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Abstract

We investigate the problem of algorithmic fairness in the case where sensitive and non-sensitive
features are available and one aims to generate new, ‘oblivious’, features that closely approximate
the non-sensitive features, and are only minimally dependent on the sensitive ones. We study this
question in the context of kernel methods. We analyze a relaxed version of the Maximum Mean
Discrepancy criterion which does not guarantee full independence but makes the optimization
problem tractable. We derive a closed-form solution for this relaxed optimization problem and
complement the result with a study of the dependencies between the newly generated features and the
sensitive ones. Our key ingredient for generating such oblivious features is a Hilbert-space-valued
conditional expectation, which needs to be estimated from data. We propose a plug-in approach
and demonstrate how the estimation errors can be controlled. While our techniques help reduce the
bias, we would like to point out that no post-processing of any dataset could possibly serve as an
alternative to well-designed experiments.

Keywords: Algorithmic Fairness, Kernel Methods

1. Introduction

Machine learning algorithms trained on historical data may inherit implicit biases which can in
turn lead to potentially unfair outcomes for some individuals or minority groups. For instance,
gender-bias may be present in a historical dataset on which a model is trained to automate the
postgraduate admission process at a university. This may in turn render the algorithm biased, leading
it to inadvertently generate unfair decisions. In recent years, a large body of work has been dedicated
to systematically addressing this problem, whereby various notions of fairness have been considered,
see, e.g. (Calders et al., 2009; Zemel et al., 2013; Louizos et al., 2015; Hardt et al., 2016; Joseph et al.,
2016; Kilbertus et al., 2017; Kusner et al., 2017; Calmon et al., 2017; Zafar et al., 2017; Kleinberg
et al., 2017; Donini et al., 2018; Madras et al., 2018; Oneto et al., 2020), and references therein.

Among the several algorithmic fairness criteria, one important objective is to ensure that a
model’s prediction is not influenced by the presence of sensitive information in the data. In this
paper, we address this objective from the perspective of (fair) representation learning. Thus, a central
question which forms the basis of our work is as follows.

Can the observed features be replaced by close approximations

that are independent of the sensitive ones?
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GRÜNEWÄLDER AND KHALEGHI

More formally, assume that we have a dataset such that each data-point is a realization of a
random variable (X,S) where S and X are in turn vector-valued random variables corresponding
to the sensitive and non-sensitive features respectively. We further allow X and S to be arbitrarily
dependent, and ask whether it is possible to generate a new random variable Z which is ideally
independent of S and close to X in some meaningful probabilistic sense. As an initial step, we may
assume that X is zero-mean, and aim for decorrelation between Z and X . This can be achieved
by letting Z = X − ESX where ESX is the conditional expectation of X given S. The random
variable Z so-defined is not correlated with S and is close to X . In particular, it recovers X if X
and S are independent. In fact, under mild assumptions, Z gives the best approximation (in the
mean-squared sense) of X , while being uncorrelated with S. Observe that while the distribution of
Z differs from that of X , this new random variable seems to serve the purpose well. For instance, if
S corresponds to a subject’s gender and X to a subject’s height, then Z corresponds to height of the
subject centered around the average height of the class corresponding to the subject’s gender. The key
contributions of this work, briefly summarized below, are theoretical; we also provide an evaluation
of the proposed approach through experiments in the context of classification and regression1. Before
giving an overview of our results, we would also like to point out that while our techniques help
reduce the bias, it is important to note that no post-processing of any dataset could possibly serve as
an alternative to well-designed experiments.

Contributions. Building upon this intuition, and using results inspired by testing for independence
using the Maximum Mean Discrepancy (MMD) criterion (see e.g. (Gretton et al., 2008)), we obtain a
related optimization problem in which X and ESX are replaced with Hilbert-space-valued random
variables and Hilbert-space-valued conditional expectations. While the move to Hilbert spaces does
not enforce complete independence between the new features and the sensitive features, it helps
to significantly reduce the dependencies between the features. The new features Z have various
useful properties which we explore in this paper (the notation Z is used to highlight that the features
attain values in a Hilbert space and not in the space in which our samples lie). They are also easy
to generate from samples (X1, S1), . . . , (Xn, Sn). The main challenge in generating the oblivious
features Z1, . . . ,Zn is that we do not have access to the Hilbert-space-valued conditional expectation
and need to estimate it from data. Since we are concerned with Reproducing Kernel Hilbert Spaces
(RKHSs) here, we use the reproducing property to extend the plugin approach of Grünewälder (2018)
to the RKHS setting and tackle the estimation problem. We further show how estimation errors can
be controlled. After obtaining the empirical estimates of the conditional expectations, we generate
oblivious features as well as an oblivious kernel matrix to be used as input to any kernel method.
This guarantees a significant reduction in the dependence between the predictions and the sensitive
features. We cast the objective of finding oblivious features Z which approximate the original
features X well while maintaining minimal dependence on the sensitive features S, as a constrained
optimization problem. Making use of Hilbert-space-valued conditional expectations, we provide
a closed form solution to the optimization problem proposed. Specifically, we first prove that our
solution satisfies the constraint of the optimization problem at hand, and show via Proposition 4 that
it is indeed optimal. Through Proposition 2 we relate the strength of the dependencies between Z

and S to how close Z lies to the low-dimensional manifold corresponding to the image under the
feature map φ. This result is key in providing some insight into the interplay between probabilistic
independence and approximations in the Hilbert space. We extend known estimators for real-valued

1. Our implementations are available at https://github.com/azalk/Oblivious.git.

2

https://github.com/azalk/Oblivious.git


OBLIVIOUS DATA FOR FAIRNESS WITH KERNELS

conditional expectations to estimate those taking values in a Hilbert space, and show via Proposition
5 how to control their estimation errors. This result in itself may be of independent interest in future
research concerning Hilbert-space-valued conditional expectations. We provide a method to generate
oblivious features and the oblivious kernel matrix which can be used instead of the kernel matrix to
reduce the dependence of the prediction on the sensitive features; the computational complexity of
the approach is O(n2).

Related Work. Among the vast literature on algorithmic fairness, (Donini et al., 2018; Madras
et al., 2018; Oneto et al., 2020), which fit into the larger body of work on fair representation learning,
are closest to our approach. Madras et al. (2018) describe a general framework for fair representation
learning. Their approach is inspired by generative adversarial networks and is based on a game
played between generative models and adversarial evaluations. Depending on which function classes
one considers for the generative models and for the adversarial evaluations one can describe a vast
array of approaches. Interestingly, it is possible to interpret our approach in this general context: the
encoder f corresponds to a map from X and S toH, where our new features Z live. We do not have
a decoder but compare features directly (one could also take our decoder to be the identity map).
Our adversary is different from that used by Madras et al. (2018). In their approach a regressor is
inferred which maps the features to the sensitive features, while we compare sensitive features and
new features by applying test functions to them. The regression approach performs well in their
context because they only consider finitely many sensitive features. In the more general framework
considered in the present paper where the sensitive features are allowed to take on continuous values,
this approach would be sub-optimal since it cannot capture all dependencies. Finally, we ignore
labels when inferring new features. It is also worth pointing out that our approach is not based on
a game played between generative models and an adversary but we provide closed form solutions.
On other hand, while the focus of Donini et al. (2018) is mostly on empirical risk minimization
under fairness constraints, the authors briefly discuss representation learning for fairness as well. In
particular, Equation (13) in the reference paper effectively describes a conditional expectation in
Hilbert space, though it is not denoted or motivated as such. The conditional expectation is based on
the binary features S only and the construction is applied in the linear kernel context to derive new
features. The paper does not go beyond the linear case for representation learning but there is a clear
link to the more general notions of conditional expectation on which we base our work. We discuss
the relation to (Donini et al., 2018) in detail in Section 6.5 and we show how their approach can be
extended beyond binary sensitive features by making use of our conditional expectation estimates.
In (Oneto et al., 2020) the demographic parity constraint is considered in a multi-task setting. The
sensitive features have to be discrete in this setting, attaining only finitely many values. The tasks
share an unknown “representation” and it is assumed that this representation fulfills the demographic
parity constraint. The authors propose an optimization problem that minimizes a sum of a multi-task
loss function (for classification and regression) and a metric that quantifies how well demographic
parity is achieved. The parameters of this optimization problem are the potential representations
and task specific functions. Both the Sinkhorn divergence and MMD are considered as metrics to
quantify demographic parity. The focus is on a case where the potential representations are one-layer
networks and the task specific functions are linear.

Organization. The rest of the paper is organized as follows. In Section 2 we introduce our notation
and provide preliminary definitions used in the paper. Our problem formulation and optimization
objective are stated in Section 3. As part of the formulation we also define the notion of H-
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independence between Hilbert-space-valued features and the sensitive features. In Section 4 we
study the relation betweenH-independence and bounds on the dependencies between oblivious and
sensitive features. In Section 5 we provide a solution to the optimization objective. In Section 6 we
derive an estimator for the conditional expectation and use it to generate oblivious features and the
oblivious kernel matrix. We provide some empirical evaluations in Section 7, and end with some
concluding remarks and open directions in Section 8.

2. Preliminaries

In this section we introduce some notation and basic definitions. Consider a probability space
(Ω,A, P ). For any A ∈ A we let χA : Ω→ {0, 1} be the indicator function such that χA(ω) = 1 if,
and only if, ω ∈ A. Let X be a measurable space in which a random variableX : Ω→ X takes values
and S be a measurable space in which the random variables S : Ω→ S takes values. We denote by
σ(X) the σ-algebra generated by X . Let H be an RKHS composed of functions h : X → R and
denote its feature map by φ(x) : X → H where, φ(x) = k(x, ·) for some positive definite kernel
k : X× X→ R. As follows from the reproducing kernel property ofH we have 〈φ(x), h〉 = h(x)
for all h ∈ H. Moreover, observe that φ(X) is in turn a random variable attaining values in H. In
Appendix A we provide some technical details concerning Hilbert-space-valued random variables
such as φ(X).

Conditional Expectation. For the random variable X and S defined above, we denote by ESX
the random variable corresponding to Kolmogorov’s conditional expectation of X given S, i.e.
ESX = E(X|σ(S)), see, e.g. (Shiryaev, 1989). Recall that in a special case where S = {0, 1} we
simply have

E(X|S = 0)χ{S = 0}+ E(X|S = 1)χ{S = 1}
where, E(X|S = i) is the familiar conditional expectation of X given the event {S = i} for i = 0, 1.
Thus, in this case, the random variable ESX is equal to E(X|S = 0) if S attains value 0 and is
equal to E(X|S = 1) otherwise. Note that the above example is for illustration only, and that X and
S may be arbitrary random variables: they are not required to be binary or discrete-valued. Unless
otherwise stated, in this paper we use Kolmogorov’s notion of conditional expectation. We will also
be concerned with conditional expectations that attain values in a Hilbert space H, which mostly
behave like real-valued conditional expectations (see (Pisier, 2016) and Appendix B for details).
Next, we introduce Hilbert-space-valued L2-spaces which play a prominent role in our results.

