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Abstract 

The passive elasticity of the sarcomere in striated muscle is determined by large modular 

proteins, such as titin in vertebrates. In insects, the function of titin is divided between two 

shorter proteins, projectin and sallimus (Sls), which are the products of different genes. The 

Drosophila  sallimus (sls) gene codes for a protein of 2 MDa. The N-terminal half of the 

protein is largely made up of immunoglobulin domains and unique sequence; the C-terminal 

half has two stretches of sequence similar to the elastic PEVK region of titin, and at the end 

of the molecule there is a region of tandem Ig and fibronectin domains. We have investigated 

splicing pathways of the sls gene and identified isoforms expressed in different muscle types, 

and at different stages of Drosophila  development. The 5’ half of sls codes for zormin and 

kettin; both proteins contain Ig domains and can be expressed as separate isoforms, or as 

larger proteins linked to sequence downstream. There are multiple splicing pathways between 

the kettin region of sls and sequence coding for the two PEVK regions. All the resulting 

protein isoforms have sequence derived from the 3’ end of the sls gene. Splicing of exons 

varies at different stages of development. Kettin RNA is predominant in the embryo, and 

longer transcripts are expressed in larva, pupa and adult. Sls isoforms in the indirect flight 

muscle (IFM) are zormin, kettin and Sls(700), in which sequence derived from the end of the 

gene is spliced to kettin RNA. Zormin is in both M-line and Z-disc. Kettin and Sls(700) 

extend from the Z-disc to the ends of the thick filaments, though, Sls(700) is only in the 

myofibril core. These shorter isoforms would contribute to the high stiffness of IFM. Other 

muscles in the thorax and legs have longer Sls isoforms with varying amounts of PEVK 

sequence; all span the I-band to the ends of the thick filaments. In muscles with longer I-

bands, the proportion of PEVK sequence would determine the extensibility of the sarcomere. 
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Alternative Sls isoforms could regulate the stiffness of the many fibre types in Droso phila  

muscles.  

 
Key words : Sls, kettin, zormin, obscurin, insect muscle, Drosophila  
 
 
Running title: Sls isoforms in Drosophila  muscles 

 
 
Abbreviations used: IFM, indirect flight muscle; Ig, immunoglobulin; Fn3, fibronectin 3; sls, 

sallimus; RACE, rapid amplification of cDNA ends; RT-PCR, reverse transcriptase 

polymerase chain reaction; Obs, obscurin; Spec, spectrin; MS-MS, tandem mass 

spectroscopy; ORF, open reading frame; EST, expressed sequence tag; polyA, 

polyadenylation; TDT, tergal depressor of the trochanter; Mhc, myosin heavy chain; Mlc1 

and 2, myosin light chain 1 and 2.                                                                           
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Introduction 

Muscles in the Drosophila  thorax are adapted for different functions. The largest are the 

dorsal longitudinal and dorso-ventral indirect flight muscles (IFMs), which provide the power 

for flight. Smaller muscles control the amplitude and frequency of the wingbeat, and affect 

the manoeuvrability of the fly. 1,2 Other muscles in the thorax move the legs. The IFMs 

produce the upstroke and downstroke of the wings by distorting the thorax, rather than acting 

directly on the base of the wings. The muscles are activated by periodic stretches and 

oscillatory contraction results from alternate activation of opposing muscles, together with 

the resonant properties of the whole thorax. The IFMs can respond rapidly to stretch because 

they are stiff. The sarcomeres have short I-bands, which change very little in length during 

the contractile cycle. Other muscles in the thorax and legs have longer I-bands and are 

expected to be more easily extensible. The relative stiffness of the different types of muscle 

in the thorax is crucial for flight and for the control of flight. 1  

Resting elasticity of striated muscle sarcomeres is largely determined by connecting 

filaments which link the Z-disc with the ends of the thick filaments. 3,4 The ease with which 

the sarcomere can be extended depends on the compliance of the proteins in the filaments. In 

vertebrate muscles, titin molecules reach from the Z-disc, across half the sarcomere to the M-

line. The N-terminal part of the molecule is in the I-band, and can be extended a variable 

amount, depending on the isoform present in a particular muscle. The C-terminal part of titin 

is in the A-band and is bound to the thick filaments. In invertebrates, the function of titin is 

divided between two smaller molecules: the Drosophila  proteins are projectin and Sls; these 

are the products of different genes and occur in multiple isoforms. 5-8 Projectin is associated 

with thick filaments in the A-band; most of the molecule is made up of regular repeats 

containing both immunoglobulin-like (Ig) and fibronectin-like (Fn3) domains, similar to 
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those in A-band titin. Also like titin, projectin has a kinase domain near the C-terminus. In 

the N-terminal region of projectin, there are tandem Ig domains, followed by sequence 

similar to the extensible PEVK sequence in titin, and more tandem Ig domains, a pattern that 

is similar to that of I-band titin. 9 In IFM, the N-terminal part of projectin extends from the Z-

disc across the short I-band, and is a component of connecting filaments; the Ig-Fn3 modules 

are associated with the end of the thick filament. 6,8 

 Sls is derived from the Drosophila  sallimus (sls) gene in the chromosomal region 

62C2 to 62D1 (FlyBase). The complete sequence, obtained from the Drosophila  genome, is 

predicted to code for a protein of about 2.3 MDa. The domain structure of the molecule 

(previously called D-titin) has been assembled from the genome, together with stretches of 

cDNA sequence. 10,11 The molecule has two distinct parts: in the N-terminal half, there are Ig 

domains and sequence of no defined structure (unique sequence); in the C-terminal half there 

are two long stretches of PEVK-like sequence, separated by tandem Ig domains and unique 

sequence; both PEVK regions have motifs of repeating residues that are longer than those in 

vertebrate titin. 5,12 At the end of the molecule there are more tandem Igs and a few Fn3 

domains. There are no repeating Ig-Fn3 modules like those in the A-band region of projectin 

and titin, and there is no kinase domain.  

Sls can be detected in the early embryo 10,11,13,14 and is necessary for myoblast fusion. 

10,11,14
 cDNA probes from different regions of the sls gene showed the same expression 

pattern throughout embryogenesis, 10 suggesting a full-length Sls is expressed in the embryo. 

It is not known whic h isoforms are expressed during later stages of development from 

embryo to larva and pupa.  

Kettin is the most abundant isoform of Sls expressed in adult flies, where it was first 

identified as an Ig-containing modular protein.15 Kettin is 527 kDa and the entire sequence is 

in the N-terminal half of Sls. There are 35 Ig domains, the majority of which are separated by 

linker sequences. 13,14 Kettin is bound to actin and is oriented in the sarcomere with the N-
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terminus in the Z-disc. 16 In Drosophila  IFM, the molecule spans the I-band and the C-

terminus is attached to the end of the thick filament.16,17 Most of the high passive stiffness of 

IFM is due to kettin. 17 

We have investigated splicing pathways in sls and find there are a large number of 

possible isoforms. The principal isoforms in IFM and other thoracic muscles have been 

identified and the layout of the molecule in the sarcomere has been determined. In addition, 

we have investigated the expression of Sls isoforms at different stages of Drosophila  

development. The results are consistent with a model in which differential splicing of Sls 

controls myofibril stiffness in invertebrates in a manner similar to the control of myofibril 

stiffness by titin in vertebrates. 

 

Results 

Sequence of the 5’ region of the Drosophila  sls gene  

Initial sequencing of the 5’ region of sls upstream of kettin by rapid amplification of cDNA 

ends (RACE) was carried out using primers to the main open reading frames (ORFs) and 

expressed sequence tags (ESTs). The results are shown in Figure1. A polyadenylation 

(polyA) site at the end of zormin was found in the cDNA sequence following the EST 

GH18167.3. The sequence has been deposited in the EMBL database as ‘zormin’ with 

accession numbers AJ544075  and DME544075 . This sequence corresponds to the smaller of 

the two zormin isoforms, which lacks ORF 6 (see below).  

