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How exascale computing can shape drug design: A
perspective from multiscale QM/MM molecular
dynamics simulations and machine learning-aided
enhanced sampling algorithms
Giulia Rossetti1,2,3 and Davide Mandelli1

Abstract

Molecular simulations are an essential asset in the first steps of

drug design campaigns. However, the requirement of high-

throughput limits applications mainly to qualitative approaches

with low computational cost, but also lowaccuracy. Unlocking the

potential of more rigorous quantum mechanical/molecular me-

chanics (QM/MM) models combined with molecular dynamics-

based free energy techniques could have a tremendous impact.

Indeed, these two relatively old techniques are emerging as

promising methods in the field. This has been favored by the

exponential growth of computer power and the proliferation of

powerful data-driven methods. Here, we briefly review recent

advances and applications, and give our perspective on the

impact that QM/MM and free-energy methods combined with

machine learning-aided algorithms can have on drug design.
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Introduction
Computational approaches are progressively shaping
drug design in both academia and pharma [1]. However,
the complexity of many proteineligand interactions
stands against the accuracy and efficiency of historically

used “fast” approaches such as classical molecular sim-
ulations and bioinformatics methods based on (semi-)
empirical force fields (FFs). Twomethods have emerged
as key in drug design and discovery for such challenging
cases: free-energy algorithms and hybrid quantum me-
chanics/molecular mechanics (QM/MM) simulations, as
well as a combination of the two.

The advantage of free energy methods is in their ability
to accelerate by orders of magnitudes the exploration of
the configurational ensemble, in particular when kinetic
bottlenecks are present, which is the typical scenario
encountered in most applications. They allow recon-
structing free energy profiles along the most relevant
(slow) degrees of freedom, computing binding affinities,
as well as extracting kinetics rates [2,3].

The advantage of using accurate ab-initio QM models
(based, e.g., on density functional theory (DFT)) is
evident whenever charge transfer and polarization ef-
fects are dominant. This encompasses many important
cases: (i) proteins in which metals are involved in the
binding process [4]; (ii) hydrophobic or stacking in-
teractions, where dispersion forces play a significant role
[5]; (iii) ligand binding involving the formation of co-
valent bonds with a protein reactive residues [6]; (iv)
ligand binding involving proton transfer, tautomeriza-
tion events or polarization effects [7].

Historically, QM/MM calculations have been designed
specifically to model chemical reactions in biological sys-
tems and are traditionally used in the design of transition
state-like inhibitors for enzymatic reactions involved in
drug metabolism [8]. Free-energy methods, on the other
hand, already find widespread use for the estimate of
binding affinities [2]. However, both techniques have not
yet achieved a broad impact on rational drug designmostly
due to the complex and system-dependent set-up, as well
as their high computational cost.

Quantum mechanics/molecular mechanics
simulations
In a recent perspective, Bolnhyk et al. [9] highlighted
the role that High Performance Computing (HPC) can
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have in expanding the boundaries of ligandetarget
modeling. This can be achieved by developing dedi-
cated software able to exploit the unprecedented
computational power currently offered by HPC in-
frastructures. In the following, we briefly review how
recent advancements in hardware and software have
impacted the performance of QM/MM MD simulations
and present applications of this method both in virtual
screening campaigns and in drug design.

Hardware and software developments

Modern supercomputers are based on thousands of
interconnected compute nodes. Exascale machines
reach unprecedented computational power via hetero-
geneous architectures, where nodes feature standard
CPUs equipped with accelerators (e.g., Graphical
Processing Units (GPUs)) and are coupled through
extremely fast interconnects [10]. Fully exploiting this
technology thus requires designing dedicated software
able to scale on thousands of (accelerated) nodes.
Recent advances in QM/MM software development
have demonstrated efficient scaling up to >80 kcores,
allowing performingw0.7 ps/day of QM/MMMD at the
B3LYP [11] level of the IDH1 enzyme, a target for the
early diagnosis and treatment of brain cancer [12] (see
Figure 1). This was made possible by the use of an
efficient framework, based on a multiple program mul-
tiple data approach, that interfaces existing QM and
MM software, minimizing communication and preser-
ving the performance of the QM layer, which ultimately

dictates the scaling [13,14]. The TeraChem [15] and
Quick [16] QM/MM codes recently demonstrated the
enormous impact GPUs can have on throughput.
Benchmarks showed performances up to w2 ps/day at
the B3LYP level running on as few as 2 GPUs (see
Table 1). Indeed, it has already been shown how
exploiting GPU-based hardware makes it feasible to
perform virtual screening of a refined chemical library at
quantum mechanical level to identify lead compounds
with improved accuracy [17].

