero like k2 thus
cancelling the 1/k2 divergence of the Coulomb poten-
tial at k = G = G′ = 0, yielding a finite value for the
head of vP 0 whereas the lowest-order term for the wings

P 0
0G′(0) is proportional to k, cancelling the 1/k diver-

gence of v0G′(0) and yielding a finite (vP 0)0G′(0). Head,
wings and body of the inverse dielectric matrix are then
obtained in terms of head, wings and body of the dielec-
tric matrix by block-wise inversion as described by Pick,
Cohen and Martin [23].

The inversion of the dielectric matrix can be performed
either in mixed space or in reciprocal space. While this
is strictly equivalent if the whole FFT grid is used in ei-
ther space, it is important to look at ways to reduce the
grid size without compromising the exactness of the re-
sult, as the matrix inversion is in fact the one operation
in the computational sequence which scales worst with
system size (unless sparseness is exploited, see below)
and will therefore be the bottleneck for large systems. In
mixed space we have to invert square matrices of dimen-
sion NUC for every k point in the irreducible wedge of
the Brillouin zone (IBZ).

First we look at the case where the IC is in no dimen-
sion smaller than the UC. We are then dealing with the
inversion of fully occupied square matrices, which scales
cubicly with the dimension of the matrix, so that the in-
versions together scale like NIBZ × N3

UC . This number
is essentially the same as NIUC ×NIC ×NUC , small dif-
ferences arising possibly because of the coarseness of the
grid. This shows that the scaling is quadratic with sys-
tem size for constant IC size and constant NUC/NIUC .
If the increase of the unit cell size means also a lowering
of symmetry, an additional factor corresponding to the
symmetry reduction comes in. Transforming to recipro-
cal space and cutting back to a set of reciprocal lattice
vectors G within a sphere as described earlier reduces
the dimension of the matrices by a factor of 2 to 4, which
speeds up the inversions by a factor of 8 to 64, because
of the cubic scaling. This is the procedure we choose
routinely in our calculations.

If the unit cell size exceeds the interaction cell size
in one or more dimensions the matrix in mixed space be-
comes sparse, as all those elements for which r′ is outside
the IC become zero. This sparseness can be exploited to
the effect that the matrix inversion scales only as N2

UC ,
so that the overall scaling with system size remains the
same. However, in the scheme we are employing at the
moment this sparseness is not yet explicitly exploited so
that we are in fact dealing with a situation where the IC
grows with the UC, leading for the matrix inversion to an
N3

UC scaling once the unit cell outgrows the interaction
cell.

C. Screened Coulomb interaction

The screened Coulomb interaction is defined in real
space as

W (r, r′; iω) =

∫

dr′′ǫ−1(r, r′′; iω)v(r′′ − r′) (4.9)
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The convolution on the right hand side is again best dealt
with as a multiplication in reciprocal space

WGG′(k; iω) = ǫGG′(k; iω)vGG′(k). (4.10)

However, in a semiconductor and in metals for frequen-
cies other than zero, W is truly long ranged, and there-
fore diverges for zero wavevectors. In order to avoid prob-
lems (in the G/r and G′/r′ FFT) associated with the re-
sulting long-range tail and (in the iτ/iω FFT) with the
asymptotic frequency dependence we separate W into a
long-range part which is immediately set up in real space
and a short-range part Ws which is first computed in
reciprocal space. From the long-range behavior of the di-
electric function we find the isotropic part of the screened
interaction in the long-range limit

lim
|r−r′|→∞

W (r, r′; iω) = f(iω)v(r − r′) (4.11)

so that we can define a short-ranged part Ws of W

Ws(r, r
′; iω) =

∫

dr′′
(

ǫ−1(r, r′′; iω) − f(iω)δ(r − r′′)
)

×v(r′′ − r′). (4.12)

Ws has well-defined Fourier coefficients for all recipro-
cal vectors. It can thus be computed in reciprocal space.
The long-range part is set up in real space with f(iω)
determined from the small-wavevector behavior of the in-
verse dielectric matrix in reciprocal space, i. e., the head
of the inverse dielectric matrix ǫ−1

0 :

f(iω) = ǫ−1
0 (iω) − 1, (4.13)

Even though the interaction is truly long-ranged we
only need to set it up inside the IC because we aim to
calculate the self-energy whose range is determined by
that of the (short-ranged) Green’s function G0. Hence,
at this point, it is sufficient to take the contribution of
the long-range part of W into account properly within the
IC. The Coulomb potential at r = r′ is approximated by
the average over a sphere around r = r′ with the same
volume as one real-space grid cell.

