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Summary (word count 194): Proteomic and phosphoproteomic analyses of rice shoot and root 

tonoplast-enriched and plasma membrane-enriched membrane fractions were carried out to look 

at tissue specific expression and to identify putative regulatory sites of membrane transport 

proteins. Around 90 unique membrane proteins were identified which include primary and 

secondary transporters, ion channels and aquaporins. Primary H
+
 pumps from the AHA family 

showed little isoform specificity in their tissue expression pattern whereas specific isoforms of 

the Ca
2+

 pump ECA/ACA family were expressed in root and shoot tissue. Several ABC 

transporters were detected, particularly from the MDR and PDR subfamilies, which often showed 

expression in either roots or shoots. Ammonium transporters were expressed in root but not shoot 

tissue. A large number of sugar transporters was expressed particularly in green tissue.  

The occurrence of phosphorylation sites in rice transporters such as AMT1;1 and PIP2;6 agrees 

with those previously described in other species pointing to conserved regulatory mechanisms. 

New phosphosites were found in many transporters including H
+
 pumps and H

+
:cation 

antiporters, often at residues which are well conserved across gene families. Comparison of root 

and shoot tissue showed that phosphorylation of AMT1;1 and several further transporters may be 

tissue dependent.  

 

Introduction (word count 541) 

Homeostasis of cells and organisms critically depends on the function of membrane transporter 

proteins which mediate the movement of solutes between the environment and cytosol and 

between cell compartments. Genome sequencing has shown that a significant proportion of the 

genome (> 5%) encodes membrane transport proteins. Based primarily on phylogenetic 

relationships, most membrane transporters can be grouped into gene families and assigned a 

broad functional annotation. However, for most transporters detailed knowledge regarding 

physiological function is completely lacking and therefore a large task remains with regard to 

their functional annotation. 

The latter will be facilitated by determining the subset of transporters that is relevant in plant 

development and growth. For Arabidopsis, membrane proteomics inventories are now available 

for the plasma membrane (e.g. Alexandersson et al., 2004), vacuolar membrane or tonoplast (e.g. 

Carter et al., 2004), mitochondrial membranes (Brugiere et al., 2004) and plastidic membranes 

(Peltier et al., 2004). Furthermore, large scale studies into protein phosphorylation are available 
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for both the Arabidopsis plasma membrane (Nühse et al., 2003; Nühse et al., 2004; Niittyla et al., 

2007) and vacuole (Whiteman et al., 2008) identifying many phosphopeptides that are likely to 

be essential in the regulation of membrane transport.   

These global analyses have greatly helped in establishing the roles of membrane proteins by 

localising them to specific tissues and organelles and have identified key aspects of membrane 

transport such as the presence of specific sugar transporters at the tonoplast (Endler et al., 2006), 

and regulation of the proton pumping activity of plasma membrane ATPases (Niitylla et al., 

2007).  

In contrast, the proteome and phosphoproteome of rice membranes remain little investigated in 

spite of the fact that rice is rapidly becoming a model system for plants. Transcriptomics studies 

in rice have helped to establish gene expression patterns for many membrane transporters but 

gene expression is not necessarily correlated with protein expression (Maathuis and Amtmann, 

2005). In addition, transcriptomics surveys do not reveal information concerning membrane 

localisation and protein regulation. Previous studies in rice have mainly focussed on soluble 

proteins using gel-based methods that are less suited for the separation of hydrophobic proteins. 

Using this methodology, Komatsu and Tanaka (2005) identified around 5100 proteins from 

different tissues and organelles but only a small proportion consisted of membrane proteins. 

Other gel-based studies also showed a very low number of hydrophobic proteins (Tanaka et al., 

2004).   

We therefore undertook a study into the rice plasma membrane and tonoplast proteomes of both 

roots and shoots to provide a comprehensive inventory of membrane proteins in this plant and to 

assess whether proteins are differentially expressed between these tissues. Membrane fractions 

were analysed to catalogue the presence of membrane transporters involved in the movement of 

solutes and to map subcellular and tissue-specific localisation of isoforms. To discover putative 

regulatory mechanisms we also studied the phosphoproteomes of the membrane fractions. Our 

data show interesting similarities in expression patterns between root and shoot tissues for 

primary transporters and significant differences in the presence of secondary transport proteins 

that are involved in the movement of inorganic nutrients and photosynthates. In addition, we 

identified previously reported and many new phosphopeptides that may be involved in membrane 

transporter regulation. We show that for several transporters the phosphorylation state may be 

tissue dependent. 
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Results and discussion (word count 2490) 

Membrane preparations: Membrane proteomic analyses are complicated by the difficulty in 

obtaining pure fractions. We used well-established methods to obtain a low-density microsome 

fraction that was enriched in tonoplast (Lüttge.et al., 2000; Whiteman et al., 2008) and a two 

phase partitioning fraction that was enriched in plasma membrane (Larsson et al., 1987). 

Nevertheless, cross contamination with membranes from other compartments is a common 

problem. Recent work by Jaquinod et al., (2007) who used vacuoles prepared from protoplasts 

showed the presence of many plasma membrane proteins such as P-type H
+
 ATPases. Vice versa, 

proteomics on plasma membrane fractions typically detects vacuolar H
+
 pumps, TIP-type 

aquaporins and other endomembrane proteins (e.g. Marmagne et al., 2004). Furthermore, 

membrane fractions often contain large numbers of non-membrane proteins. Some of these may 

be membrane associated but many are likely to be contaminating soluble proteins.  

To maximise confidence in the obtained data from this study and to be able to improve their 

interpretation, we applied stringent criteria on the obtained peptides (see methods) but in addition 

only assigned proteins to a specific membrane and tissue if it was present in at least two out of 

the three biological replicates. To further provide a semi-quantitative measure of membrane and 

tissue expression, Table 1 denotes the total number of peptides that was identified for each 

protein in the four different fractions (root and shoot tonoplast and root and shoot plasma 

membrane). Although these numbers can not be equated with absolute expression levels they are 

indicative of relative abundance as is born out by the substantially higher scores for well known 

vacuolar proteins (e.g. pyrophosphatases and TIP aquaporins) in the tonoplast fractions and P-

type ATPases in plasma membranes.    

Rice membrane proteome and regulation of transporters by phosphorylation: Out of 231 unique 

proteins identified in the combined fractions (Supplementary Table), a total of 94 (40%) 

membrane proteins was detected. The 94 membrane proteins derived from various transport and 

non-transport functional categories (Fig. 1).  

Within the membrane proteins 61 transporters with well defined functional annotations were 

present. Amongst these proteins, 30 phosphopeptides were identified by using immobilised metal 

affinity chromatography (Nühse et al. 2003; Nühse et al., 2004). The phosphorylation and 

dephosphorylation of proteins constitutes a well conserved generic regulatory mechanism of 

immense importance in living organisms. The phosphorylation state can affect protein activity in 

 4



many ways: by acting as an allosteric switch, by changing subcellular localisation or by targeting 

proteins for degradation. Thus, the identification of proteins that can be phosphorylated, and 

more specifically the residue that carries this modification, is crucial in understanding how 

particular proteins are regulated.  

