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Abstract
Increasing aridity can sharply reduce vegetation productivity in drylands, but elevated CO2 and
warming can enhance vegetation growth. However, the extent to which these positive effects
counteract the negative effects of heightened aridity on vegetation productivity remains uncertain.
Here, we used space-for-time substitution to assess the responses of 15 ecosystem variables to
aridity in China’s drylands and predicted vegetation productivity under future aridity, temperature,
precipitation, nitrogen deposition, and CO2. The results showed that vegetation productivity
decreased abruptly as aridity (1-precipitation/potential evapotranspiration) increased to the
threshold of 0.7, which corresponds to the vegetation decline stage in the dryland ecosystem’s
response to increasing aridity. Future projections suggest that 12.8% of China’s drylands will cross
aridity thresholds (0.7, 0.8, and 0.95) by 2100, in which vegetation productivity will significantly
increase by 40.0%. Elevated CO2 will stimulate vegetation growth, but continuously rising
temperature and CO2 by 2100 will have adverse effects, particularly in regions with limited
nitrogen and water. This study suggests that effective adaptation and mitigation actions should be
developed for regions crossing aridity thresholds, to ensure that drylands maintain the capacity to
provide essential ecosystem services required to support the increasing population.

1. Introduction

Drylands, defined as regions with an aridity index
(AI) below 0.65, represent areas where the mean
annual precipitation is outweighed by the mean
annual potential evapotranspiration (Mirzabaev et al
2019). In China, drylands cover a vast area of approx-
imately 657.5 × 104 km2, comprising approxim-
ately 66% of the country’s land area (Li et al 2021),
home to 580 million people (7% of the global pop-
ulation) (van der Esch 2017). These areas provide
essential ecosystem services such as water and food,
soil nutrients, and biodiversity conservation, but are
highly vulnerable (Huang et al 2018) to desertifica-
tion triggered by climate change and human activit-
ies (D’Odorico et al 2013, Huang et al 2017, Li et al

2023). Desertification poses significant challenges to
water resources, food security, and carbon sequest-
ration in China’s drylands (Wang et al 2008), and
nearly one-third of global dryland expansion is attrib-
uted to the expansion of Chinese drylands (Prăvălie
et al 2019). Monitoring ecosystem indicators, such as
vegetation productivity and soil nutrient levels, plays
a crucial role in detecting land degradation and com-
bating desertification onset in these regions (Berdugo
et al 2017).

Field-based studies in China’s drylands have iden-
tified abrupt, non-linear changes in ecosystem attrib-
utes in response to aridification (Wang et al 2014,
Luo et al 2016, Hu et al 2021) For example, Wang
et al (2014) observed a hump-shaped correlation
between soil N isotopic values and aridity, with a peak
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occurring at an aridity level of 0.68. Similarly, Hu et al
(2021) found a shift in the dominant role of plant spe-
cies diversity in soilmicrobial diversity and soilmulti-
functionality at an aridity level of 0.8. These findings
underscore the strong correlation between key eco-
system variables and aridity but also reveal challenges
in detecting thresholds across extensive gradients due
to the limitations of field sampling, such as practical
constraints, limited data collection, and lack of tem-
poral coverage. (Maestre et al 2012, Berdugo et al
2022b). To overcome these limitations, the integra-
tion of data from remote sensing and published stud-
ies offer a practical solution for constructing large-
scale datasets and proxies for ecosystem structure and
function (Abel et al 2019, Smith et al 2019, Hillebrand
et al 2020, Berdugo et al 2022a).

Given the significant role of drylands in global
carbon cycles and their susceptibility to climate
change (Yao et al 2020), understanding the dynam-
ics of vegetation productivity is crucial. While previ-
ous studies using satellite remote sensing have iden-
tified notable greening trends in the northern dry-
lands of China (Fu et al 2024), browning trends
have been observed in the drylands of the south-
western United States and Australia (Wang et al
2022). Human land-use practices, such as afforesta-
tion, contribute to greening trends, whereas natural
factors, including climate change, CO2 fertilization,
and nitrogen deposition, also play a role in veget-
ation productivity changes (Piao et al 2020, Wang
et al 2022). For instance, trends and fluctuations in
precipitation and temperature influence variations in
plant water availability (Higgins et al 2023). Nitrogen
availability is crucial for plant growth, with insuffi-
cient nitrogen utilization impeding growth and excess
nitrogen-enhancing growth in nitrogen-limited sys-
tems (Greaver et al 2016). The rapid increase in
potential evapotranspiration due to global warming
exceeds that of precipitation, leading to atmospheric
aridity (Jianping Huang et al 2016). Concurrently,
a substantial escalation in atmospheric CO2 levels
has been found to alleviate the negative effects of
aridification caused by global warming on vegeta-
tion growth (Zhang et al 2020). Elevated CO2 levels
result in CO2 fertilization, enhancing photosynthesis
by increasing substrate concentration and decreasing
competition with O2 at Rubisco reaction sites (Sellers
et al 1996, O’Ishi et al 2009, Donohue et al 2013).
Particularly in regions with limited water availabil-
ity, an increase in CO2 concentration triggers the par-
tial closure of stomata in plants, maintaining the leaf-
internal to ambient CO2 concentration ratio, thereby
enhancing water use efficiency (Sellers et al 1996,
Lian et al 2021). Consequently, plant growth may
still be promoted even under arid atmospheric condi-
tions. Nonetheless, the positive effects of heightened
CO2 levels on plant growth are moderated by other
environmental factors, such as constraints imposed

by soil water availability and essential nutrients such
as nitrogen and phosphorus (Reich et al 2014, Wang
et al 2020). The influence of environmental factors
on vegetation is intricate, and its response to cli-
mate change remains debatable. Especially, as eco-
systems transition across aridity thresholds, indicat-
ing vulnerability to sudden shifts in ecosystem struc-
ture and function, the degree to which increased CO2

can counteract the adverse effects of aridification on
vegetation remains uncertain.

