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Abstract

In this study, the effect ofMg composition on structural and optical properties ofMgxNi1-xOalloy
thinfilm single crystal semiconductors as well as their implementation intoMetal-Semiconductor–
Metal (MSM) photodetector are studied. An 850meVblue-shift of the bandgap is observed from
3.65 eV to 4.50 eVwith increasingMg composition from0% to 67%. The deep ultraviolet/visible
rejection ratio, which is the ratio of photosensitivity at a peakwavelength of 360 nm to that at 450 nm
is found to be∼58 forMg composition of 67%.Mg rich (%67Mg) alloy-based photodetector is found
to have two orders smaller dark current and have higher spectral response compared toNiO-based
one. Spectral responsivities forMgxNi1-xOphotodetectors are determined as 415mAW−1,
80mAW−1, and 5.6mAW−1 forMg compositions of 67%, 21%, and 0% (reference-NiO),
respectively. Furthermore, the detectivity of the photodetectors enhances asMg composition increases
and the highest detectivity of amagnitude of∼1011 Jones is found for the photodetector withMg
composition of 67%.

Introduction

In recent years, there has been an increasing demand for photodetectors operating in ultraviolet (UV)

(< 400 nm), deepUV (DUV) (< 300 nm) and solar-blind (< 280 nm)wavelength regionswith high sensitivity

and lownoise. DUVphotodetectors play a very important role in the fields offlame sensors, chemical-biological

sensors, ozone layermonitoring,missile warning systems, short-range secured communications, and space

technology. There are several potential semiconductors forDUVphotodetectors, such as SiC [1], AlxGa1-xN [2],
Ga2O3 [3], andMgxZn1-xO [4]. In recent studies,MgxNi1-xOhas attracted attention beyond these conventional

materials thanks to bettermatched structural properties of its constituent compounds,MgO andNiO [5–11].
BothMgO (4.212Å) andNiO (4.177Å) have face centered cubic (rock salt) structure, with only a 0.8% lattice

mismatch [12]. BothNiO andMgO are direct bandgap semiconductors with bandgaps of 3.7 eV and 7.8 eV at

room temperature, respectively [13, 14]. Alloying these compounds gives a greatflexibility to tune the bandgap

of the alloy to beingwithin theDUV region, depending on the alloy composition ofMg inMgxNi1-xO, from

159 nm (x= 1) to 365 nm for (x= 0) [6, 8].
So far, there have been few reported studies onMgxNi1-xO thinfilms andMgxNi1-xO-based photodetectors.

Kwon et al reported on the growth ofMgxNi1-xO (x= 0.049) thinfilms using the radio frequency (RF)

magnetron sputteringmethod [15]. In their study, they observed a blue shift from3.75 eV to 3.95 eV in the

bandgap of thinfilmswith increasing RF power ofMg source [15]. Zhao et al reported the structural and optical
properties of electron beam evaporation depositedMgxNi1-xO thinfilmswith 3 differentMg compositions
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(x= 0.2, 0.5, 0.8) and focused on the optical and electrical properties ofMgxNi1-xO-based photodetectors at only
a singleMg composition (x= 0.2) [9]. They reported thatMg0.2Ni0.8O (x= 0.2)-based photodetector has a dark
current of 70 nA at 5 V bias voltage and a responsivity of 145 μAW−1 at 320 nm,with a cut-off wavelength of
340 nm [9]. Nishitani et al reported the fabrication of a photodetector based onMgxNi1-xO (x= 0.48) thinfilm
deposited byRFmagnetron sputteringmethod using aNi-Mg composite target [16]. They achieved a 7 μAW−1