Primary H
+
 and Ca

2+
 pumps: A large number of primary pump proteins was found in all four 

membrane fractions. These mainly consisted of H
+
-ATPases from the plasma membrane AHA 

family, V-type ATPase subunits and vacuolar pyrophosphatases, which are all involved in the 

generation of trans-membrane H
+
 electrochemical gradients. In addition, 3 isoforms of the Ca

2+
 

transporting ATPases from the ECA/ACA family were detected that are important in extrusion of 

Ca
2+

 from the cytoplasm, either into the apoplast or into internal compartments such as the 

vacuole.  

Although tissue specific transcript accumulation of AHA isoforms has been described in 

Arabidopsis (Morsomme and Boutry, 2000) very little isoform specificity was apparent between 

root and shoot rice tissues. Only AHA1, AHA4 AHA6 and AHA9 were detected exclusively in 

roots. Rice transcriptomics data (http://signal.salk.edu or http://mpss.udel.edu/rice) point to a 

fairly equal distribution of most AHA isoforms between root and shoot but also show expression 

is very sensitive to environmental conditions such as temperature. In Arabidopsis, AHA4 is 

abundantly expressed in the root endodermis and plays a role in plant ion homeostasis and 

nutrient transport (Vitart et al., 2001).   

Some H
+
 pumps were found to be differing in their phosphorylation state between roots and 

shoots: AHA7 was found non-phosphorylated in roots and phosphorylated in shoots whereas for 

AHA3 a shoot specific phosphosite was found. Although P-type ATPases undergo reversible 

phosphorylation at a conserved aspartate residue as part of the catalytic cycle, kinase dependent 

phosphorylation occurs at a C-terminal threonine (T
956

 in OsAHA1) in the well conserved 14-3-3 

protein binding domain (Gaxiola et al., 2007). This site was not detected in our study but another 

C-terminal peptide containing a serine at position 970 was found in AHA3 and in AHA7. This 

putative phosphosite is well conserved across all rice AHA isoforms except AHA10 (Fig. 2). The 

recently described ‘new’ phosphorylation site, (pT)LHGLQPK (Niittyla et al., 2007) in AtAHA1 

and AtAHA2 was also found in the rice OsAHA3 (at T
889

) in both root and shoot samples.  

Ca
2+

 ATPases (ECA1, ACA9 and ACA11) were only detected in shoot PM. ECA1 and ACA9 

transcript levels are similar in mature root and shoot tissues but ACA11 transcript is virtually 
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absent in mature roots. ECA1 is an ER localised protein that can transport both Ca
2+

 and Mn
2+

. It 

contributes to plant Mn
2+

 tolerance by removing this ion from the cytosol when plants are 

exposed to high concentrations of Mn
2+

 in the environment (Wu et al., 2002). 

Rice contains a larger number of vacuolar H
+
 pumping pyrophosphatases (~12) than Arabidopsis 

(3 isoforms). Five isoforms were detected in the TO root and TO shoot fractions. Os01g23580, 

Os05g06480 and Os06g43660 were detected exclusively in shoot TO. Transcript levels for 

Os01g23580 and Os05g06480 in mature roots are considerably lower than those in found in 

hoots. 

One vacuolar PPases (Os02g09150) was detected in phosphorylated and non-phosphorylated 

forms: Os02g09150 was present as a phosphoprotein in roots but not shoots. Little is known 

about regulation of pyrophosphatase activity and the physiological relevance of these sites is yet 

to be established. 

ABC-transporters: Plant genomes encode many ABC-transporters and the rice genome contains 

around 100 genes that encode this type of ATP fuelled pump. ABC-transporters are expressed in 

both plasma membrane and tonoplast. In most cases their precise function is unknown but a 

general role includes detoxification and compartmentation of xenobiotics and heavy metals 

(Yazaki et al., 2006), and homeostatic and developmental functions such micronutrient 

homeostasis (Ducos et al., 2005) and lipid extrusion for the formation of leaf cuticles (Pighin et 

al., 2004). In rice roots and shoots three and two isoforms were expressed. Only MRP1 was 

found in both root and shoot tissue.  

Nitrogen transport: Rice prefers NH4
+
 over NO3

-
 as a nitrogen source and its genome encodes a 

relatively large number (~12) of ammonium transporters from the AMT family. Two isoforms, 

AMT1;1 and 1;2, were detected exclusively in roots. This agrees with transcript profiles for these 

carriers and also with the notion that the large majority of NH4
+
 is assimilated within the root. 

AMT1;1 has previously been described in Arabidopsis phosphoproteomics studies (Nühse et al. 

2003; Nühse et al., 2004; Benschop et al., 2007; Whiteman et al., 2007) as a target for 

phosphorylation. The Arabidopsis AtAMT1;1 contains a threonine residue at position 460 as the 

phosphorylation target that was recently identified as playing a critical role in the substrate 

sensitive, allosteric regulation of this ammonium transporter (Loque et al., 2006). We identified a 

phosphosite in OsAMT1;1 with a threonine at exactly the same position indicating that this 
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mechanism of protein activity modulation in response to ammonium is conserved between 

different plant species.  

In conjunction with AMT transporters, a putative NO3
-
 transporter (Os10g42900) was also 

present in root membranes. Os10g42900 transcript level is primarily found in roots and its closest 

Arabidopsis ortholog is AtNRT1 a high affinity oligopeptide transporter (Rentsch et al., 1995). A 

second NO3
-
 transporter (Os03g48180) was present in shoot tissue only. This protein is also 

alternatively annotated as a proton dependent oligopeptide transporter of the POT/PTR family 

and thus may be involved in intercellular movement of organic nitrogen. A large number of 

further peptide transporters and amino acid transporters is also likely to contribute to overall 

nitrogen homeostasis. Several other isoforms from the POT/PTR family and several amino acid 

transporters were found in roots and shoots indicating that such proteins are expressed at 

relatively high levels throughout the rice plant.     

Phosphate transport: Like nitrogen, phosphorous is another essential mineral for plants which is 

frequently only available in very small amounts and thus requires high affinity mechanisms. 

Interestingly, no annotated phosphate carriers were detected in roots but our growth medium 

contains high levels of Pi (~0.6 mM) which may have led to suppression of P carriers in the root. 

Two isoforms (PT1 and PT8) of the extended PT family were expressed in the shoot PM fraction. 

OsPT1 transcript is relatively low in roots and reduced by mycorrhization (Pazskovski et al., 

2002). OsPT1 transcript in shoot tissue is around three times higher but no functional data are 

available. Even less is know about PT8: its transcript levels are much higher in leaves than roots 

and are not affected by mycorrhization.   

Potassium transport: The high affinity K
+
 carrier HAK1 was prominently present in root PM and 

not in any other fraction. A role for HAK1 in K
+
 uptake from the soil has been surmised 

previously on the basis of its expression pattern and induction by K
+
 deficiency (Banuelos et al., 

2002). It also agrees with the notion that its closest Arabidopsis homolog is AtHAK5, the root 

expressed, high affinity K
+
 uptake system in this species (Gierth et al., 2004; Armengaud et al., 

2004). In rice shoot tissue a second HAK-like transporter was detected which is homologous to 

Arabidopsis HAK8. AtHAK8 is mostly expressed in young leaves but also in other tissues (Ahn 

et al., 2004). 