Predicting vegetation dynamics and their primary
driving forces in hotspot regions crossing aridity
thresholds due to climate change will enhance our
understanding of climate-vegetation interactions and
carbon cycles, facilitating policymakers and land
managers to adapt their management approaches to
mitigate dryland degradation. Earth system models
(ESMs) are essential tools for this task, as they integ-
rate interactions between the atmosphere, biosphere,
and human activities to project how aridity and veget-
ation productivity will change under various cli-
mate scenarios (Flato 2011, Bonan and Doney 2018).
The Shared Socioeconomic Pathways (SSPs) frame-
work within ESMs outlines potential future scenarios
based on different levels of greenhouse gas emissions
and socio-economic development (Rohat et al 2018).
Research using ESMs indicates that high-emission
scenarios may lead to significant declines in veget-
ation productivity in arid regions due to increased
aridity (Lian et al 2021). However, some models sug-
gest that elevated CO2 could partially mitigate these
losses, especially in lower-emission scenarios (Piao
et al 2020). However, the extent of this mitigation
remains uncertain, particularly due to potential lim-
itations imposed by nutrient availability and other
environmental factors.

In this study, we evaluated how 15 indicators
from remote sensing datasets andmeta-analysis data-
sets change along a wide aridity gradient in China’s
drylands. We integrated predictions from Coupled
Model Intercomparison Project Phase 6 (CMIP6)
models on future climate and vegetation dynam-
ics to identify regions where future aridity will
cross critical thresholds, analyze the trends in future
vegetation productivity, and evaluate the key envir-
onmental factors driving vegetation changes. The
objectives were to: (1) identify thresholds of key eco-
system attributes in response to increasing aridity,
(2) identify spatial hotspots where critical aridity
thresholds will be crossed by 2100, and (3) predict the
trend of multi-year average summer gross primary
productivity (GPP) changes and determine the dom-
inant driving factors influencing changes in GPP in
threshold-crossing regions through CMIP6 models.
Identifying abrupt changes in the correlation between
aridity and ecosystem indicators exposes signific-
ant vulnerabilities of dryland ecosystems to global
climate change. Understanding vegetation dynamics
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and their drivers is fundamental for enhancing and
informing drylandmanagement under the increasing
pressures of climate change.

2. Materials andmethods

2.1. Data collection
We selected variables that were important for determ-
ining key ecosystem attributes and processes, includ-
ing nutrient cycling, plant productivity, biotic inter-
actions, biodiversity, climatic patterns, soil health,
and land degradation (Berdugo et al 2020, Wu et al
2020). Generally, these variables characterize three
primary ecosystem components and processes: soils,
plants, and plant–soil interactions (table 1). These
variables were instrumental in assessing the response
of ecosystem structure and function to increasing
aridity and in identifying aridity thresholds. The vari-
ables were mainly sourced from interpolated data,
remote sensing data, and information extracted from
the published literature. To ensure temporal con-
sistency when calculating aridity thresholds, we pre-
dominantly opted for time series datasets covering
the period 1980–2015 for averaging. In cases where
such time series were unavailable, we selected the
closest available time series. For single-period data,
such as the contents of soil organic carbon and soil
nitrogen, as well as soil texture, which exhibits min-
imal short-term variability, the absence of drastic
changes within the short term justified their use even
without a complete time series spanning 1980–2015.
Interpolated and remote sensing data were acquired
by sampling points at 12 arc-minute intervals from
freely accessible global maps. We specifically focused
on sample pointswithinChina’s drylands (AI< 0.65),
discarding those classified as urban, cultivated land,
or water bodies by the FAO. This process resulted in
12 450 remaining points for the analysis (figure S1).
The variables extracted at each point and the data
retrieved from published literature are described in
table 1.

To assess vegetation dynamics and their driv-
ing factors in drylands under future climate change,
we derived simulated precipitation, potential evapo-
transpiration, GPP, surface air temperature, surface-
atmosphere CO2, and nitrogen deposition simula-
tion datasets from monthly mean products from 3
CMIP6 models with 16 variants (table S1), which
are the only collections available. Nitrogen depos-
ition includes the dry and wet deposition of NH3,
NH4, and NOy (total reactive nitrogen) (Matson
et al 2002). These simulations include SSPs covering
SSP1-2.6 (strong climate change mitigation), SSP2-
4.5 (moderate mitigation), SSP3-7.0 (no mitigation
baseline), and SSP5-8.5 (no mitigation, worst case)
scenarios, respectively. The simulated data cover the
period from 1980 to 2100, with a spatial resolution of
250 km, which is the highest resolution available that

includes the required variables. Variables were bilin-
early interpolated to 10 km subsets and aggregated
to a yearly timescale. GPP, precipitation, temperat-
ure, CO2, andnitrogen deposition datawere extracted
from the monthly data for summer, defined as June–
August (Zhang et al 2022b).