Hilbert-space-valued L2-spaces. For a Hilbert spaceH, we denote by L2(H) = L2(Ω,A, P ;H)
theH-valued L2 space. IfH is an RKHS with a bounded and measurable kernel function then φ(X)
is an element of L2(Ω,A, P ;H). The space L2(Ω,A, P ;H) consists of all (Bochner)-measurable
functions X from Ω to H such that E(‖X‖2) < ∞ (see Appendix A for more details). We call
these functions random variables or Hilbert-space-valued random variables and denote them with
bold capital letters. As in the scalar case we have a corresponding space of equivalence classes which
we denote by L2(Ω,A, P ;H). For X,Y ∈ L2(Ω,A, P ;H) we use X•,Y • for the corresponding
equivalence classes in L2(Ω,A, P ;H). The space L2(Ω,A, P ;H) is itself a Hilbert space with norm
and inner product given by ‖X•‖22 = E(‖X‖2) and 〈X•,Y •〉2 = E(〈X,Y 〉), where we use a
subscript to distinguish this norm and inner product from the ones from H. The norm and inner
product have a corresponding pseudo-norm and bi-linear form acting on L2(H) and we also denote
these by ‖ · ‖2 and 〈·, ·〉2.
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Figure 1: (a) The three main random variables in Problem 1 are shown. The non-sensitive features
X attains values in X and is mapped onto the RKHS H through the feature map φ; the sensitive
features S attains values in S, and Z attains values inH. All three random variables are defined on
the same probability space (Ω,A, P ). (b) The image of X under φ is sketched (blue curve). This is
a subset of H whose projection onto the subspace spanned by two orthonormal basis elements e1
and e2 is shown here. The set φ[X] is a low-dimensional manifold if φ is continuous. The element
h∗ = E(φ(X)) lies in the convex hull of φ[X]. Intuitively, if Z attains values mainly in the gray
shaded area then Z is only weakly dependent on S.

3. Problem Formulation

We formulate the problem as follows. Given two random variables X : Ω → X and S : Ω → S

corresponding to non-sensitive and sensitive features in a dataset, we wish to devise a random
variable Z : Ω→ X which is independent of S and closely approximates X in the sense that for all
Z ′ : Ω→ X we have,

‖Z −X‖2 ≤ ‖Z ′ −X‖2. (1)

Dependencies between random variables can be very subtle and difficult to detect. Similarly,
completely removing the dependence of X on S without changing X drastically is an intricate task
that is rife with difficulties. Thus, we aim for a more tractable objective, described below, which still
gives us control over the dependencies.

We start by a strategic shift from probabilistic concepts to interactions between functions and
random variables. Consider the RKHSH of functions h : X→ R with feature map φ as introduced
in Section 2, and assume thatH is large enough to allow for the approximation of arbitrary indicator
functions χ{Z ∈ A′}, A′ a measurable subset of X, in the L2-pseudo-norm for any X-valued random
variable Z. Observe that if

E(h(Z)× g(S)) = E(h(Z)) · E(g(S)) (2)

for all h ∈ H, g ∈ L2 then Z and S are, indeed, independent. This is because h and g can be used to
approximate arbitrary indicator functions. In particular, for any measurable subset A′ of X and B′ of
S there exist functions h and g such that

P ({Z ∈ A′} ∩ {S ∈ B′}) ≈ E(h(Z)× g(S)) = E(h(Z)) · E(g(S)) ≈ P (Z ∈ A′) · P (S ∈ B′).

This means that the independence constraint of the optimization problem of (1) translates to (2).
Note that using RKHS elements as test functions is a common approach for detecting dependencies
and is used in the MMD-criterion (e.g. (Gretton et al., 2008)).
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On the other hand, due to the reproducing property of the kernel ofH, we can also rewrite the
constraint (2) as

E(〈h, φ(Z)〉 × g(S)) = E〈h, φ(Z)〉 · E(g(S)). (3)

Observe that φ(Z) is a random variable that attains values in a low-dimensional manifold; if the
kernel function is continuous and X = R

d then the image φ[X] of X under φ is a d-dimensional
manifold which we denote in the following byM. In Figure 1 this manifold is visualized as the blue
curve. Therefore, while Equation (3) is linear in φ(Z), depending on the shape of the manifold, it
can lead to an arbitrarily complex optimization problem.

We propose to relax (3) by moving away from the manifold, replacing φ(Z) with a random
variable Z : Ω → H which potentially has all of H as its range. This simplifies the original
optimization problem to one over a vector space under a linear constraint. To formalize the problem,
we rely on a notion ofH-independence introduced below.

Definition 1 (H-Independence) We say Z ∈ L2(Ω,A, P ;H) and S : Ω→ S are H-independent

if and only if for all h ∈ H and all bounded measurable g : S→ R it holds that,

E(〈h,Z〉 × g(S)) = E〈h,Z〉 × E(g(S)).

Thus, instead of solving for Z : Ω → X in (1), we seek a solution to the following optimization
problem.

Problem 1 Find Z ∈ L2(Ω,A, P ;H) that is H-independent from S (in the sense of Definition 1)

and is close to X in the sense that

‖Z − φ(X)‖2 ≤ ‖Z ′ − φ(X)‖2

for all Z ′ which are alsoH-independent of S.

Observe that the H-independence constraint imposed by Problem 1, ensures that all non-linear
predictions based on Z are uncorrelated with the sensitive features S. The setting is summarized in
Figure 1(a).

Projection ontoM. If Z lies in the image of φ and H is a ‘large’ RKHS then H-independence
also implies complete independence between the estimator 〈ĥ,Z〉 and S. To see this, assume that
there exists a random variable W : Ω→ X such that Z = φ(W ) and that the RKHS is characteristic.
Since for any f ∈ H and bounded measurable g : S→ R

E(f(W )× g(S)) = E(〈f,Z〉 × g(S)) = E〈f,Z〉 · E(g(S)) = E(f(W )) · E(g(S))

we can deduce that W and S is independent. Moreover, since Z is a function of W it is also inde-
pendent of S. In general, Z will not be representable as some φ(W ) and there can be dependencies
between 〈ĥ,Z〉 and S. However, if Z attains values close to the manifold M then we can find
a random variable W such that φ(W ) is close to Z and the dependence between φ(W ) and S is
controlled by how close Z is to the manifold. More exactly, we allow Z to be translated by h∗ ∈ H
before measuring the distance. This is important because the manifold itself can lie away from the
origin while the Z we construct in Section 5 lies around the origin. The distance we consider is

d2(Z + h∗,M) := E( inf
h∈M

‖Z + h∗ − h‖2),
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the average Hilbert space distance between Z + h∗ and the manifold. Observe that the expectation
on the right side is well defined whenM is compact since we can then replaceM with a countable
dense subset ofM.

Showing that a suitable W exists is not trivial; the difficulty is that for values that Z might attain
in H there can be many points on the manifold closest to that value and selecting points on the
manifold in a way that makes the random variable W well defined needs a result on measurable

selections. The following proposition makes use of such a selection and guarantees the existence of a
suitable W , i.e. it states that there exists a random variable W such that φ(W ) achieves the minimal
distance to Z + h∗.

Proposition 1 Consider Z ∈ L2(Ω,A, P ;H), assume that the kernel function is continuous and

(strictly) positive-definite, and X is compact. For any h∗ ∈ H there exists a σ(Z)-measurable

random variable W which attains values in X such that φ(W ) ∈ L2(Ω,A, P ;H) and

‖Z + h∗ − φ(W )‖2 = d(Z + h∗,M).

The proof is provided in Appendix C.1.

We will call such a variableW provided by the proposition a projection of Z onM. The variable
W can be approximated algorithmically for a given Z and h∗ (see Appendix E.3). Furthermore,
φ(W ) is a good approximation of φ(X) whenever Z is, as

‖φ(W (ω))− φ(X(ω))‖ ≤ ‖φ(W (ω))−Z(ω)‖+ ‖Z(ω)− φ(X(ω))‖ ≤ 2‖Z(ω)− φ(X(ω))‖,

where we used that φ(W (ω)) is closest to Z(ω) onM = φ[X]. Therefore,

‖φ(W )− φ(X)‖2 ≤ 2‖Z − φ(X)‖2.

4. Bounding the dependencies

A common approach to quantifying the dependence between random variables is to consider

|P (A ∩B)− P (A)P (B)|

where A and B run over suitable families of events. In our setting, these families are the σ-algebras
σ(Z) (or, alternatively, σ(W )) and σ(S), and the difference between P (A ∩ B) and P (A)P (B),
A ∈ σ(Z) or A ∈ σ(W ), B ∈ σ(S), quantifies the dependence between the random variables Z
and S, and W and S, respectively. Upper bounds on the absolute difference of these two quantities
are related to the notion of α-dependence which underlies α-mixing. In times-series analysis
mixing conditions like α-mixing play a significant role since they provide means to control temporal
dependencies (see, e.g., (Bradley, 2007; Doukhan, 1994)). The aim of this section is to show how the
notion ofH-independence is related to the dependence between the random variables. In particular,
Proposition 2 below states a bound on the dependence between W and S in terms of the distance
of Z to the manifoldM. Furthermore, if Z and φ(W ) are closely coupled in the sense that there
exists a constant c such that for any event A1 ∈ σ(Z) there exist an event A2 ∈ σ(W ) fulfilling
P (A1△A2) ≤ c then the dependence between Z and S can also be bounded. For the bound to be
useful we want a small value of c for which the above holds, e.g. if we let c = 1 then the above
holds trivially but the bound we provide below becomes vacuous. In this context, observe that W ,
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as constructed above, is a function of Z and we know that σ(W ) ⊂ σ(Z). However, the opposite
inclusion is not guaranteed to hold.

Coming back to bounding the dependence between W and S: the high level idea is that H-
independence would correspond to normal independence if we had function evaluations ‘h(Z)’
instead of inner products 〈h,Z〉 (given that H is sufficient to approximate indicator functions).
While generally there is no such expression for the inner product we know that for φ(W ) we actually
have the equivalence 〈h, φ(W )〉 = h(W ) due to the reproducing property of the kernel function.
In contrast to Z the random variable φ(W ) does not need to be H-independent of S, however, if
Z+h∗ and φ(W ) are not too far from each other in ‖ · ‖2-norm then φ(W ) will be approximatelyH-
independent of S and we can say something about the dependence between W and S. Therefore, the
bound below is stated in terms of ‖Z+h∗−φ(W )‖2, which is equal to the distance between Z+h∗

andM, and a measure of how well indicator functions can be approximated. More specifically, the
bound is controlled by the functional

ψ(A) = inf
f∈H

2‖χA(W )− f(W )‖2 + ‖f‖ d(Z + h∗,M), (4)

where A ∈ {W [C] : C ∈ σ(W )} and f has to balance between approximating the indicator function
while keeping ‖f‖ d(Z + h∗,M) small. The function ψ has a natural interpretation as the minimal
error that can be achieved in a regularized interpolation problem. IfH lies dense in a certain space,
then any relevant indicator can in principle be approximated arbitrary well. This is not saying that
ψ(A) will be small since the norm of the element that approximates the indicator might be large.
But the approximation error, which is ‖χA(W )− f(W )‖2, can be made arbitrary small. With this
notation in place the proposition is as follows.

Proposition 2 Consider a Z ∈ L2(Ω,A, P ;H) which isH-independent from S, suppose that the

kernel function is continuous and (strictly) positive-definite, and X is compact. Let W be a projection

of Z onM. For any A ∈ σ(W ) and B ∈ σ(S), with A′ = W [A] being the image of A under W ,

the following holds,

|P (A ∩B)− P (A)P (B)| ≤ ψ(A′).

Furthermore, for A ∈ σ(Z), if c > 0 is such that BA = {W [C] : C ∈ σ(W ), P (C△A) ≤ c} is

non-empty then for any B ∈ σ(S),

|P (A ∩B)− P (A)P (B)| ≤ 2c+ inf
D∈BA

ψ(D).

The proof is provided in Appendix C.2.

Intuitively, as visualized in Figure 1, the proposition states that if Z mostly attains values in the
gray area then the dependence between W and S is low and, if W and Z are strongly coupled, then
the dependence between Z and S is also low.

4.1 Estimating ψ(A)

The key quantity in Proposition 2 is ψ(A). To control ψ(A) it is necessary to control how well the
RKHS can approximate indicators and to estimate the distance d(Z + h∗,M). The former problem
is more difficult and might be approached using the theory of interpolation spaces; we do not try
to develop the necessary theory here but only mention a simple result on denseness at the end of
this section. On the other hand, the latter problem is easy to deal with: the distance d(Z + h∗,M)
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between Z + h∗ andM can be estimated efficiently. In the case where the space X is compact and
φ is a continuous function, we propose an empirical estimate of d(Z + h∗,M) given by

dn(Z + h∗,M) :=
1

n

n∑

i=1

min
h∈M

‖Zi + h∗ − h‖ (5)

where Zi, i ≤ n, n ∈ N, are n independent copies of Z. Note that the compactness of X together
with the continuity of φ make the min operator in (5) well-defined.

