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Hierarchical Word Clustering - automatic
thesaurus generation

Victoria J. Hodge !

Dept. of Computer Science, University of York, UK, vicky@cs.york.ac.uk

Jim Austin
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Abstract

In this paper, we propose a hierarchical, lexical clustering neural network algo-
rithm that automatically generates a thesaurus (synonym abstraction) using purely
stochastic information derived from unstructured text corpora and requiring no
prior word classifications. The lexical hierarchy overcomes the Vocabulary Problem
by accommodating paraphrasing through using synonym clusters and overcomes
Information Qverload by focusing search within cohesive clusters. We describe ex-
isting word categorisation methodologies, identifying their respective strengths and
weaknesses and evaluate our proposed approach against an existing neural approach
using a benchmark statistical approach and a human generated thesaurus for com-
parison. We also evaluate our word context vector generation methodology against
two similar approaches to investigate the effect of word vector dimensionality and
the effect of the number of words in the context window on the quality of word clus-
ters produced. We demonstrate the effectiveness of our approach and its superiority
to existing techniques.

Key words: neural network, hierarchical thesaurus, lexical, synonym clustering.

1 Introduction

Due to the proliferation of information in databases and on the Internet, users
are overwhelmed producing Information Overload. Web Search engines can
return millions of potential matches to user queries even when more complex
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(and user-unfriendly) Boolean logic is employed. Web search engines can be
slow, although faster search engines are being developed, and matching is often
poor (quantity does not necessarily indicate quality) as Search Engines often
employ simple keyword pattern matching that takes no account of relevance.
Search Engines often simply return the document with the greatest number
of keyword occurrences. A methodology to process documents unsupervised,
handle paraphrasing of documents, to focus retrieval by minimising the search
space and to automatically calculate the document similarity from statistics
available in the text corpus is desired. Document may be clustered according
to the user’s requirements (clustered ‘on the fly’) and then employ category-
specific finer-grained matching techniques.

Word categorisation (encompassing both unsupervised clustering and super-
vised classification) enables the words to be associated or grouped according
to their meaning to produce a thesaurus. In this paper we focus solely on
word clustering as this approach is unsupervised. Clustering does not require
pre-generated human classifications to train the algorithm and is therefore less
subjective and more automated as it learns from text corpus knowledge only.
Word clustering can also overcome the Vocabulary Problem cited by Chen et
al. [2]. They posit that through the diversity of expertise and background of
authors and the polysemy of language, there are many ways to describe the
same concept; there are many synonyms. In fact, Stetina et al. [20] postulate
that polysemous words occur most frequently in text corpora even though
most words in a dictionary are monosemous. Humans are able to intuitively
cluster documents from imputed similarity. They overcome the differing vo-
cabularies of authors and the inherent synonymy and polysemy of language. A
computerised system must be able to match this ability. For computerised doc-
ument similarity calculation, an underlying hierarchical synonym clustering is
required to enable differing vocabularies to be accommodated. The distances
in the hierarchy may be used for word similarity estimation and to score doc-
ument similarity, thus allowing paraphrased documents to be awarded high
similarity scores as their contained words fall into identical or neighbouring
synonym clusters. Human generated thesauri are too general; they encompass
all senses of words even though many are redundant for a particular domain.
They are expensive with respect to construction time particularly if a single
human knowledge engineer generates the hierarchy. If multiple experts are
consulted then it is very difficult to obtain a single unified hierarchy. Human
thesauri also omit certain senses and subdivide others where there is little
distinction; they are rather subjective. Automatic methods can be trained
generally or domain specifically as required. The hierarchy allows us to focus
searching to cohesive clusters therefore minimising the search space for each
query. In this paper we analyse current word categorisation approaches and
describe and evaluate our method with respect to the current implementa-
tions. We compare our TreeGCS clustering method [7], [6] and sections 3.2
and 3.3 to the Self-Organising Map (SOM) [11] method and then compare



three methods for context vector generation where the vector dimensionality
and the number of words in the context are varied. We demonstrate the ne-
cessity of using high-dimensional vectors to represent the individual words in
the documents. High dimensional vectors ensure that the word vectors are
approximately orthogonal and there are no implicit word dependencies or
relationships in the vectors representing the individual words. Therefore all
dependencies and relationships are imputed purely from the relationships be-
tween the document words. We demonstrate the superiority of a wider context
window when generating the context vectors, illustrating the superior qual-
ity clusters and higher stability of the cluster topology produced. Finally we
establish the higher quality of the clusters produced by TreeGCS compared
to SOMs. The clusters produced from TreeGCS are similar to the clusters
extracted from a benchmark human generated thesaurus

Our approach is entirely automated and uses only unstructured text corpora
as data. The motivation for our approach derives from the patterns present in
text. These patterns produce statistical correlations in the context patterns
of individual words. We can thus infer the similarities of words from their
contexts, as similar words (synonyms) will have similar contexts due to their
correlations. Through unsupervised text processing and clustering we repre-
sent semantic relationships by categorising the word co-occurrence patterns.
We do not need to generate any linguistic structures, which are complex to
produce and tend to be susceptible to linguistic ambiguities. We automati-
cally infer a domain-specific or generalised hierarchical thesaurus as required.
We therefore surmount the Vocabulary Problem [2] by permitting synonym re-
trieval to match paraphrased documents. We can use the thesaurus to award
scores to synonyms using the intra-cluster distances and the inter-cluster dis-
tances in the hierarchy.

2 Current Methods

Current approaches for textual analysis are multifarious and diverse. The moti-
vations encompass word sense disambiguation, synonym inferencing and both
classification and clustering. They include (the following list is not exhaus-
tive but is intended to be broad): contextual methods, WordNet hierarchy
methods, clustering methods and SOM methods.