2.2. Methods
The value obtained by subtracting the AI from 1 was
used to represent aridity in this study. Therefore, the
representation of aridity in drylands spans from 0.35
to 1, with elevated aridity values denoting heightened
aridity levels. Assessing responses to aridity involved
fitting relationships between all scrutinized ecosystem
variables and aridity (table 1) using both linear and
non-linear methods, such as general additive models
(GAM) (Manzoni et al 2008). We treated the linear
model as a nullmodel, assuming a gradual response of
a given ecosystem attribute as aridity increases. GAM
model reveals a nonlinear but continuous pattern
across the aridity gradient. The optimal fit for each
scenario was determined using the Akaike inform-
ation criterion (AIC). AIC acts as a benchmark for
evaluating the complexity of statistical models and
gauging their adequacy of fit of statistical models
(Cavanaugh and Neath 2019). The model with the
lowest AIC value, signifying the best fit, was capable of
explaining the data most effectively while employing
the fewest free parameters.

We investigated the presence of thresholds by
examining non-linear regressions that provided a bet-
ter fit to the data. Thresholds can be of two types:
continuous or discontinuous, denoting a gradual
or abrupt change in a variable with environmental
pressure, respectively. We applied threshold mod-
els such as segmented, step, and stegmented (sup-
porting information), to identify these thresholds,
using AIC criteria to determine the best model and
its corresponding threshold. The R packages chngpt
and gam were used to apply segmented/step/steg-
mented and GAM regressions, respectively. However,
these regressions do not necessarily indicate crit-
ical shifts, for which time-series analysis is required.
To determine the optimal number of homogeneous
threshold groups, we employed the cluster analysis by
Elbow method, which use an analysis of the within-
cluster sum of squares for various cluster numbers
(TeamRDC2008). These thresholdswere then organ-
ized into phases. We utilized aridity maps derived
from CMIP6 climate models to identify regions likely
to surpass the primary aridity thresholds identified
because of the escalating aridity driven by climate
change.

Partial correlation analysis was used to evalu-
ate the partial correlation between GPP and one of
the environmental factors (precipitation, temperat-
ure, CO2, and nitrogen deposition) after controlling
for other factors (Jiao et al 2021, Zhang et al 2022b).
Cross convergent mapping (Sugihara et al 2012) is
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Table 1. Description and origin of the map variables used in this study.

Variable
typology Variables taken Description References

Spatial
resolution

Temporal
resolution

Climate Aridity index The ratio of annual precipitation
to annual potential
evapotranspiration. Data is
derived from the global aridity
index (Global-Aridity) and global
potential evapo-transpiration
(Global-PET) geospatial database.

(Trabucco and
Zomer 2018)

30 arc-secs 1970–2000, yearly

Climate Inter-annual
precipitation
variability

Coefficient of variation of
interannual precipitation. Data is
derived from the TerraClimate
1980–2015 datasets.

(Abatzoglou et al
2018)

4 km 1980–2015, yearly

Soil Soil organic
carbon

Soil organic carbon content
interpolated from ISRIC-WISE
soil property databases.

(Batjes 2016) 30 arc-secs 1988–2015

Soil Soil nitrogen
content

Soil nitrogen content interpolated
from ISRIC-WISE soil property
databases.

(Batjes 2016) 30 arc-secs 1988–2015

Soil Silt+ Clay
content

Silt+ Clay content interpolated
from ISRIC-WISE soil property
databases.

(Batjes 2016) 30 arc-secs 1988–2015

Vegetation Normalized
difference
vegetation index
(NDVI)

NDVI quantifies vegetation by
measuring the difference between
near-infrared (which vegetation
strongly reflects) and red light
(which vegetation absorbs). Data
is derived fromMODIS
(MOD13Q1 product) between
January 2000 and December 2015

(Tucker and
Sellers 1986)

250 m 2000–2015, monthly

Vegetation Gross primary
productivity
(GPP)

Gross primary productivity is the
rate at which solar energy is
captured in sugar molecules
during photosynthesis. Data is
derived fromMODIS (MOD17A2
product) between January 2000
and December 2015

(Running et al
2015)

500 m 2000–2015, monthly

Vegetation Vegetation
fraction cover

Fractional cover of trees and
non-trees vegetation cover as
interpolated fromMODIS
products. Data is derived from
MODIS (MOD44B product).

(Justice et al
2002)

250 m 2000–2015, monthly

Vegetation Root-shoot ratio Data derived from a global
database involving 3051
root-shoot ratio measurements,
covering 1879 forest, 998
grassland, and 174 shrubland sites
in China’s drylands.

(Ma et al 2021) 30 arc-secs 1960–2020

Vegetation Biocrust cover Global distribution of biocrusts
obtained by application of
environmental niche modeling
based on field observations
described in more than 500
publications and identification of
18 independent environmental
parameters controlling the
suitability of the land surface for
the growth of biocrust.

(Rodriguez-
Caballero
et al 2018)

1 km 1976–2015

Vegetation Plant species
richness

Plant species richness is calculated
by [Native species
richness—anthropogenic species
Loss+ Anthropogenic species
increase (Species
Invasions+ Crop
Species+ Ornamental Species)].

