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PHYSICAL REVIEW A, VOLUME 63, 012105

Discrete Moyal-type representations for a spin

Stephan Heiss and Stefan Weigert™
Institut de Physique, Université de Neuchatel, Rue A.-L. Breguet 1, CH-2000 Neuchatel, Switzerland
(Received 17 May 2000; published 8 December 2000)

In Moyal’s formulation of quantum mechanics, a quantum spin s is described in terms of continuous
symbols, i.e., by smooth functions on a two-dimensional sphere. Such prescriptions to associate operators with
Wigner functions, P or Q symbols, are conveniently expressed in terms of operator kernels satisfying the
Stratonovich-Weyl postulates. In analogy to this approach, a discrete Moyal formalism is defined on the basis
of a modified set of postulates. It is shown that appropriately modified postulates single out a well-defined set
of kernels that give rise to discrete symbols. Now operators are represented by functions taking values on
(25+1)? points of the sphere. The discrete symbols contain no redundant information, contrary to the con-
tinuous ones. The properties of the resulting discrete Moyal formalism for a quantum spin are worked out in

detail and compared to the continuous formalism.

DOI: 10.1103/PhysRevA.63.012105

I. INTRODUCTION

The idea of representing quantum mechanics of a particle
in phase space I' goes back to Wigner [1]. He established a
one-to-one correspondence between a quantum state |¢) in
the particle Hilbert space H and a real function

2
Wolpa)= 7 | dxu(g e pta—vesl2ipunl. (1)

Its properties suggest an interpretation as a quasiprobability
in phase space, the only drawback being the negative values
it may take. A more general framework for phase-space rep-

resentations [2] of quantum states as well as operators A is
given by the relation

with an operator kernel [3,4]

A(q.p)=2D(q.p)I1D"(q.p), (q.p)el. (3

Here I1:(g,p)—(—q,—p) is the unitary, involutive parity
operator, while D(q,p) describes translations in phase space
[5]. If the operator A is chosen as the density matrix of a
pure state, A=p,=|y)(¢4|, Eq. (2) reduces to Eq. (1). The
kernel A(g,p) can be derived from a set of conditions that a
phase-space representation is required to satisfy (see below).
It is intimately related to the behavior of a function W,(q,p)
under translations mapping the phase space I' onto itself.

The map (2) from operators to functions (A— W,) has an
important feature: its inverse, mapping functions to operators

(W4 HA) are mediated by the same kernel —in other words,
the kernel A(q,p) is self-dual.

For a quantum spin, the symbol associated with an opera-
tor is a continuous function defined on a sphere S 2 which is
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the phase space of classical spin. Now, instead of translations
in planar phase space, it is the group SU(2) of rotations that
plays a dominant role when the Moyal formalism is set up.
As for a particle, the set of Stratonovich-Weyl postulates [6]
characterizes the symbols in an elegant way. For clarity, the
postulates are now displayed in their familiar form for the
continuous symbols:

(S0) linearity: A~>W, is alinear one to one map,
(S1) reality:  Wy4i(n)=Wi(n),

2s+lJ dn=TrlA
477 SZWA(n) n= r[ ]7

(S2) standardization:

2s+1 PR
(83) traciality: —J W,4(n)Wg(n)dn=Ti[AB],
da Js2

(S4) covariance: W, ,=W§, geSU(2).

It is natural to have a linear relation between operators and
symbols (S0), while (S1) implies that Hermitean operators
are represented by real functions. The third condition (S2)
maps the identity operator to the constant function on phase
space, and traciality (S§3) expresses statistical averages in
terms of symbols. The covariant transformation of the sym-
bols (S4) with respect to rotations g € SU(2) effectively in-
troduces phase-space points as arguments of the symbols.
The continuous Moyal representation for a spin [7,8] com-
patible with these conditions can be based on a self-dual

kernel A(n) (see Sec. 2) in analogy to Eq. (2).

In order to have a consistent and full-fledged classical
formalism it is necessary to introduce a product between
symbols that keeps track of the noncommutativity of the un-
derlying operators. This Moyal product [2], or twisted prod-
uct, for two operators A and B expresses the W,p of the

operator product AB in terms of the symbols W, and Wj,
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Wag(n)=W,(n)xWg(n)

:f 2f ,L(n,m.K)W,(m)Wp(k)dmdk, (4)
S§JS

with a function L(n,m,k) of three arguments given explic-
itly in [7], for example. The * product is known to be asso-
ciative.

Other continuous representations for a spin do exist, such
as the Berezin symbols of spin operators [9] that are the
analog of the P and Q symbols [5] for a particle. Instead of a
single self-dual kernel, the Berezin symbols require, how-
ever, a pair of two different kernels, dual to each other: One
of the kernels maps operators to functions while its dual is
needed for the inverse procedure. It will become clear later
on that the self-dual and the dual approaches correspond to
defining orthogonal and nonorthogonal bases, respectively,
in the vector space A, of operators acting on the Hilbert
space of a spin s. When slightly modifying the postulates of
Stratonovich, they are also compatible with kernels that are
not self-dual.