Proposition 3 Consider a Z ∈ L2(Ω,A, P ;H) which is H-independent from S, suppose that

the kernel function is continuous and (strictly) positive-definite, and X is compact. Let ρ =
maxx∈X ‖φ(x)‖ <∞. For any h∗ ∈ H with ‖h∗‖ ≤ ρ and every ǫ > 0 we have,

Pr(|dn(Z + h∗,M)− d(Z + h∗,M)| ≥ ǫ) ≤ 2 exp
(
−2nǫ2

25ρ2

)
.

The proof is provided in Appendix C.3.

Going back to the approximation error ‖χA(W )− f(W )‖2, where A ⊂ X is the image under
W of some set C ∈ σ(W ) and f ∈ H we like to mention the following: let ν = PW−1 be the
push-forward measure of P under W . If H lies dense in L2(X,B, ν) then for any such A and any
ǫ > 0 there exists a function f such that ‖χA(W )− f(W )‖2 < ǫ, i.e. for the measurable set A there
exists a function f ∈ H such that

∫
(χA(W )− f(W ))2 dP =

∫
(χA(x)− f(x))2 dν(x) < ǫ2,

using (Fremlin, 2001, Theorem 235Gb). In many cases the continuous functions C(X) lie dense in
L2(X,B, ν) and a universal RKHSH is sufficient to approximate the indicators χW (see (Sriperum-
budur et al., 2011)).

5. BestH-independent features

In this section we discuss how to obtain Z as a closed-form solution to Problem 1. To this end,
inspired by the sub-problem in the linear case, we obtain Z using Hilbert-space-valued conditional
expectations. We further show that these features are H-independent of S and that Z is the best
H-independent approximation of φ(X).

In the linear case discussed in the Introduction it turned out that Z = X −ESX +EX is a good
candidate for the new features Z. In the Hilbert-space-valued case a similar result holds. The main
difference here is that we do have to work with Hilbert-space-valued conditional expectations. For
any random variable φ(X) ∈ L2(Ω,A, P ;H), and any σ-subalgebra B ofA, conditional expectation
EBφ(X) is defined and is again an element of L2(Ω,A, P ;H). We are particularly interested in
conditioning with respect to the sensitive random variable S. In this case, B is chosen as σ(S), the
smallest σ-subalgebra which makes S measurable, and we denote this conditional expectation by
ESφ(X). A natural choice for the new features is

Z = φ(X)− ESφ(X) + E(φ(X)). (6)

The expectation E(φ(X)) is to be interpreted as the Bochner-integral of φ(X) given measure P .
Importantly, if S and φ(X) are independent, we have with this choice that Z = φ(X) = φ(X) and
we are back to the standard kernel setting. Also, if φ(X) ∈ L2(Ω,A, P ;H) then so is Z.

9
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Figure 2: The figure shows data from two different settings. In the left two plots X = S + U , where
S and U are independent, S is uniformly distributed on [0, 1] and U is uniformly distributed on
[−1/2, 1/2]. The function h1 is the quadratic function. The leftmost plot shows h1(X) against S
and the plot to its right shows a centered version of 〈h1,Z〉 plotted against S. Similarly for the right
plots with the difference that S is uniformly distributed on [0, 2π] and U is uniformly distributed on
[0, π/2]. The function h2(x) is sin(x). The red curves show the best regression curve, predicting
h1(X) and h2(X) using S.

We can verify that the features Z are, in fact,H-independent of S. In particular, for any h ∈ H
and g ∈ L2,

E(〈φ(X)− ESφ(X), h〉 × g(S))
= 〈E(φ(X)× g(S))− E((ESφ(X))× g(S)), h〉
= 〈E(φ(X)× g(S))− E(ES(φ(X)× g(S))), h〉 = 0.

Since E(φ(X)) is a constant this implies that E(〈Z, h〉 × g(S)) = E(h(X)) · E(g(S)) A similar
argument shows that E〈Z, h〉 = E(h(X)). Thus, Z isH-independent of S.

In Figure 2 the effect of the move from φ(X) to Z is visualized. In the figure S is plotted against
h1(X) and h2(X) (blue dots), where h1 corresponds to the quadratic function and h2 to the sinus
function. The dependencies between h1(X) and S, as well as h2(X) and S, are high and there is
clear trend in the data. The two red curves correspond to the best regression functions, using S to
predict h1(X) and h2(X). The relation between the new features and S is shown in the other two
plots (gray dots). In the case of h1 one can observe that the dependence between 〈h1,Z〉 and S
is much smaller and, by the design of Z, 〈h1,Z〉 and S are uncorrelated. Similarly, for 〈h2,Z〉,
whereas here the dependence to S seems to be even lower and it is difficult to visually verify any
remaining dependence between S and 〈h2,Z〉.

An interesting aspect of this transformation from X to Z is that Z is automatically uncorrelated
with S for all functions h in the corresponding RKHS, without the need to ever explicitly consider a
particular h. Besides beingH-independent of S these new features Z also closely approximate our
original features φ(X) if the influence from S is not too strong, i.e. the mean squared distance is

E(‖φ(X)−Z‖2) = E(‖ESφ(X)− E(φ(X))‖2)

which is equal to zero if X is independent of S. In fact, Z is the best approximation of φ(X)
in the mean squared sense under the H-independent constraint. This is essentially a property of

10
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the conditional expectation which corresponds to an orthogonal projection in L2(Ω,A, P ;H). We
summarize this property in the following result.

Proposition 4 Given φ(X),Z ′ ∈ L2(Ω,A, P ;H) such that Z ′ isH-independent of S, then

E(‖φ(X)−Z ′‖2) ≥ E(‖φ(X)−Z‖2),

where Z = φ(X)− ESφ(X) + E(φ(X)). Furthermore, Z is the unique minimizer (up to almost

sure equivalence).

The proof provided is in Appendix C.4.

Change in predictions. When replacing φ(X) by Z we lose information (we reduce the influence
of the sensitive features). An interesting question to ask is, ‘how much does the reduction in
information change our predictions?’ A simple way to bound the difference in predictions is as
follows. Consider any h ∈ H, for instance corresponding to a regression function, then

|h(X)− 〈h,Z〉| ≤ ‖h‖‖φ(X)−Z‖ ≤ ‖h‖‖ESφ(X)− E(φ(X))‖

where ‖ESφ(X) − E(φ(X))‖ effectively measures the influence of S. Hence, the difference in
prediction is upper bound by the norm of the predictor (here h) and a quantity that measures the
dependence between S and φ(X).

Example. To demonstrate that the effect of the move fromX to Z can be profound we consider the
following fundamental example: suppose that X and S are standard normal random variables with
covariance c ∈ [−1, 1] and consider the linear kernel k(x, y) = xy, x, y ∈ R. In this case φ(X) = X
and ESX = cS is also normally distributed (see (Bertsekas and Tsitsiklis, 2002)[Sec4.7]). Hence,
Z = X−ESX+E(X) is normally distributed andE(Z×S) = c−cE(S2) = 0. This implies that
Z and S are, in fact, fully independent, regardless of how large the dependence between the original
features X and the sensitive features S may be. In the case where X and S are fully dependent, i.e.
X = aS for some a ∈ R, the features Z are equal to zero and do not approximate X .

Next, consider a polynomial kernel of second order such that the quadratic function h(x) =
x2 lies within the corresponding RKHS. The inner product between this h and Z is equal to
X2−ESX2+E(X2) and is not independent of S. Hence, the kernel function affects the dependence

between Z and S. Also, within the same RKHS there lie linear functions and for any linear function
h′ it holds that 〈Z, h′〉 is independent of S. Therefore, within the same RKHS we can have directions
in which Z is independent of S and directions where both variables are dependent.

6. Generating oblivious features from data

To be able to generate the features Z we need to first estimate the conditional expectation ESφ(X)
from data. To this end, we devise a plugin-approach. After introducing this approach in Section
6.1 we discuss how the estimation errors of the plugin-estimator can be controlled in Section 6.2.
In Section 6.3 we show how the oblivious features can be generated. Finally, in Section 6.4, we
demonstrate how the approach can be applied to statistical problems and we discuss relations to the
approach of Donini et al. (2018) in Section 6.5.

11
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6.1 Plug-in estimator

A common method for estimation is the plug-in approach whereby an unknown probability measure
is replaced by the empirical measure. This approach is used in (Grünewälder, 2018) for deriving
estimators of conditional expectations. To see how the approach can be generalized to our setting,
first observe that we can write

ESφ(X) = g ◦ S almost surely, (7)

where g : S→ H is a Bochner-measurable function (see Appendix A and Lemma 2 for details). Our
aim is to estimate this function g from i.i.d. observations {(Xi, Si)}i≤n. For any subsetB of the range
space S of the sensitive features define the empirical measure Pn(S ∈ B) = (1/n)

∑n
i=1 δSi

(B),
where δSi

the Dirac measure with mass one at location Si. We define an estimate of the conditional
expectation of φ(X) given that the sensitive variable falls into a set B by

En(φ(X)|S ∈ B) =
1

nPn(S ∈ B)

n∑

i=1

φ(Xi)× δSi
(B),

when Pn(S ∈ B) > 0 and through En(φ(X)|S ∈ B) = 0 otherwise. Observe that for h ∈ H we
have,

〈
h,

1

nPn(S ∈ B)

n∑

i=1

φ(Xi)× δSi
(B)

〉
=

1

nPn(S ∈ B)

n∑

i=1

h(Xi)× δSi
(B).

We can also write this as 〈h,En(φ(X)|S ∈ B)〉 = En(h(X)|S ∈ B). An estimate of the conditional
expectation given S is provided by

ES
nφ(X) =

∑

B∈℘S

En(φ(X)|S ∈ B)× χ{S ∈ B},

where ℘S is a finite partition of the range space S of S. A common choice for ℘S if S is the hypercube
[0, 1]d, d ≥ 1, are the dyadic sets. Observe, that we can move inner products inside the conditional
expectation ES

nφ(X) so that 〈h,ES
nφ(X)〉 = ES

nh(X), where ES
nh(X) is the empirical conditional

expectation introduced in (Grünewälder, 2018).

6.2 Controlling the estimation error

The estimation error when estimating ESφ(X) using ES
nφ(X) is relatively easy to control thanks

to the plug-in approach. Essentially, standard results concerning the empirical measure carry over
to conditional expectation estimates in the real-valued case (Grünewälder, 2018). But through
scalarization we can transfer some of these results straight away to the Hilbert-space-valued case.
For instance, using φ(X) in place of φ(X),

‖En(φ(X)|S ∈ B)− E(φ(X)|S ∈ B)‖
= sup

‖h‖≤1
|〈En(φ(X)|S ∈ B)− E(φ(X)|S ∈ B), h〉|

= sup
‖h‖≤1

|En(h(X)|S ∈ B)− E(h(X)|S ∈ B)|

12
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and bounds on the latter term are known. Similarly,

‖ES
nφ(X)− ESφ(X)‖ = sup

‖h‖≤1
|ES

nh(X)− ES(h(X))|. (8)

However, both ES
nφ(X) and ESφ(X) are random variables and a useful measure of their difference

is the L2-pseudo-norm. The L2-pseudo-norm should in this case not be taken with respect to P itself
but conditional on the training sample. Hence, for i.i.d. pairs (X,S), (X1, S1), . . . , (Xn, Sn) let
Fn = σ(X1, S1, . . . , Xn, Sn) and define the ‘conditional’ L2-pseudo-norm by

‖ES
nφ(X)− ESφ(X)‖22,n = EFn‖ES

nφ(X)− ESφ(X)‖2.
Substituting Equation (8) in shows that this expression is equal to

EFn

(
sup
‖h‖≤1

|ES
nh(X)− ESh(X)|2

)
.

