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The probability distribution for vacuum fluctuations of the energy flux in two dimensions is constructed,

along with the joint distribution of energy flux and energy density. Our approach is based on previous work

on probability distributions for the energy density in two-dimensional conformal field theory. In both cases,

the relevant stress tensor component must be averaged in time, and the results are sensitive to the form of

the averaging function. Here we present results for two classes of such functions, which include the

Gaussian and Lorentzian functions. The distribution for the energy flux is symmetric, unlike that for the

energy density. In both cases, the distribution may possess an integrable singularity. The functional form of

the flux distribution function involves a modified Bessel function and is distinct from the shifted Gamma

form for the energy density. By considering the joint distribution of energy flux and energy density, we

show that the distribution of energy flux tends to be more centrally concentrated than that of the energy

density. We also determine the distribution of energy fluxes, conditioned on the energy density being

negative. Some applications of the results are also discussed.

DOI: 10.1103/PhysRevD.111.085015

I. INTRODUCTION

This paper dealswith some exact solutions for thevacuum

state probability distribution for the fluctuations of the

energy flux in two-dimensional conformal quantum field

theories. The vacuum expectation value of the flux vanishes,

but an individual measurement can return a nonzero

result, which is equally likely to be positive or negative.

Furthermore, the probability of finding a given magnitude

for the flux is independent of its sign, so the distribution will

be symmetric. This work extends previous exact results for

the energy density in two dimensions [1–4], and is related to

approximate results in four dimensions [5–10]. The flux

operatormust be averaged in time to bewell defined, and the

averaging function describes the details of a physical

measurement. Here we consider two classes of averaging

functions which have previously been used for the energy

density; these include the Gaussian and Lorentzian func-

tions as special cases. We also consider the joint distribution

of energy flux and energy density and, by computing the

probability that the absolute value of the flux is less than the

absolute value of energy density, show that the energy flux is

the typically more centrally concentrated of the two.

Furthermore, we show that the distribution of fluxes changes

markedly when conditioned on the energy density being

negative, despite the fact that the probability for obtaining a

negative energy density is typically greater than 1=2. Some

applications of the results to four-dimensional models,

numerical simulations of quantum fluctuations, and analog

models in condensed matter systems are also discussed.

II. VACUUM ENERGY DENSITY

Here we review results from Refs. [1–3] for the proba-

bility distributions for the energy density in (unitary, positive

energy) conformal field theories (CFTs) including the

massless free scalar field as a special case. The stress tensor

for such a theory is determined by right-moving and left-

moving components, TRðuÞ and TLðvÞ, which have the

same central charge assuming parity invariance. Here

u¼ t−x and v¼ tþx are null coordinates on Minkowski
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spacetime. These components have a well-defined proba-

bility distribution only if they have been averaged by a

suitable sampling function, fðuÞ or fðvÞ, conveniently

normalized so that

Z

∞

−∞

fðuÞdu ¼ 1: ð2:1Þ

Let ωR denote the dimensionless averaged operator

ωR ¼ τ2T̄R ¼ τ2
Z

∞

−∞

fðuÞTRðuÞdu; ð2:2Þ

and defineωL and T̄L similarly in terms of TLðvÞ. Here τ is a
timescale, for example a characteristic width of the sampling

function. We are interested in the probability distribution

PL;RðωÞ for the outcomes of individual measurements of

ωL;R in the vacuum state of the theory. Explicit results [1–3]

have been found for specific choices of f, including

generalizations of the Gaussian and Lorentzian functions.