Full molecular characterisation of the Drosophila  sls gene  

We have used a PCR-based approach to characterize isoforms and screen for splicing 

pathways between ORFs in the sls gene. The gene is in the 62C2 to 62D1 chromosomal 

region. Initially, 27 ORFs larger than 400 bp were predicted by using DNAStar and the 

Drosophila  genome sequence. The main ORFs, are shown in Figure 2. Based on the 
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predicted ORFs, 26 sense and 26 antisense oligonucleotides were designed to test every 

possible exon junction by reverse transcription PCR (RT-PCR). There are potentially 144 

different isoforms of Sls that could be expressed from the splicing pathways identified. 

Sequencing the amplified PCR products showed that splice sites follow the conventional 

pattern; 18 pathways shown in Figure 2 code in-frame.  

The RT-PCR results showed that some predicted ORFs could not be joined to any 

other ORF, and were therefore considered not to be transcribed. Instead, many unpredicted 

small ORFs of 50 to 250 bp were found to code in-frame, especially in the zormin region, and 

downstream of ORF 12. Taking these results, together with the DNA sequence of zormin 

(AJ544075) and kettin ,13,14 we were able to determine the genetic structure of the sls gene 

(Figure 2). As suggested before, 10,11 we have found that kettin and Sls are two possible splice 

variants derived from the same genetic locus. Zormin is another splice variant. The translated 

zormin sequence includes three spectrin-like domains in the region of sls ORFs 2 and 3; and 

nine Ig domains, mainly in sls 4 and 5. The 5’ region of kettin RNA is coded by a short 

sequence of 172 bp, which is 2 kb upstream of ORF 9. 13,14 Joining up the RT-PCR sequences 

spanning the kettin region gives 35 Ig domains, in agreement with cDNA sequence data 

already published .13,14 Zormin RNA can be expressed as proteins of 388 or 324 kDa (sls 1 to 

7, with or without sls 6) and kettin  RNA as a 527 kDa protein; both can be expressed as 

larger proteins produced by splicing to ORFs downstream. 

To search for potential polyA sites, the 26 sense primers were tested in combination 

with poly-dT primers by RACE. PolyA sites were found at the end of kettin RNA and after 

sls 25. Despite the polyA site after sls 7 at the end of zormin RNA, RT-PCR and subsequent 

sequencing of products, showed that there is an in-frame splicing pathway between sls 7 and 

8. The region coding for the final Ig domain of zormin is spliced out of the product. 

Similarly, sls 13 in the kettin region can be spliced to sls 14, even though a polyA site was 

found after sls13 by RACE. Both these polyA sites may lead to internal termination or be 
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skipped. In human titin, a similar internal termination leads to a 700 kDa isoform called 

Novex-3-titin. 19 sls 12 can also be spliced to ORFs downstream of kettin RNA, skipping the 

region coding for the four Ig domains at the end of kettin. All Sls isoforms, except zormin, 

include kettin at the N-terminus. Strikingly, all isoforms derived from the sls gene, (except 

zormin and kettin) also include sequence derived from sls 22 to 25 at the C-terminus (Figure 

2). 

The layout of domains in the protein corresponding to the full-length Sls is in general 

agreement with that proposed previously.10,11 We find that the region of sls downstream of 

kettin RNA (from sls14 to 21) has many possible alternatively spliced pathways (Figure 2). 

Seven Ig domains derived from sls14 to 16 are followed by a long stretch of unique sequence. 

There are two regions that are predicted to be extensible because there is a high proportion of 

PEVK sequence. In PEVK 1 (derived from sls 14), 58% of the sequence is PEVK; and in 

PEVK 2 (derived from sls19 to 21), 53% is PEVK overall, although the sequence derived 

from the small sls 20 is only 44% PEVK. In comparison, the domain in vertebrate skeletal 

muscle titin has 70 % PEVK residues. The sequence near the end of Sls includes an SH3 

domain immediately after sequence derived from sls 21, followed by eleven Ig domains and 

five Fn3 domains. Interestingly, the many splicing possibilities mean that selected regions of 

the sequence can be skipped; for example: the Ig domains derived from sls 15; part, or all, of 

the unique sequence derived from sls16 to18; PEVK 1 (sls14); part, or all, of PEVK 2 (sls19 

or sls19 to 21). In addition, sls 20, coding for sequence with a lower PEVK content, can be 

skipped to increase the potential extensibility of PEVK 2. 

The protein corresponding to the full-length Sls encoded by 25 ORFs larger than 400 

bp and 23 ORFs in the range of 50 to 250 bp contains three spectrin-like domains; 63 Ig 

domains (53 Ig domains excluding zormin); one SH3 domain; five Fn3 domains; and two 

regions with a high proportion of PEVK residues. The number of Ig domains is in agreement 

with previously determined sequence, excluding the Ig domains in the zormin region. 11 
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Sequence upstream of kettin RNA, and the corresponding Ig domains in that region were 

described previously, though not identified as a separate isoform.10 The molecular weight of 

the whole Sls protein, consisting of 19,712 residues, was calculated to be 2296 kDa. 

Semi-quantitative RT-PCR of developmental stages 

Differential expression of zormin and kettin RNA, and other spliced products from the sls 

gene in embryo, larva, pupa and adult were investigated using a panel of cDNAs prepared 

from the different stages (Figure 3). The RT-PCR results show that sls 9 to10 in the kettin 

region are transcribed in the embryo at 12 h, and after 24 h, the level of RNA remains high. 

This is in agreement with in situ hybridization and antibody labelling, where kettin 

expression was detected in the early embryo from stage 11 (7 h). 10,11,13,14  Expression of the 

regions spanning sls13 to14 and 18 to19 was detected from larval stage1 onwards; the level 

of transcription was quite high at larval stage1 and much lower at larval stage 2 and early 

stage 3. These amplified regions are only present in the larger isoforms of Sls, and semi-

quantitative RT-PCR results showed that, during larval and pupal development, less of these 

isoforms are expressed than the kettin region alone. Previously, expression of a region of sls 

downstream of kettin was detected in the embryo by in  situ hybridization at stage 13 (10 h), 

showing that transcripts of longer isoforms are present in the early embryo, 10 although even 

at 24 h they are below the level of detection by the RT-PCR method used here. The 

expression of ORFs close to the 3’ end of sls (sls 22 to 23) was low in the embryo and in the 

late larval stage, but otherwise similar to that of sls 9 to10 in kettin. This is expected because 

all Sls isoforms, except zormin and kettin, include sequence derived from both sls 9 to12 and 

sls 22 to 25. 

 Two splicing events in the sls gene were investigated to check if the splice isoforms 

might be differentially expressed during development. An isoform resulting from skipping 

sls13 to15 (sls12 to16) was only expressed in pupal and adult stages; another isoform 

resulting from skipping most of the ORFs coding for the PEVK regions (sls15 to 21), was 
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only expressed in the adult. Both splicing events could be detected weakly after 34 cycles of 

PCR.  

The expression pattern of zormin RNA is similar to that of kettin: transcripts of sls 3 

to 4 were detected in the embryo from 12 h, and in subsequent embryonic, larval, pupal and 

adult stages. Zormin transcripts were detected at low levels and 34 cycles of PCR were 

needed to amplify cDNA, compared to 30 cycles for other consecutive ORFs in sls. 

Expression of zormin RNA is higher in the pupa than in other stages. Primers linking ORFs 

of zormin and kettin (sls 8 to 9) yield a PCR product at the pupal stage, after 34 cycles of 

PCR.  