The supremum cannot be taken out of the conditional expectation, however, by writing ES
nh(X) and

ESh(X) as simple functions (see Appendix A.1) we can get around this difficulty and control the
error in ‖ · ‖2,n. We demonstrate this in the following by deriving rates of convergence for two cases:
for the case where S is finite, and for the case where S is the unit cube in R

d for some d ≥ 1 and S
has a density that is bounded away from zero.

To derive these rates we rely, among other things, on the convergence of the empirical process
uniformly over families of functions related to the unit ball ofH and partitions of S. For instance, in
the case where S is finite we need to assume that

HS := {(h ◦ π1)× χ(X× {s}) : h ∈ H, ‖h‖ ≤ 1, s ∈ S},
as a family of real-valued functions on X× S, is a P -Donsker class. The function π1 : X× S→ X

is here the projection onto the first argument, i.e. π1(x, s) = x. For the definition of P -Donsker

classes see (Dudley, 2014; Giné and Nickl, 2016).
There are various ways to verify this condition in concrete settings. For example, ifH is a finite

dimensional RKHS then HS is a P -Donsker class under a mild measurability assumption. This
follows from a few simple arguments: any finite dimensional space of functions is a VC-subgraph
class (Giné and Nickl, 2016, Ex.3.6.11); this implies directly that {(h ◦ π1) × χ(X × {s}) : h ∈
H, ‖h‖ ≤ 1} is a VC-subgraph class for every s ∈ S. Furthermore, finite unions of VC-subgraph
classes are again a VC-subgraph class; under a mild measurbility assumption it follows now from
(Dudley, 2014, Cor.6.19) thatHS is a P -Donsker class.

There are obviously other ways to prove this statement. In particular, one might use that the unit
ball ofH is a universal Donsker class (see (Dudley, 2014; Giné and Nickl, 2016) for details) when the
kernel function is continuous and X is compact (this also holds whenH is infinite dimensional): due
to Marcus (1985) the unit ball of a Hilbert space is a universal Donsker class if supx∈X |h(x)| ≤ c‖h‖
for some constant c that does not depend on h. If the kernel function is bounded c =

√
k(x, x)

witnesses that this property holds.

Case 1: finitely many sensitive features. Our first proposition states that the estimator converges
with the optimal rate n−1/2 when S is finite andHS is a P -Donsker class.

Proposition 5 Given a finite space S and a P -Donsker classHS, it holds that

‖ES
nφ(X)− ESφ(X)‖2,n ∈ O∗

P (n
−1/2).

The proof is given in Appendix C.5.
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Case 2: [0, 1]d-valued sensitive features. We extend Proposition 5 to the case where S is not
confined to taking finitely many values. In order to state the result, we introduce the following
notation. Set S := [0, 1]d for some d ∈ N and let g : S → H be such that with probability one
ESφ(X) = g ◦ S (which is possible by Lemma 2). Consider a discretization of S into dyadic cubes
∆1,∆2, . . . ,∆ℓd of side-length 1/ℓ for some ℓ ∈ N. Define Cℓ := {X × ∆ : ∆ ∈ Dℓ} and let
HC := {h× χD : h ∈ H, ‖h‖ ≤ 1, D ∈ ⋃ℓ∈N Cℓ}.
Proposition 6 Suppose that the push forward measure µ := PS−1 has density u with respect to the

Lebesgue measure λ on S with the property that infs∈S u(s) ≥ b for some b > 0. Assume that g ◦ S
is L-lipschitz continuous and thatHC is a P -Donsker class. We have

‖ES
nφ(X)− ESφ(X)‖2,n ∈ O∗

P (n
− 1

2(d+1) ).

The proof is given in Appendix C.6.

6.3 Generating an oblivious random variable

Given a data-point (X,S) composed of non-sensitive and sensitive features X and S respectively,
we can generate an oblivious random variable Z as

Z := φ(X)− ES
nφ(X) + En(φ(X)). (9)

Most kernel methods work with the kernel matrix and do not need access to the features themselves.
The same holds in our setting. More specifically, we never need to represent Z explicitly in the
Hilbert space but only require inner-product calculations. In order to calculate the empirical estimates
of the conditional expectation ES

nφ(X) and of En(φ(X)) in (9) we consider a simple approach
whereby we split the training set into two subsets of size n, and use half the observations to obtain
the empirical estimates of the expectations. The remaining n observations are used to obtain an
oblivious predictor; we have two cases as follows.

Case 1 (M-Oblivious). The standard kernel matrix K is calculated with the remaining n obser-
vations and a kernel-method is applied to K to obtain a predictor g. When applying the predictor
to a new unseen data-point (X,S) we first transform X into Z via (9) and calculate the prediction
as 〈g,Z〉. As discussed in the Introduction, we conjecture that this approach is suitable in the case
where the labels Y are conditionally independent of the sensitive features S given the non-sensitive
features X , i.e. when S,X, Y form a Markov chain S → X → Y . As such we call this approach
M -Oblivious.

Case 2 (Oblivious). Instead of calculating the kernel matrix K an oblivious kernel matrix, i.e.

O =



‖Z1‖2 · · · 〈Z1,Zn〉

...
. . .

...
〈Zn,Z1〉 · · · ‖Zn‖2


 , (10)

is calculated by applying Equation (9) to the remaining training samples (Xi, Si) before taking inner
products. The oblivious matrix is then passed to the kernel-method to gain a predictor g. The matrix
is positive semi-definite since a⊤Oa = ‖∑n

i=1 aiZi‖2 ≥ 0, for any a ∈ R
n. The complexity to

compute the matrix is O(n2) (see Appendix E for details on the algorithm). Prediction for a new
unseen data-point (X,S) is now done in the same way as in Case 1.
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6.4 Oblivious ridge regression

In this section we showcase our approach in the context of kernel ridge regression. We have three
relevant random variables, namely, the non-sensitive features X , the sensitive features S and labels
Y which are real valued. We assume that we have 2n i.i.d. observations {(Xi, Si, Yi)}i≤2n. We use
the observations n+ 1, . . . , 2n to generate the oblivious random variables Zi and then use oblivious
data {(Zi, Yi)}i≤n for oblivious ridge regression (ORR).

The ORR problem has the following form. Given a positive definite kernel function k : X×X→
R, a corresponding RKHS H and oblivious features Zi. Our aim is to find a regression function
h ∈ H such that the mean squared error between 〈h,Z〉 and Y is small. Replacing the mean
squared error by the empirical least-squares error and adding a regularization term for h gives us the
optimization problem

ĥ = argmin
h∈H

n∑

i=1

(〈h,Zi〉 − Yi)2 + λ‖h‖2, (11)

where λ > 0 is the regularization parameter.
It is easy to see that the setting is not substantially different from standard kernel ridge regression

and derive a closed form solution for ĥ. More specifically, we have a representer theorem in this
setting which tells us that the minimizer lies in the span of Z1, . . . ,Zn. One can then solve the
optimization problem in the same way as for standard kernel ridge regression, see Appendix D for
details. The solution to the optimization problem is ĥ =

∑n
i=1 αiZi, where α = (O + λI)−1y.

The vector y is given by (Y1, . . . , Yn)
⊤. Predicting Y for a new observation (X,S) is achieved

by first generating the oblivious features Z (see Appendix E.2) and then by evaluating 〈Z, ĥ〉 =∑n
i=1 αi〈Z,Zi〉.

6.5 Comparison to (Donini, Oneto, Ben-David, Shawe-Taylor, and Pontil, 2018)

Our focus in this paper is on generating features that are less dependent on the sensitive features than
the original non-sensitive features. However, the conditional expectation ESφ(X), which is at the
heart of our approach, also features prominently in methods that add constraints to SVM classifiers.
In particular, in (Donini et al., 2018) a constraint is used to achieve approximately equal opportunity
in classification where the sensitive feature is binary. While their approach does not make explicit
use of conditional expectations one can recognize that the key object in their approach (Eq. (13)
in (Donini et al., 2018)) is, in fact, closely related to our conditional expectation when used in the
case where S can attain only two values (say S = {0, 1}). In detail, the optimization problem (14) is
constraint by enforcing for a given ǫ > 0 that the solution h∗ ∈ H fulfills

|En(h
∗(X)|S = 0)− En(h

∗(X)|S = 1)| ≤ ǫ. (12)

Considering Z = φ(X)− ESφ(X) +E(φ(X)) we can observe right away that in this setting for
all h ∈ H,

E(〈h,Z〉|S = 0) = E(〈h,Z〉|S = 1).

To see this observe that ES〈h,Z〉 is almost surely equal to the E(h(X)). In other words

E(〈h,Z〉|S = 0)× χ{S = 0}+ E(〈h,Z〉|S = 1)× χ{S = 1} = ES〈h,Z〉
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(a) (b)

Figure 3: Binary classification error vs. β̃-dependence between prediction and sensitive features is
shown for three different methods: classical Linear SVM, Linear FERM, and Oblivious SVM. In
Figure 3a the error is calculated with respect to the observed labels which are intrinsically biased and
in Figure 3a the error is calculated with respect to the true fair classification rule.

is almost surely constant. Unless P (S = 0) = 0 or P (S = 1) = 0 this implies that E(〈h,Z〉|S =
0) = E(〈h,Z〉|S = 1). Hence, for the max-margin classifier h∗ and Z it holds that E(〈h∗,Z〉|S =
0) = E(〈h∗,Z〉|S = 1) and on the population level our new features Z guarantee that constraint
(12) is automatically fulfilled.

7. Empirical evaluation

In this section we report our experimental results for classification and regression. Our objective in
the classification experiment is to point out an important property of supervised learning problems
where sensitive features affect both the non-sensitive features and the labels: the estimation error of
the observed labels can be misleading as a quality measure. The aim is much rather to predict values
in an unbiased fashion. The first experiment highlights this difference by considering a synthetic
data set for which we know the unbiased labels (though the true unbiased labels are not available
to the methods). We measure the dependencies between the predicted values and the sensitive
features, and compare against a standard SVM and to FERM. The second set of experiments aims to
investigate how dependencies between sensitive and non-sensitive features affect ORR and M-ORR.
We are investigating this relationship by considering a family of synthetic problems for which we
can adjust the dependency between the features using a parameter γ. In this set of experiments we
are also concerned with clarifying the relationship between ORR and M-ORR, where the latter is the
M-Oblivious version of KRR, see Section 6.3. Our implementation can be found at the following
repository: https://github.com/azalk/Oblivious.git.

7.1 Binary Classification

We carried out an experiment to mimic a scenario where a class of students should normally receive
grades between 0 and 5, and anyone with a grade above a fixed threshold θ = 2 should pass. Half
of the class, representing a “minority group”, are disadvantaged in that their grades are almost
systematically reduced, while the other half receive a boost on average. More specifically, let the
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sensitive feature S be a {0, 1}-valued Bernoulli random variable with parameter 0.5, and let X0 be
distributed according to a truncated normal distribution with support [1, 4]. Let the non-sensitive
feature X , representing a student’s grade, be given by

X := (X0 −B)χ{S = 0}+ (X0 +B)χ{S = 1}

where B is a Bernoulli random variable with parameter 0.9 independent of X0 and of S. The label
Y is defined as a noisy decision influenced by the student’s “original grade” X0 prior to the S-based
modification. More formally, let U be a random variable independent of X0 and of S, and uniformly
distributed on [0, 1]. Let Y0 := χ{U ≥ X0} and define

Y := Y0χ{X + S ≥ θ}.