D. Self-energy

The self-energy operator is set up in the real-space and
imaginary-time domain:

Σ(r, r′; iτ) = iGLDA(r, r′; iτ)W (r, r′; iτ − iδ). (4.14)

Within the discrete-grid and finite-range approximation
a complete description is given if r is restricted to the IUC
and r′ to an IC around r. The scaling is again linear with
NIUC for fixed NIC .

E. Expectation values of the self-energy

To compute the expectation values of Σ between wave-
functions at the special k points, we transform Σ to
mixed space and form the matrix elements

〈Ψnk|Σ(iω)|Ψnk〉 =

UC
∑

r,r′

Ψ∗
nk(r)Σk(r, r′; iω)Ψnk(r′)

(4.15)

This operation again scales quadratically with the num-
ber of points in the UC for any given set of quantum
numbers nk. For a general point q in the first Brillouin
zone that is not on our discrete grid, we generate inter-
polated values through the formula

Σq =

IC
∑

R

ΣR exp (−iq · R). (4.16)

V. QUASIPARTICLE ENERGIES

A. Analytic continuation

In order to calculate the quasiparticle corrections to
the LDA eigenvalues we require the self-energy operator
as a function of real energy, and thus a key requirement
for our imaginary time method is the ability to obtain
the expectation values of Σ on the real energy axis accu-
rately from the imaginary energy behaviour. From com-
plex analysis we know that if two functions are equal
over any arc in the complex plane then they are equal
everywhere in their common region of analyticity. We
know from the structure of G and W that Σ(z) (z denot-
ing complex energy) has poles in the second and fourth
quadrant of the complex plane. If we know the ana-
lytic form of the expectation values of the self-energy on
the imaginary energy axis we can analytically continue it
from the negative imaginary energy axis to the negative
real energy axis, and from the positive imaginary to the
positive real axis, without crossing any branch cuts.

To obtain such an analytic form, we fit a multipole
model function for each pair of quantum numbers nk to
the values 〈Ψnk|Σ(iω)|Ψnk〉 = 〈Σ(iω)〉:

〈Ψnk|Σ(z)|Ψnk〉 ≃ a0
nk +

n
∑

i=1

ai
nk

z − bi
nk

, (5.1)

where ai
nk and bi

nk are complex fit parameters and z is
the complex energy. In Fig. 2 the resulting fitted form of
the correlation (energy-dependent) part of the self-energy
[24] is compared with the calculated matrix elements for
bands at the Γ and X points (the fits are plotted with the
same line styles as the respective calculated matrix ele-
ments, they are on this scale indistinguishable from the

8



latter). A simple two-pole model (n = 2) performs very
successfully for Si, with the fitted function reproducing
the actual values with an rms error of less than 0.2%.
Including several further poles in the fitted form proves
to be stable but unnecessary, although more poles are ex-
pected to be required for systems with multiple natural
energy scales. For the analytic continuation to be valid,
the fitted pole positions bi

nk should lie in the upper half
plane when fitting the negative imaginary axis and vice
versa, a condition which in practice is obeyed by the opti-
mal parameters. The parameters a0

nk should in principle
be zero, as limω→∞ 〈Σ(ω)〉 = 0. Allowing a small finite
value for a0

nk has proved helpful in the fits, though, and
as we are interested mainly in energies close to the Fermi
energy and not the long-range limit this is perfectly le-
gitimate. Since 〈Σ(iω)〉 = 〈Σ(−iω)〉