High molecular weight proteins in Drosophila  thoracic muscles                                     

The major proteins of about 250 to 2000 kDa in whole Drosophila  thoraces and in IFM and 

legs were analysed by SDS-PAGE with 2.5% acrylamide gels. Some of the proteins have 

already been identified. 15,17,20-22 The thorax contains muscles not directly involved in flight, 

as well as the IFMs. Muscles that do not perform oscillatory contractions, are enriched in 

thoraces from which IFMs have been removed (Figure 4). Both IFMs and other muscles in 

the thorax and legs have kettin, and IFMs have an additional larger isoform of about 700 kDa 

(Sls700), which is not present in the other muscles. 15 Two proteins of about 1000 kDa are 

seen in the gel: the smaller one is in IFM and the larger one is the predominant isoform in leg 

muscle and other non-IFMs in the thorax. There are minor components of 1500 kDa and 

above, which are more abundant in the muscles remaining after IFMs have been removed. 

Proteins of about 350 and 450 kDa are in IFM but were not seen in gels of other muscles. 

Some samples of IFM have more 450 kDa protein than others and two preparations are 

shown in Figure 4. 

Immunoblotting can detect proteins not seen in gels stained with Coomassie blue. 

Isoforms of Sls, many of them minor, were identified in immunoblots of IFM or whole 

thoraces incubated with antibodies to different regions of the molecules (Figure 5 and Figure 
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6). Antibodies were raised to recombinant proteins made from constructs derived from the 

ORFs shown in Figure 2. The splice isoforms, identified by RT-PCR, were assigned to gel 

bands, based on the size of the isoforms, splicing pathways, and the antibody epitopes in the 

ORFs. IFM (Figure 5) has two isoforms of zormin predicted to be 324 and 388 kDa. Kettin is 

the major Sls isoform and the more minor Sls(700) isoform, reacts with kettin antibodies. 

Surprisingly, Sls(700) includes the Ig and Fn3 domains derived from sls 22 to 25, near the 

end of the molecule, (antibody to B2 reacts with Sls(700)).  Sls(700) does not have the Ig 

domains at the end of kettin, derived from sls 13 (antibody to KIg34 does not react with 

Sls(700)). Sls(700) is predicted to be 724 kDa. Larger Sls isoforms were not detected in blots 

of IFM; therefore, if present, they are in lesser amounts than in other muscles of the thorax 

(see below). 

Muscles in the thorax (Figure 6a) have the two isoforms of zormin seen in IFM. The 

predominant Sls isoform in the thorax is kettin, and in addition to Sls(700), there is an 

isoform of1000 kDa which includes kettin sequence. Sls(1000), like Sls(700), has the Ig and 

Fn3 domains derived from sls 22 to 25, but not the Ig domains from sls 13 at the end of 

kettin. There are three Sls isoforms of between 1500 and 2000 kDa. These are less abundant 

than other Sls isoforms, and are seen best in a gel of thorax from which IFM has been 

removed (Figure 4). Immunoblots of heavily loaded gels (Figure 6b) show that the three 

isoforms contain kettin sequence, and sequence from many of the ORFs downstream of 

kettin: PEVK-like sequence from sls 14,19 and 21; the five Ig domains from the region of sls 

15; and unique sequence from sls 16,17 and18. The largest of the three isoforms includes 

sequence from sls 18, and because of its size, is predicted to include sequence from sls 16; 

sequence derived from these ORFs is not present in the other two isoforms. The smallest of 

the three isoforms also lacks sequence from sls 19. 
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Identification of proteins by mass spectroscopy 

In order to confirm the presence of protein sequence derived from sls ORFs, samples were 

cut out of the bands in a Coomassie-blue stained gel (similar to the one in Figure 4) and 

analysed by tandem mass spectroscopy (MS-MS). Peptides are listed in Table 1. 

Unexpectedly, Sls isoforms were detected in only two of the gel bands analysed. A 250 kDa 

band above myosin had five peptides found in the sequence of stretchin-Mlck. 23 A band of 

about 350 kDa had two, and one of 450 kDa had five, peptides in the sequence of a 

Drosophila  protein (CG 30171 ) similar to vertebrate obscurin. The Drosophila protein is also 

similar to Caenorhabditis elegans UNC-89.24, 25 A minor gel band of 700 kDa had five 

peptides in the Sls sequence: three are from sls 9,10 and12 of kettin, one is from sls 16, and 

one is from sls 24 near the C-terminus of Sls. This is consistent with the proposed splicing 

pathway for Sls(700), which  includes sls 9 to12, sls 16, and sls 22 to 25 (Figure 5). Two 

bands of about 1000 kDa contained projectin peptides: the smaller isoform was identified by 

five peptides and the larger by one peptide. IFM contained only the smaller isoform, while 

leg muscle contained predominately the larger isoform. Thorax, which has IFM and other 

muscles, had both isoforms. This is in agreement with previous work by Vigoreaux and co-

authors, who found that IFM projectin is smaller than projectin in other Drosophila  muscles. 

20 A minor 1500 kDa gel band had a peptide from sls 12 in kettin and the same peptide from 

sls 24 as Sls(700). This identifies the protein as an Sls isoform. 

Position of Sls and obscurin in IFM and other muscles  

Immunofluorescence microscopy was used to determine the region of the sarcomere labelled 

by antibodies to zormin B1 and obscurin, compared to labelling by kettin antibodies. IFM 

myofibrils were incubated with rabbit antibodies to the N- and C-terminal regions of kettin 

(KIg3 and KIg34) and the pattern of labelling was compared with that of a rat monoclonal 

antibody to the middle of kettin (KIg16). Antibody to zormin B1 labelled both the Z-disc and 

the M-line. Both KIg3 and KIg34 antibodies labelled close to the Z-disc, but separation of the 
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epitopes could not be resolved by immunofluorescence; there was no sign of any label on the 

M-line (Figure 7a). In contrast, antibody to obscurin labelled only the M-line. Thus, zormin is 

in both Z-disc and M- line, and obscurin is only in the M-line, at least in adult IFMs. 

 In order to determine the position of Sls(700), a minor isoform in IFM, myofibrils 

were labelled with antibody to the C-terminal region of Sls (B2), which reacts with Sls(700) 

(Figure 5). Surprisingly, B2 antibody only labelled the core of the myofibril in the region of 

the Z-disc, while KIg16 antibody labelled across the diameter of the Z-disc. This was seen by 

conventional fluorescence microscopy, but is clearer in confocal images (Figure 7b). 

Transverse images of the myofibril show B2 in the core. The distance between B2 and the Z-

disc is not resolved by immunofluorescence. Sls(700) includes kettin sequence and KIg16 

antibody reacts with this isoform (Figure 5); it is therefore not possible to determine whether 

the core of the IFM myofibril contains only Sls(700) or both Sls(700) and kettin. For 

comparison, non-IFM myofibrils were labelled with antibody to B2. In these myofibrils, both 

B2 and kettin antibodies labelled across the diameter of the myofibril (Figure 7c). B2 was 

distributed further along the I-band than kettin. The longer Sls isoforms in sarcomeres with 

longer I-bands would place B2 further from the Z-disc than B2 in IFM.  

 The position of Sls and obscurin in the sarcomere of IFM and other muscles was 

determined at higher resolution by immuno-electron microscopy. Antibody to zormin B1 

labelled sections of IFM in the middle of the H-zone, in the position of the M-line (Figure 8). 

There was some diffuse labelling in the Z-disc region but this was not as clear as the M-line 

labelling. The distribution of gold label across the sarcomere in shown in the histogram in 

Supplementary Figure S2. The pattern of labelling differs from that seen in fluorescence 

micrographs, where the Z-disc labelled more strongly than the M-line (Figure 7a). Antibodies 

to KIg3, KIg16 and KIg34 labelled progressively further from the centre of the Z-disc, and 

antibody to KIg34 was close to the ends of the thick filaments 17(Figure 8). IFM sections 

were not labelled by antibodies to regions of Sls downstream of kettin that contained PEVK 
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sequence (not shown). This agrees with the immunoblots of IFM, in which no labelling by 

these antibodies was detected.  