Classification Error. In a typical classification problem, the labels Y depend on both X and S
so when we remove the bias it is not clear what we should compare against when calculating the
classification performance. Observe that our experimental construction here allows access to the true
ground-truth labels

Y ∗ := χ{X0 ≥ θ}. (13)

Therefore, we are able to calculate the true (unbiased) errors as well. However, this is not always the
case in practice. In fact, we argue that the question of how to evaluate fair classification performance
is an important open problem which has yet to be addressed.

Measure of Dependence. Let Fn := σ(X1, . . . , Xn, S1, . . . , Sn), n ∈ N be the σ-algebra gener-
ated by the training samples. In this experiment, we measure the dependence between the predicted
labels Ŷ produced by any algorithm and the sensitive features S as

β̃(Ŷ , S) :=
1

2

∑

s∈{0,1}

∑

y∈{0,1}

E
∣∣∣P (Ŷ = y, S = s|Fn)− P (Ŷ = y|Fn)P (S = s)

∣∣∣ (14)

which is closely related to the β-dependence (see, e.g. (Bradley, 2007, vol. I, p. 67)) between their
respective σ-algebras. We obtain an empirical estimate of β̃(σ(Ŷ ), σ(S)) by simply replacing the
probabilities in (14) with corresponding empirical frequencies.

Synthetic Experiment. We generated n = 1000 training and test samples as described above and
the errors reported for each experiment are averaged over 10 repetitions. Figure 3 shows binary
classification error vs. dependence between prediction and sensitive features for three different
methods: classical Linear SVM, Linear FERM, and Oblivious SVM. In Figure 3a the error is
calculated with respect to the observed labels which are intrinsically biased and in Figure 3a the error
is calculated with respect to the true fair classification rule Y ∗ given by (13). As can be seen in the
plots, the true classification error of Oblivious SVM is smaller than that of the other two methods.
Moreover, in both plots the β-dependence between the predicted labels produced by Oblivious SVM
and the sensitive feature is close to 0 and is much smaller than that of the other two methods.

Real-World Experiment. We evaluated the performance of our method on the so-called “Adult”
dataset, which is a benchmark dataset publicly available on the UCI Machine Learning Repository
(Dua and Graff, 2017). The dataset consists of more than 40K data-points, each composed of 14
features including an individual’s age, education, marital status, gender, occupation, and capital
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Figure 4: Plots 4a and 4b correspond to Ridge Regression Experiments 1 and 2 respectively. In both
plots, the performance of three estimators (KRR,ORR and M-ORR) is plotted against γ, where γ
controls the dependence of X on S. The case of γ = 0 corresponds to the highest dependence while
γ = 1 corresponds to the case in which X is independent of S.

gain/loss. The objective is to predict whether an individual’s income exceeds $50K per year. Table 1
outlines the result of our comparison against standard SVM and the FERM algorithm of Donini
et al. (2018), with gender marked as a sensitive feature. We used the repository provided by Donini
et al. (2018) to extract the data and run the experiments corresponding to both standard SVM and
FERM. The “smaller” option was used in data extraction, giving a total of 1628 training and 12661
testing data-points respectively. Both linear and Gaussian (RBF) kernels were considered. The
Gaussian kernel was parametrized by γ > 0, i.e. k(x, x′) = e−γ‖x−x′‖2 . The hyperparameters were
selected using a 5-fold cross-validation. The SVM regularization parameter C was varied between
2−4, 2−3, . . . , 24, and γ was selected from {0.001, 0.01, 0.1, 1}. As can be observed in the table, our
Oblivious (linear and non-linear) SVM reduces β̃-dependence between the label and the sensitive
feature as desired, while incurring a minimal increase in Mean Prediction Error. On the other hand,
FERM achieves the lowest DEO (see Donini et al. (2018)) for the linear kernel, while in the case of
RBF kernel our model provides the highest reduction in DEO.

7.2 Ridge-Regression

In this section we compare ORR with KRR and the ‘Markov’ version of ORR, M-ORR, which
applies the KRR solution to oblivious test features Z. We use an RBF kernel with σ = 1. We are
particularly interested in how the dependence of S on X affects the performance and in a comparison
of ORR to M-ORR. We use synthetic data to be able to control the dependence between S and X .
The basic data generating process is as follows. Sensitive features S and non-sensitive features U
are sampled independently from a uniform distribution with support [−5, 5]. The features X are a
convex combination of these two of the form X = γU +(1−γ)S, γ ∈ [0, 1]. We consider two ways
to generate the response variable Y . In Experiment 1, the response variable is Y = X2 + ǫ, where ǫ
is normally distributed with variance 0.1 and is independent of U and S. In this case S → X → Y
forms a Markov chain and we expect M-ORR to do well. In Experiment 2, the variable S influences

18



OBLIVIOUS DATA FOR FAIRNESS WITH KERNELS

Algorithm Mean Prediction Error DEO β̃-Dependence Relative

β̃-Dependence
SVM (Linear) 0.20 0.05 0.06 100%
FERM (Linear) 0.20 0.03 0.07 116%
Oblivious (Linear) 0.21 0.05 0.02 33%
SVM (RBF) 0.17 0.22 0.14 100%
FERM (RBF) 0.17 0.12 0.16 114%
Oblivious (RBF) 0.19 0.03 0.06 43%

Table 1: Comparison against standard SVM and FERM of Donini et al. (2018) on “Adult” benchmark
dataset (Dua and Graff, 2017), with gender marked as sensitive feature. Our algorithm reduces the
β̃-dependence between the label and the sensitive feature by 67% in the case of linear SVM and by
57% for non-linear SVM, while only incurring a minimal increase in Mean Prediction Error in both
cases. FERM achieves the lowest DEO for the linear kernel, while our model provides the highest
DEO reduction in the case of RBF kernel.

Y also directly and not only through X , i.e. Y = X2 +S2 + ǫ. We use here S2 instead of S because
S2 is not a zero mean random variable and cannot simply be consumed into the noise term.

Figure 4 shows the results of these experiments. In these experiments, γ varies between
0, 0.1, 0.2 . . . , 1. For each value of γ we generate 500 data points for ORR and M-ORR to in-
fer the conditional expectations and further 500 data points are used by all three methods to calculate
the ridge regression solution. For simplicity, we fixed a partition for the conditional expectation: the
set S = [−5, 5] is split into a dyadic partition consisting of 16 sets. Each method uses a validation set
of 100 data points (which are different from the 500 training data points) to select the regularization
parameter λ from 2−5, 2−4, . . . , 25. A test set of size 100 is used to calculate the mean squared error
(MSE). For each γ the experiment is repeated 20 times. Figure 4 reports the average MSE and the
standard deviation of the MSE over these 20 experiments.

We make the following observations from Figure 4a. KRR is the best estimator as it uses the
features X directly and not the new features Z. As γ → 1 both the ORR and M-ORR estimators
approach the KRR estimator since the effect of S on X vanishes. Both estimators do not quite
reach the performance of the KRR estimator. This is due to the additional uncertainty introduced by
estimating the conditional expectations. By definition, the ORR estimator will achieve the best fit of
the training data given the new features Z. We can observe that the M-ORR estimator is performing
as well as the ORR estimator even though the M-ORR estimator uses the KRR solution and applies it
to Z. This is due to the fact that S → X → Y forms a Markov chain. Finally, when γ = 0 both the
M-ORR and ORR estimator achieve an MSE that is very close to the best MSE that can be achieved
by a regressor that generates values which are independent of S: assume that some new features Z ′

are given which are a function of X and are independent of S. when γ = 0 this random variable Z ′

can only be independent of S if Z ′ is a constant. However, if Z ′ is a constant then the ridge-regressor
using Z ′ is also a constant and the MSE E(Y − c)2 = E(S4)− 2cE(S2) + c2 + 0.1 is minimized
for c = E(S2). The minimal value is approximately 56.2 which is very close to the values of the
ORR and M-ORR estimator.
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Figure 4b shares a few characteristics with Figure 4a as follows. For γ = 0 both M-ORR and
ORR attain an MSE that is close to the best possible (in the above sense) which is approximately equal
to 224.8. As before, KRR is the overall best estimator and ORR is the best estimator using features
Z. Furthermore, as γ → 1 both estimators become close to the KRR solution. A crucial difference
in this experiment is that S,X, Y does not form a Markov chain anymore and the performance of
M-ORR is worse than that of ORR for values of γ between 0.2 and 0.8. The performance of M-ORR
and ORR is essentially the same for γ = 0 and γ = 1. This is not surprising given that when γ = 0
then Y = 2S2 + ǫ and we are back in the Markov chain setting, while when γ = 1 then X is already
independent of S.

8. Discussion

We have introduced a novel approach to derive oblivious features which approximate non-sensitive
features well while maintaining only minimal dependence on sensitive features. We make use of
Hilbert-space-valued conditional expectations and estimates thereof; our plug-in estimators in this
case can be of independent interest in future research, and in turn open grounds for interesting
questions involving their guarantees. The application of our approach to kernel methods is facilitated
by an oblivious kernel matrix which we have derived to be used in place of the original kernel
matrix. We characterize the dependencies between the oblivious and the sensitive features in terms
of how ‘close’ the sensitive features are to the low-dimensional manifold φ[X]. One may wonder
if this relation can be exploited to further reduce dependencies, and potentially achieve complete
independence. Another important question concerns the interplay between the estimation errors
introduced by estimating conditional expectations and the estimation errors introduced by kernel
methods which are applied to the oblivious data.

Appendix A. Probability in Hilbert spaces: elementary results

In this section we summarize a few elementary results concerning random variables that attain values
in a separable Hilbert space which we use in the paper.

A.1 Measurable functions

There are three natural definitions of what it means for a function f : Ω → H to be measurable.
Denote the measure space in the following by (Ω,A) with the understanding that these definitions
apply, in particular, to Ω = R

d and A being the corresponding Borel σ-algebra.

1. f is Bochner-measurable iff f is the point-wise limit of a sequence of simple functions, where
S : Ω→ H is a simple function if it can be written as

S(ω) =
n∑

i=1

hi × χAi(ω)

for some n ∈ N, A1, . . . , An ∈ A and h1, . . . , hn ∈ H.

2. f is strongly-measurable iff f−1[B] ∈ A for every Borel-measurable subset B of H. The
topology that is used here is the norm-topology.
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3. f is weakly-measurable iff for every element h ∈ H the function 〈h, f〉 : Ω→ R is measurable
in the usual sense (using the Borel-algebra on R).

All three definitions of measurability are equivalent in our setting. We call a function f : Ω→ H
a random variable if it is measurable in this sense.

The main example in our paper is f = φ(X). This is a well defined random variable whenever
X : Ω→ R

d is a random variable and φ : Rd → H is Bochner-measurable. In particular, when the
kernel function is continuous φ is Bochner-measurable.

Appendix B. Hilbert space-valued conditional expectations

B.1 Basic properties

We recall a few important properties of Hilbert space valued conditional expectations. These
often follow from properties of real-valued conditional expectations through ‘scalarization’ (Pisier,
2016). In the following, let X,Z ∈ L2(Ω,A, P ;H) and B some σ-subalgebra of A. Due to Pisier
(2016)[Eq. (1.7)], for any f ∈ H

〈f,EBX〉 = EB〈f,X〉 (a.s.) (15)

and the right hand side is just the usual real-valued conditional expectation. It is also worth
highlighting that the same holds for the Bochner-integral E(X), i.e. for any f ∈ H, 〈f,E(X)〉 =
E〈f,X〉. This can be used to derive properties of EBX . For instance, since E(EB〈f,X〉) =
E〈f,X〉 is a property of real-valued conditional expectations we find right away that

〈f,E(X)〉 = E〈f,X〉 = E(EB〈f,X〉) = E〈f,EBX〉 = 〈f,E(EBX)〉.

Because E(X) and E(EBX) are elements ofH and for all f ∈ H

〈f,E(X)− E(EBX)〉 = 0

it follows that E(X) = E(EBX).