∗
it is sufficient to fit

only one half-axis.
Convergence of the quasiparticle energies with respect

to the parameters of the time-energy transform grid is
discussed in the next section, but it is also important to
consider as a separate question the stability of the ana-
lytic continuation procedure. In particular if we are to
achieve smooth convergence it is important that changes
in the calculated self-energy on the real axis correspond
to genuine changes in the calculated 〈Σ(iω)〉, and are
not simply resulting from instabilities in the fitting pro-
cedure. In Figures 3 and 4 we show the convergence
behaviour of a matrix element 〈Σ(iω)〉 at Γ with respect
to number and spacing of the energy points respectively,
and the corresponding form of the analytically contin-
ued element. It can be seen that the fitting approach
is indeed stable, with the convergence of 〈Σ(ω)〉 being
dictated directly by changes in the calculated 〈Σ(iω)〉.
Thus the task of converging the quasiparticle energies is
equivalent to converging the self-energy on the imaginary
axis, with very little comparative loss of accuracy in the
analytic continuation procedure itself.

The parameter ωmax (describing the energy range used
in the calculation) mainly determines the convergence
of the large-energy region of Im 〈Σc(iω)〉. The energy
grid spacing ∆ω predominantly affects the convergence
of 〈Σc(iω)〉 in the region close to ω= 0. The behavior of
〈Σc(ω)〉 (on the whole real energy axis) is more sensitive
to the shape of 〈Σc(iω)〉 in this region of the imaginary
axis than to the large-imaginary-energy tail of the latter
(see also next paragraph). That is why the convergence
with respect to ∆ω shown in Fig. 4 appears to be better
on the imaginary axis than on the real axis.

Our investigations of the convergence of the calcu-
lated matrix elements of the correlation part of the self-
energy and the resulting quasiparticle energies with re-
spect to ωmax have shown that good convergence can
be achieved by keeping the energy range for the fitting
procedure fixed rather than fitting the whole range of en-
ergies (−ωmax, +ωmax) when increasing the latter. The
energy range for fitting the matrix elements 〈Σc(iω)〉 was
fixed to (−5 Har, +5 Har) in the present calculation (the
results are not sensitive to the exact value). The rea-

son for restricting the fit range for 〈Σc(iω)〉 is that most
information is contained in the form of this function at
imaginary energies reasonably close to iω = 0. Thus, fit-
ting a large range, beyond a certain point, will mean that
this part of the shape will be less accurately described due
to the loss of weight in this region. This effect prevents
〈Σc(ω)〉 from converging properly unless the fit range is
kept fixed (at any reasonably sensible value), as is illus-
trated by Fig. 5.

B. Quasiparticle corrections

The quasiparticle energies are formally solutions of the
equations

(

−
1

2
∇2 + Vext(r) + VH(r)

)

Ψqp
nk(r)

+

∫

dr′Σ(r, r′; ǫqp
nk)Ψqp

nk(r′) = ǫqp
nkΨqp

nk(r). (5.2)

Because Σ is in general a non-Hermitian operator, the
eigenenergies ǫqp

nk are complex, their real part being inter-
preted as quasiparticle energy and their imaginary part
as lifetime. It has been observed [3,21] that the wave-
functions obeying Eq. (5.2) for typical semiconductors
and insulators have an almost complete overlap with the
LDA eigenfunctions which solve an equation in which
the non-local self-energy operator is replaced by a local
exchange-correlation potential. This makes it possible
to find the quasiparticle energies by computing correc-
tions to the LDA eigenvalues in first-order perturbation
theory in most cases. (For some systems, however, the
quasiparticle wavefunctions are expected to be qualita-
tively different from the LDA wavefunctions, such as at a
surface. The space-time method allows the full quasipar-
ticle wavefunctions and energies to be calculated where
required [25].) Usually the LDA Hamiltonian with its
eigenfunctions and eigenvalues is taken as the starting
approximation, with Σ(ω) − Vxc as a perturbation. Fol-
lowing an idea used by Hedin [4] for the electron gas, we
shift the LDA eigenergies by a constant ǫs that aligns the
Fermi energies of the quasiparticles before and after ap-
plying the GW correction. This is intended to simulate
to some extent the effect of self-consistency in G and has
been shown in a model system [26] to be instrumental in
keeping charge conservation violations negligible.