Sugar transport: A total of 4 sugar transporters was present in the various membrane fractions. 

The overall number found in green tissue was considerably larger than that found for roots with 
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respectively 4 and 1 isoforms. Several sugar transporters have been characterised to some extent 

such as MST3 which has H
+
-coupled transport activity for monosaccharides. MST3 has been 

detected previously in leaf blades, leaf sheaths, calli and roots, and is suggested to be involved in 

the accumulation
 
of monosaccharides required for cell wall synthesis (Toyofuku et al., 2000). 

One phosphopeptide was found in sugar transporters. Phosphorylation has been suggested as an 

important posttranslational mechanism to modify activity and affinity of sucrose transport 

(Niittyla et al., 2007) and we recently reported on several new phosphosites in Arabidopsis shoot 

tissue sugar transporters (Whiteman et al., 2008). In rice, phosphorylated sugar transporters were 

only observed in the shoot samples.  

Water transport: Although water permeability of phospholipid bilayers is substantial, a large part 

of the water flux is mediated by aquaporins (Chrispeels et al., 2001) whose expression is 

especially prevalent at the tonoplast and plasma membrane. The rice genome encodes around 35 

aquaporins of the PIP, TIP and NIP subfamilies and representatives of each family were found in 

both root and shoot tissue. Some PIP isoforms (PIP2;1, 2;2 and 2;6) were ubiquitously expressed 

and detected in three or more fractions but with a much higher peptide score in the PM. 

Conversely, TIP1;1 and 2;2 were detected in most fractions but with significantly higher scores 

in the TO. PIPs and TIPs are thought to be responsible for water movement across the PM and 

TO respectively and many are believed to express in a tissue specific manner. The latter was 

observed for PIP2;6 which showed a much higher peptide count in shoot tissue. PIP2;6 was 

previously found to have a C-terminal phosphosite in Arabidopsis (Niittyla et al., 2007; 

Whiteman et al., 2008). This site overlaps perfectly with a phosphosite in OsPIP2;6 (Fig. 3) 

containing a residue that is well conserved within the PIP2 subfamily. PIP2;6 was detected as a 

phosphorylated protein in shoots but non-phosphorylated in roots. Since phosphorylation gates 

aquaporins to the conducting state (Tornroth-Horsefiled et al., 2006) this may suggest that PIP2;6 

was actively mediating water flux in shoots only.  

Further transporters: Root fractions also revealed the presence of transporters that may be 

involved in acquisition of other nutrients. Several transporters are present that may participate in 

uptake and distribution of the micronutrients Zn and Cu. Two copper transporters were detected 

at the root TO fraction. COPT5 is a member of the COPT family, believed to participate in Cu 

uptake and distribution, and particularly its deposition in vacuoles (Sancenon et al., 2003). The 

plasma membrane Zn transporter ZIP2 is likely involved in Zn and/or Fe uptake and homeostasis 
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but, interestingly, has also been implicated in Cu transport (Wintz et al., 2003). In yeast it shows 

a nanomolar Km for Zn and Cu transport and its transcription is induced by deficiency of either 

metal (Wintz et al., 2003). The root PM fraction also shows the presence of an aquaglyceroporin, 

NIP2;1, which was recently characterised as the first plant silicon transporter. (Ma et al., 2006). 

Rice takes up relatively large amounts of silicon which is involved in cell wall integrity but also 

impacts on nutritional aspects such as the accumulation of tissue Na
+
 via a non-symplastic 

pathway.  

Several exchangers were found in TO fractions with a putative Ca:Na exchanger in both root and 

shoot tissue. No functional data are available for this protein but it was present in phosphorylated 

form in shoots and non-phosphorylated in roots.  

A H:Na antiporter was detected at the TO in shoots: NHX3 is part of the well characterised NHX 

family which has been shown to be important in the vacuolar deposition of monovalent cations 

such as Na
+
 and K

+
 and also for pH homeostasis. NHX3 showed phosphorylation at a C-terminal 

position at a residue, S
471

, that is conserved across rice NHX isoforms (Fig. 4) and also present as 

a threonine residue in Arabidopsis NHX isoforms. This suggests that this site may be important 

in regulation of vacuolar cation exchange. A putative phosphosite further downstream in 

Arabidopsis NHX1 and NHX2 has also been reported (Whiteman et al., 2008). 

Conclusions: Rice is rapidly being established as a model species for cereal crops and is also a 

major target for genetic engineering. It is thus imperative to know the composition and function 

of the proteome that underlies rice growth and development. Many physiological features of this 

monocot crop may not be reflected in the dicot model Arabidopsis. We show that the expression 

of around 230 membrane and membrane associated proteins in plasma membrane and tonoplast 

fractions of rice root and shoot often occurs in a tissue specific manner and that around 20% of 

the detected proteins have clearly identifiable phosphosites that may be important in modulating 

protein activity. Many of these sites exactly match equivalent sites identified previously in 

Arabidopsis orthologues (e.g. Nühse et al., 2004) pointing to well conserved regulatory 

mechanisms. However, other sites are unique to rice thus confirming the need for experimental 

proteomic data in this species. 

Experimental procedures (word count 1908) 

Materials: Chemicals were obtained from Sigma or Fluka unless otherwise stated.  
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Plant growth conditions: Rice plants (Oryza sativa japonica Nipponbare) were germinated on 

moistened filter paper and transferred to a hydroponic growth system. The growth medium 

contained 1.25 mM KNO3, 0.5 mM Ca(NO3)2, 0.5 mM MgSO4, 0.625 mM KH2PO4  and 

micronutrients as described in (Maathuis et al., 2003). Plants were maintained in Percival growth 

cabinets under short day conditions (10 h light at 200 µmol*m
-2

*s
-1

 intensity, 14 h dark, 23°C 

day, 17°C night and 70% RH. Leaf and root tissue was harvested from 8 week old plants. 

Membrane preparation: Plasma membrane and vacuolar membrane fractions from shoot and 

root tissue were prepared by employing two-phase partitioning (Larsson et al., 1987) and sucrose 

gradient centrifugation (Lüttge et al., 2000) methods respectively.  

To isolate plasma membranes, plant tissue was homogenised in buffer H (0.25 M sucrose, 2 mM 

EGTA, 10%(v/v) glycerol, 0.5% BSA, 50 mM BTP-MES, pH 7.8, 0.25 M KI, 2 mM DTT, 1 mM 

PMSF, 5 mM β-mercaptoethanol). The homogenate was centrifuged at 11,500g for 10 minutes 

and the supernatant re-centrifuged at 100,000g for 40 minutes. The pelleted material was 

resuspended in 5 ml of P-buffer (0.25 M sucrose, 3 mM KCl, 5 mM KH2PO4) and used as the 

microsomal preparation.  