2.1 Contextual Methods

These approaches utilise the local neighbourhood of words in a document (the
context) to establish lexical similarity and impute synonym groups or disam-



biguate polysemic words. Yarowsky [22] employs two phases: an iterative
bootstrapping procedure and an unsupervised categorisation phase. All in-
stances of a polysemous word are identified in the text corpus. A number of
representative samples are selected from each sense set and used to train a su-
pervised classification algorithm. The remainder of the sense sets are trained
into the supervised classifier. The classifier may additionally be augmented
with one sense per discourse information, i.e., document topic. The classifier
can then be used in an unsupervised mode to categorise new exemplars. Stetina
et al [20] postulate that one sense per discourse holds for nouns but evidence
is much weaker for verbs. The approach therefore is only suitable for nouns
and requires an appraisal of the text corpus before processing commences to
identify the nouns. The method is only partially unsupervised requiring a su-
pervised initial training method; i.e. human intervention which can be time
consuming.

The motivation for Shiitze & Pederson [19] is a lexical hierarchy exploit-
ing contextual statistics and requiring no prior data knowledge. The algorithm
collects a symmetric, term-by-term matrix recording the number of times that
words ¢ and j co-occur in a symmetric window centred about word 7 in the text
corpus, where 7 and j are any random word indices from the list of all corpus
words. Singular-valued decomposition (SVD) is used to reduce the dimension-
ality of the matrix to produce a dense vector for each item that characterises its
co-occurrence neighbourhood. The dense co-occurrence vectors are clustered
using an agglomerative clustering algorithm to generate a lexical hierarchy.
The method groups words according to their similarity unsupervised rather
than some pre-computed thesaurus categories. However, vector dimensionality
reduction introduces computational complexity and may cause information
loss as the vectors induced represent the meta-concepts and not individual
words. Shannon’s Theory states that the more infrequent a word the more
information it conveys. These may well be discarded by SVD. The method
does not account for the proximity of the word co-occurrences (co-occurrence
is considered from a purely binary perspective). There is no weighting of the
co-occurrence according to the two terms’ proximity in the context window.

2.2  WordNet Hierarchy

These methods utilise the human-generated hierarchical categorisation of syn-
onyms, hyponyms (IS-A) and metonyms (PART-OF) of WordNet to estimate
word similarity and the most appropriate word sense (WordNet lists all senses
of words with the most frequently occurring listed first). Li, Szapakowicz &
Matwin’s [14] method utilises the WordNet synonym, hyponym and metonym
hierarchy to assign word similarity according to the distance in the hierarchy.
Similarity is inversely proportional to distance. However, the distance of tax-



onomic links is variable, due to certain sub-taxonomies being much denser
than others. Again the technique relies on an underlying predetermined word
hierarchy and can only process words present in the hierarchy; it could not ex-
trapolate similarities to new words. Human generated thesauri are subjective
and rely on sense categorisation decisions made by the human constructor.

2.3  Clustering

An unsupervised clustering algorithm derives the word clusters and models
of association directly from distributional data rather than pre-determined
classes as in Yarowsky. Pereira, Tishby & Lee [17] employ a divisive clus-
tering algorithm for probability distributions to group words according to
their participation in particular grammatical relations with other words. In
the paper, nouns are classified according to their distribution as direct objects
of verbs with cluster membership defined by p(c|w) (the probability a word
belongs to a cluster) for each word rather than hard Boolean classification.
Deterministic annealing finds the sets of clusters by starting with a single
holistic cluster and increasing the annealing parameter (see paper [17]). As
the annealing parameter increases, the clusters split producing a hierarchical
data clustering. The approach is limited to specific grammatical relations, re-
quiring a pre-processor to parse the corpus and tag the part-of-speech. At the
time of writing, the authors felt the technique required further evaluation.

2.4 Self-Organising Map (SOM) Methods

Word vectors or document vectors form the input vector space of the SOM [11]
to permit topological mapping, to infer similarity and categorise words and
documents. The aim of Lowe [15] is a topological mapping of contextual simi-
larity exploiting contextual information to derive semantic relationships. Each
word in a 29-word vocabulary is associated with a 58-element co-occurrence
vector. The value of the nth attribute in the co-occurrence vector reflects
the number of times the nth word of the vocabulary has preceded and the
(n + 29)th attribute represents the number of times the nth word has suc-
ceeded the keyword where 1 < n < 29. The 58 element vectors form the input
vectors for a SOM network. The SOM is labelled by determining the best
matching unit for each input vector. The word contexts (labels) are arranged
topologically according to lexical and semantic similarity by the SOM. How-
ever, the method is inherently susceptible to the scalability problem; vector
length grows linearly in relation to lexical size and thus the method is not
feasible for a large vocabulary.



Ritter & Kohonen’s [18] approach provides the motivation for our sys-
tem. A topological map of semantic relationship among words is developed
on a self-organising feature map. In the initial implementation, each word
has a unique, seven-dimensional, unit length vector assigned. The input vec-
tor space is formed from the average context in which each word occurs in
the text corpus. Semantic similarity is induced from context statistics, i.e.,
word neighbourhoods using a window of size three, one word either side of
the target word, (only nouns verbs and adverbs are used in the method). The
method has been extended to WEBSOM [9], [8], [12] that categorises over one
million documents using a window size of three and 90-dimensional word vec-
tors. The approach is entirely unsupervised requiring no human intervention
and parallelisable enabling computational speedup. However, SOMs cannot
form discrete (disconnected) clusters thus inhibiting the data representation.
The clusters have to be determined after the algorithm terminates by hand
and this introduces the innate subjectivity of human judgements. Also, the
word topography in WEBSOM is single-layered compared to the hierarchical
topology we induce using TreeGCS [7] [6] and described later in the paper.