(Ellis et al 2012) 0.05 ◦ Anthropocene

(Continued.)
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Table 1. (Continued.)

Vegetation Vegetation
sensitivity index

Vegetation sensitivity to climate
fluctuations. Data derived from
the vegetation sensitivity index is
the relative variance of vegetation
productivity (enhanced
vegetation index, EVI) with that
of three ecologically important
MODIS-derived climate variables
(air temperature, water
availability, and cloud cover)
between 2000 and 2013 (database
at LEFT project: www.left.ox.ac.
uk/).

(Seddon et al
2016)

5 km 2000–2013, yearly

Vegetation Sensitivity of
vegetation to
precipitation

Sensitivity of vegetation to
precipitation is the slope of the
regression between NDVI and
precipitation. The index could
reflect changes in the structural
and functional ecosystem state
that lead to environmental
deterioration.

(Li et al 2021) 1 km 1982–2015, monthly

Vegetation Aboveground
carbon density
and belowground
carbon density

Data is derived from the dataset
that covers the main dryland
ecosystems including forests,
grasslands, farmland, and
shrublands.

(Xu et al 2020b) Interpolated
to 10 km

2010s

Ecosystem Water yield,
habitat quality,
soil conservation,
and carbon
sequestration

Key ecosystem functions that
drylands provided

(Xu et al 2020a) 1 km 2010, 2020

implemented to identify if the environmental factors
are causing changes in vegetation productivity (sup-
porting information, figures S16–S19). The largest
absolute value of the partial correlation coefficient
reflects the dominant driver affecting GPP variation.

3. Results

3.1. Aridity thresholds for multiple ecosystem
attributes
The majority of functional and structural ecosys-
tem attributes exhibited a non-linear response to
changes in aridity (figure 1). This implies that incre-
mental increases in aridity levels can trigger substan-
tial alterations in ecosystem variables once a crit-
ical aridity threshold is surpassed. Three distinct
clusters were identified based on their most fre-
quent cluster assignment, with centroids occurring
at aridity values of 0.70, 0.80, and 0.95. These find-
ings suggest that abrupt shifts in ecosystem dynam-
ics in response to aridity can be categorized into
three phases, each associated with a specific aridity
threshold. The first group (Phase 1) was marked by
a sharp decline in GPP, normalized difference veget-
ation index (NDVI), vegetation cover, and above-
ground carbon density. The second group (Phase 2)
exhibited an abrupt reduction in soil organic carbon,
soil nitrogen content, belowground carbon density,
and carbon sequestration. The third group (Phase 3)

was characterized by an abrupt increase in biocrust
cover, inter-annual precipitation variability, and an
abrupt decline in plant species richness and vegeta-
tion sensitivity index.

3.2. Hotspots for crossing critical aridity
thresholds
For future projections, the mean aridity will increase
to values of 0.72–0.74 in 2100, under the four SSPs
(figure S5(A)). Compared to the historical period
(1980–2014), drylands in China will expand by
18 721 km2 and 47 567 km2 during 2020–2060 and
2061–2100, respectively (figure S5(B)). According to
the simulations, expansion will mainly occur in the
northeastern regions, whereas shrinkage will occur
mainly in the southwestern Qinghai–Tibet Plateau
areas (figure S6). Among the four dryland subtypes,
dry sub-humid, and arid drylands are expected to
show the largest increase, accounting for 89% of
the total dryland expansion (figures S7 and S8).
According to the average of CMIP6 SSP1-2.6, 2–4.5,
3–7.0, and 5–8.5 scenarios, 12.8% of the current dry-
land area (0.8 million km2) will cross the three arid-
ity thresholds identified by 2100 (figure 2). In areas
forecasted to surpass the 0.8 aridity threshold, the
anticipated impacts will be notably severe, covering
the greatest area (0.6 million km2; 8.8% of drylands)
and are mainly distributed in China’s northeastern
drylands.
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Figure 1. The pattern of the potentials (density of points) of the 15 ecosystem structural and functional variables through
increasing aridity. The peaks show thresholds around identified aridity values where there is a shift from high to low variable
values. NDVI= normalized difference vegetation index.

3.3. GPP variation and the dominant driving
factors
Compared with the historical period (1980–2014),
58.1% of the threshold-crossing region (238 301 km2,
with a 19.6% significant increase area, p < 0.05) will
experience an increase in GPP for the timespan 2020–
2060 under the SSP2-4.5 scenario (figure S10(A)).
Considering the 2061–2100 period, the percentage
of area with GPP increases will reduce to 31.7% (a
significant increase area of 5.3%) (figure S10(B)).
Under the SSP5-8.5 scenario, from 2020 to 2060, the
area with GPP increases will be 149 393 km2 lar-
ger compared to the SSP2-4.5 scenario. 80.1% of
the area will exhibit a GPP increase, and 34.7% of
the area will experience a significant GPP increase
(p< 0.05) (figure S10(C)). 40 years later, the propor-
tion of threshold-crossing regions with GPP increases
will decrease to 65.4% (a significant increase area of
40.0%) (figure S10(D)).