A common feature of these representations is the redun-
dancy of the continuous symbols. When represented by a
(2s+1)X(2s+1) matrix, a Hermitean operator is fixed by
the values of (2s+ 1)? real parameters. Consequently, the
values of the symbols being continuous functions on the
sphere, cannot all be independent—in other words, the infor-
mation contained in a symbol is redundant. The discrete ver-
sion of P and Q symbols for a spin s, introduced in [10,11] as
a means to reconstruct the quantum state of a spin, allows

one to characterize a spin operator A by using only the mini-
mal number of parameters. In fact, a discrete symbol can be
considered as living on a ‘‘discretized sphere,’’ that is, as a
function taking (real) values on a finite set of points on the
sphere only. Such a formalism will be called a discrete
Moyal-type formalism.

The purpose of the present paper is to develop the discrete
Moyal formalism in analogy to the continuous one. In par-
ticular, the kernel and its dual defining the discrete symbols
will be derived from a set of appropriate Stratonovich-type
postulates. Subsequently, the properties of these symbols are
studied in detail.

II. CONTINUOUS REPRESENTATIONS
A. Continuous self-dual kernel: Wigner symbols

The Stratonovich-Weyl correspondence for a spin s is a
rule associating with each operator Ae A, on a Hilbert space
H, a function W, on the sphere S2, called its (Wigner) sym-
bol. Let us define it in the spirit of Eq. (2) by means of a
universal operator kernel A(n), which can also be thought of
as a field of operators on the sphere. Then, the first require-
ment (S0) is already satisfied, and the postulates (S1) to
(§4) turn into conditions on the kernel:

(C1) reality:  AT(n)=A(n),

2s+1 .
(C2) standardization: —f dnA(n)=1,
40 Js2
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2s5+1
4ar

(C3) traciality: fszdnTr[A(n)ﬁ(m)]ﬁ(n)

=A(m),

(C4) covariance: A(g-m)=U,A(n)U], geSU(2),

where the matrices U ¢ are a unitary (2s+1)-dimensional
irreducible representation of the group SU(2).

The existence of a kernel A(n) satisfying (C1-C4) has
been proven in [6] by explicit construction. The derivation in
[7] starts by expanding the kernel in a basis associated with

the eigenstates of the operator s- n,,

s

Am= X

r
m,m' =—s

. (5)

Z o (M) |m,m)(m’ ,m,

with unknown coefficients Z,,,(n). It follows from

(C1-C4) that one must have

z, . (n)
dar - s ! s
T 2s+1 ,Zo 8’\/m<m m' —m m/>Y/,m’m(n)s
(6)
where eg=1 and ;= *+1,[=1,...,2s, and the definition of

the Clebsch-Gordan coefficient given in [7] is used. Conse-
quently, there are 2% different kernels that define a
Stratonovich-Weyl correspondence rule.

A new and simple derivation of the kernel A (n), indepen-
dent of the argument given in [7], is presented now. It has
two important advantages: On the one hand, it will provide a
form of the kernel similar to that one of a particle (3), which
is interesting from a conceptual point of view. On the other
hand, it will be possible to transfer this approach to a large
extent to the case of the discrete Moyal formalism.

Expand the kernel in the eigenbasis of the operator s-m,

Am= X

’
m,m' =—

; (7)

Amm’(n)|’n’n><”n,’n

where the expansion coefficients A,,,,» are unknown so far.
According to the reality condition (C1) they must satisfy
A, ()= A:’:l,m(n). In a first step, the numbers A,,,,/(n) are
shown not to depend on the label n. Consider the transfor-
mation of A(n) under a rotation g. According to (C4) one
must have

E Amm’(g‘n)|m’g'n><m,’g‘n|

m,m’= -8

=U,AmU!= > A, (n)|m,R,n)(m' .R,n

s

m,m'=—s

(8)
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where U,|m,n)=|m,R,n)=|m,g-n) with a rotation matrix
R 650(3) representing g e SU(2) in R*. Consequently,
one must have for any g that

Amm’(g'n)zAmm’(n)a (9)

which is only possible if A,,,; does not depend on n. Con-
sider next a rotation g(n) about the axis n by an angle ¢
€[0,27), represented by the unitary U o(m) = €Xp(in- SQ).
The left-hand-side of (C4) is invariant under this transfor-
mation while the right-hand-side transforms:

AR )n)=A(n)

g(n

= 2 A, expliim—m')]|lm,n)(m’ n|,

(10)
which is possible only if
Amm':A(’n)émm" (11)

Therefore, covariance of the kernel under elements of SU(2)
requires it to be diagonal in the basis associated with the
direction n,

A(n)= (12)

m=—-s

Next, the condition of traciality will be exploited. Upon re-
writing (C3) in the form

J'Szdnés(m,n)ﬁ(n)=ﬁ(m), (13)

the function 8,(m,n)=(2s+ 1)Tr{ A(m)A(n)]/(4) is seen
to be the reproducing kernel for a certain subset of (2s
+1)? functions on the sphere [12,7]. In other words,
0,(m,n) acts in this space as a delta function with respect to
integration over S2, and for spin s, it reads explicitly

2 20+1
Si(mm=2 X ¥, (m)Y},(n)= 2 — - Pi(m-m).
(14)

Here the addition theorem for spherical harmonics Y,,,(n),/
=0,...,2s,—I=m=] has been used to express the sum
over m in terms of Legendre polynomials P;(x),—1<x=<1.
Upon choosing m=n_ and with n_-n=cos 6, the condition
(C3) becomes

T A(n)A(m)]= E 2l

EXrS] P(cos 0). (15)

Use now the expansion (12) of the kernel on the left-hand-
side as well as the identity

PHYSICAL REVIEW A 63 012105

:

