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Based on the Qp/α values deduced from the linear extrapolations along isotopic chains and on
the universal decay law, the proton- and α-decay partial half-lives are calculated for odd-Z, even-N
neutron-deficient Bi-Pa isotopes. Eight proton-emission states in five new isotopes are suggested,
including the 1/2+ and 9/2− states in 183Bi, the 1/2+ and 7/2− states in 187,189At, the 1/2+ state in
193Fr and the 9/2− state in 199Ac. The calculated half-lives for the 1/2+ states in 183Bi and 187At are
around 100 ns, too short to be studied using the recoil separator setups, which strongly encourages
the development of new experimental techniques and devices to search for new sub-microsecond
proton-emitting nuclei.

I. Introduction

The proton radioactivity, whereby the proton is
emitted from the nucleus, is a well-known decay mode.
Two types of the proton radioactiviy are usually
considered: direct proton emission from the ground state
(gs) or isomer [1], and β-delayed proton emission [2].
This work deals with the first type, which occurs beyond
the proton drip line and establishes the limits of existence
for the majority of neutron-deficient isotopic chains. It
is a key, and often the only source of information on
nuclear structure and the mass surface in the most
neutron-deficient region in the chart of nuclides [1, 3–6].
Therefore, predictions on the existence and properties of
proton emission hold significant scientific implications,
e.g., validation of theoretical models [7, 8] and inspiring
experimental research [9].
Although the theoretical concept of proton emission

was proposed in 1960s [10], the first evidence came only
in early 1970s, when a weak proton emission branch was
observed from the 19/2− isomeric state 53mCo [11–13].
In the early 1980s, the first ground-state (gs) proton
emitter 151Lu was reported [14]. Two most recent
examples, proton-emitting nuclei 149Lu and 116La, were
reported in 2022 [15, 16]. So far, 33 proton emitters
have been reported for odd-Z elements between 53 ≤

Z ≤ 83 except promethium (Z = 61), see reviews in
Refs. [1, 4–6, 8]. Among these proton-emitting nuclei,
149Lu is the shortest-lived proton emitter with Qp =

1920(20) keV and T p
1/2 = 470+170

−100 ns [15]. The 185Bi

(Z=83, N=102) with the gs half-life of 2.8+2.3
−1.0 µs is the
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heaviest proton emitter and the only known one above
the Z = 82 shell closure, which was discovered nearly
30 years ago [17, 18], with the recent investigation [19]
solving a number of puzzles in its previously reported
properties.
The present study focuses on predicting the new proton

emitters above the Z = 82 shell closure and calculating
the corresponding partial proton-decay half-lives. In
the neutron-deficient region above Z = 82, the major
competitive decay mode to proton emission is α decay,
as shown in Fig. 1. Therefore, in order to predict
the proton radioactivity of unknown nuclides, it is
necessary to theoretically calculate the partial half-lives
for both proton emission and α decay. Historically,
many macroscopic and semi-empirical models have
been developed to investigate the α-decay and/or
proton-emission probabilities, such as the pre-formation
cluster model [20], the unified fission model [21], the
effective liquid drop model [22], the generalized liquid
drop model [23], the Coulomb and proximity potential
model [24], semi-empirical Geiger-Nuttal law [25] for α
decay and Geiger-Nuttal-like law [26] for proton emission.
The microscopic approaches for charged-particle emission
include such as the R-matrix theory as formulated by
Teichman and Wigner [27], the semi-empirical universal
decay law (UDL) [28, 29] within the R-matrix framework,
two-potential approach with Skyrme-Hartree-Fock [30],
and shell model treatment involving BCS approach [31,
32]. It is worth noting that among these models, the
UDL approach can simultaneously describe proton- and
α-decay half-lives, by accounting for the released energy
Qp/α in decay and the orbital angular momentum lp/α
carried by the emitted particle. Therefore, in this
work we used the UDL framework to calculate the
half-lives for the nuclei of interest and to predict the new
proton-emitting candidates.
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FIG. 1. The partial chart of nuclides for the Pb-Pa region. The candidates for proton emitters are marked by the brown
squares, as explained in the top right-hand side corner of the plot.