In the SSP2-4.5 scenario, between 2020 and 2060,
CO2 and precipitation will predominantly drive GPP
changes, accounting for 26.4% and 27.8%, respect-
ively (figure 3(A)). However, between 2061 and 2100,
the declining GPP trend is primarily driven by nitro-
gen deposition (20.1%) and precipitation (18.6%)
(figure 3(B)). Under the SSP5-8.5 scenario, from 2020
to 2060, temperature (25.2%), CO2 (14.4%), nitrogen
deposition (19.1%), and precipitation (21.5%) will

drive the increase in GPP (figure 3(C)). 40 years later,
CO2 and nitrogen deposition will be the dominant
drivers of GPP increases, with proportions of 20.2%
and 19.5%, respectively (figure 3(D)).

4. Discussion

We found that gradual changes in aridification would
lead ecosystem attributes to shift abruptly when the
aridity value crosses critical thresholds (figure 1).
Similar to prior empirical and quantitative analyzes
of global dryland ecosystem thresholds driven by
aridity, the response of China’s drylands to increas-
ing aridity exhibits three distinct phases (Phase 1–
3) with abrupt shifts in various ecosystem struc-
tural and functional variables. These phases are delin-
eated by abrupt declines in productivity, soil fertility,
and plant richness at aridity values of 0.7, 0.8, and
0.95, respectively. Phase 1 primarily involves veget-
ation decline, as plants typically reduce leaf area to
cope with dry conditions (Berdugo et al 2022b).
Vapour pressure deficit increases prompts plants to
close stomata and modify leaf growth (e.g. increase
specific leaf area), thereby weakening photosynthesis
(Mansfield and Freer-Smith 1984). Other changes
observed beyond the 0.7 aridity threshold include
an increase in the root-shoot ratio (figure 1), likely
associated with vegetation shifts from grasslands and
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Figure 2. Predicted areas that will cross one or several of the aridity thresholds by the CMIP6 climate scenarios relative to the
baseline period of 1980–2014 in China’s drylands: SSP1-2.6 (strong climate change mitigation) for (A) 2020–2060 and (B):
2061–2100, SSP2-4.5 (moderate mitigation) for (C) 2020–2060 and (D) 2061–2100, SSP3-7.0 (no mitigation baseline) for (E)
2020–2060 and (F) 2061–2100, and SSP5-8.5 (no mitigation, worst case) for (G) 2020–2060 and (H) 2061–2100. The grey
shading denotes the baseline drylands in 1950–2000, derived from the global aridity index database (Trabucco and Zomer 2018).
Unshaded areas are not drylands today and therefore are outside of the range.

savannahs to deep-rooted species such as shrubs,
better adapted to water-limited and nutrient-poor
soils. Phase 2 is likely to result from soil disruption,
as reductions in vegetation cover and aboveground
plant biomass during Phase 1 diminish plant-derived

organic inputs into the soil and related soil carbon
and nitrogen contents. Phase 3 is marked by an expo-
nential rise in inter-annual variation in precipita-
tion and biocrust cover compared to vascular plant
cover. Rainfall is extremely variable in drylands, and
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Figure 3. Spatial distribution and proportional distribution of dominance areas of the dominant driver of summer mean gross
primary productivity (GPP) trend, by the CMIP6 climate scenarios relative to the baseline period of 1980–2014 in predicted areas
that will cross one or several of the aridity thresholds: SSP2-4.5 (moderate mitigation) for (A) 2020–2060 and (B) 2061–2100,
SSP5-8.5 (no mitigation, worst case) for (C) 2020–2060 and (D) 2061–2100. The dominant driver is defined as the driver that
contributes the most to the increase (positive effect) or decrease (negative effect) in GPP in each grid cell. Grey shading denotes
the baseline drylands in 1950–2000, derived from the global aridity index database (Trabucco and Zomer 2018). Unshaded areas
are not drylands today and therefore are outside of the range.
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it is expected to become even more variable as arid-
ity increases (Berdugo et al 2020). Rapid increases
in biocrust cover could mitigate the negative effects
of reduced plant cover and biomass (Maestre et al
2016, Rodriguez-Caballero et al 2018). Most plant
species struggle to survive water and nutrient short-
ages beyond an aridity level of 0.95, which is manifes-
ted by significant decreases in plant species richness
and vegetation sensitivity.

However, we found different aridity thresholds
for the three phases compared with previous assump-
tions, which posited aridity values of 0.54, 0.7, and
0.8, respectively (Berdugo et al 2020). Our findings
revealed that the aridity thresholds for soil disrup-
tion (Phase 2) and systematic breakdown (Phase 3)
phases are 0.8 and 0.95, respectively, which corres-
pond to the transition between semi-arid and arid
areas (AI or 1–aridity as 0.20), and the transition
between arid and hyper-arid areas (AI or 1–aridity
as 0.05), respectively. This study is in agreement with
that reported by Hu et al (2021), who observed a
shift in the relationship between plant or microbial
diversity and soil multifunctionality at the semiarid-
arid and arid climate boundary (around an aridity
level of ∼0.8), which is attributed to the significant
influence of soil moisture on the surface climate con-
ditions (Huang et al 2017). These results underscore
the heightened sensitivity and vulnerability of trans-
itional climate regions to climate change.