maximum responsivity at 292 nm [16]. Guo et al studied the effects of rapid thermal annealing on both the
structural and optical properties ofNi1-xMgxO-basedmetal-semiconductor–metal (MSM)UVphotodetectors
grownby pulsed laser deposition (mole content ofMg is around 20%). They reported a 12 meVbandgap blue-
shift from3.78 eV to 3.90 eV for as-deposited to annealing temperature 1000 °C) and 15 times smaller dark
current on annealed thinfilms at 1000 °Ccompared to as-grown thin films [17].Mares et al for thefirst time in
the literature, grew aNixMg1-xO thinfilm (4,38 eV for x= 0.54) usingMolecular BeamEpitaxy (MBE), with the
dark current values, rise and fall times ofMgxNi1-xO-based photodetector of< 25 nA, 0.59 s and 7.10 s,
respectively [18]. Recently, we have studiedMgxNi1-xO-based photodetector (x= 0.67), whichwas grownby
MBE, and have found the spectral responsivity of 415 mAW−1 and the dark current of 3.7× 10−11A, at 10 V
bias voltage [5]. To the best our knowledge, the effect of alloy composition on the performance of
MgxNi1-xO-based photodetectors has not been studied.

In this study, we study composition dependence of structural and optical properties ofMgxNi1-xO thinfilms
grownby theMBEwith differentMg compositions (0, 21 and 67%). Furthermore, for thefirst timewe report
alloy composition dependence of the performance ofMgxNi1-xO-based photodetectors grown byMBE

Experimentalmethods

MgxNi1-xO thinfilms, withMg compositions of 0, 21 and 67%were epitaxially grown on (111)-oriented SrTiO3

(STO) substrates byMBEBefore the growth, the substrates underwent a sequential cleaning procedure, starting
with acetone, then followed by isopropanol and deionizedwater for a period of 10 min each in an ultrasonic
bath. The substrates were then annealed at 1100 °C for an hour under atmospheric pressure. All filmswere
deposited for an hour under the following conditions: Ni effusion cell temperature of 1300 °C a substrate
temperature of 300 °Cand an oxygen partial pressure of 5× 10−6mbar. TheMg effusion cell was operated
simultaneously with theNi effusion cell at temperatures of 270 °C and 320 °C. Elemental composition of the
grown thin films and their homogeneity have beenmeasured using EnergyDispersive X-Ray Spectroscopy
(EDS). The crystal structure of the filmswas determined by x-ray diffraction (XRD)with 2 q w- scanmode,
using Rigaku SmartLabwithCu aK radiation ( Ål = 1.5418 ). Transmission electronmicroscopy (TEM)

measurements were performed on a JEOL 2100+TEMat the York-JEOLNanocentre. The specimen
preparation for TEMwas done using a focused ion beamFEINova 200. Surfacemorphology characterization of
thefilmswas carried out by Atomic ForceMicroscopy (AFM) (Park System, XE-Series). Non-contactmode and
NSC 15-type cantilever were utilized in the AFMmeasurements. Following structural characterization, thin
filmswere fabricated to have contacts in interdigital transducer (IDT) geometry for electrical and electro-optical
characterizations. The IDT electrode structures were defined on thefilms using the conventional
photolithographymethods. First, the samples were rinsed in acetone and then isopropyl alcohol for 5 min and
driedwith pure nitrogen (99.999%) gas. After the cleaning procedure, the samples were first prebaked at 110 °C
for 60 s. After this procedure, the samples were spin-coatedwithAZ5214 positive photoresist at 6000 rpm to be
1.4 μm in thickness using a spin coater (SPS SPIN 150). After spin-coated procedure, the baking process was
carried out again at 110 °C for 30 s to remove thewater in the photoresist. Subsequently, the exposure process to
define the IDTpatternwas performed using amask aligner (SUSSMJB4MaskAligner)with 405 nmLED
(28.8 mW cm−2) and 50 s exposure time. Then development of the IDTpatternwas carried out using an
AZ400Kdeveloper until the IDT geometry appeared on the sample surface. A 10 nmCr as adhesive layer and
100 nmAu (purity: 99.999%)were coated on the sample using a thermal evaporator (VAKSIS TwinChamber
Thermal Evaporator). The areas on the samples protected fromAu coating via photoresist was removedwith
rinsing the samples in acetone. The samples were stuck on ceramic holders usingGe varnish and 25 μmdiameter
goldwires were wedge-bonded from IDT to samples holder’s gold pads to conduct the electrical and electro-
opticalmeasurements. The length of IDTfingers is 450 μm, and both thewidth and interspacing of the
interdigitated electrodes are 20 μm. Spectral photoconductivitymeasurements were carried out using a free
space system equippedwith a 450WXenon lamp, a lock-in amplifier (SRS, SR-830) and a 0.5 m
monochromator (Acton, SP2500i). The current–voltage (I-V) characteristics of the samples weremeasuredwith
a source/meter unit (Agilent B2902A). Spectral responsemeasurements were carried out by aXenon lamp and
an electronic shutter. Power density of Xenon lampwas kept at about 16 mW cm−2 during themeasurements.
Response values were determined by calculating the time at which the intensity reached 90%and 10%of the
maximumphotocurrentmeasurements.
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Result and discussion