2.5  Summary

Many of the methods exposited use Zipf’s Law [23] and stop-word elimina-
tion to reduce the vocabulary of the text corpus to be processed, some even
implement word stemming. Zipf’s Law implies that a significant portion of
the words in a corpus constitutes the words that appear most infrequently
whereas frequently occurring words comprise a relatively small portion of the
corpus. Many approaches eliminate these infrequent words to decrease vec-
tor dimensionality and computational requirements. The designers of these
approaches deem that such words provide little discriminatory power for doc-
ument similarity assessment. We feel that this may discard essential informa-
tion. Although we do not generate context averages for frequent words, e.g.,
{the, and, but, etc.}, we include these words in the context averaging of the
keywords. For this reason we use a context size of seven (three words either
side of the target word). We demonstrate in sections 4 and 6 the qualitative
improvement of word clustering against a human-generated thesaurus and Eu-
clidean distance-based vector approach of a size seven window compared to
size three. Ritter & Kohonen [18] and their extrapolations [9], [8], [12], fix
the context window at three and thus have to discard frequent terms, infre-
quent terms and punctuation etc. We feel these provide much information
and are certainly employed by a human reader when parsing text. Dagan,
Lee & Pereira [3] empirically demonstrated that singleton words (words oc-
curring once) were important for parsing concurred by Shannon’s theory. An
infrequent word occurring only once in two documents may be the key to
identifying those documents and should not be discarded from the indexing.



The larger window allows us to maximise the lexical information used and
minimise the amount of pre-processing required.

3 Our Methodology

We cluster words into a synonym hierarchy using the TreeGCS hierarchical
clustering neural network that we have developed, described in [7] [6] and sec-
tions 3.2 and 3.3. TreeGCS is an unsupervised growing, self-organising hierar-
chy of nodes able to form discrete clusters. Similar high-dimensional inputs are
mapped onto a two-dimensional hierarchy reflecting the topological ordering
of the input vector space. We assume a latent similarity in word co-occurrences
and use TreeGCS to estimate word similarity from contextual statistics with-
out resorting to a human-generated thesaurus. We categorise all keywords as
discussed previously and perform no dimensionality reduction thus decreasing
information loss. The process is fully automated, requires no human inter-
vention or data processing as the context vectors are generated automatically
from unstructured text data and the clustering requires minimal knowledge
of the data distribution due to the self-organising network. Each node in the
hierarchy represents a small group of synonyms at the lowest level and pro-
gressively larger groups of related words up through the tree. The distance
between the nodes in the tree is directly proportional to the similarity of the
word sets they represent.

3.1 Pre-processing

All upper-case letters are converted to lower-case to ensure matching. A list of
all words and punctuation marks in the text corpus is generated and a unique
random, real-valued, unit-length m-dimensional vector Z is assigned to each
word as in (equation 1).

Word — 7 € R™ (1)

Stop-words are removed to create a second list of keywords. A moving window
of size n is passed across the text corpus, one word at a time (see figure 1).
Ritter & Kohonen use a context window of size three, we use size seven and
illustrate the qualitative improvement this generates in sections 4 and 6. If
the word in the window centre is a keyword (7™¢ ¢ {keyword}) then the
unique, random, real-valued, unit length m-dimensional vectors representing
each word in the window of size n (2! ...2") are concatenated and added to the
m * n dimensional context vector ¥ieywora representing the keyword (equation
2).

greyword ¢ pmin _ gheyword | oA (fmiddle € {keyword}) (2)



When the entire corpus has been processed, all context vectors generated for
each keyword are averaged (total for each dimension / frequency of keyword),
see equation 3. B
Avg’ =vi— 2L (3)
frequency
Avg’ = symFact * jj;for keyword attributes (4)
The keyword attributes in the average vector are finally multiplied by the sym-
bol factor (symFact in equation 4). The keyword is multiplied by a symbol
factor of value 0.2 in Ritter & Kohonen’s method for average context vector
generation and also in the WEBSOM average context vector generation tech-
nique. The symbol factor diminishes the relative influence of the keyword (the
central word in the context window) in relation to the surrounding words in
the context window for the average context vectors. This prevents the actual
keyword over-influencing the topological mapping formation and places the
emphasis for topology and semantic similarity inferral on the context vector
attributes, the surrounding words. We empirically determined the optimum
factor value for our approach with a context window size of seven and found
for seven-dimensional vectors that a symbol factor of 0.4 produced the opti-
mal cluster quality (as judged by the authors). For 90-dimensional vectors the
symbol factor has far less influence over the Euclidean distances between the
context averages and thus the clusters generated, so we elected to use a symbol
factor of 0.4, as this was more effective for the seven-dimensional vectors. This
prevents the keyword over-influencing the context average but still provides
sufficient influence for a context window of size seven.

As with Deerwester [4], we handle synonymy but only partially accommo-
date polysemy. Polysemic words are again represented by a weighted average
of their contexts but we only generate one context for polysemic words (the
context is the mean context of all word senses biased by the frequency of oc-
currence of each sense). For example, plant may be a living organism or heavy
machinery. Only one context average would be produced for plant.

3.2 GCS Algorithm

Our TreeGCS method is based on the Growing Cell Structure (GCS) method
that is described next and is adapted from [5]. GCS networks form discrete
clusters unlike SOMs where the SOM cells remain connected in a lattice struc-
ture. The dimensions of the SOM lattice have to be pre-specified (such as the
9x9 grid used in our evaluation later in this paper). Contrastingly only the
maximum number of cells needs to be pre-specified in GCS and the network
grows dynamically by adding new cells and deleting superfluous cells until
the maximum number of cells is reached. The initial topology of GCS is a
2-dimensional structure (triangle) of cells (neurons) linked by vertices. We



use a 2-dimensional cell network to allow a hierarchy to be superimposed and
to allow visualisation if necessary. Each cell has a neighbourhood defined as
those cells directly linked by a vertex to the cell. The input vector distribution
is mapped onto the cell structure by mapping each input vector to the best
matching cell. Each cell has a contextWindow % wordV ector Dimensionality-
dimensional vector attached denoting the cell’s position in the input vector
space; topologically close cells have similar attached vectors. On each iteration,
the attached vectors are adapted towards the input vector. The adaptation
strength is constant over time and only the best matching unit (bmu) and its
direct topological neighbours are adapted unlike SOMs where the adaptation
occurs in a progressively reducing radius of neurons around the bmu. Cells are
inserted where the cell structure under-represents the input vector distribution
and superfluous cells that are furthest from their neighbours are deleted. Each
cell has a ‘winner counter’ variable denoting the number of times that cell has
been the bmu. The winner counter of each cell is reduced by a predetermined
factor on every iteration. The aim of the GCS method is to evenly distribute
the winner counter values so that the probability of any cell being a bmu for
a random input is equal, i.e., the cells accurately represent the input space.