In all these cases, the probability distributions are of the form

of a shifted Gamma distribution,

PL;RðωÞ ¼
βα

ΓðαÞ θðωþ ω0Þe−βðωþω0Þðωþ ω0Þα−1; ð2:3Þ

with dimensionless positive parameters ω0, α, and β which

depend upon the choice of fðuÞ and the central charge of the
CFT. Note that our notation differs slightly from that of

Refs. [1–3], where ω and ω0 have dimensions of length−2

and β has dimensions of length2. Features of note are

that PL;R vanishes for ω < −ω0, which is also the quantum

inequality bound for a null component of energy density

[1,4], and displays an integrable singularity as ω → −ω0þ
if α < 1. The probability of obtaining a negative result,
R

0
−ω0

PL;RðωÞdω is (often substantially) greater than the

probability
R

∞

0
PL;RðωÞdω of a positive result, but the mean

of the distribution is zero, in agreement with the expectation

of ωL;R in the vacuum state.

The energy density is the sum of the right-moving and

left-moving components:

ρ ¼ TR þ TL: ð2:4Þ

Because these components are decoupled from one another

(see Sec. IV) and have the same central charge, their

vacuum fluctuations are identical and independent, and the

energy density probability distribution is a convolution of

PR and PL:

PρðxÞ ¼
Z

∞

−∞

dωPLðωÞPRðx − ωÞ: ð2:5Þ

Here x ¼ ρτ2 is the dimensionless averaged energy density.

Explicit evaluation of the above integral using Eq. (2.3)

leads to

PρðxÞ¼
β2α

Γð2αÞθðxþ2ω0Þe−βðxþ2ω0Þðxþ2ω0Þ2α−1: ð2:6Þ

In effect, the parameters ω0 and α have been doubled,

reflecting the fact that these are proportional to the central

charge of the conformal field theory.

Note that PρðxÞ ¼ 0 for x < −2ω0, the lower bound

on the allowed averaged energy density in the vacuum

state [4]. Also note that PρðxÞ decays exponentially

for large x, and displays an integrable singularity at the

lower bound −2ω0 if 0 < α < 1=2. Although this result

is specific to two-dimensional spacetime, some of its

features, such as the existence of a lower bound on the

energy density probability distribution, also apply in

four dimensions. More generally, the explicit two-

dimensional results can be a guide to possible effects

in four dimensions. For example, they were used by

Carlip et al. [11,12] to explore effects near a cosmo-

logical singularity.

III. VACUUM ENERGY FLUX

The dimensionless averaged energy flux operator is

determined by an off-diagonal component of the averaged

stress tensor

F ¼ τ2T̄tx ¼ τ2ðT̄R − T̄LÞ: ð3:1Þ

The probability distribution for vacuum energy flux fluc-

tuation may be constructed as a convolution, in analogy

with that for the energy density:

PFðFÞ ¼
Z

∞

−∞

dωPLðωÞPRð−F þ ωÞ

¼
Z

∞

−∞

dωPLðωþ F=2ÞPRðω − F=2Þ: ð3:2Þ

This is an even function of F, as follows from physical

grounds and the fact that PR ¼ PL. We now proceed to use

Eq. (2.3) to find it explicitly in cases where PL and PR are

shifted Gamma distributions:
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PFðFÞ ¼
β2αe−2βω0

ΓðαÞ2
Z

∞

−∞

dωθðωþ F=2þ ω0Þθðω − F=2þ ω0Þe−2βω½ðωþ ω0Þ2 − F2=4�α−1

¼ β2αe−2βω0

ΓðαÞ2
Z

∞

jFj=2−ω0

dωe−2βω½ðωþ ω0Þ2 − F2=4�α−1

¼ β2α

ΓðαÞ2
Z

∞

jFj=2
dωe−2βωðω2 − F2=4Þα−1

¼ β2α

ΓðαÞ2 ðjFj=2Þ
2α−1

Z

∞

1

dηe−βjFjηðη2 − 1Þα−1: ð3:3Þ

Note that PFðFÞ is independent of the parameter ω0. Using

standard formulas (see 3.387.3 in [13] or 10.32.8 in [14])

we may evaluate the integral as a modified Bessel function

to find

PFðFÞ ¼
βðβjFj=2Þα−1=2

ffiffiffi

π
p

ΓðαÞ Kα−1=2ðβjFjÞ: ð3:4Þ

Here the constants α and β depend upon the specific choice

of sampling function and the assumption that PL ¼ PR are

shifted Gamma distributions. The distribution PF is a

centered symmetric variance-gamma distribution in which

α is the shape parameter and β is an inverse width scale; in

fact, it has been known for a long time that the difference of

two identically distributed Gamma distributions is distrib-

uted in this way [15], and the same applies to the shifted

Gamma case.