Figure 1 shows the representation of a normalized intensity x-ray diffraction patterns ofMgxNi1-xOwith varying
Mg composition (0, 21 and 67%), whichwasmeasured after the IDT electrode fabrication on the samples. All
films have a peak at 40°, which belongs to the (111) plane of STOperovskite crystal structure (ICSD code no.
37464), and another peak at 38.2° corresponding to the (111) plane of Au face centered cubic structure (ICSD
code no. 41690), which is thematerial used for the IDT electrode fabrication. TheMgxNi1-xO,with 0% and
0.21%Mg composition films, exhibit a diffraction peak at 37.3°, which belongs to (111) plane ofNiO rock-salt
cubic crystal structure (ICSD code no. 112324). For theMgxNi1-xO,with 67%Mg compositionfilm, as expected
the (111) peak has been shifted to lower 2 theta values i.e. 36.9°, reflecting that grown film is dominantlyMgO
(111) (ICSD code no. 52087). SinceNi andMghave the same valency, and very similar ionic radii of, 0.69Å and
0.72Å, respectively [19],MgO andNiO form continuous solid solution for any concentration ofMg(Ni) [20].

Furter structural studies by TEM show are fully consistent withXRD results confirm the epitaxial growth of
the filmswith the substrate given by following crystallographic relationship:MgxNi1-xO (111) || SrTiO3(111) and
MgxNi1-xO (1–10) || SrTiO3(1–10). Figure 2(a) shows a bright-field image at lowmagnification of the grownNiO

Figure 1.X-ray diffraction patterns ofMgxNi1-xO thinfilms forMg compositions of 0, 21 and 67%.Reference file for substrate, Au, as
well asNiO andMgOare also shown for comparison to experimental XRD results.
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film, with atomic (111) planes parallel to the interface, as clearly outlined by theHRTEM image,figure 2(c). The
single crystal nature, as well as the epitaxy of the grown film, is shown by the selected area diffraction from the
substrate and thefilm shown infigure 2(b). Further alloying byMgdoes not change crystallinity of the film, as
seen byXRD infigure 1, and directly byHRTEM image in the supplementary figure 1.

SEM-EDSmeasurements were caried out to determine the elemental composition ofMgxNi1-xO thin films
as shown infigure 3(a). EDSmeasurements were carried out from various positions as well to determine
homogeneity ofMg as shown in inset offigure 3(b). Infigure 3(b), theMg compositionmeasured at four
different positions of the sample shows that theMg distribution in the grown films is homogeneous.