S,>Pl(cos 0), (16)
m

’ 2_
[l =2 57 o

<s [
X
m' 0

- zz+1<s I

leading to

Tr[A(n)A ()]
2s I
=2 ( > A<m>< 0
=0

m=-—-=s

22041

2S—+1PI(COS 0)

N
m
(17)

Compare now the coefficients of the Legendre polynomials
P;(cos ) with those in Eq. (15). This leads to (2s+1) con-
ditions

l
> A<m>< 0

m=-—-=s

(18)

These equations can be solved for A(m) by means of an
orthogonality relation for Clebsch-Gordan coefficients [13],

- 21+1< I s>
. (19)
m

Alm)= 2 s+ 1\m 0
Thus, the self-dual kernel for the continuous Moyal formal-
ism is given by
s
m

K 2s
20+1 s I
A(n)=
(m)= m_ES ,Z “2s+1\m 0
Out of these 2%**! distinct solutions, only 2% are compatible
with the condition of standardization (C2) that has not been
used until now. This condition imposes

(20)

> Alm)=1, (21)

m=-—s

being satisfied if and only if eq=+1.

The set of solutions (20) coincides indeed with those
found in [7]. The easiest way to see this is to calculate the
matrix elements of the kernel A(n) in Eq. (20) with respect
to the standard basis |m,n_). One reproduces the coefficients
of the expansion (6): (m,n.|A(n)|m’ n,)=2,,, (n).

The expansion (20) is interesting from a conceptual point
of view. It allows one to interpret physically the kernel A(n)
in analogy with the kernel for a particle given in Eq. (3) by
writing

A(m)=0,A(n) 07}, (22)

where U, represents a rotation that maps the vector n, on n.
Imagine now to contract [12] the group SU(2) to the
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Heisenberg-Weyl group. It is known that this procedure turns
rotations U ¢ into translations D(q.p). As shown in [14], the
operator ﬁ(nz) contracts in the following way:

A(n,)—2II, (23)

if g,=+1,1=0,...,2s. Therefore, the operator A(nz) plays
the role of parity for a spin as is by no means immediately
obvious when looking at it.

Finally, we would like to point out that the integral kernel
L, defining the * product of symbols (4), has a simple ex-
pression in terms of Wigner kernels:

2
L(n,m,k)=<%> T A(n)A(m)A(k)]. (24)

B. Continuous dual kernels: Berezin symbols

Wigner symbols of spin operators are calculated by means
of a kernel that is its own dual. Other phase-space represen-
tations are known that do not exhibit this ‘‘symmetry’’ be-
tween an operator and its symbol. P and Q symbols for a
particle are familiar examples that have their analog in the
“‘Berezin’’ symbols for a spin. It will be shown now that
these symbolic representations also have a simple description
in terms of kernels satisfying a modified set of Stratonovich-
Weyl postulates. The conditions (C1-C4) must be relaxed
slightly in order to allow for a pair of dual kernels.

The required generalization is easily understood in terms
of linear algebra. The ensemble of all operators in the self-
dual kernel is nothing but a (overcomplete) set of vectors
spanning the linear space .4, of operators on the Hilbert
space of the spin s. As the traciality (C3) indicates, this
family of vectors is ‘‘orthogonal’” with respect to integration

over the sphere as a scalar product. Each operator A can be
written as a linear combination of the elements of the kernel
with its Wigner symbol as expansion coefficients. More pre-
cisely, the expansion coefficients W,(n) with respect to the

basis A(n) are given by the “‘scalar product’ of A with the
same basis vector as shown, for example, in Eq. (2). The
essential point now is, that there are also nonorthogonal
bases of the same space. Given a nonorthogonal basis, de-

noted by A ne S?, its dual basis A" is uniquely determined
through the scalar product. Furthermore, the dual basis also
spans the original space, which implies that now there will

be two different expansions of one operator A defining a
symbol A, and its dual A", respectively. Consequently, both
kernels and symbols come in pairs. The familiar P and Q
symbols—or Berezin symbols [9]—will be seen to be related
in this way.

Nonorthogonal bases are allowed in the present frame-
work if, first of all, traciality (C3) is relaxed to

A A

2s5+1 . .
—f 2dn T{ALA"A=A
S

(C'3) traciality: yp
(25)

PHYSICAL REVIEW A 63 012105

The kernel and its dual are both real in analogy to (C1).
Explicitly, the symbols and their duals are given by

A=THAA,], A"=T{AA". (26)
Furthermore, one is free to normalize one of the kernels, AAn,
say, in analogy to (C2), and one requires it to transform
covariantly (C4).

It is possible as before to derive the explicit form of the
kernels by a reasoning in analogy to above. The general an-

satz for both An and A" in the basis referring to the axis n as
in (7) is again reduced to diagonal form by exploiting their
behavior under rotations:

Ar= D A"|m,n){(m,n|,
(27)

= 2 A,|m.n)(m.nl,

m=-—s

with two sets of numbers A,, and A™, which do not depend
on n. It is necessary that the trace of these two operators with
labels m=n, and n, say, equals the reproducing kernel with
respect to integration over the sphere, that is, instead of Eq.
(15) one needs to have

T4, A"= 2 o

P(cos ), (28)
where cos 6=n,-n. This leads to the conditions

DS ] IS e

with [=0,...,2s. The ensemble of solutions is parameter-
ized by (2s+ 1) finite nonzero real numbers v, :

- .