The GCS learning algorithm is described below, the network is initialised
in point 1 and points 2 to 7 represent one iteration. An epoch constitutes one
iteration (points 2 to 7) for each input vector in the dataset, i.e. one pass
through the entire dataset.

(1) A random triangular structure of connected cells with attached vectors
(w., € R") and F representing winner counter (the number of times the
cell has been the winner) is initiated.

(2) The next random input vector & is selected from the input vector density
distribution. The input vector space is represented as real-valued vectors
of identical length.

(3) The best matching unit (bmu) is determined for £ and the bmu’s winning
counter is incremented.

b = ||€ = We||mingeperwors Where || || = Euclidean distance

(4) The best matching unit and its neighbours are adapted towards & by
adaptation increments set by the user.
Awbmu = €bmu (g - wbmu)

Aw, = €,(& —w,) (Yn € neighbourhood)

(5) If the number of input signals exceeds a threshold set by the user a new
cell (Wpew) is inserted between the cell with the highest winning counter
(Wpma) and its farthest neighbour (wy) - see figure 2,

The weight of the new unit is set according to:

Wpew = (wbmu + wf)/2

Connections are inserted to maintain the triangular network configura-
tion. The winner counter of all neighbours of w,., is redistributed to



donate fractions of the neighbouring cells’ winning counters to the new
cell and spread the winning counter more evenly,
AE, = —~E, (Yn € neighbourhood of wyey).-

The Winne‘rll"| counter for the new cell is set to the total decremented from
the winning counters of the neighbouring cells.
Erew = Z(ﬁEn (Vn € neighbourhood of wyey).

(6) After a user-specified number of iterations, the cell with the greatest
mean Euclidean distance between itself and its neighbours is deleted and
any cells within the neighbourhood that would be left ‘dangling’ are also
deleted (see figure 3). Any trailing edges are deleted to maintain the
triangular configuration.

Ech—w

card(n)nHVn € neighbourhood)

(7) The winning counter variable of all cells is decreased by a user-specified

factor to implement temporal decay.
AE. = —-pE. Vc € network

Del = maxcEnetwork(

The user-specified parameters are: the dimensionality of GCS which is fixed
at 2 here, the maximum number of neighbour connections per cell, the max-
imum cells in the structure, €, the adaptation step for the winning cell, ¢;
the adaptation step of the neighbourhood, § the temporal decay factor, the
number of iterations for insertion and the number of iterations for deletion.

The algorithm iterates until a specified performance criterion is met, such
as the network size. If the maximum number of epochs and the maximum
number of cells are specified as the termination criteria then new cells are in-
serted until the maximum number of cells is reached. Once the maximum has
been reached, adaptation continues each iteration and cells may be deleted.
The cell deletion reduces the number of cells to below the maximum allow-
ing one or more new cells to be inserted until the maximum number of cells
is reached again. Deletion removes superfluous cells while creating space for
new additions in under-represented regions of the cell structure so the in-
put distribution mapping is improved while the maximum number of cells is
maintained.

3.8 TreeGCS Algorithm

The TreeGCS is superimposed onto the standard GCS algorithm exposited
above. A tree root node points to the initial cell structure and incorporates a
list of all cells from the GCS. As the GCS splits or clusters are deleted, the tree
divides and removes leaf nodes to parsimoniously summarise the disjoint net-
work beneath and the GCS cell lists are updated with each leaf node holding a
list of all GCS cells in its associated cluster. Only leaf nodes maintain a cluster
list. A parent’s cluster list is implicitly a union of the children’s cluster lists
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and is not stored for efficiency - minimising memory usage. No constraints are
imposed on the tree hence it is dynamic and requires no prior data knowledge
- the tree progressively adapts to the underlying cell structure. The hierarchy
generation is run once after each GCS epoch. The running time per hierarchy
generation iteration is O(cells) as we essentially breadth-first search through
the entire cell structure.

A conceptual hierarchy of word synonym clusters is generated. The distance in
the hierarchy between two concepts is inversely proportional to the similarity.
Concepts are progressively more general and the cluster sets become larger
towards the root of the hierarchy.

The underlying GCS’s algorithm is susceptible to the ordering of the input
vector space, if we alter the order of the input vectors in the dataset, a differ-
ent cluster topology is generated for each unique input vector order [7]. Thus,
in TreeGCS we only commence cell deletion once 90 % of the total cells re-
quired in the cell structure have been added [7]. This delayed deletion prevents
premature cluster committal and ensures the GCS network has evolved suffi-
ciently before cluster splitting commences. In addition, we also iterate between
different orders of the input vector space to ameliorate the order susceptibility
(the x dimensional vectors that represent the context averages are rearranged
to generate different data orders). Iterating between different orders cancels
out the variance in the hierarchical structures generated by the different or-
ders, vastly improving the algorithm’s qualitative performance. The algorithm
for the tree superimposition is detailed below in pseudocode.

For each epoch,
Execute the GCS epoch, forming an unconnected graph representing the
disjoint clusters.
Breadth first search from the final winning cell for the epoch to deter-
mine which cells are present in the cluster.
While some cells remain unprocessed,
Breadth first search from the next unprocessed cell to determine
which cells are present in the cluster.
If the number of clusters has increased from the previous epoch, then any
tree nodes that point to multiple clusters are identified and child nodes
are added for each new cluster formed (see figure 4). The cluster list of
the parent is deleted and cluster lists are updated for the child nodes. If a
cluster is formed from new cells (cells inserted during the current epoch)
then a new tree node is added as a child of the root and the new cluster
cells added to the new node’s list.
Elsif the number of clusters has decreased, a cluster has been deleted
and the associated tree node is deleted. The tree is tidied to remove any
redundancy (see figure 5).
For each unprocessed cluster, the tree node that points to that cluster is

11



determined, the cluster list emptied and the new cells are added.