 Antibody to B2 labelled a discrete region of the IFM sarcomere either side of the Z-

disc; the label did not extend across the myofibril diameter (Figure 8). This is in agreement 

with the core labelling seen in fluorescence micrographs (Figure 7b). Cryosections of several 

specimens of IFM showed a similar distribution of gold label, and the core region containing 

Sls(700) was estimated to be about 6 to 7% of the total cross-sectional area of the myofibril. 

Electron micrographs show that the B2 region of Sls(700) is further from the Z-disc than the 

end of kettin (KIg34), as expected of a longer molecule; B2 also appears to be associated 

with the ends of thick filaments. Antibody to obscurin labelled the M-line only, as seen in 

fluorescence micrographs; the distribution of gold was narrower than seen in the M-line 

labelling with antibody to B1. 

Cryosections of thoraces oriented to maximize the content of non-IFM fibres, and 

cryosections of legs, were labelled with antibodies to Sls and obscurin. A selection of 

labelled fibres is shown in Figure 9. Antibody to zormin B1 labelled the Z-disc of leg and 

other non-IFM thoracic muscle fibres; there was no label in the M-line region. Thus, zormin 

can be in the Z-disc, as in leg muscle, or in the M-line and Z-disc, as in IFM (hence zormin: 

Z or M). Labelling of non-IFM fibres by antibodies to kettin was less regular than in IFM, but 

generally similar: KIg3 is in the Z-disc, KIg16 at the edge, and KIg34 outside the Z-disc. 

Because there is an appreciable I-band, the Ig domains at the end of kettin (KIg34) do not 

reach the thick filaments. Antibodies to the C-terminal half of Sls (B4 and B5) label 

irregularly, some way out from the Z-disc. The spread of gold particles is probably due to 

variable extension of the PEVK sequence. In the most extended molecules, B4 and B5 are at 

the ends of the thick filaments. Antibody to the B2 region of Sls was spread over the ends of 

the thick filaments and, unlike the labelling of IFM, was distributed across the diameter of the 

myofibril. The labelling pattern shows the Sls molecule extends from the Z-disc, across the I-
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band to the thick filament. Antibody to obscurin labelled a broad region in the middle of the 

sarcomere in non-IFM thoracic muscle fibres, and did not label the Z-disc (Figure 9). 

Therefore, obscurin is in the same region of the sarcomere in IFM and non-IFM fibres, unlike 

zormin, which can be in the M-line or the Z-disc. 

The tergal depressor of the trochanter (TDT, or jump muscle) is in the thorax and 

moves the middle leg of the fly. Myofibrils in the TDT have a regular structure and short I-

bands. Electron micrographs of labelled cryosections of this muscle are shown in 

Supplementary data (Figure S1). The labelling pattern was similar to that of other non-IFM 

fibres: zormin is in the Z-disc, kettin extends some way outside the Z-disc, B4 and B5 

sequences are in the I-band, and B2 sequence is at the ends of the thick filaments. The 

position of different regions of Sls in isoforms present in the IFM and non-IFM sarcomere, 

and the position of obscurin, are summarized in Figure 10.  

Binding of zormin to thick filaments and actin 

Zormin was seen in the Z-disc and in the M-line in fluorescence and electron micrograph 

images of IFM, suggesting the protein might bind both to actin and to thick filaments. Intact 

thick filaments were isolated from a mutant Drosophila  in which the IFMs have no thin 

filaments. The recombinant B1 fragment of zormin (consisting of three Ig domains) was co-

sedimented with the thick filaments and with actin (Figure11); therefore these three Igs are 

capable of binding to both thick and thin filaments. Overlay dot-blot assays (not shown) 

confirmed B1 binding to thick filaments and to actin; B1 did not bind to tropomyosin, 

showing that there was no general non-specific binding. 

 

Discussion  

 

The aims of this investigation were to identify isoforms of Sls in IFM and other muscles; and 

to find out where different regions of the molecule are in the sarcomere, and how this might 
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be related to the function of the muscle. Sls isoforms are produced from a single gene. We 

have shown that a wide variety of splice isoforms are generated from this single locus. 

Although not all of the different transcripts are necessarily translated, we have confirmed the 

expression of some of the major isoforms at the protein level. We have identified isoforms in 

flight and non-flight muscles in the Drosophila  thorax, and found which are expressed at 

different developmental stages from early embryo to larva, pupa and adult.  

The 5’ half of sls produces two discrete proteins with no sequence in common: 

zormin and kettin. Zormin has three spectrin-like domains, which may function as spacers, 

like the repeats in α-actinin. 26 There are two major isoforms of zormin in IFM and other 

muscles. Labelling IFM fibres with antibody to zormin, showed the protein is present both in 

the M-line and in the Z-disc by immunofluorescence; the strong labelling at the M-line and 

more diffuse distribution at the Z-disc, seen in electron micrographs, may be due to more 

labile binding to the Z-disc. In leg and other non-IFM fibres, including the TDT, zormin is 

only in the Z-disc. This dual localisation is confirmed by the finding that Ig domains in the 

middle of the molecule are capable of binding both to thick filaments and to actin. M-line and 

Z-disc may have different isoforms of zormin, but the function is not known. 

 Kettin is the major Sls isoform expressed in all Drosophila  muscles. The Ig-linker 

domains that make up most of the molecule are bound to actin and reinforce the thin filament 

in the region of the Z-disc; the molecule extends along thin filaments for about 100 nm 

outside the Z-disc 16,27. In IFM, the N-terminus of the molecule is in the Z-disc, the middle is 

at the edge of the Z-disc, and because the I-band is short, the tandem Igs at the C-terminus 

reach the end of the thick filaments 16, 17 (Figure 8). In leg and other non-IFM fibres, the 

orientation of kettin is the same, but the C-terminus is in the I-band because the molecule is 

not long enough to reach the thick filaments (Figure 9). The shorter I-band of the TDT means 

the end of kettin is closer to the end of the thick filaments. Zormin and kettin transcripts can 

be spliced together (Figure 2), but no isoform containing both zormin and kettin sequence 
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was detected in immunoblots of IFM or muscles in the whole thorax (Figures 5 and 6). If the 

two were linked, kettin would be expected to be in the M-line with zormin in IFM and this is 

not observed (Figure 7a). 

 Kettin can be linked to the C-terminal half of Sls to give longer isoforms; all of which 

have kettin at the N-terminus. The Sls(700) isoform is specific to the IFM, and is unlike other 

longer Sls isoforms in having no PEVK sequence. This would make it less easily extensible. 

The final tandem Ig domains of kettin are skipped in Sls(700) and replaced with tandem Igs 

and Fn3 domains from the B2 region at the end of Sls. This results from two splicing events 

that cut out PEVK and most of the unique sequence (Figure 2). Sls(700) is in the core of the 

IFM myofibril and the C-terminal region is at the end of the thick filaments (Figures 7b and 

8). IFM therefore has two Sls isoforms that reach the ends of thick filaments: kettin linked to 

thick filaments by the four C-terminal Ig domains, 17 and Sls(700) linked by the 16 Ig and 

Fn3 domains from the end of Sls. The net difference in the lengths of the molecules would be 

about 50 nm, if each Ig and Fn3 domain is 4 nm. 28 The Sls isoforms in IFM are estimated to 

be responsible for 70% of the passive stiffness, 17 but it is not clear what the effect of having 

a longer molecule at the core of the myofibril would be on the overall stiffness. 