Calculation of the full energy dependence of the self-
energy (via the analytic continuation to real energies)
allows us to solve the equation

ǫqp
nk = ǫLDA

nk + 〈Ψnk|Σ(ǫqp
nk) − Vxc − ǫs |Ψnk〉 (5.3)

for the quasiparticle energies self-consistently. This ap-
proach was employed for the calculation of the quasi-
particle energies in the present paper. Alternatively, a
Taylor expansion of Σ(ω) at ω = ǫLDA

nk can be used:
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ǫqp
nk = ǫLDA

nk +
1

Znk

〈Ψnk|Σ(ǫLDA
nk ) − Vxc − ǫs |Ψnk〉 ,

(5.4)

Znk = 1 −
d

dω
〈Ψnk|Σ(ω) |Ψnk〉

∣

∣

∣

∣

ω=ǫLDA

nk

. (5.5)

Because of the analytic fit of the expectation values of the
self-energy the derivative with respect to the energy argu-
ment is readily found in closed form. For ǫs a closed form
but rather involved expression can also be given. Com-
parison of the self-consistent solution of Eq. (5.3) and
the result of the Taylor expansion Eq. (5.4) shows that
the latter is usually a very good approximation, yielding
quasiparticle energies differing by only up to 5 meV from
the solution of Eq. (5.3) for bulk Si.

VI. RESULTS FOR BULK SILICON AND
SILICON SUPERCELLS

In order to test the performance and the scaling prop-
erties of the space-time GW method we have performed
calculations of self-energy and quasiparticle energies for
bulk silicon and silicon with artificially increased unit cell
sizes. The latter were slab-like supercells containing four
and eight atoms, respectively, with tetragonal symmetry,
i. e., the unit cells were artificially enlarged in one direc-
tion. Supercells of this geometry can be used to model
semiconductor superlattices and surfaces.

A. Convergence parameters

Before discussing the performance and scaling issues
we briefly summarize the results of convergence tests for
bulk Si. In Table I the parameters needed to converge
quasiparticle energy differences to an accuracy of 50 meV
and 20 meV, respectively, with the present method are
gathered. This accuracy is meant to be with respect to
each parameter individually. We estimate the overall ac-
curacy of our results to be better than 0.1 eV. The plane-
wave (PW) cutoff in Table I is the cutoff of 1

2 (k + G)2

in the LDA calculation providing the wavefunctions Ψnk.
All PW components of the LDA wave functions are used
in the GW calculation. The real-space grids in the unit
cell (see Section III B) resulting from PW cutoffs of 13.5
Ry and 16 Ry comprise 9×9×9 and 12×12×12 points,
respectively. The band cutoff determines the number of
bands included in the band summation in Eq. (3.3) for
the calculation of the Green’s function. Band cutoffs of
8 and 10 Ry correspond to taking 109 and 145 bands, re-
spectively, into account. For sampling the BZ we employ
a regular non-offset grid of k points. The LDA wave-
functions are calculated at the k points in the irreducible
wedge of the BZ. As described in Section III B the dimen-
sions of the k grid in the BZ are equal to the dimensions

(in multiples of primitive lattice vectors) NR
i of the IC,

which must be large enough to comprise the range of non-
locality of the Green’s function and the self-energy in Si.
The smaller k grid given in Table I can roughly accomo-
date a non-locality range of 14.5 a.u. and the larger of
18 a.u. (−τmax, +τmax) and ∆τ stand for the range and
spacing of the equidistant grid for sampling the functions
F (r, r′, iτ) on the imaginary time axis. The parameters
ωmax and ∆ω of the corresponding grid in the imaginary
energy domain are related to the time-grid parameters
by ∆ω = 2π/(2Nτ − 1)∆τ with τmax = Nτ∆τ .