A batch preparation method was used to obtain a plasma-membrane enriched fraction, using a 

dextran-PEG two-phase system. The final composition of the phase system was 6.2% (w/w) 

dextran T500, 6.2% PEG 4000, 0.25 M sucrose, 5 mM K-phosphate, pH 7.8. The phase system 

was mixed by inversions of the tube, centrifuged at 720g for 10 minutes, and then 90% of the 

upper layer was removed and each layer was separately re-combined with fresh upper or lower 

phase as appropriate. Tubes were re-centrifuged, and the separation/extraction repeated once 

more. Upper phase fractions were recombined and centrifuged at 100,000g for 1 hour. Pellets 

were resuspended in 62.5 mM Tris-HCl, pH 6.8 and re-centrifuged at 100,000g for 1 hour.  

For the isolation of tonoplast, leaf or root tissue was homogenized in Buffer A (50 mM MOPS-

KOH, pH 7.6, 0.25 M sorbitol, 5 mM EGTA, 1% isoascorbic acid with Sigma plant protease 

inhibitor cocktail). The homogenate was centrifuged at 3,600g for10 minutes and the supernatant 

from this was centrifuged at 150,000g for 20 minutes. The pellet was resuspended in Buffer B 

(10 mM potassium phosphate buffer, pH 7.8, 0.35 M sucrose, 1 mM EGTA, 1 mM DTT), 

overlaid with an equal volume of Buffer C (5 mM MOPS-KOH buffer, pH7.3, 0.25 M sorbitol, 1 

mM EGTA, 1 mM DTT) and centrifuged at 120,000g for 40 minutes. The protein present at the 

interface was collected, diluted 10-fold with Buffer A, and centrifuged at 150,000g for 20 
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minutes. The pellet was resuspended in Buffer A containing 20% (v/v) glycerol to yield a low 

density membrane fraction enriched in tonoplast.  

All membrane fractions were carbonate washed according to Dunkley et al., 2004 to remove 

soluble protein and stored at -80
o
C.  

Sample preparation for proteomic analyses: Membrane fractions were separated by 

conventional 1D gel electrophoresis. Gels were stained with BioSafe Coomassie (BioRad) and 

the lanes cut into slices. Gel slices were macerated and destained in 25 mM ammonium 

bicarbonate in 50% (v/v) acetonitrile, dehydrated in acetonitrile, dried, and reduced in 10 mM 

dithioerythrietol in 100 mM ammonium bicarbonate at 56°C for 1 hour. The samples were 

alkylated in 50 mM iodoacetamide in 100 mM ammonium bicarbonate. Samples were then 

washed, dehydrated and dried, and incubated with 0.2 µg sequencing grade modified porcine 

trypsin (Promega) overnight at 37°C. The liquid surrounding the gel pieces was removed and 

brought to 0.1% TFA. 

For each of the four membrane fractions (root tonoplast, shoot tonoplast, root plasma membrane 

and shoot plasma membrane) three biological replicates were used resulting in 12 proteomics 

samples in total. 

Nano-LC-MALDI MS/MS: Digests were brought to 0.1% TFA and then fractionated using a 

Dionex nano-LC with a monolithic PS-DVB capillary column (200 µm x 5 cm, Dionex). 

Fractions were spotted onto MALDI target plates after mixing with an equal volume of a freshly-

prepared 5 mg/mL solution of 4-hydroxy-α-cyano-cinnamic acid (Sigma) in 50% aqueous (v/v) 

acetonitrile containing 0.1% (v/v) TFA.  Positive-ion MALDI mass spectra were obtained using 

an Applied Biosystems 4700 Proteomics Analyzer (Applied Biosystems, Foster City, USA) in 

reflectron mode with an accelerating voltage of 20 kV.  MS spectra were acquired with a total of 

1000 laser pulses over a mass range of m/z 800-4000.  Final mass spectra were the summation of 

20 sub-spectra, each acquired with 50 laser pulses, and internally calibrated using the tryptic 

autoproteolysis products at m/z 842.509 and 2211.104. Monoisotopic masses were obtained from 

centroids of raw, unsmoothed data. 

For collision-induced dissociation-MS/MS, a Source 1 accelerating voltage of 8 kV, a collision 

energy of 1 kV, and a Source 2 accelerating voltage of 15 kV were used.  Air was used as the 

collision gas with a recharge threshold of 9.9x10
-7

 torr, producing a Source 2 pressure of about 

1x10
-6

 torr.  The precursor mass window was set to a relative resolution of 50, and the metastable 
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suppressor was enabled. Default calibration was used for MS/MS spectra, which were baseline-

subtracted (peak width 50) and smoothed (Savitsky-Golay with three points across a peak and 

polynomial order 4); peak detection used a minimum S/N of 5, local noise window of 50 m/z, 

and minimum peak width of 2.9 bins.  Filters of S/N 20 and 10 were used for generating peak 

lists from MS and MS/MS spectra, respectively. 

Nano-LC-ESI-MS/MS: Aliquots of trypsin digests (1 - 3 µL) were loaded onto an Ultimate 

nano-HPLC system (Dionex) equipped with a monolithic PS-DVB capillary column. The 

separation used a gradient elution with the following conditions: the initial eluant composition 

was 1% Solvent A; on injection, a linear gradient of Solvent B from 1% to 50% in 30 min was 

applied, followed by a 5 min wash at 95% Solvent B and finally re-equilibration in 1% Solvent B 

(Solvent A: 2% (v/v) acetonitrile, 0.1% (v/v) formic acid in H2O; Solvent B: acetonitrile, 0.1% 

(v/v) formic acid). The flow rate was 1.2 µL/min and the column temperature was 70°C. Control 

and data acquisition were with Chromeleon v6.6 software (Dionex).  The HPLC was interfaced 

with a QSTAR® API Pulsar i Hybrid LC/MS/MS System (Applied Biosystems) with a 

MicroIonSpray source (fitted with 20 µm ID capillary). Positive ESI MS & MS/MS spectra were 

acquired over the range 300 – 2000 m/z using information dependent acquisition (IDA). ESI 

settings: ionspray voltage, 5200; nebulising gas, 5; curtain gas, 35; range, 300 – 2000 m/z; IDA 

settings: MS, 0.5 s; MS/MS, 0.5 s on 1st and 2nd most abundant ions that meet switch criteria; 

cycle time, 1.5 s; collision energy, 0 (calculated from IDA CE parameter table); Switch criteria: 

ions greater than 300, m/z; ions smaller than, 2000 m/z; charge state, 2 to 4; threshold, 20 counts; 

switch after, 1 spectrum; exclude former target ions for 60 s; ion tolerance, 100 ppm. Instrument 

control, data acquisition and analysis were carried out with Analyst QS v1.1 software.  

Nano-LC-MALDI MS/MS data analysis: Mass spectral data obtained in batch mode were 

submitted to database searching using a locally-running copy of ‘Mascot’ (Matrix Science Ltd., 

version 2.1).  Batch-acquired MS and MS/MS spectral data were submitted to a combined 

peptide mass fingerprint and MS/MS ion search through the Applied Biosystems GPS Explorer 

software interface (version 3.6) to Mascot.  Search criteria included: Maximum missed cleavages, 

1; Variable modifications, Oxidation (M), Carbamidomethyl; Peptide tolerance, 100 ppm; 

MS/MS tolerance, 0.1 Da.  The most recent version of rice CDS protein database was used. 