Climate projections indicate an increased risk of
aridification in China’s drylands under different cli-
mate scenarios based on SSPs in CMIP6 (figures
S4–S7), which is consistent with the prediction of
Jianping Huang et al (2016) based on CMIP5 simu-
lations. Yao et al (2020) indicated that the expansion
of drylands usually occurs on the boundary of dry-
lands (aridity = 0.35) by transforming humid areas
into dry sub-humid areas.However, we found that the
shift from semi-arid to arid regions, specifically the
crossing of the aridity threshold of 0.8, is also note-
worthy (figures S4–S7). The regions projected to sur-
pass the aridity thresholds of 0.8 and 0.95 (figure 2)
are particularly sensitive, potentially experiencing sig-
nificant soil disruption and loss of plant species.
(Berdugo et al 2020). We found dryland expansion in
northeast Chinawill accelerate, which requires urgent
and comprehensive measures to mitigate the poten-
tial impacts of aridification on ecosystems, socio-
economic aspects, and people’s livelihoods.

The projected results regarding future changes in
GPP suggest that in regions crossing the critical arid-
ity thresholds (i.e. 0.7, 0.8, and 0.95), the proportion
of areas exhibiting an increasing trend in GPP will
be greater under the SSP5-8.5 scenario than under
the SSP2-4.5 scenario. However, comparing the peri-
ods 2060–2100 and 2020–2060 under both scenarios,
the proportion of area showing an increasing trend in
GPPwill decrease (figure S9). This implies that global

warming and elevated CO2 concentrations may have
a stimulating effect on vegetation growth, including
enhanced metabolism (Braswell et al 1997), a CO2

fertilization effect (Sellers et al 1996), and improved
water-use efficiency due to elevated CO2 concentra-
tions (Lian et al 2021). However, as temperatures
continue to rise and CO2 concentrations continue to
increase, this could have adverse effects on vegetation
growth. For instance, when temperatures exceed the
optimal range for vegetation growth, warming might
lead to more frequent occurrences of extreme heat-
waves, droughts, and wildfires in forests, negatively
affecting vegetation productivity (Zhang et al 2022b).
When elevated CO2 leads to an increase in leaf area,
it could potentially enhance transpiration leading to
a faster depletion of soil moisture and consequently
exacerbating the negative impacts of drought (Nowak
et al 2004, De Kauwe et al 2021). Moreover, elev-
ated atmospheric CO2 levels can increase the sens-
itivity of arid vegetation to precipitation, potentially
leading to decreased ecosystem stability and greater
vulnerability of fragile ecosystems to the destructive
effects of drought (Zhang et al 2022a). Other natural
factors, such as precipitation andnitrogen deposition,
also influence the changing GPP trends (figure 3).
Wang et al (2018) found that an increase in precip-
itation can enhance the carbon sink strength. Greaver
et al (2016) found that nitrogen cycling is becom-
ing increasingly important in influencing ecosystems
with climate change. The availability of nitrogen and
soilmoisturewill limit the enhancement of vegetation
productivity owing to increased CO2 concentrations
(Wang et al 2020, Hao et al 2022). Our findings show
that from the period 2020–2060–2060–2100, under
the SSP2-4.5 scenario, the regions where temperat-
ure and nitrogen deposition dominate the changes
in GPP will exceed those where CO2 and precipita-
tion dominate (figure 3). In the SSP5-8.5 scenario,
the areas dominated by CO2 and nitrogen depos-
ition surpass those dominated by temperature and
precipitation.

Global predictions indicate that sub-Saharan
Africa, Europe, and West and Northeast Asia are at
risk of increased atmospheric dryness and the expan-
sion of drylands (Huang et al 2016). The findings
of this study have substantial implications for dry-
land ecosystems beyondChina, especially those facing
aridity-induced challenges. The identified aridity
thresholds, marked by abrupt changes in productiv-
ity, soil properties, and plant diversity, present a
framework applicable to other arid and semi-arid
regions. The three phases observed underscored the
sensitivity and vulnerability of transitional climate
regions. Global studies have also shown that rising
CO2 levels are a major driver of greening (Piao
et al 2020). The complex interplay of factors influ-
encing vegetation growth, including global warm-
ing, aridification, and elevated CO2 concentrations,
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is a global challenge faced by drylands. This study
can help understand the phenomenon of concur-
rent greening of atmospheric dryness in dryland eco-
systems, providing scientific insights for developing
targeted mitigation strategies for transitional climate
regions.

While our study focused on large-scale climatic
drivers and their effects on vegetation through the
use of ESMs and remote sensing data, it is important
to recognize that local management practices, includ-
ing grazing, restoration, and deforestation, can mod-
ulate or even override the broader climatic trends
we observed at the landscape or plot scale. These
factors, though not explicitly modeled in our study,
are critical considerations for interpreting our find-
ings. For instance, grazing can reduce vegetation
cover, alter species composition, and affect soil prop-
erties (Li et al 2023, Zhou et al 2023a), thereby influ-
encing the vegetation’s response to aridity and cli-
mate change. Vegetation restoration can mitigate the
negative impacts of aridification, potentially leading
to localized ‘greening’ trends (Zhou et al 2023b). We
highlight the need for future research that integrates
large-scale climate models with landscape or plot-
scale studies that account for local management prac-
tices. This could improve the accuracy of predictions
regarding vegetation dynamics and enhance the rel-
evance of our findings for land managers and poli-
cymakers who need to consider both global climate
trends and local land use practices in their decision-
making processes.