It has been reported that as surface roughness increases, surface scatteringmechanismsmay effect optical
processes such as absorption, reflection and transmission of thin films. Furthermore, small surface roughness
can generate a homogeneous electric field across the entire device, thereby reducing the direct tunneling current
and potentially enhancing the rectification ratio of the device [21–24]. It has been reported that bandgap,
absorptionmechanisms and electric field distribution are affected by surface roughness which influence
photodetector performance [21–23, 25, 26]. Therefore, AFMmeasurement was carried out on the samples. The
composition dependence of surface roughness of the grown thinfilms is presented infigure 4. The surface
roughness of the thinfilmswas determined to be 1.5± 0.5 nm, 3.0± 0.5 nm, and 3.5± 0.5 nm forMg

Figure 2.Cross-sectional ofNiO (111) / STO (111). (a)Bright field TEM showing the 20 nm thick film, (b) selected area diffraction
fromNiOfilm and substrate showing the epitaxy and single crystal structure of the grownNiOfilm, (c)HRTEM form the interface
between the substrate SrTiO3 and theNiOfilm showing the (111) planes for thefilm parallel to the interface.

Figure 3. (a)EDS results ofMgxNi1-xO thinfilms. (b)Mapping of elemental composition ofMg on the sample.
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compositions 0, 21 and 67%, respectively, revealing that the surface roughness slightly increases with increasing
Mg composition.

To investigate the composition dependence of bandgap of the alloy, spectral photoconductivity
measurements were carried out using IDT electrode configuration defined on the sample surface via
conventional photolithography techniques as explained above. The IDT structure was patternedwith a length of
IDTfingers is 450 μm,where both thewidth and interspacing of the interdigitated electrodes are 20 μm.This
electrode configuration onMgxNi1-xO thin films is also e structure of the fabricatedMSMphotodetectors
(figure 5(a)). Energy band diagramof Au/MgxNi1-xOdepending on alloy composition is shown infigure 5(b).
The bandgap ofNiO is∼3.7 eV [14]. Thework functions ofNiO andAu are 6.7 eV and 5.4 eV, respectively
[27, 28], andNiO is awell-known p-typematerial in nature [11, 29, 30]. AlloyingNiOwithMgblue-shifts the
bandgap ofMgxNi1-xOaccording toVegard’s law as discussed below. Au/NiO andAu/MgxNi1-xO forms
Schottky contact. The IDT contact pattern defineMSMstructure on the surface of the thin film.MSM
structured photodetectors are basically composed of two Schottky contacts [31–34].When no bias voltage is
applied to the contacts, the band structure of the photodetector is as shown infigure 5(c), but when a bias voltage
is applied to the contacts, one side is forward biasedwhile the other side is reverse biased.When a bias voltage is
applied between the contacts, since one contact is forward biased and the other is reverse biased, the depletion
region on the reverse biased side expands.When the bias voltage is increased and reaches a certain level, the
width of the depletion region increases and reaches the other contact. In this case, the band bending disappears,
and the bands take on a tilted flat structure leading toOhmic behavior in I-V curves ofMSM structures.When
light is incident on the photodetector under this bias voltage, electron–hole pairs are generated. The generated
photocarriersmove towards the contacts and are collected, resulting in a photocurrent (Iph). The state of the
bands under bias voltage is shown infigure 5(d).

Responsivity (R) and detectivity ( *D ) of the photodetectors were calculated using [35–37]:

( )=
-

R
I I

P S.
1

p d

( )*
/

=D
R

eI S2

2

d

where Ip is total current under illumination and Id is dark current (dark currents used =Id 5.5× 10−9A,
4.1× 10−10 and 3.7× 10−11 forMg compositions 0, 21 and 67%, respectively), P is the power density of light
source (PXe= 16 mW cm−2), S is active area of the photodetectors (S= 0.192mm2

), e is the electron charge
(1.6× 10−19C). Responsivity values of the photodetectors are found to be 415 mAW−1

(67%Mg), 80 mAW−1

Figure 4.AFM images of theMgxNi1-xO thin films forMg compositions of (a) 0%, (b) 21%, (c) 67%and (d) composition dependence
of surface roughness ofMgxNi1-xO.
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(21%Mg), 5.6 mAW−1
(0%Mg) at a bias voltage of 10 Vunder illumination by a 320 nm line of Xenon. The

detectivities are 1.98× 1012 Jones, 1.14× 1011 Jones, 2.19× 109 Jones for 67%, 21%, 0%Mg compositions,
respectively. Due to the decrease in dark current depending on theMg composition, the photosensitivity of the
photodetectors has increased four orders.