B. Quasiparticle energies for bulk silicon

The quasiparticle energies for bulk Si obtained from
a well converged calculation with the present method
are given in Table II [27]. The LDA calculation was
done with the PW pseudopotential method employ-
ing a pseudopotential constructed according to the pre-
scription of Hamann [28] and using the Ceperley-Alder
exchange-correlation potential [29] in the parametriza-
tion of Perdew and Zunger [30]. As can be seen from
Table II the calculated GW quasiparticle energies agree
well with quasiparticle excitation energies derived from
photoemission, inverse photoemission and optical exper-
iments [31–37], except for the position of the bottom of
the valence band which appears to be too high in our cal-
culation. The agreement of the quasiparticle energy dif-
ferences obtained with the present method (GW 1 in Ta-
ble II) with those of a recent GW calculation by Fleszar
and Hanke [38] is very good. Like us, these authors did
not make use of a plasmon pole model to describe the
energy dependence of the dynamically screened Coulomb
interaction but directly computed its full energy depen-
dence.

We investigated how the quasiparticle energies change
when the Green’s function is updated by replacing the
LDA eigenvalues by the quasiparticle energies and the
self-energy recalculated with the updated Green’s func-
tion as input, as was done by Hybertsen and Louie [3].
The results (GW 2) are also included in Table II. Updat-
ing the Green’s function increases the gap by about 0.1
eV. Now the conduction band energies agree within bet-
ter than 0.1 eV with those given in Ref. [3] whereas the
valence band energies remain higher by between 0.1 eV
and 0.5 eV (relative to the top of the valence band), the
difference increasing with the distance of the respective
state from the Fermi level.

Indeed, the results of several earlier GW calculations
[3,39] are somewhat different from those given in Table II
(and Ref. [38]). This can be attributed to the following
reasons:

(i) a possible lack of convergence with respect to the
number of conduction bands taken into account in
the earlier calculations, causing the topmost occu-
pied state (which is particularly sensitive to this
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parameter) to be about 0.2 eV too high, as dis-
cussed in Ref. [38]; and

(ii) the use of plasmon pole models for the energy de-
pendence of the dynamically screened Coulomb in-
teraction in the earlier calculations.

C. Silicon supercells

In Table IV we compare the quasiparticle energies
for slab-like Si4 and Si8 supercells to the bulk Si re-
sults. Shown are the quasiparticle energies for the high-
symmetry k points of Si (which are not necessarily sym-
metry points for the supercell geometry) and for those
k points which are mapped onto these symmetry points
when the unit cell size is increased. The calculations were
done with a PW cutoff of 13.5 Ry (leading to a real-space
grid spacing of ∆r = 0.8 a.u.), a band cutoff of 10 Ry, ∆τ
= 0.3 a.u. and τmax = 20 a.u. The k grids have been cho-
sen to make the IC of equal size in all three dimensions
for all the calculations, for the reason discussed in Sec-
tion III B. The grid sizes resulting from these parameters
are summarized in Table III. NIUC , NUC , and NIC are
the numbers of real-space grid points in the irreducible
part of the unit cell, the unit cell and the interaction
cell, respectively (see Section IV above). Nk stands for
the number of k points in the BZ and Nt/ω is the number
of positive time/energy points. The supercell results in
Table IV agree with the bulk Si results, as expected. The
small differences for the highest conduction band given
in Table IV are ascribed to the lower symmetry of the
supercells leading to different G vector sets.

D. Scaling

As outlined in Section IV the computational effort in
the present method should scale quadratically with the
number of atoms in the unit cell. Fig. 6 shows the CPU
times for a full GW calculation for Sin (n = 2, 4, 8) on
a Digital Alpha 500/500 workstation. The parameters of
these calculations are those given in Table III and the
discussion thereof. Si2 (bulk Si) has a higher symme-
try than the tetragonal supercells Si4 and Si8. As the
symmetry is exploited in most parts of the calculation
this saves approximately a factor of two in CPU time
(cf. NIUC values in Table III). Taking this into account
the overall scaling is indeed quadratic, as expected. The
most time consuming parts of the calculation are:

(i) setting up the Green’s function according to Eq.
(3.3)

(ii) calculating the dynamically screened Coulomb in-
teraction (including the inversion of the dielectric
matrix [45], the transformation to and from recip-
rocal space, and reading of P 0 from and writing of
W to disk)

(iii) computation of the matrix elements of the en-
ergy dependent self-energy for a given number of
k points and bands.

