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Visual Memory Schemas for Localised Image

Memorability Prediction
Cameron Kyle-Davidson, Adrian G. Bors, Karla K. Evans

Abstract—Visual memory schemas (VMS) capture the regions
of scene images that cause that scene to be remembered,
providing a two-dimensional memorability map which indicates
the parts of a given scene that match to mental schemas held in
the mind. Despite the advantage of determining which parts of
an image lead to remembering said image, VMS prediction capa-
bilities lag behind those of single-score memorability. Compared
to predicting single-score ratings for the likelihood of a person
remembering an image, VMS prediction is a significantly harder
task, due to increased computational complexity, minimal model
development compared to single score, and lack of relevant data.
In this work, we aim to improve methods for two-dimensional
memorability prediction. We first significantly increase the size
of a database containing VMS maps obtained from participants
in a scene memorisation experiment, and then we develop an
architecture which leverages existing single-score image memo-
rability datasets to predict VMS maps. Our final model, ‘DF-
VMS’ significantly outperforms existing VMS prediction models,
with a performance increase of 11.8%. Additionally, we explore
the semantic structures which are actually captured by visual
memory schemas, determining the combination of scene elements
which lead to remembering that scene.

Index Terms—Image memorability prediction, Visual Memory
Schemas, deep learning, visual memory, cognitive psychology

I. INTRODUCTION

Images vary across a wide spectrum of memorability; some

images stick in the mind and can be recalled easily at a later

time, whereas others fade rapidly from memory. Identifying

which visual features support or hinder the memorability of

a given scene has been a recent focus of the computer vision

community, over a wide variety of images, from faces to

scenes [1]. By building on foundational work from decades

of cognitive psychology research, large-scale computational

approaches have been deployed to both understand, and

predict, scene memory [2]–[4]. Improved understanding of

what is memorable has the potential to lead to both better

understanding of the operation of the visual memory circuitry

of the brain, as well as several practical applications: improved

advertising, creating better educational aids, even tracking

cognitive decline through comparison of a patients memory

performance against a standardised baseline. Recent research

has lead to the development of image memorability datasets

of thousands of images, each paired with a ground-truth

memorability score gathered via repeat-recognition memory

experiments over hundreds of observers [5].

Manuscript created May, 2024; Cameron Kyle-Davidson and Karla K.
Evans are with the Department of Psychology. Adrian G. Bors is with the
Department of Computer Science. All authors are with the University of York,
Yorkshire, England

Computational analysis on these datasets has made progress

in determining which image features lead to an image being

remembered by a human. Generally, there is a high degree

of consistency (ρ = 0.75) [2] between participants memory

for images; that is, in general, people will remember the same

memorable image, and forget the same non-memorable image.

Low-level image features, such as colour, intensity, or object

counts do not correlate strongly with image memorability.

Instead, high level semantic attributes such as image category,

the contents of the image (i.e, the objects present), and scene

dynamics (what is actually occurring in the image) appear

to better correlate with image memorability [3]. Predictive

models have now been developed that, given a scene image,

can indicate how likely the average human observer will be

to actually remember that scene.

Most image memorability models only produce a singular

‘score’ indicative of that image’s memorability. This does not

reveal which elements in the scene are actually driving that

memorability. More recent research introduces the concept of a

”Visual Memory Schema” (VMS) [6], which capture the scene

regions that are responsible for a human observer’s ability

to recall having seen that particular scene. Generally, it is

not the individual pixel intensities that lead to a scene being

remembered - it is instead the collective semantic content

present in the scene, and the relations between that semantic

content [7]. For example, a beach scene is remembered due

to the presence of sand, ocean, parasols and beach balls in

various arrangements; all of which match a prototypical mental

schema of what a beach is. Practically, VMS-based predictive

models can produce more than just a single score representing

the memorability of a given image; they can highlight the

areas of the image which correspond to semantically relevant

regions that are likely to cause a human to remember that

scene. This effectively creates a two-dimensional per-pixel

image memorability map for a given scene image. This allows

for an improved understanding of why a certain scene was

remembered, and another forgotten; refining the concept of

image memorability from an abstract score into concrete

image-space details.

Currently, the development of visual memory schema pre-

diction techniques lags behind single-score methods due to in-

creased technical difficulty (predicting 2D memorability maps

is significantly harder than prior one-dimensional approaches),

a current lack of knowledge of which potential computational

techniques may lead to improved predictive performance, and

a lack of available data. Current single-score memorability

datasets have samples in the tens of thousands; for two-

dimensional memorability, there are only eight hundred images
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obtained from image memorisation experiments. This is due

to the increased experimental complexity of gathering two-

dimensional data. In this work we tackle these problems, and

propose a new model for visual memory schema prediction

which leverages existing single-score datasets for improved

predictive performance. The main contributions of this paper

are:

• An expanded visual memory schema memorability

dataset that consists of 3,461 new image/memorability

map pairs, based upon the Visual Memory Schema

paradigm, and extracted via human observer experiments.

This dataset (which we call ‘VMS4k’) can be seamlessly

combined with the existing VMS dataset, resulting in

4,261 image/VMS pairs, an improvement in data avail-

ability of over 400%.

• A comprehensive investigation into which computa-

tional techniques offer the best performance for two-

dimensional memorability prediction with a theoretical

grounding in cognitive psychology.

• The development of a two-dimensional memorability

prediction technique that takes advantage of both the new

two-dimensional memorability map dataset, and leverages

existing single-score datasets to improve 2D memorabil-

ity map prediction.

• A quantification of visual memory schema characteristics,

including an object-based analysis of the semantic struc-

tures contained by memorable scene regions, and which

match mental schemas held in the human mind.

We first gather extensive visual memory schema data. Using

this new dataset, we provide a set of comprehensive baselines

for a variety of VMS map prediction methods, and finally

design a new architecture which can take advantage of pre-

existing single-score memorability data to boost predictive per-

formance for Visual Memory Schemas. The rest of the paper is

organised as follows: In Section II we provide an overview of

the existing research studies into Visual Memory Schemas. In

Section III we provide the proposed methodology. In Section

IV we detail the experimental setup for collecting the dataset

used in the experiments in this paper. The experimental results

are provided in Section V, while the conclusions of this study

are drawn in Section VI.