Nano-LC-ESI-MS/MS data analysis: Peptide MS and MS/MS data for database searching were 

submitted to Mascot (v2.2, Matrix Science). Query data were generated from IDA files using 
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either Mascot script (v1.6b21) or Mascot Daemon (v2.2) using the same database, modifications 

and tolerances as described above. 

Phosphoproteomic sample preparation: Membrane preparations were washed sequentially 

with 100 mM Na2CO3 and then 50 mM triethylammonium bicarbonate (TEAB). 400-700 µg 

membrane protein suspended in 50m TEAB at 2-3 mg/ml were digested over night at 37°C with 

sequencing grade trypsin (Promega) at a trypsin:protein ratio of 1:50. Digests were acidified with 

formic acid (2% final concentration), any precipitate removed by centrifugation (5 min at 

20,000g), and the peptide supernatant lyophilised. For cation exchange chromatography, the 

peptides were redissolved in 0.5 ml 2.5% formic acid/ 30% acetonitrile and loaded onto a pre-

equilibrated 30 mg/ 1 cm
3
 Oasis MCX column. After washing with the same solution, peptides 

were step-eluted in twelve 0.7 ml fractions with 5-300 mM ammonium formate/formic acid (ph 

2.7) in 30% acetonitrile. Eluates were vacuum-concentrated to remove acetonitrile and then 

freeze-dried. For IMAC, the fractions were redissolved in 300 µl 250 mM acetic acid/30% 

acetonitrile and incubated with 30 µl PhosSelect resin (Sigma). Phosphopeptides were eluted 

with 400 mM aqueous ammonia/30% AN, concentrated and acidified with 1% FA before mass 

spectrometric analysis. 

Phosphoproteomic mass spectrometry and analysis: LC-MS/MS data were acquired using a 

NanoAcquity LC (Waters, Manchester, UK) coupled to a 4000 Q-TRAP (Applied Biosystems, 

Farmingham, USA).  For each, 5 µL of sample was concentrated/desalted on a pre-column (20 

mm x 180 µm i.d, Waters). Peptides were then separated using a gradient from 99% A (0.1% 

formic acid in water) and 1% B (0.1% formic acid in acetonitrile) to 30% B, in 40 min at 600 nL 

min
-1

, using a 100 mm x 100 µm i.d. 1.7 µM BEH C18, analytical column (Waters). The mass 

spectrometer was configured to acquire enhanced resolution and product ion scans for peptides 

with ion counts greater than 250000 cps, with a precursor ion selection window of m/z 400-1600.  

Tandem mass spectra were acquired from m/z 140-1400, upon the two most intense peaks, which 

after 2 occurrences were excluded for 12 s.   

Raw data were submitted to a database search (TIGR rice genome release 5.0 January 2007) with 

Mascot version 2.1. The following settings were used: tryptic cleavage allowing max. 1 missed 

cleavage; Met oxidation and Ser/Thr phosphorylation as variable modifications; peptide tolerance 

+/- 1.2 Da, MS/MS tolerance +/- 0.6 Da; peptide charge 2
+
 and 3

+
; monoisotopic; instrument ESI 

Quad-TOF. With these settings, peptide scores above 41 were significant (p<0.05) by Mascot 
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criteria. However, peptides with lower scores (>=20) are reported if all of the following criteria 

were met: (1) most of the major peaks represent b or y ions, the precursor ion, or neutral loss of 

phosphoric acid or water from these ions; (2) a stretch of at least three sequential b or y ions 

matching the sequence is observed and (3) prominent ions are in agreement with well-known 

sequence specific fragmentation, e.g. N-terminal of Pro and typically Gly or C-terminal of Asp. 

Some peptides with scores above 41 that did not meet these requirements were also discarded. 

Where phosphorylation sites were ambiguous, i.e. there were more Ser/Thr residues than 

phosphate residues were present and the difference of the peptide scores for the isomers was less 

than 10, manual verification was carried out. Only if the expected fragment ions diagnostic for 

one isoform matched major ions substantially better than those of the other isoform was the 

former listed as a phosphorylation site “defined with high confidence”. Apart from the s/n ratio of 

potentially matched ions we also considered the fact that only fragments containing at least one 

unphosphorylated Ser or Thr gave rise to ion pairs spaced 18 Da (e.g. y and y
0
), while a genuine 

b-98 or y-98 ion never has a larger “twin peak” unless another unphosphorylated residue is 

present. Mascot results were processed with the Scaffold software (Scaffold-01_07_00) to obtain 

annotated spectra (see suppl. data). 

 

Acknowledgements: This work was supported by the Biotechnology and Biological Sciences 

Research (grant C510032 to FJMM). We thank L Skiera and L Cheng for technical assistance 

and Dr D Knight and Ms S Warwood (Mass Spectrometry Core Facility, University of 

Manchester) for proteomic services and help with data evaluation. 

 

 

 

 

 

 

 

 

 

 

 14



References (word count 1027) 

Ahn, S.J., Shin, R. and Schachtman, D.P. (2004) Expression of KT/KUP genes in Arabidopsis 

and the role of root hairs in K
+
 uptake. Plant Physiol 134,1135-1145. 

Alexandersson, E., Saalbach, G., Larsson, C. and Kjellbom, K. (2004) Arabidopsis plasma 

membrane proteomics identifies components of transport, signal transduction and membrane 

trafficking. Plant Cell Physiol 45, 1543-1556.  

Armengaud, P., Breitling, R. and Amtmann, A. (2004) The potassium-dependent 

transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. 

Plant Physiol. 136, 2556-2576. 

Banuelos, M.A., Garciadeblas, B., Cubero, B. and Rodriguez-Navarro, A. (2002) Inventory 

and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 130, 

784-795. 

Benschop, J.J., Mohammed, S., O'Flaherty, M., Heck, A.J.R., Slijper, M. and Menke, F. L. 

H. (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. 

Prots. 6, 1198-1214.   

Brugiere, S., Kowalski, S., Ferro, M., Seigneurin-Berny, D., Miras, S., Salvi, D., Ravanel, S., 

d'Herin, P., Garin, J., Bourguignon, J., Joyard, J. and Rolland, N. (2004) The hydrophobic 

proteome of mitochondrial membranes from Arabidopsis cell suspensions. Phytochem 65, 1693-

1707. 

Carter, C., Pan, S., Zouhar, J., Avila, E.L., Girke, T. and Raikhel, N.V. (2004) The 

vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. 

Plant Cell. 16, 3285-3303. 

Chrispeels, M.J., Morillon, R., Maurel, C., Gerbeau, P., Kjellbom, P. and Johansson, I. 

(2001) Aquaporins of plants, Structure, function, regulation, and role in plant water relations. 

Aquaporins. 51, 277-334. 

Ducos, E., Fraysse, A.S. and Boutry, M. (2005) NtPDR3, an iron-deficiency inducible ABC 

transporter in Nicotiana tabacum. FEBS Letters. 579, 6791-6795. 