The GCS cells are labelled, see figure 6. Each input vector is input to the
GCS and the cell identifier of the bmu is returned. The cell can then be la-
belled with the appropriate word. Words that occur in similar contexts map
to topologically similar GCS cells thus reflecting syntactic and semantic simi-
larity through purely stochastic background knowledge. Tree nodes are merely
pointers to GCS cells. All nodes except leaf nodes have only an identifier and
pointers to their children. The leaf nodes have an identifier but also point to
the GCS cell clusters and implicitly the GCS cell labels (they maintain a list
of the identifiers of the GCS cells in their respective clusters). When the GCS
bmu is identified, the associated tree node can also be identified and the tree
can be traversed to find all word distances from the distances between the
clusters (leaf nodes) in the tree.

4 Evaluation

We initially demonstrate the qualitative effectiveness of our average vector
generation method against the R & K and WEBSOM approaches. We also
demonstrate the qualitative effectiveness of our TreeGCS algorithm against
the SOM algorithm. Human clustering is innately subjective. In an experi-
ment by Macskassy et al. [16], no two human subjects produced ‘similar’ clus-
ters when clustering the information contained in a set of Web pages. This
creates difficulties for cluster set evaluation and determining whether com-
puterised methods are qualitatively effective. We evaluate the quality of the
three methodologies for average context vector generation by comparing the
TreeGCS clusters produced from the vectors for each methodology against a
dendrogram cluster set produced from the same vectors to provide a Euclidean
distance-based evaluation. We then compare the TreeGCS hierarchies against
the cluster sets of a human-generated thesaurus. We compare TreeGCS and
SOM clustering by evaluating the topologies produced for each set of aver-
age context vectors against the clusters produced by a dendrogram trained on
the same vectors. Fritzke has previously demonstrated GCS’s superior perfor-
mance with respect to correctly classified test patterns over 6 common neural
network approaches and the nearest neighbour statistical classifier for mapping
the vowel recognition dataset [5]. In this paper, we use a small dataset com-
prising 51 words to enable visualisation of the cluster structures and cluster
contents and to permit a qualitative comparison of the cluster structures and
cluster contents. A larger dataset would preclude visualisation of the cluster
structures as they would be too complex to draw and a qualitative compari-
son of the cluster structures generated would thus be extremely difficult for a
larger dataset.
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4.1 Three Methods for Context Vector Generation

We emulate the Ritter & Kohonen methodology as faithfully as possible.
We remove common words, punctuation and numbers from the text corpus.
We select the vectors from a distribution of random numbered, seven dimen-
sional vectors. We use a context window of size three. We multiply the keyword
vector by a symbol factor of 0.2. The following cluster topologies were gener-
ated from the text corpus using words that occurred ten times or more. We
chose to only cluster word frequency 10 words to ensure the context vectors
were truly averaged and not biased by limited exposure and also to eliminate
infrequent terms as R & K.

WEBSOM, the new development of the R & K approach, uses 90-dimensional
real-valued random vectors for the words. Kaski [10] showed that the orthog-
onality is proportional to vector dimensionality and we have found that for
seven-dimensional vectors, the actual vector assigned to each word in the cor-
pus affects the context averages and thus the similarity and clustering pro-
duced. The seven-dimensional approach is also more susceptible to the symbol
factor as the multiplier has more effect on the Euclidean distance than for
90-dimensional where the effect is less. WEBSOM extends R & K and uses
90-dimensional word vectors, context window of size three and symbol factor
0.2.

Our methodology described in section 3 varies slightly from the previous
two. We only remove numbers from the corpus, the previous two methods also
remove common words and punctuation. We do not generate context aver-
ages for common words and punctuation but use them in the context window
of other words, hence we have a larger context window of size seven. Our
method uses 90-dimensional vectors and symbol factor 0.4. Again only words
occurring ten or more times are shown in the clusters to ensure the contexts
were averaged and not biased by infrequency due to the small size of our test
corpus. Although normally we would include these words, we wanted a valid
comparison to the previous methods.

We use the Ritter & Kohonen method, WEBSOM method and our method
for average context vector generation to produce three sets of vectors. We
train each of the three average context vector sets in turn into a standardised
benchmark Fuclidean distance-based clustering algorithm, the dendrogram,
to derive three TreeGCS and three dendrogram clusterings, one for each con-
text vector generation method. We compare the TreeGCS and dendrogram
cluster topologies for each vector methodology. We produced one 25x25 ma-
trix for each average vector methodology indexed by the 25 most similar words
from the dendrogram. The 25 words are shown in bold text in figures 7, 9 and
11. For each TreeGCS cluster (figures 7, 9 and 11) we placed a 1 at position ij
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in the respective matrix if word; and word; co-occured in a TreeGCS cluster
otherwise we entered a 0 in the matrix if they were in different clusters. We
filled the half matrix where ¢ < j so there was only one entry per ij pair to
prevent redundancy as co-occurrence is symmetric, if ij co-occur then ji must
co-occur. After completing each matrix, we counted the number of 1s entered.
This represents the number of words clustered together in the dendrogram
top 25 cluster that are also clustered together in the TreeGCS cluster struc-
ture generated from each vector methodology. The highest score indicates that
the vectors generated from that method enable the TreeGCS to most closely
emulate the Euclidean distance-based cluster of the dendrogram. The three
TreeGCS clusters in figures 7, 9 and 11 vary in depth so for a consistent com-
parison we reduced the depth of the WEBSOM and our TreeGCS trees to level
4 shown in figures 9 and 11 which is equivalent to the shallowest hierarchy by
merging all clusters below level 4 to form a single leaf cluster at level 4.