5. Conclusion

This study revealed thatmultiple ecosystem structural
and functional attributes undergo abrupt changes
along aridity gradients, with critical thresholds iden-
tified at aridity levels of 0.7, 0.8, and 0.95. The anticip-
ated expansion of certain drylands, driven by increas-
ing aridity due to climate warming, is expected to
provoke extensive modifications in ecosystem struc-
tures and functional attributes, pushing them beyond
essential aridity thresholds, particularly highlighting
the significance of the 0.8 aridity threshold, thus jeop-
ardizing the sustained delivery of ecosystem services.
Initially, global warming and rising CO2 levels stimu-
late vegetation growth in regions that surpass aridity
thresholds. However, the persistent increase in tem-
peratures and elevated CO2 concentrations may have
detrimental effects on vegetation productivity, par-
ticularly under conditions of limited nitrogen and
water availability. These transitional zones within
dryland ecosystems represent ecologically vulnerable
areas susceptible to aridity effects, necessitating the
development of conservation strategies to mitigate
aridification induced by climate change and alleviate
degradation in these critical areas.

Data availability statement

The aridity index is available in the global aridity
index (Global-Aridity) and global potential evapo-
transpiration (Global-PET) geospatial database
(Trabucco and Zomer 2018). Inter-annual precip-
itation variability is available in the TerraClimate
datasets (Abatzoglou et al 2018). Soil organic car-
bon, soil nitrogen content, and silt+ clay content are
available in the ISRIC-WISE Soil Property Databases
(Batjes 2016). The NDVI is available for the MODIS
MOD13Q1 product (Tucker and Sellers 1986). GPP
is available for the MODIS MOD17A2 product
(Running et al 2015). Vegetation cover in the MODIS
MOD44B product (Justice et al 2002). The root-
shoot ratio is available fromMa et al (2021). Biocrust
cover is obtained from the Rodriguez-Caballero
et al (2018). Plant species richness is obtained from
Ellis et al (2012). The vegetation sensitivity index is
obtained from Seddon et al (2016). The sensitivity
of vegetation to precipitation is available is obtained
from Li et al (2021). Aboveground carbon density
and belowground carbon density are available in Xu
et al (2020b). The ecosystem functions are available
from Xu et al (2020a). The CMIP6 outputs can be
downloaded from the Institute Pierre-Simon Laplace
server (https://esgf-node.ipsl.upmc.fr/search/cmip6-
ipsl/). FLUXCOM GPP data (Pastorello et al 2020)
can be downloaded from http://fluxcom.org/CF-
Download/. CRU/NCEP-derived climatic data can
be downloaded from https://rda.ucar.edu/datasets/
ds314.3/dataaccess/.

All data that support the findings of this study are
included within the article (and any supplementary
files).

Acknowledgments

This research was jointly funded by the National
Natural Science Foundation of China Project
(Grants 41991235, 42471056, and 42007052), and
the Fundamental Research Funds for the Central
Universities.

Author contributions

WenxinZhou:Writing—original draft, Visualization,
Formal analysis. Changjia Li: Writing—review
& editing, Conceptualization, Funding acquisi-
tion. Bojie Fu: Funding acquisition. Shuai Wang:
Conceptualization. Zhuobing Ren: Visualization,
Formal analysis. Lindsay C Stringer: Writing—
review & editing.

Conflict of interest

The authors declare no competing interests.

10



Environ. Res. Lett. 19 (2024) 114001 W Zhou et al

ORCID iDs

Wenxin Zhou https://orcid.org/0000-0001-5133-
7314
Changjia Li https://orcid.org/0000-0001-7297-
9658

References

Abatzoglou J T, Dobrowski S Z, Parks S A and Hegewisch K C
2018 TerraClimate, a high-resolution global dataset of
monthly climate and climatic water balance from 1958–2015
Sci. Data 5 1–12

Abel C, Horion S, Tagesson T, Brandt M and Fensholt R 2019
Towards improved remote sensing based monitoring of
dryland ecosystem functioning using sequential linear
regression slopes (SeRGS) Remote Sens. Environ. 224 317–32

Batjes N H 2016 Harmonized soil property values for broad-scale
modelling (WISE30sec) with estimates of global soil carbon
stocks Geoderma 269 61–68

Berdugo M et al 2020 Global ecosystem thresholds driven by
aridity Science 367 787–90

Berdugo M, Gaitán J J, Delgado-Baquerizo M, Crowther T W and
Dakos V 2022a Prevalence and drivers of abrupt vegetation
shifts in global drylands Proc. Natl Acad. Sci.
119 e2123393119

Berdugo M, Kéfi S, Soliveres S and Maestre F T 2017 Plant spatial
patterns identify alternative ecosystem multifunctionality
states in global drylands Nat. Ecol. Evol. 1 0003

Berdugo M, Vidiella B, Solé R V and Maestre F T 2022b Ecological
mechanisms underlying aridity thresholds in global
drylands Funct. Ecol. 36 4–23

Bonan G B and Doney S C 2018 Climate, ecosystems, and
planetary futures: the challenge to predict life in Earth
system models Science 359 eaam8328

Braswell B H, Schimel D S, Linder E and Moore B 1997 The
response of global terrestrial ecosystems to interannual
temperature variability Science 278 870–3

Cavanaugh J E and Neath A A 2019 The Akaike information
criterion: background, derivation, properties, application,
interpretation, and refinementsWIREs Comput. Stat.
11 e1460

D’Odorico P, Bhattachan A, Davis K F, Ravi S and Runyan C W
2013 Global desertification: drivers and feedbacks Adv.
Water Resour. 51 326–44