:1’

-1

2A< é

EA'"< l

m=—-s m=—-s 0 :7],
(30)
Solving for the expansion coefficients, one obtains
§ 20+1 I s X
M5+ 1\m 0| m/ G
2 20+1 L]
A= ! 2s+1<m 0 m> (32

As in the self-dual case, the standardization implies that
vo= *+ 1. This class of solutions for kernels that are not their
own dual has been obtained in [8] by an entirely different
approach. Self-dual kernels are a small subset; they require
A,,=A", which is y,= y, or y;==*1 in agreement with
Eq. (20). Each set of numbers 7, defines a consistent phase-
space representation of a quantum-mechanical spin.
Consider the particular case A, = §,,, resulting from

012105-4
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TABLE I. Expansion coefficients of the dual kernels A m> A™ and the self-dual kernel A(m) in terms of

the dual pair A“ and A",

T -A,] Ti - A™]
~ 4qr s [ 2
O,(nm,
A“ 2s+1 2ml<ln 0 > Ylm(nam) S(n m)
. s 1] s\7?
A" 5S(n,m) Eml Y[m(n,m)
m 0 |m
R s s s L] s\t
A(n) Em1<m 0 m>Y1m(n,m) Zml m 0| m Ylm(n’m)
s I|s Finally, it is interesting to calculate the Q and P symbols of
Yi= s 0ls/ (33) the self-dual kernel AA(n) as well as the pair of dual kernels
A" and An using the shorthand
The associated kernels read
. Y ,m)=YF Y , 40
An=|s,n><s,n|E|n>(n|, (34) lm(n m) Zm(n) Im(m) ( )
) S o141 )s 1 ]s\ 7! so that the reproducing kernel is given by
Ar= 2 3
m=—si=02s+1\s 0O|s
s 1] 8,(n,m) =2, Y, (n,m). (41)
X |m,n)(m,n|. (35) m!
m 0 |m

This choice has the advantage that one of the two symbols
reduces to the expectation value of an operator A in coherent
states [5]. It turns out to be just the Q symbol of A, Q,(n)

=(n|A|n), that is, its expectation in a spin-coherent state. At
the same time, one falls back on a familiar expression for the

dual symbol, namely the P symbol for A, defined by an
expansion in terms of a linear combination of operators pro-
jecting on coherent states,

PG f P d 36
= e A(n)[n){n|dn. (36)
In the present notation, Eq. (26) implies that

0,(n)=A,=Tr[AA,], P,(n)=A"=Tr[AA"],

37)
so that Eq. (36) reads
A—(2S+1) dnTr[AAMA 38
= | L TeLAAMA,. (38)
It is obvious now that one has (see Ref. [7])
fal (2s+1)
Tr[AB]= TfszanA(n)QB(n)
B (2s+1) R
= T Szdn A Bn~ (39)

Table I shows the expansion coefficients of the kernels in-
troduced so far in terms of other kernels. Note that the entries
of last row, the Q and P symbols of the self-dual kernel

A(n), do simultaneously provide the Wigner symbols of the
dual kernels A, and A™.

III. DISCRETE MOYAL-TYPE REPRESENTATIONS

A particular feature of the kernels discussed so far is their
redundancy; the linear space of Hermitean operators for a
spin s has dimension (2s + 1)2, while the kernels consist of a
continuously labeled set of basis vectors. In other words,
there are at most N,=(2s+ 1)? linearly independent opera-

tors among all A(n), ne S2. In this section discrete kernels
will be introduced, denoted by A,,, v=1,...,N,. No linear

relations must exist between the operators AV that constitute
the kernel, that is, they are a basis of A, in the strict sense. It
is natural to expect that a subset of precisely N, operators

A(ny), v=1,...,N, will give rise to a discrete kernel.

Therefore, evaluating a continuous symbol of an operator A
at N, points n, of the sphere S? provides a promising can-
didate for a discrete symbol, i.e., the set A,=A,, v

=1,...,N,. For brevity, N, points on S are called a con-
stellation.

As before, one might expect orthogonal and nonorthogo-
nal kernels to exist. It turns out, however, that an appropri-
ately modified set of Stratonovich-Weyl postulates covering
discrete kernels does not allow for orthogonal ones. There-
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fore, we start immediately by deriving the discrete non-
orthogonal kernels coming as before in combination with a
dual.

A. Discrete dual kernels

By analogy with the continuous representation of the pre-
ceding section, one modifies the Stratonovich-Weyl postu-
lates in the following way (throughout, the index v takes all
the values from 1 to N,):

(DO) linearity: A~>A, is a linear map,

(D1) reality: AA:F,:AAV,
NS
D?2) standardization: : E Av=]
( stan ization: Fl & R
5
. . . o — A /\M A
(D3) traciality: A, 2541 & T A A¥]A,,

A

(D4) covariance: AgA,,ZﬁgA,,Ul;, geSU(2).