Compared to α decay, the proton-decay half-life is
highly sensitive to the orbital angular momentum lp and
and the released energy Qp. The former is because, for a
given mother nucleus and an orbital angular momentum
carried by proton/α, the centrifugal barrier in proton
emission is approximately four times higher that of
α decay. The latter is empirical: for known proton
emitters with N ≥ 82 and with the same spin-parity,
half-lives drop by roughly one order of magnitude for
every 100-keV increase in Qp. Meanwhile, for typical
α-decaying nuclei above lead and with s-wave emission
(lα = 0), half-lives decreases by roughly one order of
magnitude for about every 300-keV increase in Qα.
As the global mass formulae [33–37] typically have a
root-mean-square deviation (RMSD) of several hundred
keV, using them to deduce Qp and subsequently calculate
T p
1/2 is of limited significance. In the present work, a

local linear extrapolation method is used to determine
the Qp/α for nuclei that are unknown but of interest.
Through the linear extrapolated Qp/α along isotopic

chains and the calculated T
p/α
1/2 by the UDL, we can

suggest eight proton-emission candidate states in five new
isotopes above the Z = 82 shell closure, see Fig. 1. These
candidates are 1/2+ and 9/2− states in 183Bi, 1/2+ and
7/2− states in 187,189At, 1/2+ state in 193Fr and 9/2−

state in 199Ac, and the selection criterion for them are
described in Sec. IV.

II. Estimation of Qp/α values

In order to predict new proton-emitting nuclei above
the Z=82 shell closure, the proton-separation energies for
known neutron-deficient isotopes of odd-Z elements from

Bi (bismuth) to Pa (protactinium) are investigated [38].
In this region, proton emission cannot compete with α
decay until at least several mass units beyond the drip
line. For example, in the case of 185Bi, this occurs
already 5 mass units beyond the proton drip line, as
shown in Fig. 1. Considering the complex proton-neutron
multiplets found in odd-odd nuclei, only odd-Z, even-N
nuclei are investigated in the present work.
We begin our analysis by considering the systematics

of Qp and Qα for a given state in an isotopic chain
where three or more consecutive data were known. As an
example, the upper panel of Fig. 2 shows the Qp values
for the 1/2+ states in odd-A 185−193Bi isotopes and
the corresponding linear fitting, and the corresponding
residuals are displayed in the lower panel with an RMSD
of 12.9 keV. This result confirms a linear trend of Qp

in odd-A 185−193Bi isotopes. The similar linear trends
can be seen in both Qp and Qα for a given state
of At, Fr, Ac and Pa isotopic chains, as shown in
Supplemnental Material and indicating good linearity for
both Qp and Qα in this region. It is worth noting that
although the macroscopic-microscopic model predicts a
gs spherical-oblate-prolate shape transition between N
= 100-120 in this region [40], it appears that this shape
transition has no significant affect on the linearity of Qp

and Qα.
Based on this linear trend of Qp and Qα, we assume

that linearity still holds for at least a limited region
of lighter isotopes in each chain. Thus, a linear
extrapolation approach is used, and Qp/α values were
estimated for at most three unknown isotopes in an
isotopic chain. Table I shows the known data [38, 39] and
the linear extrapolation values of Qp and Qα. Based on
the known data and the linear extrapolation assumption,
the errors of Qp and Qα values for unknown isotopes can
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TABLE I. The known data [38, 39] and linear extrapolated (in bold) Qp and Qα values for odd-Z, even-N neutron-deficient
Bi-Pa isotopes. Tentative spin-parity assignments proposed in the literatures are given in parentheses. The spin-parities for
the predicted proton-emitting candiates are based on systematics, see discussion in Sec. III A

Nuclides Jπ Qp/keV Qα/keV Nuclides Jπ Qp/keV Qα/keV Nuclides Jπ Qp/keV Qα/keV
193Bi (1/2+) -317(11) 6612(13) 197At (1/2+) -123(14) 6846(4) 205Fr (1/2+) -20(13) 7205(6)
191Bi (1/2+) 128(15) 7020(12) 195At (1/2+) 245(16) 7098(5) 203Fr 1/2+ 223(20) 7392(5)
189Bi (1/2+) 641(25) 7452(30) 193At (1/2+) 710(24) 7388(5) 201Fr 1/2+ 429(15) 7608(9)
187Bi (1/2+) 1121(25) 7891(24) 191At (1/2+) 1138(21) 7708(11) 199Fr (1/2+) 713(50) 7821(11)
185Bi 1/2+ 1607(20) 8218(18) 189

At 1/2+
1555(29) 7979(14) 197

Fr 1/2+
987(66) 8023(13)

183
Bi 1/2+

2088(26) 8664(31) 187
At 1/2+

1979(39) 8267(27) 195
Fr 1/2+

1243(89) 8229(18)
195Bi (9/2−) -1107(18) 5535(8) 195At (7/2−) 275(19) 7223(4) 193

Fr 1/2+
1498(112) 8435(23)

193Bi (9/2−) -622(9) 6026(5) 193At (7/2−) 715(26) 7480(5) 209Fr 9/2− -1402(18) 6777(4)
191Bi (9/2−) -112(15) 6441(3) 191At (7/2−) 1193(37) 7817(15) 207Fr 9/2− -1018(23) 6893(20)
189Bi (9/2−) 457(23) 6816(3) 189