The asymptotic probability distribution for large argu-

ment is

PFðFÞ∼
β

2ΓðαÞ

�

βjFj
2

�

α−1

e−βjFj½1þOððβjFjÞ−1Þ�;

βjFj≫ 1: ð3:5Þ

Thus, the probability of a large fluctuation decreases

exponentially with the same decay constant as for Pρ.

Near the origin, we can use the asymptotic formula

ðz=2ÞνKνðzÞ∼

8

>

>

<

>

>

:

1
2
ΓðνÞ ν> 0

− logðz=2Þ ν¼ 0

1
2
Γð−νÞðz=2Þ2ν ν< 0;

ð3:6Þ

to see that the distribution satisfies

PFðFÞ ∼
βðβjFj=2Þ2α−1Γð1=2 − αÞ

2
ffiffiffi

π
p

ΓðαÞ ð3:7Þ

for α < 1=2,

PFðFÞ ∼
β

π
logðβjFj=2Þ ð3:8Þ

for α ¼ 1=2, and

PFðFÞ ∼
βΓðα − 1=2Þ
2

ffiffiffi

π
p

ΓðαÞ ð3:9Þ

for α > 1=2. In particular, PF has an integrable singularity

at F ¼ 0 for α ≤ 1=2, and is continuous for α > 1=2.
The variance of the flux fluctuations is

hF2i ¼
Z

∞

−∞

dFF2PFðFÞ ¼
2α

β2
; ð3:10Þ

as can be seen using the integral identity 6.561.16 in [13] or

10.43.19 in [14]. It is also of interest to examine the

cumulative distribution function

P<ðFÞ ¼
Z

F

−∞

dyPFðyÞ; ð3:11Þ

which is the probability to find a value less than F in a

measurement. It may be calculated in terms of modified

Bessel and Struve functions as

P<ðFÞ ¼
1

2
f1þ βF½Kα−1=2ðβjFjÞLα−3=2ðβjFjÞ

þ Kα−3=2ðβjFjÞLα−1=2ðβjFjÞ�g: ð3:12Þ

Here we have again used the identities 6.561.16, as well as

6.561.4, in Ref. [13] (see also 10.43.2 in Ref. [14]). We

may use either the above result, or numerical integration of

Eq. (3.4), to obtain equivalent numerical results for P<ðFÞ.

IV. THE JOINT DISTRIBUTION OF

AVERAGED FLUX AND ENERGY DENSITY

The results of Secs. II and III can be understood from a

more general perspective that leads to further results. As the

two averaged null components ωR, ωL of the stress tensor

commute, they have a joint probability distribution, whose

joint moment generating function is the product of the two

independent generating functions

hesωRþtωLi ¼ hesωRihetωLi; ð4:1Þ
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because the vacuum expectation values factorize (see the

Appendix)

hωm
Rω

n
Li ¼ hωm

R ihωn
Li: ð4:2Þ

Consequently, the joint probability distribution function is

the product of the two individual ones, giving

ProbððωR;ωLÞ∈ΔÞ ¼
Z

Δ

PRðλÞPLðμÞdλdμ ð4:3Þ

for any Borel subset Δ ⊂ R2. In the above expressions, the

generating functions may be understood as formal series in

s and t. Petersen’s theorem (see [16], Theorem 14.6) states

that the joint moments uniquely determine the joint

probability distribution provided that the marginal distri-

butions are uniquely determined by their moments. This is

certainly satisfied if PL;R are given by shifted Gamma

distributions, because their moments satisfy the Hamburger

moment condition [1].