Let us briefly comment on these conditions. Linearity is au-
tomatically satisfied if discrete symbols are defined via ker-

nels, that is, AV=Tr[AAV]. The second condition—
reality—is obvious, and in (D2) the kernel A” dual to AV is

standardized. The duality between AV and A” is made pre-
cise by the condition of traciality since (D3) only holds if
one has

T{A,A*]=6", v.u=1,....N,, (42

2s+1

which, upon considering the trace as a scalar product, coin-
cides with the condition defining the dual of a given basis.
As a matter of fact, if {AAV} v=1,...,N,, is a basis, its
unique dual is guaranteed to exist. Finally, covariance under
rotations g € SU(2) must be reinterpreted carefully. Under a
transformation g, a constellation associated with N points on
the sphere will, in general, be mapped to a different constel-

lation. In other words, the image Ag, V= A(g -n,,) is typically

not one of the operators AV. Nevertheless, condition (D4) is
not empty; For appropriately chosen rotations g,, one can
indeed map an operator defined at n, to another one associ-
ated with the point n,, say. In this case, the consequences

s
for the coefficients of the operators A, and A, are identical

to those obtained in the continuous case. Similarly, invari-

ance of the operator AV under rotations about the axis n,, has
the same impact as before. Thus the general ansatz for the
discrete kernel [obtained from (7) by setting n—n,] is re-
duced by exploiting the postulates (D1-4) to the form

A,=4m,)= 2 A,fmn)mmnl, v=1,...N,.
(43)

PHYSICAL REVIEW A 63 012105

Therefore, the discrete kernel AV can be thought of as a

subset of N, operators AA(n,,), each one associated with a
point n,, of the sphere.
Let us mention an important difference between discrete

and continuous kernels AA,, and A(n), which arises in spite of
their formal similarity. Once the coefficients A,, are fixed, a
continuous kernel is determined completely. Discrete ker-
nels, however, come in a much wider variety since they de-
pend, in addition, on the selected constellation of points on
the sphere. The discrete kernel does not enjoy the SU(2)
symmetry in the same way as does the continuous one. The
discrete subgroups of SU(2) being limited in type, the con-
tinuous symmetry will usually not turn into a discrete one.
Note, further, that the elements of the dual kernel depend, in

general, on all the points of the -constellation: AY
:AAv(nl ..

variation of a single A, will have an effect on all {A*} in
order to maintain duality.

The additional freedom of selecting specific constellations
is connected to a subtle point: actually, not all constellations
of N, points give rise to a basis in the space A, . This remark
is easily understood by considering R as an example of a
linear space. The (continuous) collection of all unit vectors
in three space clearly spans it while not every subset of three
vectors is a basis—they might lie in a plane. By analogy, one

Sy ). This is easily seen from Eq. (42) since the

must ensure that the operators AA,,,V: I,...,N,, associated
with a specific constellation, do indeed form a basis of A, .
The operators are linearly independent if the determinant of
their symmetric Gram matrix G [15] satisfies

detG>0, G,, =Ti{AA,], (44)

a condition that will be studied later in more detail.

Suppose now that the N, operators A , in Eq. (43) do form
a basis. Then, the kernel dual to it, that is the set of operators

A", is determined by the condition (42) instead of Eq. (28).
Therefore, one cannot proceed as before to derive the condi-
tions (29). In particular, it is no longer true that the elements
of the dual kernel have an expansion analogous to Eq. (43).
This follows immediately from the impossibility of satisfy-
ing Eq. (29) by an ansatz for A" of the form (43): Eq. (43)
represents N, conditions but its dual would depend only on

(2s+1) free parameters A”. Nevertheless, a dual kernel Av
does exist and it is determined unambiguously—it simply
cannot be written as in (43). Consequently, one expands any

(self-adjoint) operator A either in terms of a given kernel,

A= ! %AVA A'=Ti{AA" 45
_2S+ly=1 v - r[ :I? ( )

or, equivalently, in terms of the dual kernel,
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N
1 2 A an
. > AAY, A,=TiAA,). (46)
v=1

The collection A=(Aq, ...
(46) is defined as the discrete phase-space symbol of the

operator A, and AT9'=(A", ... ,ANs) is the dual symbol.
The relation between the discrete symbol and its dual as

well as between the pair of kernels is linear. It is easily

implemented by means of the Gram matrix G and its inverse

Gfl

A Nv) of real coefficients in Eq.

(G™Y,, =G"' = TH{A"A"]. (47)

(2s+1)?

The matrix G thus plays the role of a metric,

NS

=(2s+1) El G*'A (48)
=

and the dual symbol is determined according to

Ny

A'=(2s+1) >, G"A, . (49)

v'=1

The trace of two operators A and B is easily found to be
expressible as a combination of a discrete symbol and a dual
one,

=

“

Ny
TH{AB]= §=‘, (50)

v

which is the discretized version of Eq. (39).

In order to have a discrete Moyal product, we seek to
reproduce the multiplication of operators on the level of
symbols. Using the definition of the symbols, it is straight-
forward to see that

NV
AB A\ xB,= L{YA B, 51
(AB)\=A\*B\= (2s+1)2 % P (51)
with the trilinear kernel
LY =Ti A*A"A,], (52)

in close analogy to Eq. (4).