II. RELATED WORK

A. Image Memorability Prediction

The field of memorability prediction burgeoned in the early

2010s, with the work of Isola et al. [2]. Isola gathered

memorability data on over two thousand images. Each image

was scored by 78 different participants in total. The mean

memorability score (defined as the percentage of correct

recognitions) is around 67.5%. The Spearmans rank coefficient

for 25 random splits of the gathered data is 0.75, indicative

of strong agreement between participants; generally, humans

remember and forget the same images. Interestingly, human

judgements on whether an image is likely to be memorable

or not were negatively correlated with the images actual

memorability data [8]. Humans are hence poor judges of

whether they are likely to remember or forget an image. That

is, prior to undertaking a visual memorability experiment, a

person cannot accurately predict which of the images they

are going to see, are going to be the most memorable. This

does not mean that they cannot trust their own judgement

upon recollection. Isola proposed a support vector regression

approach based upon computed image features capable of

predicting ground-truth memorability scores (rank correlation,

r = 0.489), with image category being the strongest predictor

of all considered.

Later, Khosla et al. [9] developed a probabilistic model to

simulate a ‘noisy memory process’ , with similar performance

to the above, hypothesising the likelihood of remembering an

image is related to the distance between the actual perceived

image and the noisy internal representation. Shortly after,

Khosla et al. [5] introduced LaMem, a dataset of 60000

images and memorability scores derived from human observer

experiments. A convolutional neural network (CNN) trained

on these can reach a rank correlation with human data of

0.64. This signified the beginning of the now universal deep

neural network approach to image memorability modelling.

Following the approach from [5], Lukavsky et al. [10] devel-

oped a context-dependent method based upon late-stage CNN

features, while Yoon et al. [11] proposed a segmentation based

approach, and Squalli-Houssaini et al. [12] a Long Short-

term Memory (LSTM)-based captioning approach. Recently,

neural networks have become capable of predicting image

single-score memorability to a degree that matches human-

level memory performance [13], [14]. It is tempting, given

the success of these predictive approaches, to believe that these

methods approach some ground-truth ‘objective’ memorability

value held within the image. However, an image cannot have

a memorability value in a vacuum - a human being is required

to be present in order to remember that image. Instead, these

prior studies, and the study presented in this work, work under

the hypothesis that human memorability, while subjective, is

consistent enough across humans to allow for prediction.

B. Image Memorability Analysis

Computational analysis has enabled large-scale investigation

into which image elements lead to a correspondingly greater

or lower memorability score. Mancas et al. [15] finds that

eye-fixation duration increases with greater memorability, and

models including attention-based metrics enable reduced fea-

ture dimensionality. Both studies by Celikkale et al. [16] and

Isola et al. [3] find that saliency and semantic features (scene

category label) can capture scene memorability. Analyses on

large scale memorability datasets have revealed both the im-

pact of context, with contextually distinct images proving more

memorable [17], as well as the contribution of perceived depth

and motion [18]. Other research studies [19], [20] have found

that individual objects within an image have their own de-

grees of memorability, which can be primarily explained with

semantic features. Dubey et al. [19] finds that a CNN achieves

reasonable predictive performance when shown segmented

object images. The object with the greatest memorability is

loosely predictive of the overall image memorability. However,

none of these techniques so far capture the overall image

region that is driving the memorability of the image.
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C. Visual Memory Schemas

In cognitive science, a schema is a mental construct that

facilitates the encoding of a scene [7], [21]. For example,

the average person may maintain a ‘kitchen’ schema that

consists of arrangements of common elements typically found

in a kitchen. Viewed scenes that better match this schema

are therefore better encoded and retrieved. Visual Memory

Schemas represent a way of operationalising this idea of a

‘schema’ and extracting which scene elements directly corre-

spond to the mental structures that enable remembering of the

scene. Introduced by Akagunduz et al. [6] the VISCHEMA

dataset consists of 800 high-resolution scene images paired

with 800 memorability maps (‘VMS Maps’) that capture

the regions of scene images that lead to an image being

either remembered (a ‘true schema’), or falsely remembered (a

‘false schema’). False schemas lead a person to believe they

have seen a scene, when in fact they have not. This VMS

memorability data was gathered from 90 participants during

a repeat-recognition memory experiment, for eight different

real-world scene categories, with one hundred images per

category. These categories range from indoor scenes such as

living rooms, kitchens, and conference centres, to outdoor

environments such as deserts, mountains, and golf courses.

Images displaying features considered classically memorable

are specifically excluded from the corpus of scene images

used in the experiment; this includes recognisable landmarks,

attention-drawing text, and people looking directly at the

camera. This results in a more stable dataset overall, as the

memorability of the scene is more likely to be affected by

semantic scene content. VMS Maps are highly consistent:

with a split-half reliability of 0.7, participants agree on scene

regions that cause the scene to be remembered. They have

only a weak correlation with eye fixations and computational

saliency, and are a robust enough measure to be used to

influence the overall memorability of generated scene images

[22]. Predicting these maps is a significant challenge given

the low data amounts and increased computational complexity

compared to single-score prediction. While these maps (and

captured memorable regions) are known to relate to cognitive

schemas, exactly how the image contents of each region drives

memorability is still an active area of research. Generally, the

scene contents, arrangement, and detail present in that region

is likely to have an effect [6], [23], [24]. In Akagunduz et

al. [6], MemNet, and four VGG [25] architectures underwent

transfer learning for VMS prediction. Each network could

produce a 20 × 20 pixel VMS map that combined both

true and false schemas into a singular grayscale probability

map. Later work [26] employed a variational approach [27]

to predict both true and false schemas separately, with an

output resolution of 224 × 224 pixels. Despite this initial

success, techniques for VMS map prediction are still relatively

unexplored compared to single-score memorability prediction,

due to the lack of available data and limited investigation into

applicable computational tools.

III. METHODS

In this section we will detail the various architectural

components and designs which we test for memory map

prediction. Our approach for each component is psycholog-

ically motivated, aiming to take advantage of pre-existing

knowledge of how memory is processed in the brain, and

our designs data-motivated; aiming to take advantage of pre-

existing datasets in addition to our own. We aim to explore

multi-scale information, the contribution of depth information,

self-attention (to capture relational dependencies) and finally,

dual memorability feedback. Our goal is to integrate the best

performing components into a final end-to-end Visual Memory

Schema prediction architecture.

A. Improving VMS Prediction

Prior work has shown the validity of a Variational Autoen-

coder (VAE) approach to VMS map prediction [26]. However,

the family of models capable of specifically identifying the

regions of images which are responsible for their memo-

risation has not been studied in depth compared to their

single-score counterparts. Hence, we assess multiple different

approaches to memorability map prediction, examining the

effects of multi-scale information, non-local self-attention, the

inclusion of depth information, and various combinations of

these factors. Our goal is to discover both which techniques

are applicable to VMS prediction, and to set a variety of

comprehensive baselines for future work.