The averaged flux F ¼ ωR − ωL and energy density

ρ ¼ ωR þ ωL also commute and have a joint probability

distribution given in terms of that of ωL and ωR.

Specifically,

Probððρ; FÞ∈ΔÞ ¼
Z

Δ̃

PRðλÞPLðμÞdλdμ

¼
Z

Δ

Pðρ; FÞdρdF; ð4:4Þ

where Δ̃ ¼ fðλ; μÞ∈R2∶ ðλþ μ; λ − μÞ∈Δg, and the joint
probability density function is

Pðρ; FÞ ¼ 1

2
PR

�

1

2
ðρþ FÞ

�

PL

�

1

2
ðρ − FÞ

�

: ð4:5Þ

The factor of 1
2
arises from the change of variables.

Integrating out F or ρ in (4.7), one obtains the formu-

las (2.5) and (3.4) for the marginal distributions of ρ and F
as above. To understand the significance of the joint

probability density function, consider the simple example

Δ ¼ fρ0 ≤ ρ ≤ ρ0 þ Δρ; F0 ≤ F ≤ F0 þ ΔFg, where

Δρ ≪ jρ0j and ΔF ≪ jF0j, in which limit we have

Probððρ; FÞ∈ΔÞ ≈ Pðρ0; F0ÞΔρΔF: ð4:6Þ

Due to PL and PR being supported in ½−ω0;∞Þ, P
effectively has a factor of θðρþ F þ 2ω0Þθðρ − F þ 2ω0Þ
and one easily sees that P is supported in the set of

ðρ; FÞ∈R2 such that jFj ≤ ρþ 2ω0. As ρ → −2ω0, the

quantum inequality lower bound, the flux must vanish in

the following sense: for any ρ0 > −2ω0, the conditional

random variable Fjðρ < ρ0Þ (i.e., F conditioned on ρ being

less than ρ0) takes values in the interval ½−2ω0 − ρ0; 2ω0 þ
ρ0� and therefore the expectation value of its absolute value

is bounded above by 2ω0 þ ρ0, which vanishes in the limit

ρ0 → −2ω0. Thus, in this limit, Fjðρ < ρ0Þ converges in

mean to the random variable taking the constant value 0.

Note that this conclusion does not depend upon the specific

functional forms of PR and PL.

In the case where PR and PL are identical shifted Gamma

distributions, a similar calculation to one given in Eq. (3.3)

shows that

Probððρ; FÞ∈ΔÞ

¼ 2ðβ=2Þ2α
ΓðαÞ2

Z

∞

0

dρ0
Z

ρ0

−ρ0
dFχΔðρ0 − 2ω0; FÞe−βρ

0

× ððρ0Þ2 − F2Þα−1; ð4:7Þ

where χΔ is the characteristic function of Δ, i.e.,

χΔðρ; FÞ ¼ 1 for ðρ; FÞ∈Δ and χΔðρ; FÞ ¼ 0 otherwise.

Using the joint distribution, we can determine, for

example, the probability that jFj < jρj, corresponding to

Δ ¼ fðρ; FÞ∶jFj < jρjg, for which Δ̃ is the union of the

first and third open quadrants ofR2. With PL ¼ PR (but not

necessarily of the shifted Gamma form) this gives

ProbðjFj < jρjÞ ¼ p2 þ ð1 − pÞ2 ¼ 1 − 2pþ 2p2 ð4:8Þ

where p ¼ ProbðωL;R < 0Þ. One typically has p > 1
2
,

because the expectation is zero and the distribution has a

long positive tail but cannot take negative values below the

quantum inequality bound. It follows that ProbðjFj <
jρjÞ > 1

2
, as well, indicating the flux tends to be more

centrally concentrated than the energy density. This effect

can be quite marked: for instance, with c ¼ 1 and Gaussian

smearing, p ¼ 0.89 [1] and ProbðjFj < jρjÞ ¼ 0.81 (quot-

ing values to 2d.p.).