QM/MM simulations for virtual screening and drug

design

QM/MM simulations approaches with relatively high-
throughput (mainly point energy calculations and
structural optimizations) can improve the success rate of
virtual screening campaigns by refining the starting ge-
ometries for docking, building more accurate charge
models, and improving the accuracy of scoring functions
[18]. In recent contributions, Borbulevych et al. suc-
cessfully included an automated approach for macro-
molecular refinement of X-ray structures based on a two
layer QM/MM ONIOM model able to yield superior
quality protein:ligand complex structures compared to
conventional methods [19]. Molani et al. developed a
protocol to obtain effective protein-ligand binding free
energy predictions using QM/MM simulations to sub-
stitute atomic charges of FFs with quantum-
mechanically recalculated ones [20]. Jin et al. com-
bined NMR chemical shifts calculations from the

Figure 1

(a) The model wild type isocitrate dehydrogenase (wtIDH1) enzyme studied via QM/MM MD simulations in Ref. [12]. The circle indicates one of the two

catalytic sites used as the QM region. (b) Details of the QM region including the isocitrate (ICT) substrate and the NADP cofactor that participate in the

reaction leading to the production of alpha keto-glutarate (alphaKG) and NADPH. The presence of a magnesium ion makes the use of accurate ab initio

QM methods essential. (c) Strong scaling of the MiMiC QM/MM interface on the pre-exascale JUWELS cluster at the Jülich Supercomputing Center,

showing parallel efficiency above 70% up to 84,672 cores, corresponding to ~80% of the total resources of that machine.
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automated fragmentation QM/MM method within a
scoring function that can distinguish the native ligand
pose from decoy structures, suggesting that NMR in-
formation can provide an accurate and efficient platform
for protein-ligand binding structure prediction [21].
Notably, highlighting the impact that data-driven
methods can have at different levels of the pipeline,
Gupta and Zhou designed a machine learning-enabled
workflow for large-scale virtual drug screening that
combines clustering algorithms with docking based on a
neuronal network-based pseudo-QM/MM potential
trained on QM DFT data [22]. QM/MM MD simula-
tions, on the other hand, are being successfully applied
in drug design projects where sampling is needed to
obtain detailed mechanistic insights. A number of
recent publications showcased the increasing role that
these methods (predominantly based on the umbrella
sampling technique [23]) can have in the design of drug
binding to metalloenzyme, covalent drugs, TS-like in-
hibitors, and to study the effects of drug-resistant mu-
tations [24e29].

Molecular dynamics-based free energy
methods
Drugeprotein unbinding processes occur on long time
scales, typically ranging from millisecond to hours,
depending on the nature and the strength of the inter-
action between the ligand and target. Being able to fast
and reliably predict free energy changes using numerical
simulations has long been extremely attractive for drug
design. Indeed, free-energy calculations can be used to
support a variety of tasks in drug design, not only guiding
positional analogue scanning and validating binding
mode hypotheses, which are key in virtual screening
workflows; but free-energy calculations can also be used
in other tasks of the drug design process, like scaffold
hopping or fragments-to-leads optimization.

Different enhanced sampling techniques have been pro-
posed to predict free-energy barriers and uncover the ki-
netics of ligand-binding interaction [2,30]. These include
free-energy perturbation, umbrella sampling, replica ex-
change, metadynamics, steered MD, accelerated MD,

milestoning, transition-path sampling, and several com-
binations among them [23,31e38].

Here we will discuss two examples of how Machine
Learning speeds up relative and absolute binding free-
energy approaches, respectively.