B. Discrete P and Q symbols

A particularly interesting set of symbols emerges if, for a
given allowed constellation, only one of the coefﬁcients in
the expansion (43) is different from zero, A,,=3,,,, say.
Then, the kernel consists of N, operators projecting on co-
herent states,

0,=n,)(n,|. (53)
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This is obviously the nonredundant counterpart of Eq. (34),
implying that a self-adjoint operator A is determined by a
symbol that consists of N, pure-state expectation values, the
discrete Q symbol,

A,=Ti{AQ,]=(n,|A[n,). (54)

Let us point out that the introduction of discrete symbols has
actually been triggered by the search for a simple method to
reconstruct the density matrix of a spin through expectation
values [10]. In fact, this problem is solved by Eq. (54) in the

most economic way. If A is chosen to be the density matrix

p of a spin s, then the vth component of the Q symbol equals
the probability of measuring the eigenvalue s in the direction
n

v

=[(n,|p[n,)|. (55)

Knowledge of the N, measurable probabilities p (n,) thus

py(m,)

amounts to knowing the density matrix p.
If the Q symbol (54) determines an operator A, the values

of the continuous Q symbol of A at points different from
those of the constellation must be functions of the numbers
(A, ...,Ay). For a coherent state [ng)#[n,), not a mem-

ber of the constellation, this dependence reads explicitly

(mg|A|ng)y= E A[(ng|n,)|%. (56)

2s+1 7

Here, the P symbol A of A is required, calculated easily from
its Q symbol by means of Eq. (49) once the matrix

G=G,, =T 0,0, ]=|(n,

has been inverted. Furthermore, knowledge of G™!

(57)

provides

immediately the dual kernel Q" via Eq. (48) but no explicit
general expression such as Eq. (35) is known.

It will be shown now how to directly determine the matrix
elements of the dual kernel without using the inverse of G.
The orthogonality of the kernel and its dual, Eq. (42) can be
written as

61/’ —

v 2S+1Tr[QVQ ]

1 s

=507 2 (m'[0Jm)m|Q”|m").  (58)

mm =—s

using the completeness relation for the z eigenstates |m,n.).
Introduce an (N XN,) matrix Q with elements Q, .

=(m|Q,|m"), where the index (m,m") of the columns runs
through N, values according to
{(25,25),(25,25—1), ...,(25,0),(2s—

1.25), ....(0,0)}.

(59)

As is obvious from Eq. (58), the matrix elements of the dual
kernel, Q"

Y =(m|Q"|m") can be read off once the inverse
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of the matrix Q has been found. The expansion coefficients
of a coherent state |n) in the standard basis |m,n_) are given

by
1 2S 12
. s=m 60
<1+|z|2>f(s—m> - (60

(m.n[m)=
where the complex number z is the stereographic image in
the complex plane of the point n on the sphere. Therefore,
one can write Q as a product of three matrices, two of which
are diagonal: Q= D;ND,. The diagonal matrices

D, =diag[ (1+]z,/*)~*], (61)
25 \12/ g 12
D, =diag (2s—m <2s—m’> }’ (62)
with v=1,...,N,, and m,m’'=0,...,2s, have inverses

since all diagonal entries are different from zero. The hard
part of the inversion is due to the matrix N with elements

Ny =22 " (25) 27 (63)

similar to but not identical to the structure of a Vandermonde
matrix. As discussed in the following section, particular con-
stellations give rise to matrices N with inversion formulas
simpler than the general one. Once N has been inverted, the
matrix elements of the dual kernel are given by the rows of
the (N, X N,) matrix

Q '=D;'N"'D;". (64)

For discrete Q symbols, the kernel L in Eq. (52), which
implements the discrete x product, has the form

LMV}\:Tr[Q,uQVQA)\]:<n)\|n,u><n;t|nv><nv|n)\>’ (65)

which, by using results from Ref. [8], can be written as

LW)\=47(1+nM~n,,—|—n,,-n)\—f—n)\~nl,ﬂ-inl,n,,Dn)\)zY
(66)
:go(nu'nv)sgo(nv‘nx)sgo(nx'nﬂ)seimwm), (67)

where go(n,-n,)=(1-+n,-n,)/2, and, defining g(uv\) as
the term in parentheses of Eq. (66), one has
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FIG. 1. Examples of nested
cones, free cones, and a spiral
constellation for spin quantum

number s=1. Each set of nine
points defines an allowed constel-
lation.

st

. 68
g*(pv\) (08

1
a(puv\)= l—,ln

Therefore, the phase « has a geometrical interpretation [8]: It
is given by the surface of the geodesic triangle given by the
points n,,n,.n, .

IV. CONSTELLATIONS

In this section, examples of specific constellations are pre-
sented for which it is possible to prove that the Gram matrix
has a determinant different from zero. Furthermore, in some
cases, relatively simple expressions for the dual kernel or,
equivalently, for the inverse of the Gram matrix G are ob-
tained. The kernel is supposed throughout to consist of N,

projection operators O, on coherent states as given in Eq.
(53). In other words, the focus is on discrete Q symbols and
the P symbols related to them. Note that, once a constellation
has been shown to give rise to a basis in 4, , the inversion of
its Gram matrix is always possible but lengthy (already for a
spin 1/2): Express the matrix elements of G~ ! in terms of the
cofactors of G. Four different types of constellations will be
discussed involving randomly chosen points, points on
nested cones, on free cones, and on spirals (see Fig. 1).

A. Random constellations

As shown in Ref. [16], almost any distribution of N,
points on the sphere S* gives rise to an allowed constellation.
A random selection of directions leads with probability 1 to
an invertible Gram matrix. This result shows that in an in-
finitesimal neighborhood of any forbidden constellation, one
can find an allowed one.