As another example, we can compute the probability

density function PFjρ<0ðFÞ of the flux, conditioned on the

energy density being negative (thus lying in ½−2ω0; 0�),
which is given in general by

PFjρ<0ðFÞ¼
1

2q

Z

0

−2ω0

dρPR

�

1

2
ðρþFÞ

�

PL

�

1

2
ðρ−FÞ

�

;

ð4:9Þ

where q ¼ Probðρ < 0Þ. This formula is obtained by

setting Δ ¼ ð−2ω0; 0Þ × ð−∞; FÞ in (4.5) and differentiat-

ing with respect to F, then dividing by q to normalize the

distribution. Given that PL and PR both have support

½−ω0;∞Þ, we see that PFjρ<0ðFÞ ¼ 0 for jFj > 2ω0, so

this distribution has compact support ½−2ω0; 2ω0�. In the

case where PL;R are identical shifted Gamma distributions,

this gives
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PFjρ<0ðFÞ

¼ β2αe−2βω0

qΓðαÞ222α−1
Z

0

−2ω0

dρθðρþ F þ 2ω0Þ

× θðρ − F þ 2ω0Þe−βρððρþ 2ω0Þ2 − F2Þα−1

¼ β2αθð2ω0 − jFjÞ
qΓðαÞ222α−1

Z

2ω0

jFj
dρ0e−βρ

0ððρ0Þ2 − F2Þα−1

¼ βðβjFj=2Þ2α−1
qΓðαÞ2 Qðα; βjFj; jFj=ð2ω0ÞÞθð2ω0 − jFjÞ;

ð4:10Þ

where

Qðα; η; zÞ ¼
Z

1=z

1

dse−ηsðs2 − 1Þα−1: ð4:11Þ

Consider the limit in which jFj→ 2ω0−, so 1=z ¼ 1þ ϵ,

with 0 < ϵ ¼ 2ω0=jFj − 1 ≪ 1, and η ¼ 2ω0β=ð1þ ϵÞ →
2ω0β. Now Q=ϵα becomes

ϵ−αQ ¼ 1

ϵα

Z

ϵ

0

dxe−ηð1þxÞ½ð1þ xÞ2 − 1�α−1 → e−2ω0β
2α−1

α
;

ð4:12Þ

as can be confirmed by a dominated convergence argument,

leading to

PFjρ<0ðFÞ ≈
β2αωα−1

0 e−2βω0

2qαΓðαÞ2 ð2ω0 − jFjÞα ð4:13Þ

as jFj approaches 2ω0 from below. An example of this

behavior will appear in Fig. 3 below.

We can also investigate the limit in which jFj ≪ ω0.

Here, it is convenient to use the penultimate expression

in (4.10), also noting that the exponential factor lies in the

interval ½e−2ω0β; 1� for all ρ0 ∈ ½0; 2ω0�. Thus

PFjρ<0ðFÞ ≍ IðFÞ ¼
Z

2ω0

jFj
dρ0ððρ0Þ2 − F2Þα−1 ð4:14Þ

as jFj → 0, where the ≍ symbol means that the left-hand

side is bounded above and below by constant multiples of

the right-hand side. There are three cases. For 0 < α < 1
2
,

we have

PFjρ<0ðFÞ ≍ F2α−1

Z

2ω0=jFj

1

dsðs2 − 1Þα−1 ð4:15Þ

and because the integral is finite and nonzero in the limit

jFj → 0, it follows that PFjρ<0ðFÞ ≍ F2α−1, which is an

integrable singularity (see Fig. 3 for an example). On the

other hand, if α ¼ 1
2
, the above integral can be evaluated

exactly and grows logarithmically in 2ω0=jFj, so

PFjρ<0ðFÞ ≍ logð2ω0=jFjÞ. Finally, if α > 1
2
, an integration

by parts argument based on multiplying and dividing the

integrand of Eq. (4.14) by 2ρ0 gives

IðFÞ¼ ðð2ω0Þ2−F2Þα
4ω0α

þ 1

2α

Z

2ω0

jFj
dρ0

1

ðρ0Þ2 ððρ
0Þ2−F2Þα;