Fig. 1. End-to-end deconvolutional network showing single and dual headed
outputs. The height and width of the convolution filters is given above, while
the channels are given below the diagram. The dimensions of the output is
given below each layer.

We choose three architectures as potential baselines against

which to evaluate further developments to our proposed VMS

predictor models: a deconvolutional CNN, the same CNN with

incorporated multi-scale information, and a set of variational

models. Our proposed deconvolutional (CNN-deconv) archi-

tecture is similar to that used in [6]. A pretrained VGG16

network feeds features into five convolutional blocks, with

upscaling at specified intervals, as in the architecture shown

in Figure 1. The output of the network is represented by one

(single-headed) or two (dual-headed) memorability maps. The

former generates a two-channel memorability map, while the

latter generates both memorable and falsely memorable maps

as distinct outputs. All convolutional blocks use a filter size

of 3× 3 aside from the final outputs, which are 1× 1. To this

basic structure we can easily incorporate modular architectural

improvements: self-attention, and depth information.

We include multi-scale information as structures capable of

influencing image memorability are likely to exist at various

scales in the image (for example, a set of dining chairs and

table exists at quite a different scale to the arrangement of

cutlery that may lie on that table). We consider the approach

of [28], enabling a deep learning architecture that can infer
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Fig. 2. Multi-scale VMS predictor with multi-scale blocks (MSB) from [28].

information from multiple scales, allowing us to assess its effi-

cacy for visual memory schema prediction. When considering

a multi-scale architecture, the three initial convolution blocks,

from the architecture in Figure 2, are replaced with two multi-

scale blocks (MSB). The multi-scale blocks are composed of

four different convolutional layers with differing kernel sizes

(1x1, 3x3, 5x5, 7x7) which each capture features present at

different scales. These are then concatenated together into a

singular output and the features passed forward through the

network.

Fig. 3. Multiscale architecture modified to embed depth-map information.

Previous research has indicated that the perceived depth

of the scene influences memorability score prediction perfor-

mance, according to Basavaraju et al., [18]. However, whether

this effect holds for visual memory schemas has not been

explored. Hence we propose generating depth maps for our

dataset using MiDaS [29], a state of the art monocular depth

estimation model. We concatenate features learnt from depth

images with the features from the original image with the

same dimension as shown in Figure 3. An auxiliary input is

added to the model which learns increasingly deep features

from depth maps. These features are then concatenated with

the generative path of the model, which allows it to learn

to generate memorability maps with identically-sized ‘image’

and ‘depth’ features.

Self-Attention: Cognitive structures that lend themselves to

remembering are rarely single objects in an image. Frequently,

memorable regions are scattered throughout an image, or

indicate an arrangement of objects (such as for example

that of a table surrounded by chairs in an indoor scene)

rather than a single object (a glass of water). A structural or

semantic representation of the scene can indicate additional

memory clues [11]. Based on these observations we introduce

a self-attention component to support the detection of these

structures. Non-local blocks [30] are designed to capture long-

range dependencies by allowing the network to determine

which features should be attended to, across the entire input.

In our architectures we integrate the ‘Embedded Gaussian’

variant from [30] in order to determine whether long-range

modelling aids VMS map prediction.

Considering a given input x and its corresponding embed-

ding spaces Wφxxxi, the self-attention output following the study

from [31], is given by:

yyy = λ softmax (xxxTWT
θ Wφxxx)g(xxx) + xxx, (1)

where g(xxx) is a linear function of the input and λ is a learnable

weighting hyperparameter.

We combine the non-local blocks with our memorability

predictors in two ways. Firstly, in multi-scale architectures,

after the multi-scale blocks and prior to the output. Secondly,

in variational architectures, we include the self-attention layer

in the decoder responsible for producing the VMS map.

Loss functions: Current state-of-the-art for VMS prediction

is based upon variational autoencoding (VAE) models. VAEs

consist of two networks: an encoder and a decoder. The

encoder estimates a latent space zzz corresponding to the given

data xxx and the decoder aims to reconstruct the data from the

latent space encoding. As in [26], for our VAE architectures

we maximise the evidence lower bound (ELBO) on the sample

log-likelihood characteristic to the classical VAE [32] :

log p(xxx) ≥Ezzz∼qθ(zzz|xxx)[log pφ(xxx|zzz)]−DKL[qθ(zzz|xxx)||p(zzz)],
(2)

where pφ(xxx|zzz) is calculated by the decoder of parameters φ

and qθ(zzz|xxx) is an inference model implemented by a neural

network of parameters θ, which has Gaussian-specific prior

parameters {µ, σ} for its last layer’s outputs and DKL is the

Kullback-Leibler (KL) divergence, where

DKL[qθ(zzz|xxx)||p(zzz)] =

∫
qθ(zzz|xxx) ln

p(zzz)

qθ(zzz|xxx)
, (3)

VAE models employ the standard variational loss DKL, where

the first term reconstructs the log-likelihood and the latter

implements the Kullback-Leibler divergence between the dis-

tribution qθ(zzz|xxx) and the prior p(zzz).
Overall, in this study we consider three loss functions.

For non-variational models we test binary cross-entropy and

Kullback-Leibler (KL) divergence (shown to be effective for

saliency map prediction [33]), whereas for VAE architectures

we use the standard ELBO loss (Eq. 2). Additionally, we

expand on the work of [26] by varying the size of the

latent space as |z| = {8, 32, 64, 128}, where | · | denotes the

cardinality.

B. Dual-Feedback VMS Prediction

The LaMem dataset [5] contains 60,000 images paired

with single-score memorability data. Although these images

are not scene-focused (and may consist of objects, faces, or

even animals), it may be possible to use this data to support

localised, two-dimensional memorability predictions. To that

end, we propose a new architecture that can be trained both

on visual memory schema and scene data, while also defining
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Fig. 4. Architecture of proposed Visual Memory Schema predictor with Dual Memorability Feedback.

an auxiliary loss that takes advantage of the LaMem dataset,

so that the network can learn additional memorable features.

These features can then be re-used for identifying which re-

gions of a scene cause that scene to be remembered (or falsely

remembered). In this section we describe the architecture and

loss function for a Dual-Feedback VMS Prediction Network

(DF-VMS).

Our proposed architecture for VMS prediction incorporates

the potential improvements discussed above: self-attention,

and multi-scale information. To take advantage of existing

memorability datasets, we additionally employ a dual feedback

mechanism and condition the network to predict both memo-

rability maps and memorability scores for input images. The

architecture for the network is shown in Fig. 4. The network

first extracts features from multiple scales, optionally com-

putes attention maps for these features, and finally combines

these multi-scale attention maps to predict the output map.