 The many splicing pathways in the 3’ half of sls produce isoforms of varying length, 

with varying amounts of extensible PEVK sequence. All longer isoforms have the domains 

from the B2 region at the C-terminus. Muscles in the thorax, which include flight control 

muscles and leg muscles, have a variety of larger isoforms that are not present in IFM. We 

have not established which isoforms are in particular muscles, but it is likely that fibres with 

longer sarcomeres and wider I-bands have larger isoforms. In leg muscle fibres, the 

somewhat scattered position of different regions of Sls in the I-band is probably due to 

different degrees of extension in the PEVK sequence (Figure 9). In the TDT fibres, the I-

bands are narrower, and sequence in the C-terminal half of Sls is less extended. In all non-

IFM fibres, the B2 region of Sls is at the ends of the thick filaments, and is distributed across 
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the whole diameter of the myofibril, which would produce uniform elasticity. One relatively 

abundant isoform, Sls(1000), has only a short region of PEVK sequence, and would be less 

extensible than the larger isoforms; Sls(1000) is like Sls(700) in that sequence coding for the 

four tandem Ig domains at the end of kettin is spliced out of the sls transcripts. The larger 

isoforms all have the full sequence of kettin and would therefore have two potential thick-

filament binding sites. However, the relatively wide I-band in the sarcomere of leg muscle 

fibres means the end of kettin is distant from the thick filaments (Figure 9). The SH3 domain 

near the end of Sls would be expected to bind a ligand having poly-proline sequence, but this 

has not been identified as yet. The domain is in all isoforms, except kettin and Sls(700), both 

of which are in IFM.  

 Isoforms of a protein similar to vertebrate obscurin and C. elegans UNC-89 were 

identified in IFM by mass spectroscopy. The larger of two isoforms predicted from the 

genome sequence in Flybase (with six additional Ig domains) 24 is about 421 kDa. This 

probably corresponds to the 450 kDa isoform identified here. There are 21 Ig domains, two 

Fn3 domains, and two kinase domains near the C-terminus; but the Drosophila  protein has 

none of the signalling domains found in vertebrate obscurin and UNC-89. Vertebrate 

obscurin is in the Z-disc in the early stages of myofibrillogenesis in cardiac cells, and in the 

M-line at later stages. 29 The protein may also be in Z-disc and M-line simultaneously in 

skeletal fibres, where it is associated with the periphery of the myofibril. 30 In contrast, 

Drosophila  obscurin is in the M-line of the sarcomere at all stages of development, from 

embryo and larva to adult (not shown), and immunolabelling of cryosections cut through the 

interior of the myofibril shows the protein is present throughout the M-line. Drosophila  

obscurin may be a structural protein necessary for A-band assembly, but the relationship to 

zormin, also in the M-line of IFM, is not known. 

During development, sls transcripts are differentially expressed at different stages. 

Kettin RNA is the major transcript in the embryo. The preponderance of kettin RNA, and 
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sequence derived from the B2 region of sls in early larval, and pupal stages, when new 

muscles are being assembled, is consistent with the finding that the majority of isoforms 

begin and end with these sequences. Larger transcripts, with sequence downstream of kettin 

RNA, are mostly formed by assembling consecutive ORFs. Transcripts that skip sequence 

coding for the last four Ig domains of kettin (producing Sls(700) and Sls(1000)), and others 

in which large stretches of sequence coding for PEVK sequence are missing, are only 

detected in pupal and adult stages; the corresponding Sls protein isoforms may only be in the 

adult thorax. Similarly, splicing between zormin and kettin transcripts, which could also 

produce larger isoforms, was only faintly detected in the pupa, suggesting these isoforms are 

rare. Zormin RNA is expressed during embryogenesis at 12 h, though the strongest 

expression is in the pupal stage. Recently zormin has been shown to interact with Rols7. 

Rols7 is found in fusing myoblasts in the embryo, and in Z-discs during larval stages, and 

also at the site of attachment of the muscles to the epidermis. 31 It has been suggested that 

Rols7, zormin and α-actinin form a complex during assembly of the Z-disc. Although kettin 

also appears in the early embryo, and is necessary for myoblast fusion , 10,11,14 it is not part of 

the complex of Rols7 with zormin and α-actinin. 31 Therefore, two isoforms of Sls: zormin 

and kettin, have different functions in the early development of muscles. 

 The mechanics of flight and a non-flight muscle in Drosophila  have been compared. 

Stretch-activation of IFM and the TDT and the stiffness of both types of muscle fibre in 

relaxing conditions were measured.32 The TDT responded very little to stretch, and the 

resting stiffness of the fibres was only 14% that of IFM fibres. Although, like IFM, the TDT 

has a short I-band, Sls in this muscle has extensible sequence found in some of the longer 

isoforms (Figure S1, Supplementary data), which would make the fibres more compliant than 

IFM fibres. The TDT initiates flight by straightening the middle leg and making the fly jump. 

During this sudden action, the I-band in an extended muscle would shorten rapidly; longer 
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Sls isoforms with elastic elements would give the I-band the optimum compliance for rapid 

shortening and extension. 

In all types of muscle fibres, Sls is firmly anchored to the thin filaments near the Z-

disc by kettin, and anchored to the ends of thick filaments by sequence at the end of the 

molecule. Intermediate sequence, varying in length and extensibility, is in connecting 

filaments. This arrangement can accommodate variation in I-band length in different muscles, 

and the need for different extensibility and elasticity of the sarcomere. In IFM, a link between 

the end of kettin and thick filaments, and the presence of projectin in connecting filaments, 

would increase the stiffness of the sarcomere.8,17 For connecting filaments to be effective in 

determining the passive elasticity of the sarcomere, the thick filaments must be relatively 

inextensible. In IFM, flightin on the outside of the thick filament, and paramyosin in the core 

are needed to maintain high passive stiffness. The elastic modulus was reduced in oscillating 

fibres lacking flightin ,33 and in fibres in which phosphorylation sites of paramyosin were 

mutated;34 passive stiffness of myofibrils was also reduced in the paramyosin mutants.35  

Recently it has been shown that the Ig domains in kettin 36 and projectin 37 can refold 

under high forces. Unfolding in a few domains would protect thick and thin filaments in the 

IFM sarcomere from being damaged during stretching, and the domains would refold while 

fibres were still under tension. It is also possible that kettin and projectin could function as 

folding-based springs during oscillatory contractions. 36,37 

 In conclusion, the Drosophila  sls gene produces many isoforms that have essential 

functions in different processes, from myoblast fusion in the embryo to regulation of fibre 

stiffness in the adult. Drosophila  has proved to be a good system in which to study the 

function of Sls, because of the variety of muscle types. We have found that the length of Sls 

isoforms and the proportion of elastic sequence are greater in muscles with long sarcomeres, 

which are more easily extensible. The function of kettin and the longer Sls isoforms may 

differ in muscles with highly extensible sarcomeres. Kettin does not span the I-band in these 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT
 

 

21 

 

muscles, but acts to reinforce the thin filament near the Z-disc. The longer Sls isoforms, 

which do span the I-band, are likely to be largely responsible for the elastic properties. IFM is 

a special case in which kettin and Sls(700) both span the short I-band, resulting in the high 

stiffness essential for oscillatory contraction. The power output of flight muscles depends on 

the resonant property of the thorax, and this is regulated by control muscles. 2 The relative 

elasticity of flight and control muscles will be an important element in determining the power 

produced during oscillatory contraction of flight muscles. 

 

Materials and Methods 

Fly stocks 

Wildtype Drosophila melanogaster were Oregon-R strain. A mutant lacking IFM thin 

filaments was Act88F
KM88. 

Sequencing of zormin cDNA  

Drosophila  cDNA for RACE reactions was prepared from adult mRNA using a Marathon 

cDNA amplification kit from Clontech. Identification of the 5’ end (N-terminal sequencing) 

was carried out using the Invitrogen GeneRacer kit; all other RACE amplification reactions 

were done with the Clontech Marathon cDNA kit. RACE primers used for zormin cDNA 

sequencing are given in Table S1 (Supplementary data).  

Sequence analysis and verification of sls splice isoforms using RT-PCR 

DNAStar was used to predict ORFs in the 62C2 - 62D1 region of the Drosophila  genome. In 

this way, 27 ORFs larger than 400 bp were detected and used for a systematic analysis of 

splicing by a reverse transcriptase–polymerase chain reaction (RT-PCR) approach. Adult 

Drosophila  cDNA was screened for splice isoforms with combinations of 26 sense and 26 

reverse primers, in order to check every possible exon junction (see Table S2, Supplementary 

data, for primer sequences). The synthetic oligonucleotides of  ~30 bases in length were 
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initially synthesized by Sigma (formerly known as Sigma-ARK) and later by Operon 

Biotechnologies. For the screening PCR, AmpliTaq® (Applied Biosystems) was used. 