We further compare each of the three TreeGCS clusters to a human word
hierarchy derived from the MS Bookshelf? thesaurus. We produced a 51x51
matrix for the thesaurus clusters and the three TreeGCS hierarchies, indexed
by all 51 words in the evaluation. Again we entered a 1 at position 7j in the
respective matrix if word; and word; co-occured in a cluster otherwise we
entered a 0 in the matrix. Again, we filled the half matrix where ¢ < j. This
produces 4 matrices. We overlaid each of the three TreeGCS matrices in turn
over the human matrix and counted the number of 1s in the same position in
both matrices. This represents the number of words clustered together in both
the human and TreeGCS cluster structures, the higher the score, the more sim-
ilar the TreeGCS clusters are to the human clusters. Again we repeated the
evaluation with the WEBSOM and our TreeGCS hierarchies limited to level
4 for consistency with the R & K hierarchy.

4.2 TreeGCS versus SOM Clustering Comparison

We then train the three sets of average context vectors generated by the three
methods into a SOM and TreeGCS for comparison of the accuracy of the two
clustering algorithms. We compare TreeGCS versus SOM purely on vector
distances by analysing the distribution of the dendrogram words (the 25 closest
words with respect to Euclidean distance) through the TreeGCS and SOM
clusters. The dendrogram cluster sets act as benchmarks, to ensure that the
mapping of input vectors to cells for both TreeGCS and SOMs are preserving

2 We were unable to use the WORDNET hierarchy as it does not contain all of
the words from the text corpus. This precludes the use of synSet distances from the
WORDNET hierarchy [14] (described previously) as an evaluation tool. Bookshelf
allows us to generate clusters distances but no word similarity distances.
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the vector distances. We validate that the TreeGCS clusters more accurately
emulate the dendrogram cluster sets.

4.8 Text Corpus, Dendrogram and Thesaurus

The text corpus for the evaluation was taken from the economic data in the
World Factbook [21] for each of the countries in Europe. This corpus is written
in correct English, the vocabulary is reasonably small allowing a compact the-
saurus to be generated with many words that have similar meanings allowing
the cluster quality to be readily evaluated. We cluster the context averages of
the words that occur ten times or more in the text corpus for all evaluations.
This emulates the R & K and WEBSOM methodologies that remove infre-
quent terms and it maintains a consistency of words to be clustered to ensure
a valid and consistent comparison.

The dendrogram hierarchically illustrates similarities and is ideal for structure
comparison. The dendrogram uses the centroid-clustering algorithm where the
algorithm iteratively merges clusters. Initially there is one data point per clus-
ter. Each cluster is represented by the average of all its data points, the mean
vector; the inter-cluster distance is defined as the distance between pairs of
mean vectors. The algorithm iteratively determines the smallest distance be-
tween any two clusters, (using the Euclidean distance metric) and the two
clusters are merged producing a branch in the cluster tree. The merging is
repeated until only one cluster is left. However, dendrograms have problems
with identical similarities as only two clusters may be merged at each itera-
tion, so if there are two pairs of clusters with equal distances, one pair has to
be merged on one iteration and the other pair on the next iteration, the order
being arbitrary. In dendrograms, visualisation is difficult for a large dataset as
there is one leaf node for each data point so it is very difficult to view more
than 500 data points. Therefore we feel a dendrogram would be unsuitable
as the underlying mechanism for a lexical clustering method but is relevant
for structure and cluster comparisons on a small dataset. Both TreeGCS and
SOMs use Euclidean distance when mapping the inputs on to the output
topology so we feel the dendrogram is consistent with these approaches. Each
input vector is represented by a leaf node in the dendrogram. In the SOM and
TreeGCS, many vectors can map to leaf nodes so we can use the comparison
with the dendrogram to ensure the vector mappings are not distorted and
Euclidean distance-based vector similarities preserved when multiple vectors
map to leaf nodes.

We produced synonym sets from the MS Bookshelf thesaurus to allow com-

parisons of the clusters generated in our evaluations with a human generated
clustering. The synonym sets are arranged in similarity order, the closer to-
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gether the more similar and the greater the distance the more dissimilar the
words. The synonym sets are:

{economy, system, market, budget, policies, program, government, account }
{investment, resources, welfare, privatization, reform}

{output, energy, exports, gdp, trade}

{industry, agriculture}

{growth, progress, inflation}

{debt, deficit},

{economic, financial, industrial, monetary}

{agricultural}

{currency}

{capita, percent, sector}

{substantial, large, highly}

{small}

{foreign, private, public}

{countries, republic, state}

{european, eu, europe, union, western}
{unemployment }

{years}

4.4 Settings

All settings are summarised in tables 1, 2 and 3. Table 1 compares the settings
for the generation of the averaged context vectors from the word contexts in
the text corpus for each of the three methods evaluated. Table 2 compares the
settings for the SOM for each method of word context vector generation. We
use the SOM-PAK [13] SOM implementation (as used in WEBSOM [8]). We
use the parameter settings that produced the minimal quantisation error for
a 9x9 map of rectangular topology, using the neighbourhood kernel ‘bubble’,
(where the neighbourhood function refers to the set of array points around the
node). WEBSOM required a different setting for o (the cell vector adaptation
parameter) compared to the other two methods to minimise the quantisation
error of the topological mapping from the input space to the 9x9 map. Table 3
compares the settings for the TreeGCS for each method of word context vec-
tor generation. We set the parameters to produce the ‘best’ quality clusters as
judged by the authors, see [7] for a discussion of selecting parameter combina-
tions. The seven-dimensional vector evaluation required different parameters
from the 90-dimensional trial.
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5 Results

We detail the cluster topologies produced by TreeGCS, SOM and the dendro-
gram for each context vector methodology.

5.1 Ritter € Kohonen Method

e From the dendrogram clustering using the R & K average context vectors,

the 25 most similar words are:
{system union output industry substantial policies exports european pri-
vatization countries sector inflation percent economic foreign financial re-
sources government growth large economy unemployment gdp years eu}.
These words index the 25x25 matrix used to evaluate the average context
vector methodologies.

e For the TreeGCS hierarchy generated using the R & K average context vec-
tors see figure 7. The words in bold are the 25 most similar words identified
by the dendrogram generated using the R & K average context vectors and
are used to form the 25x25 matrix with 75 set to 1 where word; and word;
are in the same TreeGCS cluster.

e For the SOM cluster topology (see figure 8), again the 25 most similar words
from the dendrogram are highlighted in bold.