In the following we describe how each separate component

integrates with a dual-feedback/auxiliary loss architecture for

memorability prediction. The location of various components

in the architecture is provided in Figure 4.

Multi-scale Feature Extraction We consider two backbone

architectures: VGG16 [25] and RESNET50 [34], and employ

these to extract semantic features from the input images.

We extract the semantic features at three different scales

from the corresponding processing blocks in the backbone

architecture. Given an input image In ∈ R
224×224×3, for

each backbone we extract feature maps at S1 ∈ R
56×56×256,

S2 ∈ R
28×28×512, and S3 ∈ R

14×14×512, where S1, S2, and

S3 we call Scale 1, Scale 2, and Scale 3 respectively. All

scaled images are passed through a 1 × 1 convolution for

dimensionality reduction resulting in S1, S2, S3 ∈ R
C×Hs×Ws

where C is a hyperparameter defining the number of desired

feature maps for each scale, and Hs and Ws define the height

and width of the feature map at that scale.

Self Attention Self-attention maps are generated for each

scale using the non-local block approach [30]. Given the

embedding spaces Wφsssi for the given scaled input sss, and

the learnable weighting hyperparameter λ1, the self-attention

output is given by:

yyy = λ1 softmax (sssTWT
θ Wφsss)g(sss) + sss, (4)

where g(sss) is a linear function of the input.

Each scale’s self-attention embedding space is parame-

terised by a 1 × 1 convolution. If self-attention is disabled,

each block is replaced by a 3×3 convolution with C channels.

Feature Concatenation & Dual Feedback Whether self-

attention is enabled or not, the multiscale feature maps are

combined via channel-wise concatenation, giving a singu-

lar weight matrix representing memorable features at three

scales. With S1, S2, S3 ∈ R
C×56×56, Sm = [S1, S2, S3],

Sm ∈ R
3C×n×n. This is followed by two output heads. The

primary output consists of a 3 × 3 convolution followed by

a 1 × 1 convolution that produces VMS map V for input

image i, Vi ∈ R
n×n×3. The auxiliary head consists of two

stacked 3 × 3 convolution + max pooling blocks, followed

by channel-wise global average pooling [35], and the output

score Li ∈ (0, 1) ⊂ R is given by four stacked fully connected

layers with {F, F
2 ,

F
4 , 1} neurons respectively. We choose F to

be 256 and C to be 16, balanced for available computational

budget, and dataset size.

Loss Function We propose the following loss function for

training our Dual Feedback - Visual Memory Schema (DF -

VMS) architecture:

Loss(V, L) =
1

v

v∑
i=1

(Vi − V̂i)
2 + α

1

k

k∑
i=1

(Li − L̂2
i ). (5)

The first term represents the loss over the samples of ground

truth and predicted memorability maps, with V representing a
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Fig. 5. Examples of images from the VMS4k Dataset. Green areas indicate that region caused the image to be remembered, red areas indicate regions that
caused an image to be falsely remembered; these regions lead to a memory of having seen that scene before, despite said image never being shown to the
participant.

predicted visual memory schema and V̂ representing a ground-

truth map. The second term contains the loss over ground

truth and predicted memorability scores, L and L̂ respectively.

v and k represent sample populations of training data. α is

a weighting hyperparameter that controls the contribution of

memorability score feedback when training to predict visual

memory schemas. This can be set to 0 to disable dual feedback,

and train on visual memory schema data alone.

C. Quantifying Visual Memory Schemas

While visual memory schemas reveal the regions that drive

scene memorability, and hence represent the schema elements

used to recognise that image, it is difficult to go from a VMS

map to a human-understandable description of the schema. A

person can easily determine the objects and arrangement of

elements contained within a memorable region; but to do this

over the dataset developed in this study, VMS4k, would be in-

tractable both time-wise and financially. Instead, we would like

to be able to computationally identify and structure the scene

elements that are contained within memorable regions. This

is a challenging task given that the the ground-truth images

in VMS4k come with no pixel-level labels that reveal which

objects and semantic units (walls, skylines, floors, fields, etc)

are contained in any given image. Extracting which objects and

semantic units have caused an image to be memorable, and

generalising this over our VMS categories would allow us to

extract what is contained within every memorable region in the

dataset; revealing the actual schemas being used to recognize

our scene images. To do this, we use the MaskFormer archi-

tecture [36]. MaskFormer is a semantic segmentation network,

employing a transformer-based decoder for class predictions

[37]. MaskFormer is trained upon the ADE20k-Full dataset,

with 847 classes, and so should be able to detect the majority

of elements present in common scenes. We use MaskFormer to

label all classes present in each of our scene images, over the

entire dataset. This captures both object-level occurrences as

well as the presence of more abstract elements such as ”skies”

and ”walls”. We then calculate the overlap between a given

visual memory schema annotation and the segmented object

classes. This allows us to approximate the mental schema a

given Visual Memory Schema annotation is capturing - and in

turn, the arrangement of objects which contribute to the scene

being remembered.

IV. DATASET

We consider three different datasets. VISCHEMA PLUS is

used for testing the processing model architecture and com-

ponents due to its reduced size. Meanwhile, the significantly

larger VMS4k and LaMem [5] datasets are used together for

developing a dual-feedback prediction model.

A. Experimental Setup

In the following we describe how we gather additional 2D

memorability data in order to extend the initial VISCHEMA

dataset [6] by taking two different approaches. The first

approach is to replicate the original VISCHEMA experiment,

aiming to double the data from [6]. To do this, we select

a set of eight hundred images from the SUN database [38]

matching the VISCHEMA categories. The initial VISCHEMA

dataset [6] was divided into eight categories. Indoor scenes,

both private and public: Kitchens, living room, air terminals,

and conference rooms. Outdoor Scenes: public entertainment

(playgrounds + amusement parks), work/home (skyscrapers

+ houses), populated (golf courses + pastures), and isolated

(badlands and mountains). Together these cover a broad array

of commonly encountered scenes. For creating the dataset,

we follow the same criteria as in [6] by excluding obvious

landmarks, faces looking directly at the camera, and attention-

grabbing text where appropriate. Memorability data is gathered

via a repeat-recognition two phase psychological experiment.