De Kauwe M G, Medlyn B E and Tissue D T 2021 To what extent
can rising [CO2] ameliorate plant drought stress? New
Phytol. 231 2118–24

Donohue R J, Roderick M L, McVicar T R and Farquhar G D 2013
Impact of CO2 fertilization on maximum foliage cover
across the globe’s warm, arid environments Geophys. Res.
Lett. 40 3031–5

Ellis E C, Antill E C and Kreft H 2012 All is not loss: plant
biodiversity in the Anthropocene PLoS One 7 e30535

Flato G M 2011 Earth system models: an overviewWIREs Clim.
Change 2 783–800

Fu L, Zhang G, Huang J, Peng M, Ding L and Han D 2024
Prevalence of vegetation browning in China’s drylands
under climate change Geogr. Sustain. 5 405–14

Greaver T L et al 2016 Key ecological responses to nitrogen are
altered by climate change Nat. Clim. Change 6 836–43

Hao H, Li Z, Chen Y, Xu J, Li S and Zhang S 2022 Recent
variations in soil moisture use efficiency (SMUE) and its
influence factors in Asian drylands J. Clean. Prod.
373 133860

Higgins S I, Conradi T and Muhoko E 2023 Shifts in vegetation
activity of terrestrial ecosystems attributable to climate
trends Nat. Geosci. 16 147–53

Hillebrand H, Donohue I, Harpole W S, Hodapp D, Kucera M,
Lewandowska A M and Freund J A 2020 Thresholds for

ecological responses to global change do not emerge from
empirical data Nat. Ecol. Evol. 4 1–8

HuW G et al 2021 Aridity-driven shift in biodiversity-soil
multifunctionality relationships Nat. Commun. 12 5350

Huang J et al 2017 Dryland climate change: recent progress and
challenges Rev. Geophys. 55 719–78

Huang J, Yu H, Guan X, Wang G and Guo R 2016 Accelerated
dryland expansion under climate change Nat. Clim. Change
6 166–71

Huang K et al 2018 Enhanced peak growth of global vegetation
and its key mechanisms Nat. Ecol. Evol. 2 1897

Jiao W, Wang L, Smith W K, Chang Q, Wang H and D’Odorico P
2021 Observed increasing water constraint on vegetation
growth over the last three decades Nat. Commun. 12 3777

Justice C, Townshend J, Vermote E, Masuoka E, Wolfe R,
Saleous N, Morisette J and Morisette J T 2002 An overview
of MODIS Land data processing and product status Remote
Sens. Environ. 83 3–15

Li C, Fu B, Wang S, Stringer L C, Wang Y, Li Z, Zhou W and
Zhou W 2021 Drivers and impacts of changes in China’s
drylands Nat. Rev. Earth Environ. 2 858–73

Li C, Fu B, Wang S, Stringer L C, Zhou W, Ren Z and Maestre F T
2023 Climate-driven ecological thresholds in China’s
drylands modulated by grazing Nat. Sustain. 2 1–10

Lian X et al 2021 Multifaceted characteristics of dryland aridity
changes in a warming world Nat. Rev. Earth Environ.
2 232–50

Luo W T et al 2016 Thresholds in decoupled soil-plant elements
under changing climatic conditions Plant Soil 409 159–73

Ma H, Mo L, Crowther T W, Maynard D S, van den Hoogen J,
Stocker B D, Zohner C M and Zohner C M 2021 The global
distribution and environmental drivers of aboveground
versus belowground plant biomassNat. Ecol. Evol. 5 1110–22

Maestre F T et al 2012 Plant species richness and ecosystem
multifunctionality in global drylands Science 335 214–8

Maestre F T et al 2016 Structure and functioning of dryland
ecosystems in a changing world Annu. Rev. Ecol. Evol. Syst.
47 215–37

Mansfield T and Freer-Smith P 1984 The role of stomata in
resistance mechanisms Gaseous Air Pollutants and Plant
Metabolism (Butterworths) pp 131–46

Manzoni S, Jackson R B, Trofymow J A and Porporato A 2008 The
global stoichiometry of litter nitrogen mineralization Science
321 684–6

Matson P, Kathleen A L and Hall S J 2002 The globalization of
nitrogen deposition: consequences for terrestrial ecosystems
Ambio 31 113–9

Mirzabaev A, Wu J H, Evans J, García-Oliva F, Hussein I A G,
Iqbal M H and Weltz M 2019 Desertification Climate
Change and Land: an IPCC special report on climate change,
desertification, land degradation, sustainable land
management, food security, and greenhouse gas fluxes in
terrestrial ecosystems

Nowak R S, Zitzer S F, Babcock D, Smith-Longozo V, Charlet T N,
Coleman J S, Smith S D and Smith S D 2004 Elevated
atmospheric CO2 does not conserve soil water in the mojave
desert Ecology 85 93–99

O’Ishi R, Abe-Ouchi A, Prentice I C and Sitch S 2009 Vegetation
dynamics and plant CO2 responses as positive feedbacks in a
greenhouse world Geophys. Res. Lett. 36 L11706

Pastorello G et al 2020 The FLUXNET2015 dataset and the
ONEFlux processing pipeline for eddy covariance data Sci
Data 7 225

Piao S et al 2020 Characteristics, drivers and feedbacks of global
greening Nat. Rev. Earth Environ. 1 14–27
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