5.2 WEBSOM

e From the dendrogram generated using the WEBSOM average context vec-

tors, the 25 most similar words are:
{countries european budget exports industry sector agricultural industrial
large system trade output gdp financial eu economic economy government
growth inflation percent privatization unemployment years foreign}. These
words form the indices for the 25x25 matrix.

e See figure 9 for the TreeGCS hierarchy generated using the WEBSOM av-
erage context vectors. The words in bold are the 25 most similar words
identified by the dendrogram generated using the WEBSOM average con-
text vectors.

e For the SOM, the topology is illustrated in (see figure 10), again the 25
most similar words from the dendrogram are highlighted in bold and form
the co-occurrence entries in the 25x25 matrix.

17



5.8 Our methodology

e For the dendrogram generated using average context vectors produced by

our method, the cluster of the 25 most similar terms is:
{ small reform percent exports gdp output system agricultural market bud-
get industrial financial foreign large industry privatization inflation growth
economic eu economy government trade unemployment energy }. These words
index the matrix.

e For the TreeGCS hierarchy generated from average context vectors pro-
duced by our method see figure 11. The words in bold are the 25 most
similar words identified by the dendrogram generated from the average con-
text vectors produced by our method. The co-occurrence statistics form the
matrix entries.

e For the SOM the cluster topology is shown in figure 12. The 25 most sim-
ilar words from the dendrogram are shown in bold. We have also included
the Sammon mapping (see [13]) for the SOM (See figure 13). The Sammon
mapping maps the n-dimensional input vectors onto 2-dimensional points
on a plane.

6 Analysis

6.1 Three Methods for Context Vector Generation

From table 4, the TreeGCS cluster produced from our method for average con-
text vector generation is most similar to both the dendrogram and the human
cluster sets. When we reduce the TreeGCS structure to level 4 for equality
with the shallowest TreeGCS structure, our vector generation method is even
more similar to both the dendrogram and human clusters.

The TreeGCS structures generated from 90-dimensional vectors emulate hu-
man clusterings more closely than dendrograms from the seven-dimensional
vectors. The higher dimensionality vectors increase word vector orthogonal-
ity; a prerequisite for the ‘bag of words’ average context vector generation
approach. It is imperative that the vectors ascribed to the individual words
in the text corpus imply no ordering of the words so text processing is based
purely on the processing of sequences of words. For seven dimensional vec-
tors the Euclidean distances are altered between the context averages when
different vectors are initially assigned to different words. This is particularly
important for low frequency words where the context average is biased by the
vectors assigned. Even for words occurring greater than 10 times, the vector
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assignment influences the similarities. Kaski [10] showed that there is a direct
correlation between vector dimensionality and orthogonality - the higher the
dimensionality the greater the orthogonality. We empirically evaluated various
dimensionalities for consistency with respect to cluster content when different
vectors are initially ascribed to the words in the corpus. We used the dendro-
gram to pinpoint the most similar 25 words. We found that the cluster sets
were identical for 90-dimensional vectors over a set of experiments but varied
for all dimensionalities tested below 90. The higher dimensionality spreads the
vectors more across the input pace allowing a more accurate differentiation of
clusters. We feel similar methods, using self-organising maps or growing cell
structures, should use vectors of this dimensionality or greater to ensure or-
thogonality and spread and to maintain consistency and stability of the lexical
clusters regardless of initial word-vector assignments.

With respect to the size of the context window, we feel that our size seven-
context window produces superior quality TreeGCS clusters to WEBSOM's
context window of size three. The TreeGCS clusters produced from the aver-
age context vectors produced by our method emulate both the nearest neigh-
bour (dendrogram) and human generated thesaurus more accurately than the
TreeGCS cluster produced from the WEBSOM average context vectors. The
vast majority of terms from the dendrogram and MS Bookshelf are in the
three clusters (see figure 11) for our vector generation method but are spread
across four clusters with many of the other words also within these clusters
for the WEBSOM method of vector generation (see figure 9).

6.2 TreeGCS versus SOM Clustering Comparison

For all three evaluations in sections 5.1, 5.2 and 5.3, the top 25 words from
the dendrogram are spread across the SOM (as can be seen from the spread of
bold text in figures 7, 9 and 11) but tend to be in closely related clusters in the
TreeGCS hierarchy with just the odd exception (the bold text occurs in clus-
ters that are near neighbours in the hierarchy). For example, for our method
(see figure 11), the dendrogram words, shown in bold text, are predominantly
in three clusters and these clusters are very closely related. Only ‘industry’ and
‘unemployment’ are clustered elsewhere. With respect to Euclidean distance,
the TreeGCS emulates the nearest neighbour approach of the dendrogram far
better than the SOM. The Sammon mapping produced from the SOM using
our method to derive the context vectors is extremely distorted (see figure 13).
SOMs are criticised in the literature [1] for distorting high dimensional inputs
when they map onto the 2-dimensional representation.
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7 Conclusion and Future Work

We feel that our method, 90-dimensional vectors, symbol factor of 0.4, con-
text window of seven is superior to the R & K and WEBSOM methods. Our
method for context vector generation enables TreeGCS to be more similar
to both the dendrogram (Euclidean distance) and the human generated the-
saurus than either the R & K or WEBSOM approaches. We note that the
corpus effects the similarity of the computer generated structures against a
human thesaurus. The human thesaurus encompasses general word meanings
while the text corpus may be very specific so the similarity of the computer
generated approaches to the human clusters is affected and may appear low.
We also demonstrated that the TreeGCS algorithm emulates Euclidean vector-
distance based cluster sets more faithfully than the SOM algorithm. Therefore,
we feel the optimum approach for synonym clustering of the methods evalu-
ated is to generate the average context vectors using our method and train
these in to the TreeGCS cluster algorithm. TreeGCS not only emulates the
nearest neighbour and human generated clusters more faithfully, it forms dis-
crete clusters and dynamically forms a lexical hierarchy.