Participants are shown 400 images during a ‘study’ phase. This

is followed by a ‘recognition’ phase, during which 200 repeats,

and 200 foils (images not shown during the study phase) are

shown. Each image is shown for 3 seconds to the participant in

the study. If the participant indicates they have seen an image

before with sufficient confidence, they are tasked to annotate

the regions of the image that they believe caused them to recall

that scene. While this approach allows for sufficient data for

explorative analyses, due to experiment length, category and

data requirements, it is difficult to obtain significant data with

this methodology. We title this 1600-image expanded dataset

‘VISCHEMA PLUS’.

For the second approach, in order to obtain a wider corpus

of 2D memorability data we design a continuous image-

stream, cloud based, crowd-sourced experiment. To provide

sufficient initial data we relax the categories, choosing to retain

only the ‘Indoor’ and ‘Outdoor’ distinction. The indoor cate-

gory consists of 2000 images, mainly extracted from the SUN

kitchen and living room categories, with additional scenes
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Fig. 6. Repeat-recognition experiment structure. Scenes are shown to the participant in a continuous stream. After a certain interval, target scenes will repeat.
If the repeat is detected, the participant is asked them to annotate the regions that lead to them recalling having seen that image.

from the conference room and airport terminal categories.

The outdoor category is more varied, and contains 2000

images extracted from the house, skyscraper, amusement park,

playground, pasture, golf course, mountain, badlands, coast,

and hill SUN categories.

Our dataset was divided into image sequences of 600

images, consisting of 200 targets, 200 fillers (i.e. images that

were not repeated), and 200 repeats of the targets, yielding

20 distinct image sequences, each seen by human observers.

Target repeats were distributed throughout the sequence such

that there was an average of 300 images between the first

showing of a target and its repeat. Each image was shown

to the participant for three seconds. Observers were asked to

indicate whether the image they were seeing was a repeat

of a scene they have seen before in the image stream, or

whether that image was a new, previously unseen image.

Once an image was indicated by the participant to have

been remembered, they were asked to annotate the image

with the region(s) of the image that they believed caused

them to remember that image. This procedure is illustrated

in Fig. 6. In total, 93 participants undertook the experiment.

Participants were paid for their participation and no personally

identifiable information was gathered or stored by the authors.

Participants informed consent was obtained, and they were

free to withdraw from the study at any time. The study was

approved by the ethics board of the University of York, UK.

The experiment was distributed to users via Prolific [39]. We

call this resultant larger-scale dataset ‘VMS4k’.

B. The VMS4k Dataset

Of the 4000 shown images, not every image in the sequence

was either (1) recognised as a repeat or (2) falsely recognised

as a repeat. These images lack annotations, and for the

purposes of this dataset, can be safely ignored. This leaves

3,461 images with corresponding maps indicating the regions

that caused the participants to remember that image. Examples

from both the indoor and outdoor categories with memorability

maps are shown in Fig. 5. The VMS map images consist of

two channels: one containing regions labelled as memorable,

and another containing regions that are ‘falsely memorable’,

i.e, regions that caused the participant to false alarm on the

image. In this work, we focus primarily on memorability, and

concern ourselves with the memorability channel of the visual

memory schemas. However, the dataset does contain false-

memorability information that could be utilised in future work.

We are able to safely combine this dataset with existing VMS

datasets for a total of 4,261 image/VMS pairs. In general,

participants show good memory performance for the images

shown during the image sequences, with the majority of

participants showing a D-prime of over 2.0 (average 2.59 ±
0.063), indicating suitable performance.

V. EXPERIMENTAL RESULTS

In this section we go over the results of the approaches

described in Section III. We start by analysing the performance

of individual components and architectural approaches using

the new VISCHEMA PLUS dataset. We then evaluate the per-

formance of an end-to-end dual-feedback architecture which

includes the best performing components.

A. Improving VMS Prediction

We use the VISCHEMA PLUS dataset, with 1600 scene

images and 1600 corresponding memorability maps. We divide

this dataset using a standard split of 70% training set, 20%

validation set, and a 10% test set which we use for analysis.

Prior work evaluates the efficacy of VMS predictors with

two distinct measures: the Pearson 2D correlation [6], and the

mean squared error (MSE) [26]. We choose three additional

probabilistic measures as evaluation measures in order to

evaluate our VMS predictors: Kullback-Leibler Divergence

(KLD), Earth Mover Distance (EMD), and Histogram Simi-

larity (SIM) [40], metrics commonly used to evaluate saliency

map models. We also employ the pixel-wise Spearman rank

correlation, S2D, as the measure commonly used to evaluate

memorability score predictors. The ‘best’ metric depends

on application; some applications may value a small mean

squared error distance, others a model that displays statistically

similar behaviour to human ground truth, even at the cost of

a greater MSE. By assessing a variety of measures for VMS

prediction we consider a wider context of applications.

The deconvolutional networks are trained for 100 epochs

(after which there is no improvement against the valida-

tion set), which is optimised using the Root Mean Square

Propagation (RMSProp), which is an adaptive learning rate

optimisation algorithm designed to address some of the issues

encountered with the stochastic gradient descent (SGD) in

training deep neural networks, using a learning rate of η =
0.0001. Each deconvolutional network outputs a 28×28 pixel

VMS map for a given input image, as VMS maps are robust to

rescaling. The VAEs are trained for 500 epochs, and output a

VMS map at the same resolution as the input image. Features

from the pre-trained VGG16 network were L2 normalised
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before reaching the trainable layers, which standardises the

feature magnitudes for downstream processing. All networks

were trained on a single NVIDIA 1080 Ti GPU.

TABLE I
PREDICTION RESULTS FOR THE VMS MEMORABILITY CHANNEL. SH:

SINGLE-HEADED OUTPUT. KL: KULLBACK-LEIBLER DIVERGENCE.