Figure 6(a) shows the spectral photoconductivity of the samples, which also represents the spectral response
of theMgxNi1-xO-basedMSMphotodetectors.We have determined the composition dependence of the band
gap using spectral photoconductivitymeasurement, as reported elsewhere [11, 31, 32]. A blue-shift of 850 meV
from3.65 eV (Mg0%) to 4.50 eV (Mg67%) is observedwith the increasing ofMg composition.

The bandgap of alloys is calculated byVegard’s law

( ) ( ) ( ) ( ) ( )= + --E Mg Ni O xE MgO x E NiO1 3g x x g g1

where Eg (MgxNi1-xO) is the bandgap of alloy semiconductor, Eg(MgO) and Eg(NiO) are the bandgap ofMgO
andNiO, respectively.

Figure 5. (a) Schematic illustration of the fabricatedMgxNi1-xOphotodetector, (b) band line-up of Au/MgxNi1-xO for 0% (solid red
line), 21% (dashed blue line) and 67% (dotted green line)Mgcompositions. Also shown, an energy band diagramof a p-typeNiO-
based idealMSMphotodetector (c) at equilibrium and (d) under bias voltage.

Figure 6. (a) Spectral photoconductivity of theMgxNi1-xOphotodetectors without applied bias and (b)Composition dependence of
the bandgap ofMgxNi1-xO.Red circles indicate the results obtained in this study, and literature values are taken from
[6, 9, 13, 14, 16, 18, 38, 39].
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The bandgap of STO is about 3.35 eVwhich corresponds to 370 nm [5, 9], and the bandgap ofNiO is about
3.65 eV (340 nm).With increasingMg concentration, the bandgap ofMgNiOblue-shifts,making possible to
observewell-resolved peaks. The bandgap ofMgxNi1-xO filmswere found to be 3.65 eV, 3.83 eV, and 4.50 eV
depending on theMg compositions of 0, 21 and 67%, respectively, without consideration of the bowing
parameter (figure 6). These valueswell-matchwith the spectral PC results.When the composition dependence
of the bandgap values is comparedwith the current literature values as shown infigure 6(b), the bandgaps of the
MgxNi1-xO-STOare in the rangewhereVegard’s law is valid.

Figure 7(a) shows the room temperature I-V characteristics ofMgxNi1-xOphotodetectors at dark and under
uniform illumination of the Xenon lamp at 450W. It is found that the dark current of the photodetectors 100-
fold decreasedwith increasingMg composition compared to that ofNiO based photodetector (table 1).

Figure 7(b) shows time-dependent photocurrent ofMgxNi1-xO thin films. The experiments were carried out
using a 450WXenon lamp as an excitation source under a bias voltage of 10 V. As a result of taking the
measurements without dispersing the Xe light source, the photocurrent ofNiO is higher compared to
MgxNi1-xO. Since the light intensity of Xe lamp in the cut-off wavelength ofNiO∼ 340 nm ismuch higher than
the light intensity in theDUV regionwhereMgxNi1-xOcut-off wavelength lies in, the photocurrent value is
observed to be higher forNiO in the time-dependent currentmeasurements.While the fall and rise times of
MgxNi1-xOphotodetectors are comparable, it was observed that photodetector parameters are improvedwith
Mg incorporation. Furthermore, in contrast to the findings in literature, in this studywe have observed shorter
rise (10.7× 10−3 s) and fall times (8.6× 10−3 s), which can be attributed to single crystal nature of the active layer
(s), NiO andMgxNi1-xO.Comparison ofMgxNi1-xOphotodetectors parameters with the reported ones are
tabulated in table 1. It is worth noting that photodetector parameters in this study are superior to the reported
ones in the current literature.