B. Nested cones

Historically, this family of constellations provided the
first example of allowed constellations for both integer and
half-integer spins [17]. For an integer value of s consider
(2s+1) cones about one axis in space, e,, say, all with
different opening angles. Distribute (2s5+ 1) directions over
each of these nested cones in such a way that the ensemble of
directions on each cone is invariant under a rotation about e,
by an angle 27/(2s+ 1). For specific opening angles of the
cones, the inversion of the matrix N in Eq. (63) reduces after
a Fourier transformation to the inversion of (2s+ 1) Vander-
monde matrices of size (2s+1)X(2s+1). For a half-
integer spin, the same construction is possible except that the
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directions on different cones must also lie on different me-
ridians. There is, in fact, a slight generalization of this result:
the same calculation with (2s+ 1) arbitrary different open-
ing angles leads to (2s+1) generalized Vandermonde ma-
trices with a nonzero determinant.

Constellations on nested cones are useful also for numeri-
cal calculations because they allow one to distribute N,
points in a homogeneous fashion on the surface of the
sphere. If two points of a constellation approach each other,
the determinant of the matrix G typically becomes very
large, with a disastrous effect on numerical precision.

C. Free cones

Here is another family of constellations involving (2s
+1) cones with directions located on them. However, now
the cones may be oriented arbitrarily (no nesting), and the
number of directions may vary from cone to cone. For ex-
ample, the number of points on a cone can be chosen to
equal the multiplicities of the spherical harmonics Y,,, with
[=2s. It is claimed that allowed constellations can be iden-
tified by taking into account the following properties (tested
numerically for values up to s=6):

(1) The determinant of G is zero if there are more than
(4s+1) directions on a single cone.

(2) If there are (4s+ 1) points on one cone, then another
cone will contain at most (4s—1) points, allowing for no
more than (45— 3) directions on the third cone, etc.

(3) It is necessary to have directions located on at least
(2s+1) different cones.

For a spin 1/2, these properties will be shown to hold in
Sec. V. The first of these observations can be proved for
arbitrary spin s by using a particular decomposition of the
matrix G,

G=gg, (69)

exploiting the fact that a positive definite matrix can always
be written as the ‘‘square’” of its ‘‘root.”” A lengthy calcula-
tion involving properties of rotation matrices, Legendre
polynomials, and spherical harmonics leads to a factoriza-
tion, g=dy, the first matrix being diagonal and having (2s
+ 1) different entries,

L 2w (25)!
O Jos+1+01(2s—D

1=0,...,2s, (70)

each value occurring (2/+ 1) times. The second matrix has
columns given by the N, lowest spherical harmonics evalu-
ated at one of the N, points of the constellation,

Yoo(m)  Yoo(my) Yoo(ny)

Yioi(n) Y- () Yy_i(ny)
y:

Yoss(my)  Yogos(my) Yyios(ny )

(71)
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Consequently, the Gram matrix G is invertible if and only if
dety#0. The matrix (71) can accommodate at most (4s
+1) directions on one cone, corresponding to one value of
U with respect to some fixed axis. The subsequent multiplici-
ties (4s—1),(4s—3), ..., are due to applying the same ar-
gument to the remaining subspaces with dimensions 2(/
—D+12(1—-2)+1,....

In physical terms, the determinant of Eq. (71) is easily
interpreted as a Slater determinant of a quantum system: it
equals the (totally antisymmetric) ground-state wavefunction
of N, noninteracting fermions restricted to move on a sphere.
The node lines of this wave function correspond to forbidden
constellations in which the corresponding operator kernel is
degenerate, i.e., does not give rise to a basis in A, .

D. Spirals

A particularly convenient constellation is defined in the
following way: Let the N, directions be defined by N, com-
plex numbers points z, constructed from a single point z,
(neither of modulus one nor purely real),

=z ', v=1,....N,. (72)

The points are thus located on a spiral in the complex plane.
The matrix N defined in Eq. (63) then turns into an (N,

X N,) Vandermonde matrix, that is,
Vv PTali

vu= Xy

v,u=1,...,N,. (73)

Its inverse is known explicitly given, for example, in [18],
with elements

o (_1)1/+l N
VV,u, - Sstv({x)\})\A:I_x/.L)’ (74)
I1 (x—x,)
NFu

N . . .
where Sy _,({x\}, L, —x,) is the symmetrical function con-

structed out of the N — v numbers x, with v# \. One has, for
example, S,(x1,Xy,x3) =X X3+ X1X3+X5X3.

V. DISCRETE MOYAL REPRESENTATION
FOR A SPIN 1/2

In this section, the discrete Moyal representation will be
worked out in detail for a spin with quantum number s
=1/2, allowing for explicit results throughout. For clarity, it
is assumed from the outset that the kernel consists of four
projection operators

Q,=In)n,|, v=1,....N;. (75)
It is easy to generalize the results derived below to the case
of four linear combinations of | +n,){*n,| compatible with
Eq. (12).

Let us start with the determination of the dual kernel that
can be found by the intermediate step of inverting the (4
X 4) Gram matrix with elements
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1
Gu=lmn)P=5(1+n,m,). (6

This matrix is easily factorized: G=g'g/2, where

1 1 1 1

Nyx Nox N3x  Nyy
g= . (77)

l’lly l’lzy n3y l’l4y

Ny, Npp N3z Ny

The absolute value of the determinant of g is proportional to
the volume of the tetrahedron defined by the four points n,
on the surface of the sphere implying |detG|=18V,,;., -
Since a ‘‘flat’’ tetrahedron has no volume, the entire set of
forbidden constellations has a simple geometric description:

det G=0< the four points n, are located on a circle on S2.
(78)

Consequently, allowed constellations are characterized by
three vectors on a cone (any three points on a sphere define a
circle), plus any fourth vector not on this cone. This agrees
with the earlier statements about free-cones constellations.