Model MSE↓ P 2D ↑ S2D ↑ KLD↓ EMD↓ SIM↑

CNN-deconv 70.09 -0.03 0.03 2.1 159.67 0.4
MSB 86.79 -0.01 -0.06 1.31 142.4 0.41
CNN-deconv SH 61.99 0.02 0.04 2.86 147.6 0.4
MSB SH 69.84 0.14 0.21 1.04 197.44 0.44
VAE (from [26]) 87.23 0.46 0.51 1.06 36.01 0.52

MSB-Attention 58.83 0.1 0.19 1.29 191.42 0.44
MSB-Depth 76.24 0.22 0.29 1.32 151.67 0.45
MSB-Depth+Att 70.99 0.24 0.37 0.99 186.75 0.46
MSB-Attention SH 69.63 0.31 0.32 3.01 80.8 0.46
MSB-Depth SH 77.36 0.13 0.2 1.88 141.46 0.42
MSB-Depth+Att SH 67.98 0.24 0.4 1 187.83 0.46
MSB-Attention KL 53.78 0.22 0.29 - 179.93 0.46
MSB-Depth KL 67.3 0.31 0.44 - 157.02 0.48
MSB-Depth+Att KL 79.2 0.34 0.41 - 106.1 0.49

VAE L8 92.44 0.48 0.52 - 36.3 0.53
VAE L64 83.57 0.47 0.52 - 35.06 0.51
VAE L128 96.13 0.43 0.47 - 47.22 0.49
VAE+Att L8 87.65 0.49 0.53 - 34.17 0.53
VAE+Att L32 87.88 0.46 0.51 - 36.88 0.52
VAE+Att L64 84.4 0.46 0.51 - 36.53 0.51
VAE+Att L128 91.31 0.44 0.48 - 42.91 0.49

TABLE II
VMS FALSE MEMORABILITY CHANNEL PREDICTION RESULTS. THESE

ARE PREDICTIONS FOR REGIONS WHICH CAUSE A HUMAN TO BELIEVE

THEY HAVE SEEN A SCENE BEFORE, WHEN IN FACT THEY HAVE NOT - A

‘FALSE MEMORY’.

Model MSE↓ P 2D ↑ S2D ↑ KLD↓ EMD↓ SIM↑

CNN-deconv 39.9 -0.05 -0.09 8.73 33.3 0.12
MSB 35.96 -0.12 -0.16 9.5 23.92 0.05
CNN-deconv SH 39.94 -0.13 -0.19 9.98 37.29 0.08
MSB SH 38.54 -0.03 -0.03 8.12 22.64 0.11
VAE (from [26]) 75.66 0.34 0.37 1.85 36.38 0.36

MSB-Attention 38.53 0.12 0.15 2.17 186.03 0.29
MSB-Depth 69.7 -0.07 -0.17 6.58 35.52 0.15
MSB-Depth+Att 63.29 0.09 0.09 4.61 69.9 0.25
MSB-Attention SH 47.15 0.09 0.09 5.77 63.22 0.24
MSB-Depth SH 57.89 -0.2 -0.32 9.5 32.09 0.07
MSB-Depth+Att SH 66.6 0.17 0.17 3.28 67.42 0.28
MSB-Attention KL 38.62 0.23 0.26 - 122.24 0.33
MSB-Depth KL 48.33 0.17 0.25 - 159.54 0.3
MSB-Depth+Att KL 57.76 0.07 0.08 - 114.91 0.26

VAE L8 83.27 0.35 0.37 - 30.77 0.36
VAE L64 62.53 0.31 0.33 - 36.67 0.34
VAE L128 86.33 0.29 0.33 - 72.98 0.33
VAE+Att L8 74.66 0.36 0.37 - 29.73 0.37

VAE+Att L32 73.41 0.34 0.37 - 35.61 0.36
VAE+Att L64 67.86 0.33 0.36 - 47.24 0.36
VAE+Att L128 73.57 0.3 0.32 - 54.68 0.33

The summary of the memorability prediction results ex-

pressed with different measurements of performance is pre-

sented in Table I, and false memorability in Table II. In

these tables, we denote by MSB when considering multiscale

blocks, attention (or att) where we use non-local neural blocks,

and ‘Depth,’ when using depth maps. VAE latent spaces are

denoted by L + the latent dimension |z|. Models trained

using Kullbach-Leibler (KL) divergence are not tested with

KL divergence.

For memorability, the best performing straight deconvolu-

tional networks were trained with the KL Divergence loss,

which provides the best MSE performance from all tested

architectures. For the false memorability, a simple MSB-

based network sets the record for MSE, although attention-

based MSB networks come close. These results for MSE

outperform prior work by a significant margin [26]. The

superior performance of the KL-loss may explain why VAEs

remain the best overall approach. By combining the abil-

ity of VAEs to extract low-dimensional memorability/false-

memorability features with non-local neural networks long-

range dependency capture, the VAE+Att L8 Model provides

the best results for four independent memorability metrics. The

baselines (VAE aside) performed poorly at two-dimensional

memorability prediction, as can be seen from Tables I and II.

The poorest performing architecture is the straight deconvo-

lutional network. The initial introduction of multi-scale blocks

improves performance slightly, while producing a single out-

put improves performance significantly. The introduction of

self-attention and depth information by the methods given in

Section III improves memorability prediction, though depth

alone causes significantly poorer performance when predicting

false memorability. Depth and attention modules combined

exceed the performance of either one alone. We achieve a

Pearson 2D correlation P 2D of 0.49 for true memorability

and 0.36 for false memorability respectively, which exceeds

all previous models tested on the VISCHEMA dataset. While

single-score models have matched human-level consistency,

with a baseline for human VMS consistency of 0.69, VMS

prediction still has a way to go before reaching the level of

single-score predictors.

B. Dual Feedback VMS Prediction

In the following we discuss the implementation details

required to train the dual-feedback network and present pre-

diction results over the VMS4k dataset. The Dual-Feedback

VMS (DF-VMS) Network is trained using the Adam optimiser

[41] with a learning rate of 5 × 10−5 with β1 = 0.9 and

β2 = 0.999. We choose Adam over the RMSProp optimisers

used in the separate architectural experiments due to its

well-known history of empirical efficacy when paired with

residual networks. However, we would expect the DF-VMS

architecture to be robust to optimiser selection and present

similar results under a wide range of optimisers. Each model

is trained for 250 epochs on an Nvidia V100 GPU. The

network is trained on two datasets. The first dataset is VMS4k,

divided into a train/validation/test split of 85%/5%/10%. Each

input consists of a random batch of scene images and their

corresponding human annotated (ground truth) Visual Memory

Schemas. The second dataset is LaMem [5], with each training

example consisting of an input image (not necessarily a scene

image) and its corresponding one-dimensional memorability

score. We train the network in a ‘tick-tock’ fashion, first

on the LaMem training set, then on the VMS4k training

set, repeating each epoch until training is complete. For our

backbone we use either VGG16 or RESNET50, pre-trained on

the Imagenet dataset. The weights of the backbone architecture

are not updated during training. We set α = 40−1, where α

is hyperparameter which controls the influence of the one-

dimensional memorability scores on the training procedure.