There are two main drawbacks to our current method. The first is the inability
to disambiguate words. All senses of a polysemic word are averaged together
during the context average formation, distorting the averaged context vec-
tors produced. We intend to improve this by including part-of-speech tagging
to differentiate identical words which represent different parts-of-speech, for
example spring: noun, a water source and spring: verb, to jump. However,
autonomously differentiating word senses is currently intractable and relies on
a knowledge engineer to tag the senses.

The second main drawback lies in the underlying GCS algorithm and is a
speed problem. The algorithm is dependent on the winner search - finding
the best matching unit. This involves comparing the input vector to the vec-
tor attached to each cell, calculating the difference for each vector dimension.
This must be repeated for each vector in the input vector space to complete
each epoch. This search is therefore, (number of input vectors * vector di-
mensionality * number of cells) &~ O(n?) for each GCS epoch. For the small
vocabulary evaluated in this paper the speed problem was not apparent. How-
ever, for a large corpus, with an extensive vocabulary the speed is slow and
we need to speed the algorithm, reduce the running time and hence remove
the bottleneck.
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9 Tables

9.1 Table of the methodology settings
Method Vector Dimensionality | Context Window | Symbol Factor
R+K 7 3 0.2
WEBSOM 90 3 0.2
Our’s 90 7 0.4
Table 1

Table comparing the settings for the context vector generation in each of the three
methods evaluated.

9.2 Table of the SOM settings

Method o Radius a for Radius for
for z epochs | for z epochs | next y epochs | next y epochs
R+K 0.9 for 3000 | 10 for 3000 | 0.5 for 27000 | 3 for 27000
WEBSOM | 0.75 for 3000 | 10 for 3000 | 0.5 for 27000 | 3 for 27000
Our’s 0.9 for 3000 | 10 for 3000 | 0.5 for 27000 | 3 for 27000
Table 2

Table comparing the parameter settings for the SOM algorithm to generate the map
for each of the three context vector generation methods evaluated. « is the initial
learning rate parameter which reduces to 0 during training and the radius is the
neighbourhood of cells that are adapted in the SOM adaptation phase. The radius
iteratively reduces to 0 during training.

9.3 Table of the TreeGCS settings

Method €bmu € B | Cells Max | Insertion | Deletion | Epochs
Conns
R+K 0.1 | 0.01 | 0.001 81 25 10 810 | 30000
WEBSOM | 0.02 | 0.002 | 0.0002 81 25 10 810 | 30000
Our’s 0.02 | 0.002 | 0.0002 81 25 10 810 | 30000
Table 3

Table comparing the parameter settings for the TreeGCS algorithm to generate the
cluster hierarchy for each of the three context vector generation methods evaluated.
N.B. Conns is an abbreviation for connections.
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9.4 Table of the evaluations

Method Dendrogram | Dendrogram | Human | Human

Level 4 Level 4

R+K 70 70 10 10

WEBSOM 88 100 22 26

Our’s 93 253 32 74
Table 4

Table comparing the TreeGCS clusters produced from each of the three vector
generation methodologies against the dendrogram and human generated clusters.
We produced NxN matrices of all words to be clustered: the 25 most similar words
from the dendrograms for the dendrogram comparison and the 51 cluster words for
the human comparison. If two words (word; word;) co-occur in a cluster then we
inserted a 1 in the respective matrix otherwise we inserted a 0. We then counted
the number of 1s in the 25x25 matrix for each vector methodology, where a word
pair co-occur in both the dendrogram cluster and the TreeGCS cluster for that
vector methodology. The counts are listed in column 2. We reduced all trees to level
4 shown in figures 7, 9 and 11 for equality and repeated the evaluation with the
counts listed in column 3. We overlaid the human 51x51 matrix against each of the
three 51x51 TreeGCS matrices and counted the number of overlaid 1s where a word
pair co-occur in both the human and TreeGCS clusters, listed in column 4. Again
we repeated the evaluation for the level 4 trees and the counts are given in column
5.

10 Captions

Figure 1: Figure illustrating the moving word window. The initial capital let-
ter will be converted to lower case to ensure the ‘he’s match. Both instances
of ‘he’ are represented by the same vector. The vectors associated with each
word are concatenated to form the context vector for the target word ‘he’.

Figure 2: Figure illustrating cell insertion. A new cell and associated con-
nections are inserted at each step.

Figure 3: Figure illustrating cell deletion. Cell A is deleted. Cells B and C
are within the neighbourhood of A and would be left dangling by the removal

of the five connections surrounding A so B and C are also deleted.

Figure 4: Figure illustrating cluster subdivision. One cluster splits to form
two clusters and the hierarchy is adjusted. The leftmost cluster then splits
again.

Figure 5: Figure illustrating cluster deletion. The rightmost cell cluster is
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deleted during an epoch (step 2) - this leaves a dangling pointer. The node
with the dangling pointer is removed (step 3), leaving redundancy in the hi-
erarchy. The redundancy is removed in the final step.

Figure 6: The cells in the GCS layer are labelled with the words they rep-
resent.

Figure 7: Ritter & Kohonen Methodology - TreeGCS cluster. The figures in
bold indicate the top 25 words selected by the dendogram in each cluster.

Figure 8: Ritter & Kohonen Methodology - SOM mapping. The words in
bold indicate the top 25 words selected by the dendogram

Figure 9: WEBSOM Methodology - TreeGCS cluster. The figures in bold
indicate the top 25 words selected by the dendogram in each cluster.

Figure 10: WEBSOM Methodology - SOM mapping. The words in bold indi-
cate the top 25 words selected by the dendogram

Figure 11: Our Methodology - TreeGCS cluster. The figures in bold indicate
the top 25 words selected by the dendogram in each cluster.

Figure 12: Our Methodology - SOM mapping. The words in bold indicate
the top 25 words selected by the dendogram

Figure 13: Figure illustrating the Sammon map generated for 90 dimensional
vectors with context window = 7.
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11 Figures
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