Instead of the PCR buffer supplied, the following buffer was used: 10 x Taq polymerase 

buffer with 100 mM Taps (pH 8.5), 500 mM KCl, 20 mM MgCl2, 0.2 % Triton X-100 

(Serva). If AmpliTaq® did not yield any PCR product, Combizyme® DNA polymerase 

(Invitek, Berlin) was used in a second PCR run. The cDNA for the RT-PCR was synthesized 

using wild-type Drosophila total RNA and Superscript II (Invitrogen). An analytical PCR 

reaction (20µl) typically contained 2 µl 10x Taq polymerase, 1.6 µl dNTP (2.5 mM each), 0.4 

µl of each oligonucleotide (50 µM), 0.2 µl DNA template (~2 ng), 0.1 µl AmpliTaq® (5U/µl) 

and 15.3 µl H2O. PCR reactions using Combizyme® DNA polymerase were performed as 

recommended by the supplier. To detect small concentrations of transcripts, the number of 

cycles was set to 34. The following PCR conditions were used: 20 s at 95°C for denaturation, 

followed by 2-6 min at 68°C for annealing/extension. For each kb of target cDNA, 2 min at 

68°C was estimated to be necessary. Amplified PCR products were cloned using the TOPO 

TA Cloning® Kit (Invitrogen) and subsequently sequenced by Genecore (EMBL, 

Heidelberg). 

 PolyA sites in transcripts from the end of the kettin region, and from the end of the sls 

gene were identified by RACE with Drosophila  cDNA. Primer FQ29 was used for 5’RACE 

of kettin cDNA and primer FQ312 for 5’RACE of sls (see Supplementary data Table S2). 

Immunoglobulin, fibronectin, spectrin-like and SH3 domains in the Sls amino acid sequence 

were identified using the SMART database. 

Semi-quantitative RT-PCR from developmental stages 

First strand cDNA was synthesized from total RNA prepared from different developmental 

stages, using StrataScript® (Stratagene). PCR reactions were carried out using Taq 

Polymerase (New England Biolabs). Specific primer pairs were used: for ORFs in the zormin 
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(sls 3 to 4), kettin (sls 9 to 10), and other sls regions (sls 8 to 9, 13 to 14, 18 to 19 and 22 to 

23). Primer pairs were also used to detect spliced transcripts with skipped ORFs (sls12 to16 

and 15 to 21). Primers for the Drosophila  housekeeping gene, RP49, were used to check that 

the amount of cDNA was approximately the same for different developmental stages. The 

PCR products were detected on a 1.5% (w/v) -agarose gel with ethidium bromide staining. 

The primer sequences used for RT-PCR are listed in Table S2 (Supplementary data). 

Cloning and expression of constructs from the sls and obscurin genes 

Constructs from exons in the sls and obscurin  genes were cloned and protein expressed in 

Escherichia coli; the position of the constructs in the sequence of sls is shown in Figure 2. 

Cloning and expression of the following peptides have been described previously: B1, Ig4-

Ig6 in zormin (SIg4-SIg6);37 KIg3, Ig3-Ig4 in kettin (KET1);13  KIg34, Ig34-Ig35 at the end 

of kettin (Ig34/35).17 New constructs were amplified by PCR with Drosophila  adult cDNA as 

template. The peptides, and the sls sequence from which they were derived, are as follows: 

Spec, a spectrin-like sequence from exon 2 of the zormin region; PIg, PEVK sequence from 

exon 14, with an Ig domain at the C-terminus; B3, four Ig domains from exon 15; B4, 

sequence derived from splicing between exons 17 and 19; B5, unique sequence from exon 

18; Cb1, PEVK sequence from exon 19; B2, three Ig domains from exon 22. A construct 

from the Drosophila obscurin  (obs) gene was cloned, which coded for the three Ig domains 

Ig14-Ig16 in the obscurin sequence. DNA sequences of constructs were checked before 

expression. Amino acid sequences at the N- and C-termini of expressed fragments of zormin 

(GenBank accession number AJ544075 ), Sls (AJ245406  and AF241652) and obscurin 

(FlyBase number CG30171) are shown in Table S3 (Supplementary data).  

Zormin, Sls and obscurin cDNA constructs were cloned into a pET9d expression 

vector with a His6-tag at the N-terminus of the protein, or a pETM11 vector with a TEV 

protease cleavage site between the His6-tag and the protein (both vectors from Novagen). 

Vectors were transformed in to E. coli strain BL21(DE3)pLysS (Spec, PIg, B3, B4 and B2) 
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or BL21(DE)RP (Cb1 and Obs). Soluble protein was purified from the lysate of sonicated 

cells on a Ni-NTA agarose column (Qiagen); in some cases, fragments were purified further 

by ion exchange chromatography on a Mono-Q column (Amersham).  

Production of antibodies 

Polyclonal antibodies to recombinant proteins Spec, B1, PIg, B3, B4, B5 and B2 were raised 

in rabbits at EMBL. Specific IgG was affinity-purified on a column of the antigen coupled to 

CM-Sepharose (Pharmacia).38 Antibodies to Cb1 and Obs were raised in rabbits and IgG was 

isolated from serum by Biogenes (Berlin). Antibody to KIg16 was a rat monoclonal antibody 

(MAC155), raised to Lethocerus Z-discs, 39 the antibody reacts with the recombinant linker-

Ig-linker fragment of Drosophila  kettin that includes KIg16. 15 A mouse monoclonal 

antibody raised to KIg34 (called Ket94; mouse ID 540715) was used in some 

immunolabelling of cryosections for electron microscopy. 40  

SDS-gel electrophoresis and immunoblotting  

SDS-PAGE with 12% acrylamide and Laemmli sample buffer was used for detecting 

proteins up to 200 kDa. High molecular weight proteins in Drosophila  muscles were 

analysed by SDS-PAGE using 2.5% acrylamide gels strengthened with 1.5% agarose. 41 

Thoraces were dissected from about 100 flies and frozen immediately in liquid N2; they were 

homogenised while frozen and suspended in 100 µl Laemmli sample buffer containing 20 

µM leupeptin. 17 Legs were removed from about 200 flies and processed similarly. IFMs 

were dissected from 50 thoraces and homogenised in 50 µl sample buffer without freezing. 

After heating at 95°C for 3 min, samples were centrifuged and the supernatent was run on 

mini-gels 8 cm long; gels were stained with Coomassie brilliant blue R. Sls isoforms in 

Drosophila  thoraces and IFMs were identified in immunoblots of 2.5% gels. Proteins were 

transferred to nitrocellulose by electrophoresis at 700 mA for 6 h in a buffer containing 0.1% 

SDS. The nitrocellulose was incubated in antibodies to different regions of the Sls sequence 
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(Figure 2); then in goat anti-rabbit or goat anti-rat secondary antibody (Dianova). Blots were 

developed with a chemiluminescent substrate (ECL, Amersham). 

Immunofluorescence microscopy 

Drosophila  thoraces were cut in half by a vertical cut through the mid-line and incubated in 

relaxing solution (20 mM phosphate buffer (pH 7.0), 5 mM MgCl2, 5 mM EGTA, 5 mM 

ATP, 5 mM DTT, 1 mM PMSF, 0.2 mM leupeptin) with 50% glycerol and 0.5% Triton X-

100 for 2 h on ice. Dorsal longitudinal muscles were dissected from ten thoraces and 

homogenised gently in an Eppendorf tube. Myofibrils were washed twice in relaxing solution 

without glycerol, then in buffer without glycerol and Triton. A drop of myofibrils on a 

microscope slide was incubated in blocking buffer (relaxing solution with 1% BSA) for 30 

min. For double labelling, a mixture of two antibodies (diluted 1:50 in blocking buffer) was 

added to the myofibrils; after 1 h, myofibrils were washed and incubated in mixed secondary 

antibodies (diluted 1:50). Myofibrils were also prepared from flies expressing GFP-tagged 

Sls; 42 these myofibrils were incubated in anti-obscurin and anti-rabbit secondary antibody. 