The network takes approximately 18 hours to train on a single

V100 GPU. We evaluate our architecture on VMS4k and use

LaMem as an optional auxiliary feedback mechanism. There

is no two-dimensional memorability data associated with the

LaMem dataset.
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Fig. 7. Predicted VMS maps for the scene images in the top row. Ground-truth maps come from human defined VMS maps. Some maps contain false
schemas (red), for visualisation purposes in this figure we only show predicted true (memorable) schemas. The best performing DF-VMS variant employs
a ResNet backbone, self-attention, multiscale-information, and dual-feedback. VGG16 backbones do not capture the full spread of memorability; instead
focusing strongly on semantic regions. ResNet backbones, with their richer feature extraction, perform better at VMS map prediction.

TABLE III
VMS RECONSTRUCTION RESULTS. TRUE & FALSE REFER TO MEMORABLE AND FALSELY MEMORABLE SCHEMAS (GREEN/RED IN IMAGES). P 2D IS THE

PEARSONS 2D CORRELATION [6], [42]. LAMEM PERFORMANCE MEASURED BY SPEARMANS CORRELATION (ρ). A DASH IN THE TABLE INDICATES THE

NETWORK DOES NOT COMPUTE THAT OUTPUT. A COMPARISON WITH THE STATE-OF-THE-ART IS GIVEN AGAINST THE CURRENT BEST MODEL;
VMS-VAE FROM [26]. WE INCLUDE RESULTS FOR A MORE MODERN BACKBONE, RESNET50, AND FOR A FAIR COMPARISON WITH PRIOR WORK, A

VGG16 BACKBONE.

Backbone Method Dataset True P2d False P2d LaMem (ρ) Params.

None Edge Detection VMS4k 0.234 0.216 - -

VGG16
vms-VAE VMS4k 0.395 0.357 - 16.91M
DF-VMS VMS4k + LaMem 0.425 0.374 0.552 14.79M

ResNet50 DF-VMS-R VMS4k + LaMem 0.513 0.443 0.466 8.68M

Results for reconstruction accuracy on VMS4k are shown

in Table III and Table IV. While we obtain the best results

with the ResNet50 backbone feature extractor, we include

results using the VGG16 architecture for the purposes of

comparison to prior work. In Table III, on the second row, we

show the results for the previous best performing, variational

autoencoder based model, ‘vms-VAE’ [26] on VMS4k. The

results presented in Table III show that our DF-VMS model

outperforms the vms-VAE model after this was trained on the

VMS4k dataset, and hence benefits from additional training

data not available when said model was created. Our analysis

reveals that prior memorability models are not capable of

taking advantage of our larger dataset, unlike the proposed DF-

VMS approach. Our qualitative results indicate that DF-VMS

models which use the VGG16 backbone give overconfident

predictions over the object content of the image, but do not

capture the memorability of broad scene regions well. To

verify that the model was not simply learning to activate on

strong edges, we include results for a baseline Canny edge

detector based approach. We find that this results in poor

performance compared to any of other networks; indicating

that all models are learning to detect ‘memorable regions’

rather than areas of strong edges.

Through our DF-VMS model we boost visual memory

schema prediction performance by 11.8% for true (memorable)

schemas and by 8.6% for falsely memorable schemas com-

pared to prior work. We also find that our ResNet DF-VMS

model outperforms the VGG16 model by 8.8% and 6.9% for

true and false schemas respectively, and note that our ResNet

model uses fewer parameters than both prior work and the

VGG16 model. Thus we show our proposed architecture out-

performs prior work, and also that we can attain best-possible

performance with a more suitable backbone. In Fig. 7 we show

a set of predicted examples for a variety of both indoor and

outdoor scene images along with their ground-truth human

defined VMS maps. Many VMS maps contain annotations

which indicate regions that lead to false remembering. These

annotations are coloured red in the per-pixel maps. While

we focus primarily on predicting true memorability (region

which cause recognition) we can equally apply our models

to predict image regions which cause a false memory. See

Fig. 1 in the supplementary information for examples with

predicted false memorability maps. While the VGG-backbone

generates confident and clear predictions; in practice, these fail

to capture less memorable regions of the image, and overall

a deeper backbone leads to superior performance by offering

features that capture regions which do not contain the strongest

memorable signal. For completeness (as we do not focus on

memorability score prediction), we include results for the

LaMem test set from our auxiliary output. We achieve reason-

able results for this despite significant differences between the

VMS4k dataset (scene memorability) and the LaMem dataset

(generic image memorability i.e. frame-filling objects, faces,

or people).
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TABLE IV
ABLATION TESTS FOR OUR DF-VMS MODEL. IN THIS TABLE, IN THE MODEL TITLE, -XA INDICATES NO ATTENTION, -XDF NO DUAL-FEEDBACK, -XM,
NO MULTI-SCALE INFORMATION, AND -XVMS, SCORE PREDICTION ONLY. P 2D IS THE PEARSONS 2D CORRELATION. A DASH IN THE RESULTS TABLE

INDICATES NO OUTPUT.

Backbone Method Dataset True P2d False P2d LaMem (ρ) Params.

ResNet50

DF-VMS-R-xA VMS4k + LaMem 0.497 0.435 0.444 8.68M
DF-VMS-R-xDF VMS4k 0.488 0.423 - 8.68M
DF-VMS-R-xM VMS4k + LaMem 0.497 0.418 0.446 8.66M
DF-VMS-R-xVMS LaMem - - 0.28 8.68M

C. Ablation Testing

To evaluate the impact of various optional model modules x

= {attention, dual feedback, multi-scale information} we train

the best performing model a further three times with one of

the above modules excluded (x) from the model, and provide

the results in Table IV. In the table, -xA indicates attention

excluded from the model, -xDF, dual-feedback excluded, and

-xM, multiscale information excluded. Additionally, we test

the performance purely on the auxiliary memorability loss

by disabling visual memory schema feedback (-xVMS). All

ablation models were trained for the same number of epochs

as the original model. We find that in general disabling

any of these factors leads to a poorer model performance,

with the most drastic decrease occurring when dual feedback

is disabled (0.488 vs 0.513). We also note that even with

dual-feedback disabled, the ResNet50 model outperforms the

VGG16 vms-VAE and DF-VMS models despite having fewer

parameters, and while trained on fewer data. The LaMem

feedback appears to improve results in one of two ways: 1.) by

better predicting human ground truth in the memorable regions

of the image (leading to the network better understanding how

semantic image features relate to memorability) and 2.) by re-

ducing erroneous predictions for regions of the image that are

unlabelled; neither memorable nor falsely-memorable. Hence,

by employing existing large single-score memorability datasets

as an auxiliary loss, an increase in performance (5.12%, perc.

increase) can be gained on sufficiently deep networks when

predicting visual memory schemas, without gathering more

VMS data (a time consuming and expensive task). Despite

the differences between the VMS4k and LaMem dataset,

the model has learned additional features that relate to the

memorable regions of scene images despite the LaMem dataset

not being scene-focused. Interestingly, disabling training on

VMS4k leads to worse single-score performance (a drop of

37%). This highlights the interaction between single-score

memorability and two-dimensional memorability, and suggests

that an ideal image memory prediction model should account

for both how memorable an image is as well as where in that

image is memorable. Spatial memorability maps gathered from

humans could be applied in future work to boost single-score

prediction performance for challenging datasets such as natural

scene images, or where single-score ratings are naturally less

consistent or not available.