Endler, A., Meyer, S., Schelbert, S., Schneider, T., Weschke, W., Peters, S.W., Keller, F., 

Baginsky, S., Martinoia, E. and Schmidt, U.G. (2006) Identification of a vacuolar sucrose 

transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant 

Physiol.  41, 196-207. 

 15



Gaxiola, R.A., Palmgren, M.G. and Schumacher, K. (2007) Plant proton pumps. FEBS Letters 

581, 2204-2214. 

Gierth, M., Maser, P. and Schroeder, J.I. (2005) The potassium transporter AtHAK5 functions 

in K
+
 deprivation- induced high-affinity K

+
 uptake and AKT1 K

+
 channel contribution to K

+
 

uptake kinetics in Arabidopsis roots. Plant Physiol. 137, 1105-1114. 

Jacquinod, M., Villiers, F., Kieffer-Jacqinod S., Hugouvieux, V., Bruley, C., Garin, J. and 

Bourguignon, J. (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from 

cell culture. Mol. Cell. Proteomics. 6, 394-412. 

Komatsu, S. and Tanaka N. (2005) Rice proteome analysis: A step toward functional analysis 

of the rice genome. Proteomics 5, 938-949.  

Larsson, C., Widell, S. and Kjellbom, P. (1987) Preparation of high-purity plasma-membranes. 

Meth. Enzymol. 148, 558-568.  

Loque, D., Lalonde, S., Looger, L.L., von Wiren, N. and Frommer, W.B. (2007) A cytosolic 

trans-activating domain essential for ammonium uptake. Nature. 446, 195-198. 

Lüttge, U., Pfeifer, T., Fischer-Schliebs, E. and Ratajczak, R. (200) The role of vacuolar 

malate-transport capacity in Crassulacean Acid Metabolism and nitrate nutrition. Plant Physiol. 

124, 1335-1348. 

Ma, J.F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., 

Murata,Y. and Yano, M. (2006) A silicon transporter in rice. Nature. 440, 688-691. 

Maathuis, F.J.M., Filatov, V., Herzyk, P.,  Krijger, G.C., Axelsen, K.B., Chen, S., Green, 

B.J., Madagan, K.L., Sánchez-Fernández, R., Forde, B.G.,  Palmgren, M.G., Rea, P.A., 

Williams, L.E., Sanders, D. and Amtmann, A. (2003) Transcriptome analysis of root 

transporters reveals participation of multiple gene families in response to cation stress. Plant J. 

35, 675-692. 

Maathuis, F.J.M. and Amtmann, A. (2005) Transcriptional profiling of membrane transporters. 

In: Plant Nutritional Genomics, (Broadley, M.R. and White, P.J. eds), Blackwell, pp. 170-200. 

Marmagne, A., Rouet, M.A., Ferro, M., Rolland, N., Alcon, C., Joyard, J., Garin, J., 

Barbier-Brygoo, H. and Ephritikhine, G. (2004) Identification of new intrinsic proteins in 

Arabidopsis plasma membrane proteome. Mol. Cell. Proteomics. 3, 675-691. 

 16



Niittyla, T., Fuglsang, A.T., Palmgren, M.G., Frommer, W.B. and Schulze, W.X. (2007) 

Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of 

Arabidopsis. Mol. Cell. Proteomics. 6, 1711-1726. 

Nühse, T.S., Stensballe, A., Jensen, O.N. and Peck, S.C. (2003) Large-scale analysis of in vivo 

phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass 

spectrometry. Mol. Cel. Proteomics. 2, 1234-43. 

Nühse, T.S., Stensballe, A., Jensen, O.N. and Peck, S.C. (2004) Phosphoproteomics of the 

Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell. 16, 2394-

405. 

Paszkowski, U., Kroken, S., Roux, C. and Briggs, S.P. (2002) Rice phosphate transporters 

include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal 

symbiosis. Proc Natl Acad Sci USA. 99, 13324-13329. 

Peltier, J., Ytterberg, A.J., Sun, Q. and van Wijk, K.J. (2004) New functions of the thylakoid 

membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile 

fractionation strategy. J. Biol. Chem. 279, 49367-49383. 

Pighin, J.A., Zheng, H., Balakshin, L.J., Goodman, I.P., Western, T.L., Jetter, R., Kunst, L. 

and Samuels, A.L. (2004) Plant Cuticular Lipid Export Requires an ABC Transporter. Science. 

306, 702 – 704. 

Rentsch, D., Laloi, M., Rouhara, I., Schmelzer, E., Delrot, S. and Frommer, W.B. 

(1995) NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett. 21, 

264-268. 

Sancenon,V., Puig, S., Mira, H., Thiele, D.J. and Penarrubia, L. (2003) Identification of a 

copper transporter family in Arabidopsis thaliana. Plant Mol. Biol. 51, 577-587. 

Tanaka, N., Fujita, M., Handa, H., Murayama, S., Uemura, M., Kawamura, Y., Mitsu, T., 

Mikami, S., Tozawa, M., Yoshinaga, T. and Komatsu, S. (2004) Proteomics of the rice cell, 

systematic identification of the protein populations in subcellular compartments. Mol. Gen. 

Genomics. 271, 566-576.  

Tornroth-Horsefield, S., Hedfalk, K., Karlsson, M., Johanson, U., Wang, Y., Tajkhorshid, 

E., Horsefield, R., Nyblom, M., Backmark, A., Kjellbom, P. and Neutze, R. (2007) 

Aquaporin gating. J. Biomol. Struct. Dynam. 24, 719-721. 

 17



Toyofuku, K., Kasahara, M. and Yamaguchi, J. (2000) Characterization and expression of 

monosaccharide transporters (OsMSTs) in rice. Plant Cell Physiol. 41, 940-947. 

Vitart, V., Baxter, I., Doerner, P., and Harper, J.F. (2001) Evidence for a role in growth and 

salt resistance of a plasma membrane H -ATPase in the root endodermis
+

. Plant J. 27, 191-201. 

Whiteman, S., Serazetdinova, L., Jones, A.M.E., Sanders, D., Rathjen, J., Peck, S.C. and 

Maathuis, F.J.M. (2008) Identification of novel proteins and phosphorylation sites in the 

vacuolar membrane of Arabidopsis thaliana. Proteomics In press. 

Wintz, H., Fox ,F., Wu, Y., Feng, V., Chen, W., Chang, H., Zhu, T. and Vulpe, C. (2003) 

Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters 

involved in metal homeostasis. J. Biol. Chem. 278, 47644-47653. 

Wu, Z.Y., Liang, F., Hong, B.M., Young, J.C., Sussman, M.R., Harper, J.F. and Sze, H. 

(2002) An endoplasmic reticulum-bound Ca2
+
/Mn2

+
 pump, ECA1, supports plant growth and 

confers tolerance to Mn2
+
 stress.  Plant Physiol. 130, 128-137.     

Yazaki, K. (2006) ABC transporters involved in the transport of plant secondary metabolites. 

FEBS Letters, 580, 1183-1191. 