Another result we need is that if Z is B-measurable then

EB〈X,Z〉 = 〈EBX,Z〉 (a.s.).

Showing this needs a bit more work. Since Z ∈ L2(Ω,B, P ;H) there exist B-measurable simple
functions Un such that Un converges point-wise to Z, limn→∞ ‖U•

n −Z•‖2 = 0 and the sequence
fulfills ‖Un‖ ≤ 3‖Z‖ for all n ∈ N (Pisier, 2016)[Prop.1.2]. Consider some n and write

Un =
m∑

i=1

hi × χAi,
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for a suitable m ∈ N, hi ∈ H, Ai ∈ B, then

EB〈X, Un〉 =
m∑

i=1

EB(〈X, hi〉 × χAi)

=

m∑

i=1

(EB〈X, hi〉)× χAi

=

m∑

i=1

〈EBX, hi〉 × χAi

= 〈EBX, Un〉 (a.s.),

because χAi is B-measurable. For the right hand side point-wise convergence of Un to Z tells us
that for all ω ∈ Ω we have limn→∞ ‖Un(ω)−Z(ω)‖ = 0. Because EBX• ∈ L2(Ω,A, P ;H) we
also know that EBX is finite almost surely. Therefore, for ω in the corresponding co-negligible set,

lim
n→∞

|〈(EBX)(ω), Un(ω)〉 − 〈(EBX)(ω),Z(ω)〉| ≤ lim
n→∞

‖(EBX)(ω)‖‖Un(ω)−Z(ω)‖ = 0

and limn→∞〈EBX, Un〉 = 〈EBX,Z〉 almost surely.
By the same argument it follows that limn→∞〈X, Un〉 = 〈X,Z〉 almost surely. Let hn =

〈X, Un〉 and h = 〈X,Z〉 then |hn − h| ≤ ‖X‖‖Un − Z‖ ≤ 3‖X‖‖Z‖. Furthermore, |hn| ≤
|h|+ 3‖X‖‖Z‖ ≤ 4‖X‖‖Z‖ ≤ 4(‖X‖2 + ‖Z‖2). The right hand side lies in L1 and dominates
hn. Using Shiryaev (1989)[II.§7.Thm.2(a)], we conclude that

lim
n→∞

EB〈X, Un〉 = EB〈X,Z〉 (a.s.)

and the result follows.
The operator EB is also idempotent and self-adjoint, i.e.

EBX = EB(EBX) (a.s) and 〈X•, EBZ•〉2 = 〈EBX•,Z•〉2.

B.2 Representation of conditional expectations

A well known result in probability theory states that a conditional expectation ESX of a real-valued
random variable X given another real-valued random variable S can be written as g(S) with some
suitable measurable function g : R→ R. This result generalizes to our setting. Here, we include the
generalized result together with a short proof for reference.

Lemma 1 Consider a probability space (Ω,A, P ), and let H be a separable Hilbert space. Let

S : Ω → R
d be a random variable and suppose that η : Ω → H is a σ(S)-measurable function.

There exists a Bochner-measurable function g : Rd → H such that

η = g ◦ S almost surely.

Proof We first show the statement for simple functions, and observing that any arbitrary Bochner-
measurable function can be written as the point-wise limit of a sequence of simple functions, we
extend the result to arbitrary η.
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First, assume that η := hχA for some h ∈ H and A ∈ σ(S). Since S is measurable with respect
to B(Rd) there exists some B ∈ B(Rd) such that {ω : S(ω) ∈ B} = A. Define g : Rd → H as g :=
hχ̃B, where χ̃ denotes the indicator function on R

d. We obtain, η(ω) = hχA(ω) = hχ̃B(S(ω)) so
that η = g ◦ S. Next, let η :=

∑m
i=1 hiχAi for some m ∈ N, h1, . . . , hm ∈ H and A1, . . . , Am ∈

σ(S). As above, by measurability of S, there exists a sequence B1, . . . , Bm ∈ B(Rd) such that Ai =
S−1[Bi], i ∈ 1, . . . ,m. It follows that η(ω) =

∑m
i=1 hiχAi(ω) =

∑m
i=1 hiχ̃Bi(S(ω)), ω ∈ Ω;

hence, η = g ◦ S for g =
∑m

i=1 hiχ̃Bi. Observe that in both cases g is trivially Bochner-measurable
by construction, since it is a simple function.

Let η : Ω→ H be an arbitrary Bochner-measurable function that is also measurable with respect
to σ(S). There exists a sequence of simple functions ηn, n ∈ N such that for every ω ∈ Ω we have

η(ω) = lim
n→∞

ηn(ω).

Since each ηn is a simple function, by our argument above, there exists a sequence of Bochner-
measurable functions gn : Rd → H such that ηn = gn ◦ S where for each n ∈ N the function
gn is simple of the form gn =

∑mn

i=1 hi,nχ̃Bi,n for some mn ∈ N and a sequence of functions
h1,n, . . . , hmn,n ∈ H and a sequence of Borel sets B1,n, . . . , Bmn,n ∈ B(Rd).

Denote by B := {S(ω) : ω ∈ Ω} ⊂ R
d the image of S, and observe that for each x ∈ B

limn→∞ gn(x) exists. To see this, note that by construction, for each x ∈ B we have x = S(ω) for
some ω ∈ Ω, thus, it holds that

lim
n→∞

gn(x) = lim
n→∞

gn(S(ω)) = lim
n→∞

ηn(ω) = η(ω).

Moreover, we have P (S−1[B]) = P ({ω ∈ Ω : S(ω) ∈ B}) = P (Ω) = 1. Define g : Rd → H as

g(x) :=

{
limn→∞ gn(x) x ∈ B
0 x /∈ B

(16)

Thus, for each ω ∈ Ω with probability 1, we have

η(ω) = lim
n→∞

ηn(ω)

= lim
n→∞

gn(S(ω))

= g(S(ω)),

so that η = g ◦ S almost surely. On the other hand, since by definition, g is the pointwise limit of a
sequence of simple functions gn, it is Bochner-measurable, (see Property 1 in Section A.1) and the
result follows.

Lemma 2 Consider a separable Hilbert space H, a probability space (Ω,A, P ) , a Bochner-

integrable random variable φ(X) : Ω → H and a random variable S : Ω → R
d. There exists a

Bochner-measurable function g : Rd → H such that

ESφ(X) = g ◦ S almost surely.

Proof Observing that ESφ(X) is a σ(S)-measurable function from Ω to H, the result readily
follows from Lemma 1.
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Appendix C. Proofs

C.1 Proof of Proposition 1

Proof LetM := φ[X] denote the manifold corresponding to the image of X under φ, equipped with
the subspace topology and corresponding Borel σ-algebra B(M). Define the metric projection map

π : H⇒M as a multi-valued function such that

π(g) =

{
h ∈M : ‖h− g‖ = min

h′∈M
‖h′ − g‖

}
. (17)

Note that the min operator in Equation (17) is well-defined since by definition h = φ(x) for some
x ∈ X, the space X is compact and φ is a continuous function. Observe that π is not a function, but a
multi-valued function which assigns to each element g ∈M a subset ofM, see, e.g. (Beer, 1993,
Section 6.1) for more on this notion.

π maps to non-empty compact subsets of M. For each g ∈ H, set fg(h) = ‖h − g‖ with
h ∈ M, and note that it is a continuous function fromM to R. Let m(g) := minh∈M ‖h − g‖,
which, by the above argument, is well-defined, and observe that, since {m(g)} is a closed subset of
R, then π(g) = f−1

g [{m(g)}] is a closed subset ofM. SinceM is compact as the continuous image
of the compact space X it follows that π(g) is compact.

π is upper-semicontinuous. As follows from the standard definition, see, e.g. (Beer, 1993, Defini-
tion 6.2.4 and Theorem 6.2.5), the multi-valued function π is said to be upper-semicontinuous at a
point g0 ∈ H if for any open subset V ofM such that π(g0) ⊆ V it holds that π(g) ⊆ V for each g
in some neighbourhood of g0.2 To show the upper-semicontinuity of π we proceed as follows. Take
g0 ∈ H. Let V be an open subset ofM such that π(g0) ⊆ V . Denote by M̃ :=M\V . Note that M̃
is compact since it is a closed subset ofMwhich is in turn compact. Therefore, in much the same way
as forM, the min operator is well-defined for M̃, i.e. the minimum m̃(g0) := min

h∈M̃
‖g0 − h‖

exists. Moreover, since π(g0) ⊆ V and V ∩ M̃ = ∅, it holds that m̃(g0) > m(g0). Therefore, there
exists some δ > 0 such that m̃(g0) ≥ δ +m(g0). Consider an open ball Bg0(δ/3) of radius δ/3
around g0. For every g ∈ Bg0(δ/3) and all h ∈ π(g0) we have

‖g − h‖ ≤ ‖g0 − g‖+ ‖g0 − h‖ ≤ δ/3 +m(g0). (18)

On the other hand, we have

min
h′∈M̃

‖g − h′‖ ≥
∣∣‖g − g0‖− ‖g0 − h′‖

∣∣ ≥ m(g0) + 2δ/3. (19)

This implies that π(g) ∩ M̃ = ∅ because there are already better candidates (closer to g) in π(g0)

which is in turn contained in V and thus does not intersect M̃). Hence, it must hold that π(g) ⊆ V .
Finally, since the choice of g ∈ Bg0(δ/3) is arbitrary, it follows that for all g ∈ Bg0(δ/3) we have
π(g) ⊆ V and π is upper-semicontinuous.

φ is a homeomorphism. To see this, note that φ is bijective and continuous since the kernel is
positive definite and continuous: it is by definition surjective and it is injective since φ(x) = φ(y)
for x 6= y would imply that a21‖φ(x)‖2 − 2a1a2〈φ(x), φ(y)〉+ a22‖φ(y)‖2 = 0 when a1 = a2 = 1.
The statement follows now from (Engelking, 1989, Theorem 3.1.13) since X is compact andM is a
Hausdorff space.

2. Upper-semicontinuity is also referred to as upper-hemicontinuity for multi-valued functions in the literature.
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Measurable selection. Since π is upper-semicontinuous and maps to compact sets it is usco-

compact (Fremlin, 2001, Definition 422A). This implies that π is measurable as a function from
H to the compact subsets of M where the latter is equipped with the Vietoris topology and the
corresponding Borel algebra (Fremlin, 2001, Proposition 5A4Db). Furthermore, there exists a
Borel-measurable function f from the compact, non-empty, subsets ofM toM such that f(K) ∈ K
for every compact, non-empty, subset K ofM. Define W ′ = f(π(Z + h∗)) then W = φ−1(W ′) is
the continuous image of the measurable function W ′ and W has the stated properties.

C.2 Proof of Proposition 2

Proof (a) Let W be the random variable provided by Proposition 1 and let W = φ(W )− h∗. Then
‖Z −W‖2 = d(Z + h∗,M). Observe that two applications of the Cauchy-Schwarz inequality
yield

E(|〈f,Z〉 − f(W )− 〈f, h∗〉| × χB) ≤ E|〈f, (Z − φ(W )− h∗)× χB〉|
≤ ‖f‖E(χB × ‖Z −W‖)
≤
√
P (B)‖f‖‖Z −W‖2

for all f ∈ H. Similarly, for any f ∈ H it holds that

E|〈f,Z − φ(W )− h∗〉| ≤ ‖f‖E‖Z −W‖ ≤ ‖f‖‖Z −W‖2.

Noting that Z isH-independent of S we find that for any f ∈ H and B ∈ σ(S)
|E(f(W )× χB)− Ef(W )P (B)|
= |E((f(W )− 〈f, h∗〉)× χB)− E(f(W )− 〈f, h∗〉)P (B)|
≤ |E(〈f,Z〉 × χB)− E〈f,Z〉P (B)|+ (1 +

√
P (B))‖f‖‖Z −W‖2

≤ 2‖f‖ d(Z + h∗,M).