D. Quantifying Visual Memory Schemas

Examples of semantic elements found and labelled inside

memorable regions of the VMS4k dataset are shown in Fig. 8.

For example, in the image of a field; it is obvious that not one

single element contributed to that image being remembered.

Instead, it is the arrangement of the house, with the trees,

placed in a field with the sky as a background. These are the

scene elements that have matched with the mental schemas

held within the semantic knowledge store of the participants

who labelled this image, and which aided in recognition

of the scene. In order to extract a generalised schema for

each category, we ask which scene components commonly

occur with each other components inside memorable regions.

That is, we aim to determine which local arrangement of

elements most frequently causes a scene region to lead to

the remembering of that scene. We do this by calculating the

number of times each extracted element co-occurs with other

element(s), across all memorable regions in that image.

In Fig. 9 we show some examples of this procedure, for

the kitchen category. We limit this analysis to co-occurrences

of just three objects; higher amounts of objects can also be

examined (we include all data in the supplementary infor-

mation). Likewise, we only show the top five most frequent

‘schemas’. From this we can determine that the most likely

cause of encoding of a kitchen image is the presence of

cabinets, sinks, and stoves (greater than other arrangements

of memorable kitchen semantic units; e.g the presence of

cabinets, stoves, and trays). For the work-home category

most frequent is buildings, skylines, and trees; whereas ar-

rangements of trees, grass, and plants appear to occur less

frequently inside the regions that have caused recollection of

that image. These elements, by appearing together, reveal the

‘schema’ used to recognise scene images for a given category.

With this approach, scene memorability can be tracked from

a mental schema, to two-dimensional maps, and finally to

human-understandable descriptions of those schemas for each

VISCHEMA category. While we have hypothesised that some

scenes are remembered better due to their content, and because

they better match a held schema in a human observer, by

quantifying that schema we can see that this does in fact appear

to be the case. Some arrangements of objects are labelled

more frequently as ”causing the remembering of that image”

than other arrangements of objects, across entire categories of

similar scenes.

Being able to capture object arrangements which cause a

scene to be remembered additionally allows us to empirically

investigate whether there is any notable difference between

these labelled regions for memorable or forgettable scenes

drawn from the same category. To do this we obtain co-

occurrence statistics for the top 20 and bottom 20 memorable

scenes from each category. This is shown in figure 10 with
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Fig. 8. ‘Semantic units’ contained within the regions of images that participants have labelled as causing them to successfully remember that image.

Fig. 9. These sets of objects frequently appear together inside the memorable
regions of an image, for that category. For example, cabinets, sinks, and stoves
most frequently occur within one labelled VMS region, considered over the
entire kitchen category. This shows which combinations of objects, together,
lead to an image being recognised by a human observer. By limiting to three
objects, more cases of object co-occurrences can be examined.

Fig. 10. Differences in remembered image regions for most memorable (top)
and least memorable (bottom) kitchen scenes.

a full set of results given in the supplementary information.

We first examine the impact of object counts in memorable

regions to determine whether the intra-category difference in

memorability may be caused by the amount of objects captured

in a memorable region. However, we find no significant

difference in object counts for either indoor (one-way ANOVA,

p >0.05) or outdoor scenes (one-way ANOVA, p >0.05).

This suggests that the regions which drive memorability

for highly memorable vs poorly memorable scenes do not

differ significantly in objects contained. This reinforces the

hypothesis that it is the scenes semantic content causing the

differences in memorability. Observationally, figure 10 shows

that there are differences in the objects which are frequently

annotated together in memorable vs forgettable images from

the same category. For example, within the kitchen category,

memorable images have regions which appear to contain more

idiosyncratic object arrangements (e.g, plates, glasses, which

have more variety in placement and arrangement) whereas

less memorable images appear to be remembered due to ar-

rangements of larger scale ‘standard’ kitchen elements (stoves,

dishwashers, kitchen islands). As all the objects are part of the

schema for that category, this does not imply an incongruency

effect, but instead suggests this is an effect on memory of the

semantic contribution of complexity [23], implying additional

scene detail may be advantageous for schema-based memory.

VI. CONCLUSION

Visual Memory Schema maps capture the regions of scene

images that cause a person to remember an image. Compared

to single-score metrics of image memorability, VMS maps

are significantly more informationally dense. While single-

score approaches allow for an overall memorability rating,

VMS maps enable the localisation of exactly which image

regions contribute to scene recognition. These image regions

contain memorable (or falsely memorable) local arrangements

of semantic features and objects responsible for that entire

scene being remembered. While more powerful than single-

score metrics, they are also correspondingly more difficult to

predict; as a given VMS predictor needs to be able to identify

these memorable arrangements. In this work, we attempt to

tackle the inherent difficulties behind VMS map prediction.

We started by introducing a new dataset, which expands the

existing 800 sample VISCHEMA dataset to 4000+ samples.

We first provide a set of comprehensive baselines for a variety

of techniques which may be used to predict VMS maps, before

designing an architecture which can take advantage of pre-

existing single-score memorability data to increase the predic-

tive performance for Visual Memory Schemas. Moreover, we

include an object-based analysis of the semantic content of

any given visual memory schema, allowing us to understand

which elements are being captured by a schema, and hence

determine which arrangements of objects lead to a scene being

remembered. Our DF-VMS model shows an improvement of

11.8% for memorable regions and 8.6% for falsely memorable

regions, a significant increase over previous approaches to

VMS prediction. Our analysis suggests that this approach

is a highly effective method to produce two-dimensional

memorability maps for scene images. This result supports

research into understanding why a given scene is remembered

and another forgotten, and enables two-dimensional analysis

of scenes that lack ground-truth VMS data.
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In future work it would be advantageous to gather additional

data, and further assess the impact of self-attention by explor-

ing transformer-based architectures for VMS prediction. We

additionally plan to explore false schemas, and false memories

in greater depth, aiming to understand which scene elements

lead to the creation of a false memory in the human visual

long-term memory system.
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