Conclusions

In conclusion, this study includes the growth and characterization of epitaxialMgxNi1-xOphotodetectors on
STO (111) and their subsequent application in photoconductive deep ultraviolet (DUV) detectors, depending
on the alloy composition. Photodetectors with different alloy compositions (0, 21, and 67%)were fabricated
through the deposition of interdigitated Au/Cr contacts andwere comprehensively characterized regarding
their time dependence response, spectral response aswell as the voltage-dependent responsivity and dark
current. TheXRDmeasurements show thatNiO andMgxNi1-xOfilmswere grown along the [111] direction,
with (111) planes parallel to the substrate. The surface roughness of the grownfilms correlates withMg
compositionwithin theMgxNi1-xOfilms, initially leading to larger increase. EDSmeasurement results taken at
different accelerating voltages and positions has confirmed the homogeneous composition of the grown
MgxNi1-xO thinfilms. Electricalmeasurements indicate that the dark current values ofMgxNi1-xO
photodetectors decreasewith increase ofMg composition, resulting in a 100-fold increase in photosensitivity. As
Mg composition increases the photoresponsivity values changes 415 mAW−1, 80 mAW−1, and 5.6 mAW−1.
Spectral responsemeasurements have indicated that the bandgap ofMgxNi1-xOphotodetectors blueshifts by
approximately 850 meV, depending on the alloy composition. Time-dependent currentmeasurements
demonstrated that the rise and fall times of the producedMgxNi1-xOphotodetectors were less than 10 ms.

Figure 7. (a)Dark and illuminated I-V characteristics ofMgxNi1-xOphotodetectors with variousMg compositions (0, 21 and 67%).
(b)The time-dependent photocurrent ofMgxNi1-xOphotodetectors.
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Table 1.Photodetector parameters ofMgxNi1-xOphotodetectors in this work comparedwith reported ones.

Samples Growthmethod Bias (V)

Dark cur-

rent (A)

Photo sensitivity ( /I Iphoto dark)

ratio

Responsivity

(AW−1
) Detectivity (jones) (mHz1/2W−1

) Rise time (s) Fall time (s) References

Mg0.67Ni0.33O-SrTiO3 MBE 10 3.7× 10−11 41.34× 102 4.15× 10−1 1.355× 1011 10.7× 10−3 8.6× 10−3 ThisWork

Mg0.21Ni0.79O-SrTiO3 MBE 10 4.1× 10−10 8.08× 102 8.0× 10−2 7.85× 109 20.97× 10−3 7.10× 10−3 ThisWork

NiO-SrTiO3 MBE 10 5.5× 10−9 37.85 5.6× 10−3 1.5× 108 7.18× 10−3 6.20× 10−3 ThisWork

Mg0.2Ni0.8O-Quartz E-BeamEvaporation 5 70× 10−9 — 1.43× 10−4 — — — [9]
Ni0.54Mg0.46O-MgO MBE 5 25× 10−9 — 1.2× 10−2 — 0.59 7.10 [18]
Mg0.20Ni0.80O-Quartz Pulsed Laser Deposition 5 19.6× 10−9 — — — — — [17]
Ni0.52Mg0.48O-Quartz RFMagnetron

Sputtering

— — — 6.5× 10−9 — — — [16]
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Furthermore, the detectivity value, which demonstrates the detection capability of the photodetectors, increases
with increasingMg composition to the order of 1011 Jones depending on theMg composition. The observed low
dark current value and fast rise and fall times indicate thatMgxNi1-xO-based-MSMphotodetectors are
promising to be used inDUV region of electromagnetic spectrum.
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