Here is a simple way to invert the matrix g and subse-
quently G. Consider a matrix

L fr fy f)

I S
“lvnosonl )

T M M

defined in terms of four vectors = (f},fy.f;) not required
to have length one. The matrix elements of the of product f
and g are given by

(fg)“=1+f*n,. (80)

This is a diagonal matrix if the scalar products f*-n,, equal
to —1 whenever u# v. Geometrically, such four vectors are
constructed easily: the vector f! points to the unique inter-
section of the three planes tangent to the sphere at the points
—n,, —n3 and —ny. Analytically, this vector reads

fl_n2Dn3+n3Dn4+n4Dn2 81
- (ny0n3) - ny ’ ®D)

and the three remaining vectors follow from cyclic permuta-
tion of the numbers 1 to 4. With this choice the inverse of the
matrix g can be written as

g l=d7'f, (82)

where d is the diagonal matrix in (80): d,,=1+f"-n,. Con-
sequently, the inverse of the Gram matrix G for a general
allowed constellation is given by

G '=2d fld7!, (83)

having matrix elements
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o , 1+t
G, =G""=2 ~ (84)
(14+n,-f#)(1+n,-1)

In general, the elements Q" of the dual kernel will thus be

linear combinations of all four projection operators Q,,.
It is interesting to express the kernel and its dual in terms
of the Pauli matrices o= (o, ,0,,0,):

1 . I+f o

),==(l+n,-0), O0"=2———, 85
0, =3(Itnso). Q=2 mm (89)

allowing one to show easily that they satisfy the required
duality.

For reference, we give the Q and P symbols of the spin
operator

1 , 2f7 (86)
s,==n,, s§'=———
2 1+f"-n,
and of the identity
=1, I"'= : (87)
v 1+f”~n,,’

and the symbols of arbitrary operators for a spin 1/2 follow
from linear combinations.

VI. DISCUSSION

Operator kernels have been used for a systematic study of
phase-space representations of a quantum spin s. The kernels
have been derived from appropriate Stratonovich-Weyl pos-
tulates taking slightly different forms for continuous and dis-
crete representations, respectively. Emphasis is on the dis-
crete Moyal formalism that allows one to describe
Hermitean operators, including density matrices, by a mini-
mal number of probabilities easily measured by a Stern-
Gerlach apparatus. As a useful byproduct, a natural and most
economic method of state reconstruction emerges when a
quantum spin is described in terms of discrete symbols. Fur-
ther, Schrodinger’s equation for a spin s turns into a set of
coupled linear differential equations for (2s+ 1)? probabili-
ties [19].

In addition, a new form of the kernel defining continuous
Wigner functions for a spin has been given in Eq. (22): It has
been expressed as an ensemble of operators obtained from all
possible rotations of one fixed operator. This is entirely
analogous to the elegant expression of the kernel for particle-
Wigner functions as an ensemble of all possible phase-space
translations of the parity operator. Therefore, continuous
phase-space representations for both spin and particle sys-
tems now are seen to derive from structurally equivalent op-
erator kernels.

The discrete symbolic calculus is an interesting ‘‘hybrid’’
between the classical and quantal descriptions of a spin. On
the one hand, this representation is equivalent to standard
quantum mechanics of a spin. On the other, the independent
variables carry phase-space coordinates as labels [Egs. (45)

012105-10



DISCRETE MOYAL-TYPE REPRESENTATIONS FOR A SPIN

and (46)]. However, only a finite subset of points in phase
space (corresponding to an allowed constellation) are in-
volved reflecting thus the discretization characteristic of
quantum mechanics.

The N, projection operators associated with a constella-
tion of points define a nonorthogonal basis for Hermitean
operators acting on the Hilbert space of the spin. Each pro-
jection is a positive operator, and, altogether, they give rise
to a resolution of unity. One might suspect that they define a
positive operator-valued measure [20]. However, this is not
the case since the closure relation does not involve just the
bare projections but they are multiplied with factors—some
of which necessarily take negative values. Such an obstruc-
tion through ‘‘negative probabilities’” is not surprising; other
phase-space representations are based on quantum mechani-
cal ‘“‘quasi-probabilities,”” known to have this property, too.

Let us close with a synopsis of the fundamental Moyal-
type representations for particle and spin systems known so
far. Table II provides both a summary and points at open
questions. The individual entries give the names of the fa-
miliar continuous phase-space representations (see [21] for a
survey), while the corresponding quantities for the discrete
formalism are in square brackets. Future work will focus on
developing a discrete Moyal-type formalism for a quantum
particle. To do this, one must exhibit, for example, a pair of
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TABLE II. Synopsis of continuous and discrete [in square
brackets] phase-space representations for both particle and spin sys-
tems.

Self-dual kernel Dual pairs
. Wigner functions P, Q symbols
particle [unknown] [unknown]
spin Stratonovich/Varilly Berezin symbols
SP [impossible] [P?, O, symbols]

dual kernels, one of which would consist of a countable set
of projection operators on coherent states. This set is re-
quired to be a basis in the linear space of (bounded?) opera-
tors on the particle Hilbert space. It is not obvious in how the
associated discrete P symbol would reflect the subtleties of
its continuous counterpart which may be singular. Similarly,
the existence of a self-dual discrete kernel for a quantum
particle is an open question.
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