ð4:16Þ

where IðFÞ is the integral on the right-hand side of

Eq. (4.14). As ðρ0Þ−2 < ððρ0Þ2 − F2Þ−1, the second term

on the right-hand side is bounded above by IðFÞ=ð2αÞ. On
rearranging,

IðFÞ < 2α

2α − 1

ðð2ω0Þ2 − F2Þα
4ω0α

; ð4:17Þ

which shows that PFjρ<0ðFÞ remains bounded as jFj → 0

for α > 1
2
. Note that the behavior we have given here results

in the same singularity structure exhibited by PFðFÞ as

jFj → 0, described in Eqs. (3.7)–(3.9).

V. SPECIFIC SAMPLING FUNCTIONS

Here we discuss some choices of sampling function for

which the probability PL;R distributions take the shifted

Gamma form given in Eq. (2.3).

A. Gaussian-like functions

The class of functions of the form

fa;bðuÞ ¼ γu2ae−bu
2

; ð5:1Þ

where a is a non-negative integer, b > 0 and γ ¼
baþ1=2=Γðaþ 1=2Þ, was discussed in Ref. [3]. Here we

may take

τ ¼ 1
ffiffiffi

b
p : ð5:2Þ

The results of Ref. [3] may be expressed in our present

notation as

α ¼ cð4a − 1Þ
24ð2a − 1Þ ð5:3Þ

and

β ¼ π: ð5:4Þ

Here c is the central charge of the conformal field theory,

and c ¼ 1 for a massless scalar field. The usual Gaussian,

which was treated in Ref. [1], is the case a ¼ 0, so
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α ¼ c

24
; β ¼ π: ð5:5Þ

The vacuum probability distribution for the Gaussian

averaged flux of a massless scalar field, c ¼ 1, is plotted in

Fig 1. Here PF ∝ jFj−11=12 near the origin.

The cumulative distribution function P<ðFÞ is plotted

for the Gaussian averaged scalar field case with c ¼ 1 in

Fig. 2. Note that the integrable singularity in PFðFÞ leads to
P<ðFÞ approximating a step function. Numerical evalu-

ation gives P<ð10−10Þ ¼ 0.585 and P<ð−10−10Þ ¼ 0.415,

so the average slope in the interval jFj < 10−10 is

ΔP<

ΔF
≈ 8.5 × 108; ð5:6Þ

which is consistent with the lower panel in Fig. 2.

The distribution PFjρ<0ðFÞ given in Eq. (4.10) is plotted

in Fig. 3 for values α ¼ c=24, β ¼ π, with central charge

c ¼ 8 to indicate better the shape of the plot near the end of

the support.

B. Lorentzian-like functions

Another class of functions considered in Ref. [3] takes

the form

gn;a;bðuÞ ¼
Cu2a

ðb2 þ u2Þn ; ð5:7Þ

where 0 ≤ a < n are integers and b > 0, and we may now

take

τ ¼ b: ð5:8Þ

Now

α ¼ cnð4a2 − 4an − 4aþ nÞ
12ð2a − 2n − 1Þðnþ 1Þð2a − 1Þ ; ð5:9Þ

and

β ¼ 4nπ

4ðn − aÞ2 − 1
: ð5:10Þ

The usual Lorentzian is

g1;0;bðuÞ ¼
b

πðu2 þ b2Þ ; ð5:11Þ

for which

α ¼ c

72
; β ¼ 4π

3
; ð5:12Þ

In the massless scalar field case, c ¼ 1, PFðωÞ is qualita-
tively similar to the Gaussian averaged case plotted in

Fig. 1. However, here PF ∝ jωj−17=18 near the origin, and

P<ðωÞ is plotted in Fig. 4.