Optionally, the Green’s function can be recomputed when
the self-energy is calculated, rather than storing it on disk
when it is first set up and reading it in for the calculation
of the self-energy. This procedure reduces the required
disk space by a factor of 2/3. It has been used for the
Si supercell calculations described here. As can be seen
from the breakdown of the total CPU time shown in Fig.
6 all these parts of the calculation scale roughly like N2.
More precisely, the scaling is like NIUCNbands for (i),
NIUCNUC for (ii) and N2

UC for (iii) as was discussed in
Section IV.

Comparing the performance of our method with con-
ventional techniques we note that although a number of
quasiparticle calculations within the GW approximation
have been reported for systems with up to 60 atoms,
e. g. for surfaces [40–42], defects [43], and fullerenes [44],
several simplifying approximations have been employed
in these calculations in order to reduce the computa-
tional effort. These authors focus on the calculation
of quasiparticle energies and therefore only a number
of self-energy matrix elements were computed. This is
in contrast to the present method which provides the
full self-energy (thus giving acccess to quantities other
than the quasiparticle energies, see conclusions section
below). In all the calculations mentioned above plasmon-
pole models have been employed to approximate the en-
ergy dependence of the dynamically screened Coulomb
interaction. In some cases [41,44] a model static dielec-
tric matrix has been used as well. To aid comparison
we note that although the plane-wave cutoff of the un-
derlying LDA pseudopotential calculation can be (and
has been in many GW calculations reported in the lit-
erature) considerably reduced in the GW calculation be-
cause the quasiparticle corrections usually converge much
faster with this parameter than the LDA eigenvalues, this
has not been done in the test calculations reported in the
present paper. The energy dependence of the screened
interaction is fully taken into account in the method pro-
posed in this paper. Hence the dielectric matrix is com-
puted and inverted for about 60 to 100 imaginary en-
ergies which is computationally much more demanding
than using a plasmon-pole model. We estimate that the
crossover to the advantegeous scaling behavior of CPU
time in our method occurs (a) already for bulk Si if we
compare with a calculation of the full self-energy with a
conventional reciprocal-space approach and (b) for sys-
tems in the range studied in this paper if we compare with
a reciprocal-space method where a plasmon-pole model
is used and which is restricted to computing a moderate
number of self-energy matrix elements only. Finally, we
mention that work, particularly regarding the treatment
of the time/energy dependence of the key quantities, is
in progress to reduce the prefactor of the scaling of our
method.
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VII. SUMMARY

We have presented a detailed account of a method for
calculating the electron self-energy and related quanti-
ties from ab-initio many-body perturbation theory within
the GW approximation. The method is based on repre-
senting the basic quantities (Green’s function, dielectric
response function, dynamically screened Coulomb inter-
action and self-energy) on a real-space grid and on the
imaginary time axis. In those intermediate steps of the
calculation where it is computationally more efficient to
work in reciprocal space and imaginary energy we change
to the latter representation by means of fast Fourier
transforms. Working on the imaginary time/energy axis
considerably facilitates the numerical treatment. The
matrix elements of the self-energy on the real-energy axis
are obtained by an analytic continuation procedure which
was shown to be accurate and stable. We have demon-
strated the accuracy of the method by calculating quasi-
particle excitation energies at high-symmetry points for
the prototype semiconductor Si. The computational ef-
fort of the method scales quadratically with unit cell size.
This was shown explicitly by calculations for Si super-
cells. The method allows the extension of ab-initio work
beyond the calculation of quasiparticle energies and its
application to materials with larger basis sets or larger
unit cells than were previously feasible. Calculating the
full self-energy gives access to quantities like the charge
density [15], spectral function [16], momentum distribu-
tion and total energy at the GW level. It also opens the
possibility of calculating the self-energy self-consistently
and to provide the GW Green’s function (after solving
the Dyson equation) – essential prerequisites for going be-
yond the GW approximation, e. g., by iterating Hedin’s
equations. This remains to be investigated in future.
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FIG. 1. The grids and cells used in the calculation in (a)
real and (b) reciprocal space. These are shown here schemat-
ically in two dimensions for the case of a 2×2 grid of k-points
(corresponding to an interaction cell of 2×2 unit cells), and a
3× 3 real-space grid in the unit cell (corresponding to a 3× 3
grid of reciprocal lattice vectors in reciprocal space). The bare
Coulomb interaction 1/ |r− r′| is non-periodic on the interac-
tion cell, and its amplitude at a real-space-grid point is taken
to be that at the corresponding point in the Wigner-Seitz cell
around r of the IC lattice. All other quantities, in both real
and reciprocal space, are periodic. In these cases the choice
of the primitive (shown) or Wigner-Seitz cell is a matter of
computational convenience.