Secondary antibodies (Dianova) were anti-rabbit and anti-rat, conjugated with FITC or Texas 

Red. Slides were examined in a Zeiss Axioscope microscope with a Photonic Science 

Coolview colour CCD camera. Confocal microscopy was carried out in the EMBL Advanced 

Light Microscopy Facility. Image series were acquired on a Leica SP2 laser scanning 

confocal microscope using  a 100 x oil-immersion  objective. Images were analysed and 

displayed in 3D using Leica and EMBL software. 

Immunoelectron microscopy  

Drosophila  thoraces were cut in half by a vertical cut, which exposed the dorsal longitudinal 

muscles, or by a horizontal cut, which exposed more of the non-flight muscles in the ventral 

half of the thorax. Half thoraces were fixed in 4% paraformaldehyde in relaxing solution and 

infused with 2.1 M sucrose; they were then placed on copper stubs with the cut surface 

uppermost and frozen in liquid N2.
39 Groups of three legs were removed from a fly and 
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treated in the same way; they were aligned side-by-side on the stub before freezing.  

Cryosections were blocked and labelled with IgG (diluted 1:10 to 1:100) in rigor buffer with 

0.1% Triton X-100, followed by 10 nm Protein A gold. In the case of the rat monoclonal 

antibody, a rabbit anti-rat bridging antibody (Cappel Laboratories) was used before Protein A 

gold. 15,39 Sections were picked up dry on carbon-coated copper grids, thawed and stained 

with methyl cellulose and uranyl acetate. 43 They were examined in a Fei Biotwin electron 

microscope operating at 80 or 100 kV and images taken with a Gatan 1Kx1K CCD camera. 

Mass spectroscopy 

Proteins in the major bands in 2.5% polyacrylamide gels were identified by mass 

spectroscopy. Samples were cut from gel bands and digested with trypsin. 44 The tandem 

mass spectrometer used at EMBL for MALDI-TOF (MS-MS) was a Q-Tof 2TM (Waters , 

Manchester, UK). Protein identification was by sequence tag analysis against SwissProt and 

TREMBL databases using ‘Peptide Search’. The tandem mass spectrometer used at the 

University of York was an Applied Biosystems 4700 Proteomics Analyser. Proteins were 

identified by searching the NCBI database, using MASCOT. The sls gene was searched for 

peptide sequences in order to identify the ORFs containing particular peptides.  

Protein binding assay 

Binding of zormin B1 fragment (three Ig domains) to thick filaments and actin was measured 

by co-sedimentation. Thick filaments were prepared from the Act88F
KM88 mutant Drosophila , 

which lack thin filaments in the IFM. 45 Thick filaments from IFMs of 35 flies were washed 

and resuspended in100 µl of binding buffer (50 mM NaCl, 10 mM Tris-Cl, pH 7.1, 2 mM 

MgCl2, 2 mM DTT). The suspension (10 µl) was added to B1 (7 µM) in a total volume of 80 

µl of binding buffer, and incubated at room temperature for 1 h. Actin was prepared from 

rabbit back muscle. 46 Actin (4 µM) was added to B1 (7 µM) in 100 µl of binding buffer and 

incubated at room temperature for 1 h. Samples of thick filaments alone, actin alone and B1 

alone were treated similarly. The mixtures were centrifuged in a Beckman Airfuge for 30 min 
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at 28 psi. SDS-PAGE sample buffer containing 6 M urea was added to supernatants and 

pellets. 
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Figure legends 

Figure 1 . Diagram showing RACE sequencing of zormin cDNA. The numbers below open 

reading frames are the17 exons. Numbers above the larger open reading frames are the sls 

ORF numbers (see Figure 2). RACE extensions are shown as blue arrows; sequences 

obtained from EST GH18167.5  and GH18167.3  are shown by green arrows. This is the 

zormin-PA isoform, which lacks exon 6. The red line is the region used to express the peptide 

for producing B1 antibody.  

 
 
Figure 2 . Schematic structure of the Drosophila  sls gene. Zormin and kettin are isoforms 

derived from the sls gene. Zormin RNA can be spliced to kettin RNA, which can be spliced 

to sequence downstream to produce larger isoforms. The exon links were identified by RT-

PCR, and subsequently confirmed by sequencing. Splicing pathways are indicated by green 

arrows. Sequence domains are shown, and the location of peptides to which antibodies were 

raised (black arrows). Internal promoters and terminations and poly-A sites could not be 

detected by the RT-PCR method used. The poly-A site near the end of zormin RNA was 

found in an EST sequence (Figure 1); the poly A sites at the end of kettin and Sls RNA were 

identified by RACE (see Methods). 

  

Figure 3 . Expression of Sls RNA at different developmental stages. Oligonucleotides derived 

from the coding region of the sls gene were used in RT-PCR reactions with cDNA from 

developmental stages. The following regions were amplified: zormin (sls 3 to 4); zormin to 

kettin (sls 8 to 9); kettin (sls 9 to10); ORFs in the PEVK region (sls 13 to14 and 18 to19); 

ORFs at the end of Sls (sls 22 to 23); and regions in which ORFs are skipped (sls 12 to16 and 

15 to 21). PCR reactions were run for 30 or 34 cycles; PCR products run in an agarose gel are 
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shown. RP49 was used to check that approximately equal amounts of cDNA were used for 

amplification. Embryonic stages are: 1 h, 12 h, 24 h (lanes 1 to 3). Larval stages are: first 

instar, second instar, and early third instar (lanes 4 to 6). Pupal stage is in lane 7 and the adult 

in lane 8. 

 

Figure 4 . High molecular weight proteins in Drosophila  muscles. Proteins in IFM, leg and 

thorax are compared by SDS-PAGE (2.5 % polyacrylamide gel). Lanes1 and 4, IFM; lane 2, 

whole thorax (including IFM and legs); lane 3, leg; lane 5, thorax from which IFMs have 

been removed. IFM has a lower molecular weight isoform of projectin than the other 

muscles. Obscurin is in IFM and whole thorax, but was not detected in leg and non-IFM 

thoracic muscles. There are two isoforms of obscurin (1 and 2); the amount of obscurin 1 

varies in different IFM samples (lanes1 and 4). Asterisks show high molecular weight 

proteins, which are visible in the thorax without IFMs. Brackets show bands analysed by 

mass spectroscopy (Table 1). 

 

Figure 5 . Isoforms of Sls in Drosophila  IFM. Immunoblots of IFM separated by 2.5 % SDS-

PAGE were incubated in antibodies to Sls; the epitopes of the antibodies are shown in Figure 

2 and above each lane. The splice isoforms (based on RT-PCR) corresponding to gel bands, 

are shown on the left; arrows indicate antibody-binding sites. IFM contains two isoforms of 

zormin (antibody to B1). Kettin is the major isoform of Sls in IFM (antibodies to KIg3, 

KIg16 and KIg34) and there are lesser amounts of Sls(700). Sls(700) has kettin sequence and 

the Ig domains in sls 22, but not those in sls 13 (antibody to B2 reacts but antibody to KIg34 

does not).  