We find in this case that P<ð10−10Þ ¼ 0.775 and

P<ð−10−10Þ ¼ 0.2255, so the average slope in the interval

jFj < 10−10 is of order

FIG. 1. The probability distribution, PFðFÞ, with Gaussian

averaging is plotted as a function of the dimensionless flux, F.

FIG. 2. The cumulative probability distribution, P<ðFÞ, with
Gaussian averaging is plotted as a function of the dimensionless

flux, F, on two different scales. These plots may be obtained by

numerical integration of Eq. (3.4) or numerical evaluation of the

exact expression, Eq. (3.12).
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ΔP<

ΔF
≈ 2.7 × 109: ð5:13Þ

This is about a factor of 3 larger than the Gaussian case, and

is presumably due to the more singular behavior of PF for

the Lorentzian case.

Note that for the massless scalar field case, c ¼ 1, both

the Gaussian and Lorentzian averaging functions lead to

α < 1
2
, and hence an integrable singularity in PF. This need

not be the case for some of the generalized averaging

functions discussed above. For example, if we set a ¼ 23
44
in

Eqs. (5.1) and (5.3), we obtain a generalized Gaussian for

which α ¼ 1, leading a probability distribution which is

finite everywhere. This is a good illustration of how

sensitive stress tensor probability distributions are to the

details of the measurement process.

C. Compactly supported functions

Compactly supported functions, those which vanish

outside of finite intervals, are the appropriate descriptions

foe physical measures of finite duration. All of the smearing

functions discussed above have tails, and hence are not

compactly supported. A class of infinitely differentiable

compactly supported functions was described in Ref. [5],

and used in Refs. [8–10]. They have Fourier transforms

which decay as an exponential of a fractional power of

frequency:

f̂ðωÞ∼e−ajωj
αp
; 0< αp < 1: ð5:14Þ

Although the Lorentzian function is not compactly sup-

ported, its Fourier transform corresponds to the αp ¼ 1

limit of this class.

The focus of Ref. [5] was on the rate of growth of

moments and the asymptotic probability distributions for

stress tensor components in four-dimensional spacetime.

The explicit example used was that of ∶φ̇2∶ , the normal

ordered square of the time derivative of a massless scalar

field. This operator appears as part of the energy density

and other stress tensor components, and its asymptotic

probability distribution was assumed to model those of a

general component. If we set p ¼ 1 in the discussion in

Sec. IVof Ref. [5], we can infer the asymptotic probability

distribution for ∶φ̇2∶ in two dimensions sampled by a

compactly supported function. If we assume that asymp-

totic distribution also holds for the flux in two dimensions,

we have

PðFÞ ∼ e−βjFj
αp ð5:15Þ

for some constant β. The αp ¼ 1 limit of this expression

agrees with the form found in Eq. (3.5).

VI. SUMMARY

We have treated the probability distributions for vacuum

fluctuations of the energy flux in two-dimensional space-

time. These distributions depend upon the details of the

sampling function used to find spacetime averages of the

flux operator. In many, but not all cases, the distribution has

an integrable singularity at the origin. In particular, if α > 1
2
,

the distribution PðFÞ is finite at F ¼ 0. In all cases, PðFÞ
decays as an exponential for large arguments, an illustration

of the non-Gaussian character of vacuum stress tensor

fluctuations.

In addition, in Sec. IV, we construct a joint probability

distribution for the energy flux and energy density oper-

ators which have been averaged with the same sampling

function. The joint distribution may be used, for example,

to compute a modified probability distribution for the

energy flux under some condition on the energy density,

such as being negative.

FIG. 3. The probability distribution of flux, conditioned on the

energy density being negative.

FIG. 4. The cumulative probability distribution, P<ðFÞ, with
Lorentzian averaging is plotted as a function of the dimensionless

flux, F.
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Both of these sets of results have potential physical

applications to four-dimensional models and to condensed

matter systems with effectively one spatial dimension.