(b) For C ∈ σ(W ) let D be the image of C under W , i.e. D =W [C], D ⊂ X. For f ∈ H let

ξC(f) = ‖χD(W )− f(W )‖2.
Now, for any B ∈ σ(S),

|P (C ∩B)− E(f(W )× χB)| ≤ P (B)1/2(E(χD(W )− f(W ))2)1/2 ≤ ξC(f).
Moreover, we have |P (C)− Ef(W )| ≤ ξC(f). Hence, for any f ∈ H it holds that

|P (C ∩B)− P (C)P (B)| ≤ 2ξC(f) + |E(f(W )× χB)− Ef(W )P (B)|
≤ 2(ξC(f) + ‖f‖d(Z + h∗,M)).

This proves the first part of the proposition.
(c) For the second part: by assumption for A ∈ σ(Z) there exists a C ∈ σ(W ) such that

P (A△C) ≤ c. For any such C we have that |P (C)− P (A)| ≤ P (C△A) ≤ c and

|P (C ∩B)− P (A ∩B)| ≤ P ((C△A) ∩B) ≤ c.
Hence, |P (A∩B)−P (A)P (B)| ≤ 2c+2(ξC(f) + ‖f‖d(Z + h∗,M)) for all f ∈ H. Taking the
infimum over f and C proves the second part of the proposition.
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C.3 Proof of Proposition 3

First note that since φ is continuous and X is compact it follows that ρ is finite and

‖Z‖ = ‖φ(X)− ESφ(X) + Eφ(X)‖
≤ ‖φ(X)‖+ ‖ESφ(X)‖+ ‖Eφ(X)‖
≤ ‖φ(X)‖+ ES‖φ(X)‖+ E‖φ(X)‖ (20)

≤ 3ρ

where (20) follows from (Diestel and Uhl, 1977, Theorem II.4) and (Pisier, 2016, Proposition 1.12).
Let Zi, i ≤ n be n independent copies of Z and define Yi := minh∈M ‖Zi + h∗ − h‖, i ≤ n, and
Y := minh∈M ‖Z + h∗ − h‖. By Hoeffding’s inequality we have,

Pr

(∣∣∣∣∣
1

n

n∑

i=1

Yi − EY
∣∣∣∣∣ ≥ ǫ

)
≤ 2 exp

(
−2nǫ2

25ρ2

)

and the result follows.

C.4 Proof of Proposition 4

Proof (a) We first show that

〈ESφ(X)•, (Z ′)•〉2 = 〈E(φ(X)•), (Z ′)•〉2. (21)

ESφ(X)• is an element of L2(Ω, σ(S), P ;H) and there exists a sequence of σ(S)-measurable
simple function {Un}n∈N such that limn→∞ ‖U•

n − ESφ(X)•‖2 = 0. In particular,

lim
n→∞

〈U•
n, (Z

′)•〉2 = 〈ESφ(X)•, (Z ′)•〉2. (22)

Furthermore,

‖E(U•
n)− E(φ(X)•)‖2 ≤ E‖U•

n − ESφ(X)•‖2 = ‖U•
n − ESφ(X)•‖2 (23)

goes to zero in n.
Consider any Un =

∑m
i=1 hi × χAi where hi ∈ H, Ai ∈ σ(S), m ∈ N, and observe that

〈U•
n, (Z

′)•〉2 =
m∑

i=1

E〈hi × χAi,Z
′〉 =

m∑

i=1

E(〈hi,Z ′〉 × χAi) =
m∑

i=1

E〈hi,Z ′〉 × E(χAi),

using the assumption on Z ′. The assumption can be applied because χAi is σ(S)-measurable, and,
hence, can be written as a function of S (Shiryaev, 1989)[II.§4.Thm.3]. Furthermore,

m∑

i=1

E〈hi,Z ′〉 × E(χAi) = E〈
m∑

i=1

hi × E(χAi),Z
′〉 = E〈E(U•

n),Z
′〉

and 〈U•
n, (Z

′)•〉2 = 〈E(U•
n), (Z

′)•〉2. Equation (21) follows now from Equation (22), (23) and
E(ESφ(X)•) = E(φ(X)•).
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(b) Since

〈ESφ(X)•, (Z ′)•〉2 = 〈E(φ(X)•), (Z ′)•〉2

and 〈φ(X)•, ESφ(X)•〉2 = ‖ESφ(X)•‖22,

it readily follows that

‖φ(X)• − (Z ′)•‖22 = ‖φ(X)• −Z•‖22

+ 2〈ESφ(X)• − E(φ(X)•), φ(X)• − ESφ(X)• + E(φ(X)•)− (Z ′)•〉2

+ ‖Z• − (Z ′)•‖22

= ‖φ(X)• −Z•‖22 + ‖Z• − (Z ′)•‖22.

Hence, Z is a minimizer and it is almost surely unique because ‖Z• − (Z ′)•‖22 is only zero if
Z• = (Z ′)•.

C.5 Proof of Proposition 5

Proof (a) In the following, let s1, . . . , sl be the values S can attain. Furthermore, let fi =
En(φ(X)|S = si) − E(φ(X)|S = si), and let F = σ(X1, S1, . . . , Xn, Sn). Each fi is F-
measurable. Observe that for i 6= j,

EF (〈fi × χ{S = si}, fj × χ{S = sj}〉) = EF (〈fi, fj〉 × χ{S = si, S = sj})
= 〈fi, fj〉 · EF (χ{S = si, S = sj})
= 〈fi, fj〉 · P (S = si, S = sj)

= 0

since fi, fj are F-measurable and S is independent of F . Hence,

EF (‖ES
nφ(X)− ESφ(X)‖2) = EF

(∥∥∥
l∑

i=1

fi × χ{S = si}
∥∥∥
2)

=

l∑

i=1

EF (‖fi × χ{S = si}‖2)

=

l∑

i=1

EF (‖fi‖2 × χ{S = si})

=

l∑

i=1

‖fi‖2P (S = si)

=
l∑

i=1

P (S = si) sup
‖h‖≤1

|En(h(X)|S = si)− E(h(X)|S = si)|2.

(b) For each i either P (S = si) = 0 or

sup
‖h‖≤1

|En(h(X)|S = si)− E(h(X)|S = si)|2 ∈ O∗
P (n

−1)
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by an argument similar to that given for (Grünewälder, 2018, Proposition 3.1). Since there are only l
terms in the sum this result carries over to the whole sum.

C.6 Proof of Proposition 6

Proof Recall the notation Dℓ := {∆i : i ∈ 1, . . . , ℓd}, ℓ ∈ N where ∆1,∆2, . . . ,∆ℓd are the
dyadic cubes ∆1,∆2, . . . ,∆ℓd of side-length 1/ℓ discretizing S. Let G := σ({S−1[∆] : ∆ ∈ Dℓ})
and choose a Bochner measurable g : S → H according to Lemma 2 such that g(S) = ESφ(X)
(a.s.). Since G ⊆ σ(S) we have,

EGφ(X) = EG(ESφ(X))) = EG(g(S)) almost surely. (24)

In the following, we use g ◦ S instead of g(S) for readability. With probability one it holds that,

EF‖g ◦ S − EG(g ◦ S)‖2

= EF
( ∑

∆∈Dℓ

‖g ◦ S − EG(g ◦ S)‖2χ{S ∈ ∆}
)

=
∑

∆∈Dℓ

EF‖(g ◦ S − EG(g ◦ S))χ{S ∈ ∆}‖2

=
∑

∆∈Dℓ

EF‖(g ◦ S −
∑

∆′∈Dℓ

E(g ◦ S|S ∈ ∆′)χ{S ∈ ∆′})χ{S ∈ ∆}‖2

=
∑

∆∈Dℓ

EF
(
‖g ◦ S − E(g ◦ S|S ∈ ∆)‖2χ{S ∈ ∆}

)

By (Diestel and Uhl, 1977, II.Corollary 8) for any ∆ ∈ Dℓ it holds that the conditional expectation
of g given ∆ is in the closed convex hull of g[∆] := {g(s) : s ∈ ∆}. That is,

1

µ(∆)

∫

∆
g dµ ∈ cch(g[∆])

This means that for every ǫ > 0 there exist k ∈ N, and some s1, . . . , sk ∈ ∆ and α1, . . . , αk > 0
with

∑k
j=1 αi = 1 such that

∥∥∥ 1

µ(∆)

∫

∆
g dµ−

k∑

j=1

αjg(sj)
∥∥∥
2
≤ ǫ.

Let D := S−1[∆]. We obtain

1

µ(∆)

∫

∆
g dµ =

1

P (D)

∫

D
(g ◦ S) dP = E(g ◦ S|S ∈ ∆).
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Since g ◦ S is assumed to be L-Lipschitz-continuous, for all ∆ ∈ Dℓ we have

‖g ◦ S −
k∑

j=1

αjg(sj)‖2χ{S ∈ ∆}

≤ sup
s∈∆
‖

k∑

j=1

αj(g(s)− g(sj))‖2

≤ sup
s∈∆

(
k∑

j=1

αj‖g(s)− g(sj)‖)2

≤
( k∑

j=1

αj sup
s∈∆
‖g(s)− g(sj)‖

)2

≤ L2
( k∑

j=1

αj sup
s∈∆
‖s− sj‖

)2

≤ dL2ℓ−2.

Moreover, noting that χ{·} = χ2{·} we obtain, ‖g ◦ S −∑k
j=1 αjg(sj)‖χ{S ∈ ∆} ≤ L

√
dℓ−1. It

follows that,

‖(g ◦ S − E(g ◦ S|S ∈ ∆))χ{S ∈ ∆}‖2

= ‖(g ◦ S − E(g ◦ S|S ∈ ∆))‖2χ{S ∈ ∆}

≤
(∥∥g ◦ S −

k∑

j=1

αjg(sj)
∥∥+

∥∥
k∑

j=1

αjg(sj)− E(g ◦ S|S ∈ ∆)
∥∥
)2
χ{S ∈ ∆}

≤
(∥∥(g ◦ S −

k∑

j=1

αjg(sj))
∥∥+ ǫ

)2
χ{S ∈ ∆}.

Since this holds for every ǫ > 0 we have,

‖(g ◦ S − E(g ◦ S|S ∈ ∆))χ{S ∈ ∆}‖2 ≤ dL2ℓ−2.

Observe that for ∆ 6= ∆′, ∆,∆′ ∈ Dℓ,

EF
(
‖g ◦ S − E(g ◦ S|S ∈ ∆)‖χ{S ∈ ∆} × ‖g ◦ S − E(g ◦ S|S ∈ ∆′)‖χ{S ∈ ∆′}

)
= 0

and

EF‖g ◦ S − EG(g ◦ S)‖2 =
∑

∆∈Dℓ

EF‖g ◦ S − E(g ◦ S|S ∈ ∆)‖2χ{S ∈ ∆}

=
∑

∆∈Dℓ

EF‖g ◦ S − E(g ◦ S|S ∈ ∆)‖2χ2{S ∈ ∆}

=
∑

∆∈Dℓ

EF‖(g ◦ S − E(g ◦ S|S ∈ ∆))χ{S ∈ ∆}‖2χ{S ∈ ∆}

≤ dL2ℓ−2.
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In particular,
EF‖g ◦ S − EGφ(X)‖2 ≤ dL2ℓ−2. (25)

On the other hand, in much the same way as in the proof of Proposition 5, we have

EF (‖ES
nφ(X)− EGφ(X)‖2) =

∑

∆∈Dℓ

P (S ∈ ∆) sup
‖h‖≤1

|En(h(X)|S ∈ ∆)− E(h(X)|S ∈ ∆)|2.