 

 

 

Suppl. material: The supplementary file contains data summarising all proteins and all 

membrane proteins detected in the four respective membrane fractions. It also contains data on all 

identified  phosphopeptides. 
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Table 1: Membrane transport proteins and phosphopeptides detected in rice membrane fractions 

enriched in root plasma membrane (PM), root tonoplast (TO), shoot PM and shoot TO. The third 

column denotes the number of transmembrane domains (TMDs) according to TMHMM 

predictions (http://www.cbs.dtu.dk/services/TMHMM/. Columns four to seven show the total 

number of peptides identified for each protein in each membrane fraction. Empty space signifies 

no peptide was identified. Columns eight and nine denote the identified phosphosites. Underlined 

characters indicate defined phosphorylation sites with high confidence (bold) or an alternative 

phosphorylation site where the exact position is uncertain (non-bold). Superscripts 
1
, 

2 
,
3
 or 

4
 

denote identification of phosphopeptides in orthologous Arabidopsis thaliana proteins described 

in Nühse et al., 2004, Niittyla et al., 2007, Whiteman et al., 2008 or Benschop et al., 2007. 

  

 

 

 

  

 

 



Gene code Root PM, annotation TMD 

 

RO 
PM 

RO 

TO 

 

SH 

PM 

 

SH 

TO 

 

peptide 1 

 

peptide 2 

 Os09g16330  

        

   

ABC-transporter, PDR5-like 7 4 

Os08g03350 Amino-acid transporter HT1 10 8 5

Os04g430701,2,3,4 Ammonium-transporter AMT1;1 11 6 4 ISAEDETSGMDL[pT]R

 

  

       

       

        

        

   

Os02g40730 Ammonium-transporter AMT1;2

 

11 8 

Os02g44630 aquaporin PIP1;1 6 6 7

Os04g47220 aquaporin PIP1;2 4 11 11 8

Os02g57720 aquaporin PIP1;3 6 6 

Os07g266901 aquaporin PIP2;1 6 17 15 11 GKDEVME[pS]GGAAGEFAAK

 

  

       

       

        

       

     

   

Os02g41860 aquaporin PIP2;2 6 14 17

 

4

Os04g44060 aquaporin PIP2;3 6 14 

Os04g16450 aquaporin PIP2;6 6 3 4 36 12

Os03g483104 ATPase, plasma-membrane type, AHA1 8 8 

Os07g093404 ATPase, plasma-membrane type, AHA2 8 10 11

Os12g441501 ATPase, plasma-membrane type, AHA3 6 14 19 13 [pT]LHGLQPPDAK

 

  

    

   

Os05g25550 ATPase, plasma-membrane type, AHA4 8 2 

Os02g55400 ATPase, plasma-membrane type, AHA6 8 11 QMEAVEEGR[pS]PASAK

 

  

    

   

       

      

      

       

     

       

        

        

    

        

     

        

        

        

Os04g56160 ATPase, plasma-membrane type, AHA7 9 33 37

 

53

 

26

 Os03g08560 ATPase, plasma-membrane type, AHA9 

 

7 6 

Os03g01700 Citrate transporter 9 3 

Os04g329201 Potassium-transporter, HAK1 12 5 

Os02g51110 Silicon influx-transporter OsNIP2.1 

  

6 6 3

Os05g39540 Zinc-transporter OsZIP2 8 3 

Gene code Root TO, annotation TMD 

RO

PM 
RO 
TO 

SH 

PM 

 

SH 

TO 

 

peptide 1 

 

 

Os04g52900 ABC-transporter, MRP1

  

14 31 8

Os08g30740 ABC-transporter, 12 9 

Os12g42850 Amino-acid permease 10 8 

Os02g40710 Ammonium-transporter 9 7 

Os04g430701,2,3,4 Ammonium-transporter, AMT1;1 11 6 4 

Os02g51110 Silicon-influx-transporter OsNIP2.1

 

6 5 EG(SS)QKLSSFK

 Os04g47220 aquaporin, PIP1;2 6 11 11 8

Os04g16450 aquaporin PIP2;6 6 3 4 36 12

Os03g05290 aquaporin, TIP1;1 6 8 4 7

Os02g44080 aquaporin, TIP2;1 6 11 
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Os06g22960        

    

   

    

        

   

aquaporin, TIP2;2 6 18 4 10

Os04g56160 ATPase, plasma-membrane type, AHA7 9 33 37 53

 

26

Os06g45120 ATPase, vacuolar,  subunit A 0  19 29

Os04g51270 ATPase, vacuolar,  subunit G 0  5 

Os10g10500 V-ATPase glycoprotein subunit 6 54 

Os03g01700 Citrate-transporter, silicon efflux, OsSli2 9  6 ELGGGAEL[pS]VDGK

 

  

      

         

    

       

    

        

       

       

    

   

Os09g26900 COPT5 2 2 

Os01g56420 Ctr-copper-transporter family 2 24 

Os10g42900 Nitrate transporter, low affinity  

  

10  6 

Os03g51050 Peptide-transporter 10 9 

Os01g65100 Peptide-transporter POT/PTR family 11  8 

Os02g51110 Silicon-influx-transporter OsNIP2.1 6 6 3 EG(SS)QKLSSFK

 Os01g11420 Sodium/calcium-exchanger protein

  

11 4 2

Os10g39440 Sugar-transporter 10 13 6

Os10g42960 Urea active-transport protein  15  9 

Os02g09150 V-type H+-translocating pyrophosphatase 14  43 16 I[pS]TDASIK

 

  

    

    

         

       

   

       

      

 

Os02g55890 V-type H+-translocating pyrophosphatase 14  106 11

Gene code Shoot PM, annotation TMD 

RO

PM 

RO 

TO 

SH 

PM 

SH 

TO 

 

peptide 1 

 

peptide 2 

 Os04g52900 ABC-transporter, MRP1 14 31 8 

Os01g42380 ABC-transporter, PDR5-like 12 6 (SS)REEDDEEALR

 Os08g03350 Amino-acid transporter HT1 10 8 5 

Os09g19730 Anion channel, V dependent 

 

11   3 

Os02g44630 aquaporin PIP1;1 6 6 7 

Os04g47220 aquaporin PIP1;2 4 11 11 8 

Os07g266901 aquaporin PIP2.1 6 17  15 11 ALGSFR[pS]NA

 

  

  

 

Os02g418601,2 aquaporin PIP2.2 8 14  17 4

Os04g164502,3 aquaporin PIP2.6 6 3  36 12 ALG[pS]FRSNPSN 

ALG[pS]FRSNP[pS]

N 

Os09g36930       

       

        

   

   

 

aquaporin PIP2.7 6 4  ALSSFR(ST)SVTA

 Os03g05290 aquaporin, TIP1;1 6 8 4 7

Os06g22960 aquaporin TIP2.2 6 11 4 10

Os03g17310 ATPase, calcium-translocating P-type ECA1 7   4 

Os04g51610 ATPase, calcium-translocating P-type ACA11 10   4 

Os02g08010 ATPase, calcium-translocating P-type ACA9 6   3 PVGVQAPEA[pS]PGR

 

  

  Os07g093404 ATPase, plasma-membrane-type, AHA2 6 10  11 
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 22

Os12g441501 ATPase, plasma-membrane-type, AHA3 10 14  19 13 [pT]LHGLQPPDAK GHVE[pS]VVK 