FIG. 2. Fitting of the matrix elements of the correlation
self-energy 〈Σc(iω)〉 of silicon as a function of imaginary en-
ergy. The real (top panel) and imaginary (lower panel) parts
are both reproduced extremely accurately by the fits (which
on this scale are indistinguishable from the calculated values).
The bands shown are band 1 at the Γ point (solid line for fit-
ted and calculated function), bands 2-4 at Γ (dotted line),
bands 3-4 at X (dashed) and bands 5-6 at X (dot-dashed).

FIG. 3. Convergence of a matrix element (degenerate
bands 2-4 at Γ) of the correlation self-energy 〈Σc(iω)〉 of sili-
con with respect to ωmax with a fixed energy grid spacing of
∆ω= 0.16 Har. The top panel shows the calculated self-energy
on the imaginary axis with the analytically continued depen-
dence on real energy shown in the lower panel. The lines
correspond to ωmax= 5 Har (dotted), 10 Har (dashed) and
20 Har (solid). Changes in 〈Σc(ω)〉 are directly related to
changes in the calculated 〈Σc(iω)〉, rather than any instabili-
ties in the analytic continuation technique.

FIG. 4. Convergence of 〈Σc(iω)〉 with respect to energy
grid spacing ∆ω with fixed ωmax= 10 Har. The lines corre-
spond to ∆ω= 0.24 Har (dotted), 0.16 Har (dashed) and 0.08
Har (solid). As in the previous Figure the analytically contin-
ued matrix element converges well, indicating the stability of
the fitting procedure. The matrix elements on the real-energy
axis (which are obtained in form of fits to a model function,
see text) are plotted with a fixed grid spacing of 0.04 Har in
order to facilitate comparison between the three curves.

FIG. 5. Real part of a matrix element (degenerate bands
2-4 at Γ) of the correlation self-energy 〈Σc(ω)〉 on the real en-
ergy axis, computed with ωmax = 5 Har (dot-dashed line), 10
Har (dashed line), and 20 Har (long-dashed line) with fitting
〈Σc(iω)〉 on the imaginary energy axis using the energy range
(−ωmax, +ωmax) and with ωmax = 10 Har (dotted line) and
20 Har (solid line) using a fixed energy range of (−5 Har, +5
Har) for the fitting.

FIG. 6. Scaling of the CPU time on a Digital Alpha
500/500 workstation with respect to unit cell size for Sin
(n = 2,4,8). Besides the total CPU time (◦) the times for
three major parts of the computation are given: calculation
of (i) the Green’s function (✷), (ii) the dynamically screened
Coulomb interaction (✸), and (iii) the matrix elements of the
self-energy including a recomputation of the Green’s function
(△), see text. Note the quadratic spacing of the abscissa.