At 7/2−
1646(43) 8101(30) 205Fr (9/2−) -629(11) 7055(2)

187Bi (9/2−) 1010(15) 7154(5) 187
At 7/2−

2105(62) 8398(68) 203Fr (9/2−) -138(19) 7274(5)
185

Bi 9/2−
1548(28) 7549(6) 215Pa (9/2−) -180(80) 8240(7) 201Fr (9/2−) 300(11) 7510(7)

183
Bi 9/2−

2095(38) 7925(8) 213Pa 9/2− 250(60) 8394(15) 199
Fr 9/2−

773(29) 7735(12)
213Ac 9/2− -949(16) 7498(4) 211Pa (9/2−) 700(70) 8480(40) 197

Fr 9/2−
1238(42) 7962(16)

211Ac 9/2− -550(60) 7620(50) 209
Pa 9/2−

1084(86) 8611(61) 195
Fr 9/2−

1702(55) 8190(21)
209Ac (9/2−) -160(50) 7730(50) 207

Pa 9/2−
1493(112) 8731(88)

207Ac (9/2−) 290(60) 7845(25) 205
Pa 9/2−

1902(138) 8851(115)
205Ac (9/2−) 760(50) 8090(60)
203

Ac 9/2−
1180(68) 8256(38)

201
Ac 9/2−

1618(91) 8440(51)
199

Ac 9/2−
2056(115) 8624(64)

be determined using the error propagation formula [41],
as also presented in Table I. It should be noted that allQp

values are for the proton emissions from mother nuclei to
the 0+ gs of daughter nuclei, while all Qα values refer to
s-wave α emissions. The reason for making this criterion
of Qp/α is that such emissions are the most competitive.
For proton emission, these cases correspond to the largest
Qp, and for α decay, they correspond to the smallest
centrifugal barrier. Indeed, for the known proton emitter
185Bi and the majority of known α-decaying nuclei in
this nuclear region, their decays are dominated by proton
emission feeding to the 0+ gs and s-wave α emission,
respectively.

III. Calculation of T
p/α

1/2 values

The estimated Qp and Qα values are used to calculate
the partial proton-emission and partial α-decay half-lives
for these states, respectively. Additionally, the lp and lα
values are also needed in the calculation. As mentioned in
Sec. II, we assume that all α decays are s-wave emission,
i.e., lα=0. Meanwhile, in order to obtain lp values,
the estimation of the possible spin-parities for unknown

states based on the known systematics is required.

A. Spin-parity systematics

For the bismuth isotopic chain, the intruder 1/2+

configuration in 185Bi becomes the gs, which is in
contrast to all odd-A isotopes 187−209Bi, with the 9/2−

gs, see Fig. 5 in Ref. [19]. Based on this, the 1/2+

and 9/2− are assumed as the possible spin-parities for
the proton-emitting candidates in Bi isotopic chain, as
shown in Table I. Similarly, an order reversal of low-
and high-spin states occurs in neutron-deficient astatine
isotopes, with the 1/2+ gs for 191,193,195At while the 9/2−

gs are known for heavier isotopes, as shown in Fig. 11 of
Ref. [42]. Furthermore, three consecutive low-lying 7/2−

states were also observed in 191,193,195At [42]. Therefore,
the 1/2+ and 7/2− states have been assumed as the
possible proton-emitting states in unknown At isotopes.
In the francium isotopic chain, all odd-A isotopes

201−213Fr have 9/2− gs, while the 1/2+ isomers were
identified in 201,203,205Fr, see Fig. 12 in Ref. [43]. Based
on the rapidly descending trend of the 1/2+ levels,
the spin-parity of 199Fr gs was tentatively assigned
as (1/2+) [44]. Therefore, the same as in the Bi
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FIG. 2. Upper panel: the Qp values for the known 1/2+

states in odd-A 185−193Bi isotopes and the corresponding
linear fitting. Lower panel: the residuals with uncertainties
taken from Qp values. Data are taken from Refs. [19, 38].

isotopes, both the 1/2+ and 9/2− states are considered
for Fr isotopes in this study. The gs of 197Fr
was tentatively assigned as (7/2−) according to the
systematics of reduced α-decay widths δ2 [45]. However,
no three consecutive 7/2− states were observed in
neutron-deficient Fr isotopes.
For the heavier elements actinium and protactinium,

the 9/2− gs were identified for all known
neutron-deficient isotopes except for 203Ac, where
the intruder 1/2+ configuration was assumed to become
the gs based on the systematics of δ2 and single-particle
energy levels [46]. Moreover, no other given states
with three or more consecutive data were observed
in neutron-deficient Ac and Fr isotopes [39]. Thus
only the 9/2− states are taken into account for the
proton-emitting candidates in these two isotopic chains.