 Os04g56160 ATPase, plasma-membrane-type, AHA7 

  

8 33 37 53 26

 

 

      

    

    

   

       

      

       

   

        

 

Os03g48180 Nitrate-transporter 9 10 

Os03g05620 Phosphate:H+ symporter, PT1 12   4 

Os10g30790 Phosphate:H+ symporter, PT8 12   3 

Os01g04950 Peptide-transporter POT/PTR family 

 

10   6 

Os07g01560 Sugar-transporter, MST3

  

12 4 

Os07g39350 Sugar-transporter 10 5 LFGD(TA)AA(S)E(S)DEPAKEK

 

 

Os10g39440 Sugar-transporter 10 13 6 

Os03g11900 Sugar-transporter, similar to hexose transporter 12   4 

Gene code Shoot TO, annotation TMD 

 

RO

PM 

RO 

TO 

SH 

PM 
SH 
TO peptide 1 peptide 2 

Os02g01100 Amino-acid permease 9 4 (SS)QYLLPSR K(SS)QYLLPSR

Os08g37600 Anion-transporter  8       3     

Os07g266901 Aquaporin PIP2.1 6 17  15 11 ALGSFR[pS]NA  

  Os02g418602 aquaporin PIP2.2 6 14  17 4 

Os04g164502,3 aquaporin PIP2.6 6 3  36 12 ALG[pS]FRSNPSN 

ALG[pS]FRSNP[pS]
N 

Os03g05290       

       

aquaporin, TIP1;1 6 8 4 7  

Os06g22960 aquaporin, TIP2;2 6 11 4 10 

Os12g441501 ATPase, plasma membrane-type, AHA3 6 14  19 13 GHVE[pS]VVK  

Os04g56160 ATPase, plasma membrane-type, AHA7 9 33 37 53 26 GHVE[pS]VVK  

  

  

  

Os02g55400 ATPase, plasma membrane-type, AHA8 8    8 

Os06g45120 ATPase, vacuolar,  subunit A 0  19  29 

Os04g55040 ATPase, vacuolar,  subunit D 0    5 

Os02g351903 Chloride-channel protein CLC-c  11    6 NG[pS]SSGALLR SG[pS]AGEPLLR 

Os12g33080 2-oxoglutarate/malate translocator precursor 13       6     

Os01g013601 Peptide-transporter PTR2 12    3 G[pS]PMGSAELAR  

      Os01g11414 Sodium/calcium exchanger protein 11 4 2 SVPTSGAY[pS]NK  

Os11g427903 Sodium/hydrogen exchanger OsNHX3 11    3 ESSALSDPP[pS]PK

 

  

      

       

        

        

   

E(SS)ALSDPPSPK

 Os01g23580 V-type H+-translocating-pyrophosphatase 14 12 

Os02g09150 V-type H+-translocating-pyrophosphatase 14 43 16 

Os02g55890 V-type H+-translocating-pyrophosphatase 14 106 11 

Os05g06480 V-type H+-translocating-pyrophosphatase 14 11 

Os06g43660 V-type H+-translocating- pyrophosphatase 14    7 

 



 

 

 

 

 

 

 

 

 

other (23)
protein kinase (7)
receptor like kinase (2)
ABC transport (5)
primary pump (13)
sugar transport (4)
aquaporins (13)
nitrogen transport (4)
divalent cation transport (6)
anion transport (9)
peptide transport (4)
monovalent cation transport (4)

 

Figure 1: Functional classification of membrane proteins (any protein with 1 or more 

transmembrane domain) detected in rice membrane fractions enriched in root plasma membrane, 

root tonoplast, shoot plasma membrane and shoot tonoplast. The total number of unique 

membrane proteins detected in the combined samples was 94. 
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OsAHA7  AEIARLRELH TLKGHVE  S   VV KLKGLDIDTI     Q-NHYTV
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Figure 2: Phosphorylation sites in the plasma membrane AHA H
+
-ATPases. Two overlapping 

phosphosites were found in AHA3 and in AHA7 that include a well conserved serine at position 

970 in the C-terminus of the proteins. Both AHA3 and AHA7 were observed as a 

phopsphoprotein in shoot tissue and as non-phosphorylated proteins in root tissue. 

 

 

 

 

 

 23



OsPIP2;1  AWHNHWIFWV GPFVGAAIAA FYHQYILRAG AIKALG    S FRS   NA - - - - -

OsPIP2;3  AWHDHWIFWV GPLIGAAIAA AYHQYVLRAS AAKLGS   S SSF   RG - - - - -

AtPIP2;6  AWDDQWIFWV GPFVGAAIAA FYHQFVLRAG AMKAYG S VRS  QLHELHA

OsPIP2;6  AWDDHWIFWA GPFIGALAAA AYHQYILRAA AIKALG    S FRS   NPSN- - -

OsPIP2;7  AWKDHWIFWV GPVIGAFLAA AYHKLVLRGE AAKALS  S FRS   TSVTA- -

251                            260                         270  280                               290
 

 

 

 

Figure 3: Phosphorylation sites in PIP aquaporins. Four overlapping C-terminal phosphopeptides 

were found in PIP2;1, PIP2;3, PIP2;6 and PIP2;7 that cover a highly conserved serine at position 

286. Arabidopsis PIP2;6 and other isoforms show a phosphosite in the same position. 

 

 
FSTMVFGMMT KPLIRLLLPA   S - - - - GHPVT   SE - - - - - - PS S PK SLHSPL

FSTMVFGF F  T  KPLLNLLIPP   R - - - - - - P - - - - - - DIAADL S SQ S I IDPL

FSTMVFGL L T KPLIRLLI PA   RHLNRESSAL    SD - - - - - -PP S PKS FLDPL

FTTLV FGF L T RPLISAIL PH   QHRQSTTPGT   GGGGRSTGSN S PKDDFIMPF

FSTMVFGML T KPLI S YLLPH QNAT--TSML     - - - - - - S DDN T PK S I HIPL

OsNHX1

OsNHX2

OsNHX3

OsNHX4

AtNHX1

431                             441                         451 461                            471

FSTMVFGMMT KPLIRLLLPA   S - - - - GHPVT   SE - - - - - - PS S PK SLHSPL

FSTMVFGF F  T  KPLLNLLIPP   R - - - - - - P - - - - - - DIAADL S SQ S I IDPL

FSTMVFGL L T KPLIRLLI PA   RHLNRESSAL    SD - - - - - -PP S PKS FLDPL

FTTLV FGF L T RPLISAIL PH   QHRQSTTPGT   GGGGRSTGSN S PKDDFIMPF

FSTMVFGML T KPLI S YLLPH QNAT--TSML     - - - - - - S DDN T PK S I HIPL

OsNHX1

OsNHX2

OsNHX3

OsNHX4

AtNHX1

431                             441                         451 461                            471

 

 

 

 

Figure 4: Phosphorylation sites in vacuolar NHX cation exchangers. A C-terminal motif was 

identified in NHX3 which includes a serine residue at position 490 that is conserved across two 

further rice NHX isoforms. Arabidopsis homologs such as AtNHX1 carry a threonine residue at 

the same position. 
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