TABLE I. Convergence of quasiparticle energies for bulk
Si with respect to cutoff and grid parameters in the present
method. Shown are the parameters needed for a convergence
of 50 meV and 20 meV, respectively.

parameter 50 meV 20 meV

plane-wave cutoff (in Ry) 13.5 16
band cutoff (in Ry) 8 10
size of k grid 4 × 4 × 4 5 × 5 × 5
spacing ∆t of time grid (in a.u.) 0.3 0.15
range tmax of time grid (in a.u.) 13. 20.
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TABLE II. Calculated quasiparticle energies at points of
high symmetry for Si (in eV). The valence band maximum has
been set to zero. The calculation was done with a plane-wave
cutoff of 16 Ry, a 5 × 5 × 5 k-point grid, a band cutoff of
10 Ry and a time grid with ∆τ = 0.3 a.u. and τmax = 20
a.u. For comparison the eigenvalues obtained in the LDA
calculation providing the input for the GW calculation have
been included. GW 1 refers to a GW calculation using the
LDA Green function whereas in GW 2 the Green function
has been updated by replacing the LDA eigenvalues by the
quasiparticle energies obtained in GW 1. In the last column
some experimental data are given (see text).

band LDA GW 1 GW 2 Experiment

Γ1v -11.89 -11.57 -11.58 −12.5 ± 0.6a

Γ′
25v 0.00 0.00 0.00 0.00

Γ′
15c 2.58 3.24 3.32 3.40a, 3.05b

Γ′
2c 3.28 3.94 4.02 4.23a, 4.1b

X1v -7.78 -7.67 -7.68

X4v -2.82 -2.80 -2.81 -2.9c, −3.3 ± 0.2d

X1c 0.61 1.34 1.42 1.25b

X4c 10.11 10.54 10.63

L′
2v -9.57 -9.39 -9.40 −9.3 ± 0.4a

L1v -6.96 -6.86 -6.88 −6.7 ± 0.2a

L′
3v -1.17 -1.17 -1.17 −1.2 ± 0.2a, -1.5e

L1c 1.46 2.14 2.22 2.1f , 2.4 ± 0.15g

L3c 3.33 4.05 4.14 4.15 ± 0.1g

L2c 7.71 8.29 8.39

Egap 0.49 1.20 1.28 1.17a

aRef. [31].
bRef. [32].
cRef. [33].
dRef. [34].
eRef. [35].
fRef. [36].
gRef. [37].

TABLE III. Grid parameters for the Sin (n = 2, 4, 8) cal-
culations (see text).

parameter Si2 Si4 Si8
(bulk Si)

NIUC 55 230 455
NUC 9 × 9 × 9 9 × 9 × 18 9 × 9 × 36
Nk 4 × 4 × 4 4 × 4 × 2 4 × 4 × 1
NIC = NUCNk 36 × 36 × 36 36 × 36 × 36 36 × 36 × 36
Nt/ω 63 63 63

TABLE IV. Comparison of quasiparticle energies (in eV)
at high symmetry points for bulk Si with the corresponding
values obtained from calculations for Si4 and Si8 supercells
(see text). All energies refer to the respective valence band
top. Shown are the band energies for all k-points mapping
onto Γ, X, and L, respectively, when the unit cell size is
increased, where those k-points appear in the calculation.

bulk Si Si4 Si8
Γ -11.55 -7.63 -10.53 -11.53 -7.61 -11.55 -7.63 -10.53

0.00 -2.78 -3.41 0.00 -2.78 0.00 -2.78 -3.41
3.23 1.35 -1.81 3.22 1.37 3.22 1.37 -1.81
3.97 10.52 1.77 3.96 10.45 3.96 10.43 1.78

3.82 3.82
6.35 6.30

L -9.35 -9.62 -9.34 -9.36 -9.63
-6.83 -5.35 -6.81 -6.83 -5.35
-1.16 -3.62 -1.16 -1.16 -3.62
2.17 -1.27 2.18 2.18 -1.27
4.04 3.13 4.03 4.02 3.12
8.28 5.46 8.26 8.25 5.42

5.66 5.63
6.75 6.70

X -7.63 -7.46 -7.61 -7.64 -7.47
-2.78 -3.73 -2.78 -2.79 3.73
1.35 4.84 1.37 1.36 4.82

10.52 5.67 10.44 10.42 5.63
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