B. T
p/α

1/2 calculation in the UDL framework

There are several methods for calculating the partial
half-life, as introduced in Sec. I. In this study we
choose the UDL approach [28, 29] to calculate T p

1/2 and

Tα
1/2, as it is not only universally valid for all types of

charged-particle emissions and for all isotopic series, but
also is simple and provides reliable estimates of half-lives.
The calculated T p

1/2 and Tα
1/2 of the specific states in

isotopes of interest are shown in Fig. 3. Furthermore,
the experimental values are also displayed in Fig. 3 to
illustrate the predictive power of the UDL approach.

IV. Results and discussion

Considering the competition between proton emission
and α decay, the proton-emitting candidates are defined
by the partial half-lives with:

T p
1/2 < 10Tα

1/2. (1)

This will guarantee that the proton-emission branch ratio
is at least 10%. According to the calculated T p

1/2 and

Tα
1/2 shown in Fig. 3 and the criterion (1), we selected

proton-emitting candidates, as marked with the brown
squares in Fig. 1. Specifically, these candidates are the
1/2+ and 9/2− states in 183Bi, the 1/2+ and 7/2− states
in 187,189At, the 1/2+ state in 193Fr and 9/2− state in
199Ac. The calculated T p

1/2 and Tα
1/2 for these candidates

are shown in Table II. It can be noted that the calculated
proton-decay half-life of 22+8

−6 ns for the 1/2+ state in
183Bi is consistent with the recent experimental result,
which gave an upper limit of 190(60) ns for 183Bi half-life
based on its non-observation [47].

TABLE II. The calculated T
p
1/2 and Tα

1/2 for the

proton-emitting candidates.

Canditate T p
1/2(cal) Tα

1/2(cal)
183Bi 1/2+ 22+8

−6 ns 2.0+0.4
−0.3 µs

183Bi 9/2− 23+14
−8 µs 210+10

−10 µs
187At 1/2+ 200+140

−80 ns 110+30
−20 µs

187At 7/2− 660+750
−350 ns 46+25

−16 µs
189At 1/2+ 170+130

−70 µs 660+70
−60 µs

189At 7/2− 510+600
−270 µs 290+60

−50 µs
193Fr 1/2+ 2+15

−1 ms 140+30
−20 µs

199Ac 9/2− 300+1200
−200 µs 200+100

−70 µs

There are two challenges in experimental studies for
the predicted proton emitters:
(i) Proton emission is much more sensitive to the decay

energy than α decay, causing proton-decay half-lives to
become very short rapidly beyond the proton drip line.
For instance, in this work the calculated proton-decay
half-lives of the 1/2+ states in 183Bi and 187At are
only 22+8

−6 ns and 200+140
−80 ns, respectively. These

half-lives are significantly shorter than the typical flight
time of ∼ 1 µs through currently widely used recoil
separator setups, making their observation challenging
with existing technology.
(ii) All known proton emitters have mainly been

produced via fusion-evaporation reactions. However,
as the fusion-fission channel becomes dominant for
compound nuclei with Z > 82, the cross-sections for
synthesizing the most neutron-deficient new isotopes
through fusion-evaporation reactions decrease sharply.
For example, the production cross-section for the
recently synthesized 203Ac by the 40Ca + 169Tm
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respectively. The measured half-lives are taken from Ref. [39].

fusion-evaporation reaction is only 0.13+0.30
−0.10 pb [46],

which is nearly at the sensitivity limit for the synthesis
of new nuclides.

The first factor underscores the necessity of
developing advanced detection techniques, e.g., direct
detection devices, to identify extremely short-lived
proton-emitting candidates near the target. The second
factor suggests exploring alternative nuclear-reaction
mechanisms besides the fusion-evaporation reaction
for synthesizing the heaviest proton emitters, such
as projectile-fragmentation reaction [48–51] and
multi-nucleon transfer reaction [52, 53].

V. Summary

This study focuses on predicting new proton-emitting
candidate states above the Z=82 proton shell by
estimating their partial proton-emission and α-decay
half-lives. Through a combination of linear extrapolation
for deducing Qp/α values and the UDL framework for
half-life calculations, eight proton-emission candidate
states in five new neutron-deficient isotopes were
suggested, namely the 1/2+ and 9/2− states in 183Bi,

the 1/2+ and 7/2− states in 187,189At, the 1/2+ state in
193Fr and 9/2− state in 199Ac. Furthermore, this work
highlights the importance of developing new detection
techniques and exploring alternative nuclear-reaction
mechanisms besides the fusion-evaporation reaction to
search for the heaviest proton emitters.
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