Two-dimensional models have often been used to infer

insights into possible behavior in four dimensions [11,12].

Electromagnetic vacuum flux fluctuations could have

observable effects on the motion of electrons [17], and

the two dimensional flux fluctuation models may be useful

in further studies of this effect.

Zero point density fluctuations in a fluid [18] are an

analog model for quantum stress tensor fluctuations. Thus,

phonons in a one-space-dimensional system form an analog

model for two-spacetime-dimensional quantum field the-

ories, and one which may be experimentally accessible.

The results of this paper are expected to be useful for

future numerical simulations of stress tensor fluctuations.

Simulations of energy density fluctuations without corre-

lations were performed in Refs. [11,12], and simulations of

Gaussian field fluctuations including correlations between

different times were treated in Ref. [19]. The results of

Sec. III for PðFÞ will be useful for simulations of energy

flux fluctuations which include correlations between differ-

ent times.

The first step in a numerical simulation is an algorithm to

generate a set of outcomes which obey a given probability

distribution. This is usually done using a cumulative

probability distribution, such as P<ðFÞ. The numerical

challenges are greater when PðFÞ has an integrable

singularity, and hence P<ðFÞ is close to a step function.

The nonsingular α > 1
2
cases seem likely to lead to more

stable simulations, but all values of α are of interest. A first

step will be a simulation of flux fluctuations at different

times using both our results for PðFÞ and the flux-flux

correlation function.

Future simulations of both the energy flux and density

fluctuations could employ either a correlation function or

a joint probability distribution. A preliminary study using

a flux-density correlation function was done in Sec. III of

Ref. [20], where the correlation between energy density

and flux in adjacent space time regions was discussed.

An extension of this work which uses the detailed

probability distributions treated in the present paper is

now possible. The joint distribution also provides infor-

mation about correlations about flux and density fluctua-

tions, but when averaged over the same space time

region. The possibility of a joint distribution for flux

and energy density averaged over different regions is an

open question.
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APPENDIX: FACTORIZATION OF THE JOINT

MOMENT GENERATING FUNCTION

The decoupling of the left- and right-moving expectation

values is well known in CFT, but we did not find a simple

direct argument in the literature. However an argument is

easily given, assuming that the CFT obeys standard proper-

ties of a quantum field theory, specifically the translational

invariance of the vacuum and the cluster property [21]

(more directly, but less simply, one could argue from the

spectral properties of the translation operator, cf. [22,23]).

Suppose Z is any product of m factors of ωR and n factors

of ωL. Because they commute, one has

hZi ¼ hωm
Rω

n
Li ¼ hUðλ; λÞωm

Rω
n
LUð−λ; λÞi ðA1Þ

for any λ∈R, where Uðt; xÞ is the unitary operator

implementing translation through ðt; xÞ, and we have

used the translation invariance of the vacuum. But

as translation through ðλ; λÞ [respectively, ð−λ; λÞ] leaves
u (respectively, v) unchanged, ½Uðλ; λÞ;ωR� ¼ 0 ¼
½Uð−λ; λÞ;ωL�. Consequently,

hZi ¼ hωm
RUð0; 2λÞωn

Li ¼ hωm
RUð0; 2λÞωn

LUð0; 2λÞ−1i
ðA2Þ

using translation invariance of the vacuum again. As

λ → ∞, the left-hand side is constant, but the right-hand

side tends to hωm
R ihωn

Li by the cluster property for large

spacelike separations, giving hZi ¼ hωm
Rω

n
Li. Thus, for

any integer N ≥ 0,

1

N!
hðsωR þ tωLÞNi ¼

X

m;n≥0
mþn¼N

smtn

m!n!
hωm

R ihωn
Li; ðA3Þ

and Eq. (4.1) for the joint moment generating functions

follows, understood as an equality of formal power series

in s and t.
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