 

Figure 6 . Isoforms of Sls in Drosophila  thoracic muscles. Immunoblots of whole thoraces 

separated by 2.5% SDS-PAGE were incubated in antibodies to Sls; epitopes of antibodies are 
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shown in Figure 2 and above each lane. The splice isoforms (based on RT-PCR) 

corresponding to gel bands, are shown on the left; arrows indicate antibody-binding sites. (a) 

Gels were loaded to show the major bands on blots. Thorax has two isoforms of zormin 

(antibodies to Spec and B1). Kettin is the major isoform of Sls in the thorax (antibodies to 

KIg3, KIg16 and KIg34). Sls(700) and Sls(1000) have kettin sequence and the Ig domains 

derived from sls 22, but not those from sls 13 (antibody to B2 reacts and antibody to KIg34 

does not). There are higher molecular weight Sls isoforms (see below) that include the Ig 

domains from sls 15 (antibody to B3) and the Ig domains from sls 22 (antibody to B2). (b) 

Gels were loaded with three times the amount of sample used in (a), to show minor high 

molecular weight bands; only bands above1000 kDa are shown. The three high molecular 

weight isoforms contain kettin sequence (antibodies to KIg3 and KIg34), and sequence from 

sls 14,15,17, and 22 (antibodies to PIg, B3, B4, and B2). The smallest of the three isoforms 

lacks sequence from sls 19 (antibody to Cb1) and the largest isoform is the only one that 

includes sequencee from sls 18 (antibody to B5). The approximate molecular mass of Sls 

isoforms is shown. 

 

Figure 7 . The position of Sls isoforms and obscurin in the sarcomere. (a) The position of 

zormin and obscurin in IFM relative to kettin. Immuno-fluorescence micrographs in each 

panel show myofibrils labelled with rabbit antibody to peptides in zormin (B1), kettin (KIg3 

and KIg34) or obscurin (Obs) (top images). Myofibrils incubated with antibodies to B1, KIg3 

and KIg34 were double-labelled with rat monoclonal antibody to kettin KIg16 (middle 

image), to mark the Z-disc (arrow). Myofibrils incubated with antibody to obscurin expressed 

GFP-Sls (see Methods), which marked the Z-disc. The merged image is at the bottom of each 

panel. Antibody to zormin B1 labels the Z-disc and the M-line; antibodies to kettin KIg3 and 

KIg34 label the Z-disc exclusively, and antibody to obscurin labels the M-line. (b) The 

position of the C-terminus of Sls in IFM. Confocal fluorescence micrographs show 
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myofibrils double-labelled with rabbit antibody to B2, (top image), and rat monoclonal 

antibody to kettin KIg16 (middle image) to mark the Z-disc; the merged image is at the 

bottom. Confocal image layers were combined to give the cross-sectional view on the right. 

Antibody to B2 labels the core of the IFM myofibril, close to the Z-disc, and antibody to 

kettin labels across the diameter of the myofibril. (c) The position of the C-terminus of Sls in 

a bundle of non-IFM myofibrils in the thorax. Confocal fluorescence micrographs show 

myofibrils labelled as in (b). Both B2 and kettin antibodies label across the diameter of the 

myofibril. B2 has a wider distribution along the axis of the sarcomere than kettin, and the 

antibody labels the I-band either side of the Z-disc (arrow). Secondary antibodies were 

conjugated with fluorescein isothiocyanate or Texas red. Scale bars 5 µm.  

 

Figure 8. The layout of Sls and obscurin in the IFM sarcomere. Electron micrographs of 

cryosections that were labelled with antibodies and Protein A-gold. The peptides to which 

antibodies were raised are shown in Figure 2. Antibody to zormin B1 is at the M-line and 

there is also some labelling in the Z-disc region (see Supplementary data Figure S2 for a 

histogram of gold particle distribution). Antibody to KIg3 is at the Z-disc; antibody to KIg16 

is on the edges of the Z-disc; and antibody to KIg34 is close to the ends of the thick 

filaments. Antibody to B2 (near the end of Sls(700)) is in the core region of the myofibril, at 

the end of the thick filaments. Antibody to obscurin (Obs) is on the M-line. Scale bar 0.5 µm.  

 

Figure 9 . The layout of Sls and obscurin in leg and other non-IFM sarcomeres. Electron 

micrographs of cryosections that were labelled with antibodies and Protein A-gold. Peptides 

to which antibodies were raised are shown in Figure 2. Antibody to zormin B1 is at the Z-

disc. Antibodies to kettin KIg3, KIg16 and KIg34 are at the Z-disc, or either side of the Z-

disc. The distribution of gold particles is more spread out than the labelling in the IFM 

sarcomere. Antibodies to B4 and B5 extend further from the Z-disc than the kettin antibodies, 
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and there is label on the ends of the thick filaments (arrows). Antibody to B2 labels close to 

the ends of the thick filaments, across the entire myofibril diameter. Antibody to obscurin 

(Obs) is in the middle of the sarcomere; there is no clear M-line and the label has a wider 

spread than in IFM. Cryosections are all of legs, except the one labelled with antibody to 

obscurin, which is thoracic muscle. Scale bar 0.5 µm. 

 

Figure 10. Schematic diagram summarizing the position of Sls isoforms and obscurin in the 

IFM and non-IFM sarcomere. The positions of antibody epitopes in different isoforms of Sls 

are shown, based on reaction of the proteins in immunoblots, and labelling observed by 

immuno-electron microscopy. The approximate molecular mass of Sls isoforms is shown. 

Isoforms in IFM are zormin, kettin, and the minor isoform Sls(700) in the myofibril core. 

Zormin has been detected in both the M-line and the Z-disc. Sls isoforms in non-IFMs, with 

longer sarcomeres, are zormin, kettin and larger isoforms with elastic PEVK sequence; two 

of the larger isoforms, Sls(1700) and Sls(1900) are shown. 

 

Figure 11. Binding of zormin fragment B1 to thick filaments and actin. B1 has three Ig 

domains in the zormin sequence (Figure 2). Binding of B1 to thick filaments and actin are 

compared by SDS-PAGE (12 % polyacrylamide gel). Thick filaments or actin (4 µM) were 

incubated with and without B1 (7 µM) and then pelleted by centrifuging. Lanes 1 and 2 show 

pellets and supernatants of thick filaments alone and with B1. Lanes 3, show B1 alone. Lanes 

4 and 5 show actin with and without B1. The amount of the pellets loaded on the gels is 

equivalent to 5 times the amount of the supernatents. The B1 fragment binds to both thick 

filaments and to actin. P, pellet; S, supernatent; M, molecular mass markers; Mhc, myosin 

heavy chain; Mlc1 and 2, myosin light chain 1 and 2.  
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Table 1. Proteins identified by mass spectroscopy of gel bands  

 

p250 Stretchin-Mlck p350 Obscurin 1 

VYAAQADGDESEPIFALPLR 
FSVQQAQISDSGTYFVVAR 
GQPTPAVQWFK  

LEVYENPGTGDVPPTFTR 
WFFGDQPIAFGPR 

FLIDIEPNGLLR 
VLNTVAGGPTPTQLLR 

CG18255 CG33519 or CG30171 

 
p450 Obscurin 2 p700 Sls(700) 
VDASQIASESELILHLPQR 

IENYYLTLNLAR 
SHQGELSLSGIAEYR 

FLIDIEPNGLLR 
EGYPPFFR 

FAQGGNALFEGR       (9) 

VIEPEPIPGPEIIYLR    (10)  
APVFTVPLENIENLR  (12) 

DLATIGLLLR              (16)  
LTVEEPLVDFVIR       (24)  

CG33519 or CG30171 CG1915 

 
p1000 Projectin 1 p1000 Projectin 2 

FLKPHIDR 

IFADNVYGR 
IQGYQIEYR 
FTVPSPPGAPQVTR 

YVGDDYYFIINR 

ATIPDLVEGQTYK 

CG1479 or CG10285 CG1479 or CG10285 
 

p1500 Sls(1500) 

APVFTVPLENIENLR (12)  

LTVEEPLVDFVIR     (24) 
CG1915 

The CG numbers for the genes identified are given below 
the peptides. For Sls(700) and Sls(1500), the ORF numbers 

that contain the peptides are given (in brackets). 
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