Let U := (X,S) and define the push forward measure ν := P ◦ U−1 of P onto X × S under U .
Set νn := 1

n

∑n
i=1 δ(Xi,Si) where δ(X,S) denotes the measure that has point mass at (X,S). Define

the projection map π : X × S → X which maps a tuple (x, s) ∈ X × S to its first element so that
π((x, s)) = x. For each h ∈ H such that ‖h‖ ≤ 1 and every ∆ ∈ Dℓ we obtain

|En(h(X)|S ∈ ∆)− E(h(X)|S ∈ ∆)|2

= |En(h(π(U))|U ∈ X×∆)− E(h(π(U))|U ∈ X×∆)|2

=
∣∣∣
∫

X×∆
h ◦ π dνn −

∫

X×∆
h ◦ π dν

∣∣∣
2
.

For each ℓ ∈ N define Cℓ := {X × ∆ : ∆ ∈ Dℓ}. By assumption, HC = {h × χD : h ∈
H, ‖h‖ ≤ 1, D ∈ ⋃ℓ∈N Cℓ} is P -Donsker and for D ∈ Cℓ, with D = X × ∆i for i ≤ ℓ,

ν(D) = PS−1[∆i] ≥ bℓ−d. For a given α ∈ (0, 1/2) let ℓ be ⌊nα/d⌋ so that ℓ−d ≥ n−α. Similarly
to (Grünewälder, 2018, Proposition 3.2) it follows that there exists a constant M such that for all
n ≥ 1 and corresponding ℓ,

sup
‖h‖≤1

sup
C∈Cℓ

∣∣
∫

C
h ◦ π dνn −

∫

C
h ◦ π dν

∣∣ ≤ 2Mℓdn−1/2/b.

Thus,

EF (‖ES
nφ(X)− EGφ(X)‖2) ≤ 4M2ℓ2d/nb2. (26)

Using Equation (25) and (26) as well as the Cauchy-Schwarz inequality for conditional expectations
we obtain,

EF (‖ES
nφ(X)− ESφ(X)‖2) ≤ EF (‖ES

nφ(X)− EGφ(X)‖+ ‖EGφ(X)− ESφ(X)‖)2

≤ 4M2ℓ2d/nb2 + 4M
√
dLℓd−1n−1/2/b+ dL2ℓ−2.

Because ℓ = ⌊nα/d⌋ the upper-bound becomes

4M2n2α−1/b2 + dL2/(n−α/d − 1)2 + 4M
√
dLnα(1−

1
d
)− 1

2 /b.

We claim that the rate of convergence in n is optimized by α∗ = d/2(d+ 1): For α ≥ α∗ we have

2α− 1 ≥ α(1− 1/d)− 1/2 ≥ −2α/d
and the dominant term 2α− 1 is minimized at α∗. On the other hand, for α ≤ α∗,

2α− 1 ≤ −2α/d and α(1− 1/d)− 1/2 ≤ −2α/d.
In this case the dominant term is also minimized for α∗. Therefore, we must set

ℓ∗ = ⌊nα∗/d⌋ = ⌊n
1

2(d+1) ⌋.
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Appendix D. Solution to the oblivious kernel ridge regression optimization problem

Define zi := (〈Z1,Zi〉 · · · 〈Zn,Zi〉)⊤ , i ∈ 1..n, and observe that

O =



| | . . . |
z1 z2 . . . zn
| | . . . |


 .

Let f̂ be the minimizer of the regularized least-squares error as given by (11). By the represen-
ter theorem there exist scalars α1, . . . , αn such that f̂ =

∑n
j=1 αjZj . It follows that 〈f̂ ,Zi〉 =∑n

j=1 αj〈Zj ,Zi〉 so that,

n∑

i=1

(〈f̂ ,Zi〉 − Yi)2 + λ‖f̂‖2 = (Oα− y)(Oα− y)⊤ + λα⊤Oα (27)

where α := (α1, . . . , αn)
⊤ and y := (Y1, . . . , Yn)

⊤. Noting that f̂ is the minimizer, and thus taking
the gradient of (27) with respect to α we obtain,

∇α

(
(Oα− y)(Oα− y)⊤ + λα⊤Oα

)
= 0.

Solving for α and noting that O is symmetric, we obtain

α = O−1
(
O⊤ + λI

)−1
O⊤y

= O−1
(
O⊤ + λI

)−1
Oy since O is symmetric

= O−1
(
O⊤ + λI

)−1
(O−1)−1y

=
(
O−1

(
O⊤ + λI

)
O
)−1

y

=
(
(O−1O + λO−1)O

)−1
y since O is symmetric

= (O + λI)−1y.

Appendix E. Algorithms

We discuss three algorithms in this section: an algorithm to calculate the oblivious kernel matrix
(Section E.1), an algorithm to calculate 〈Z,Zi〉 which is needed for prediction (Section E.2), and an
algorithm to calculate W , the projection of Zi ontoM, which also allows us to estimate the distance
between Z andM (Section E.3).

E.1 Calculating the oblivious kernel matrix

We start by deriving the algorithm for calculating the oblivious matrix. The result algorithm is
summarized in Algorithm 1 on page 32. Throughout we assume that A1, . . . , Al is a partition of S
and we assume that 2n samples (Xi, Si) are available. The algorithm splits the data into two parts of
size n and uses the samples n+ 1, . . . , 2n to estimate the conditional expectation. The remaining n

31



GRÜNEWÄLDER AND KHALEGHI

Algorithm 1 Generating the oblivious kernel matrix; the sum over an empty index set is treated as 0

Input: data (x1, s1), . . . (x2n, s2n), disjoint sets A1, . . . , Aℓ which cover S
set M =

∑2n
i=n+1

∑2n
j=n+1 k(xi, xj)/n

2

set Ii = ∅, i ∈ 1, . . . , ℓ
for i = n+ 1 to 2n do

find index u such that si ∈ Au

update Iu ← Iu ∪ {i}
end for

for i = 1 to n do

set ρi =
∑2n

u=n+1 k(xi, xu)/n
for a = 1 to l do

set ξi,a =
∑

u∈Ia
k(xi, xu)/|Ia|

end for

end for

for a = 1 to l do

set τa =
∑

u∈Ia

∑2n
v=n+1 k(xu, xv)/(n|Ia|)

for b = 1 to l do

set oa,b =
∑

u∈Ia,v∈Ib
k(xu, xv)/(|Ia||Ib|)

end for

end for

for i = 1 to n do

for j = i to n do

set a such that sj ∈ Aa

set b such that si ∈ Ab

set Oi,j = k(xi, xj)− ξi,a − ξj,b + oa,b +M − ρi − ρj − τa − τb
set Oj,i = Oi,j

end for

end for

Return: O

samples are then used to generate the features Zi, i = 1, . . . , n. The features Zi will not be explicitly
stored. The only thing that will be stored is the oblivious matrix O. To calculate the oblivious matrix
we only need kernel evaluations. To see this consider any i ≤ n, then

Zi = φ(Xi)− ESi
n φ(X) = φ(Xi)−

l∑

u=1

En(φ(X)|S ∈ Au)× χ{Si ∈ Au}.

For u = 1, . . . , l let

Nu =

2n∑

v=n+1

χ{Sv ∈ Au}
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be the number of samples with indices within n+ 1, . . . , 2n that fall into set Au. The estimate of the
elementary conditional expectation is

En(φ(X)|S ∈ Au) =
1

Nu

2n∑

v=n+1

φ(Xv)× χ{Sv ∈ Au},

which attains values inH.
Now consider the inner product between Zi and Zj , i, j ≤ n:

〈Zi,Zj〉 =〈φ(Xi), φ(Xj)〉 − 〈φ(Xi), E
Sj
n φ(X)〉 − 〈ESi

n φ(X), φ(Xj)〉
+ 〈ESi

n φ(X), E
Sj
n φ(X)〉+ 〈φ(Xi), En(φ(X))〉

+ 〈En(φ(X)), φ(Xj)〉 − 〈ESi
n φ(X), En(φ(X))〉

− 〈En(φ(X)), E
Sj
n φ(X)〉+ 〈En(φ(X)), En(φ(X))〉.

This reduces to calculations involving only the kernel function and no other functions fromH. In
detail,

〈φ(Xi), φ(Xj)〉 = k(Xi, Xj),

and

〈φ(Xi), E
Sj
n φ(X)〉 =

l∑

u=1

〈φ(Xi), En(φ(X)|S ∈ Au)〉 × χ{Sj ∈ Au},

where

〈φ(Xi), En(φ(X)|S ∈ Au)〉 =
1

Nu

2n∑

l=n+1

〈φ(Xi), φ(Xl)〉 × χ{Sl ∈ Au}

=
1

Nu

2n∑

l=n+1

k(Xi, Xl)× χ{Sl ∈ Au}.

The inner product 〈En(φ(X)|S ∈ Au), φ(Xj)〉 can be calculated in the same way. Furthermore,

〈ESi
n φ(X), E

Sj
n φ(X)〉 =

l∑

u=1

l∑

v=1

〈En(φ(X)|S ∈ Au), En(φ(X)|S ∈ Av)〉χ{Si ∈ Au, Sj ∈ Av}

and

〈En(φ(X)|S ∈ Au), En(φ(X)|S ∈ Av)〉

=
1

NuNv

2n∑

l=n+1

2n∑

m=n+1

〈φ(Xl), φ(Xm)〉 × χ{Sl ∈ Au, Sm ∈ Av}

=
1

NuNv

2n∑

l=n+1

2n∑

m=n+1

k(Xl, Xm)× χ{Sl ∈ Au, Sm ∈ Av}.

The terms involving En(φ(X)) = (1/n)
∑2n

i=n+1 φ(Xi) are reduced in a similar way to kernel
evaluations. Combining these calculations leads to Algorithm 1.
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E.2 Prediction based on oblivious features

To be able to predict labels for new observations (X,S) in a regression or classification setting we
need to transform (X,S) into an oblivious feature Z. The approach to do is the same as for the

training data. In particular, the conditional expectation estimates E
Sj
n φ(X) are needed to transform

(X,S) into Z. For kernel methods Z itself is never calculated explicitly but it appears in algorithms
in the form of inner products 〈Z,Zi〉, where i ≤ n and Zi are the oblivious features corresponding to
the training set. These inner product can be calculated in exactly the same way as the inner products
〈Zi,Zj〉 in Section E.1.

E.3 Projecting the oblivious features onto the manifold

The quadratic distance between Z, or more precisely Z(ω), andM inH is equal to

inf
x∈X
‖Z − φ(x)‖2 = ‖Z‖2 + inf

x∈X
(k(x, x)− 2〈Z, φ(x)〉).

The constant ‖Z‖2 is of no relevance and we are looking for a minimum (when this is well-defined)
of the function

f(x) = k(x, x)− 2〈Z, φ(x)〉
in X. Using the conditional expectation ES

nφ(X) and Z = φ(X)− ES
nφ(X) + E(φ(X)) we can

rewrite f(x) as

f(x) = k(x, x)− 2(k(X,x)− ES
nk(X,x) + E(k(X,x)).

The function f is (α,L)-Hölder continuous whenever k(x, ·) is (α,L′)-Hölder-continuous for all
x ∈ X with L = 8L′, since then

|f(x)− f(y)| ≤ |k(x, x)− k(y, y)|+ 2(|k(X,x)− k(X, y)|+ ES
n |k(X, y)− k(X,x)|
+ E|k(X,x)− k(X, y)|)

≤ |k(x, x)− k(x, y)|+ |k(x, y)− k(y, y)|+ 6L′‖y − x‖α = 8L′‖y − x‖α.

This property of f is useful because various kernel functions are Hölder-continuous and efficient
algorithms are available to optimize Hölder-continuous functions. In particular, there exist classical
global optimization algorithms (Vanderbei, 1997) and bandit algorithms (Munos, 2014) for this task.

The projection of Z ontoM can also be used directly to approximate dn(Z + h∗,M) and, by
applying Proposition 3, to estimate d(Z + h∗,M).
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