Relative binding free-energy (RBFE) approaches and

machine learning

Iteratively training automated ML (AutoML) models
with a limited number of RBFE calculations has been
suggested as an alternative to the computationally
intensive traditional RBFE approaches. This strategy
was for instance implemented in Gusev et al. [39],
where an iterative Amber GPU- RBFE calculations were
conducted for a small number of SARS-CoV-2 papain-
like protease binders: RBFE were only calculated for the
10% of the compounds and used as dependent variables
of an AutoML workflow that was then implemented for
the remaining molecules, demonstrating the utility of
the approach for the rapid exploration of large chemi-
cal spaces.

Also, a collaboration between Google Research and
Relay Therapeutics showed how an exhaustive study of
RBFE calculations on 10,000 congeneric tyrosine kinase
2 (TYK2) inhibitors can be conducted using RDKit
Morgan fingerprints as descriptors and deploying
different active learning (AL) strategies [40]. Inde-
pendently of the specific ML algorithm used with this
strategy, only 6% of the 10,000 TYK2 inhibitors was
explicitly calculated with an RBFE protocol, while the
remaining compounds were predicted using the AL
approach identifying 75 of the top 100 scorers.

Absolute binding free-energy and machine learning

A key factor for most absolute binding free-energy ap-
proaches is the identification of a collective variable
(CV), representing a physical pathway, that allows the
calculation of the free energy profile. Hence, correct
identification of appropriate CVs becomes a problem,
with very few practical ways to build them properly. To
automate this process, a number of procedures have

Table 1

Performances of the MiMiC [12], Terachem Protocol Buffer (TCBP) [15] and QUICK/AMBER [16] interfaces running QM/MM MD simula-

tions using density functional theory at the B3LYP [11] level using QM regions of comparable size. IDH1: isocitrate dehydrogenase

enzyme. PYP: photoactive yellow protein. We report the published peak performances and the corresponding optimal computational

resources in terms of number of standard CPU nodes (for MiMiC) and number of GPUs (for TCPB and QUICK/AMBER).

QM code MM code Interface GPU System QM atoms Theory CPU Nodes* or GPUs** ps/day

CPMD GROMACS MiMiC NO IDH1 141 B3LYP

PW

1764* 0.74

Terachem AMBER TCPB YES PYP 159 B3LYP/def2-SVP 2** 1.83

QUICK AMBER QUICK/AMBER YES PYP 159 B3LYP/def2-SVP 4** 1.13
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been developed, many of them based on machine
learning (ML) approaches [41]. For instance Deep
Linear Discriminant Analysis (Deep-LDA) [42] rather
than finding the ideal CVs, focused on sampling the
transitions between different metastable basins.
Autoencoders [43,44] approaches, instead obtain a good
set of CVs using general coordinates of a system in
dimensionality reduction schemes. The network is
optimized to represent the configurational state of a
system in a lower dimensional space. Recently, Deep-
LDA was used to investigate the non-covalent in-
teractions between a calixarene host and different guest
molecules: not only protein-ligand interactions were
considered, but also the role of water molecules was
taken into account to identify the CVs and calculate the
binding free energies [44].

Another challenge of binding free-energy is the complex
relationship with the expected efficacy in vitro/vivo.
Namely, free energy dictates the strength of interactions
between a ligand and its target, but it does not provide
any information of the pharmacological activity of the
drug in vitro/in vivo experiments. Such a relationship
becomes even more challenging in the presence of
allosteric compounds that impact on the efficacy of the
main/orthosteric substrate, while binding at a distal site.
In this framework, ML was exploited to identify the
links between different degrees of allosteric inhibition
of the ATPase function in the molecular chaperone
TRAP1 and local dynamic patterns of the corresponding
allosteric ligand over ns-ms -long MD simulations [45].
The authors were able to prove that it is possible to
discriminate and predict the functional effect of allo-
steric ligands on a given target by combining MD and
ML, thus complementing affinity data.

Kinetics calculations and machine learning

A recent paradigm shift in drug design highlighted the
importance of modulating residence time as a key
objective in addition to strong binding affinity [46]. Free-
energy approaches were already used in the past to
predict the ligandeprotein unbinding kinetics: for
instance metadynamics was implemented for predicting
the koff of p38 MAP kinase bound to type II inhibitors,
but depending on the set of CVs chosen, different values
for koffwere obtained [47]. It was also shown later on that
combining metadynamics with QM/MM simulations
allowed a more accurate prediction of the unbinding
kinetics [48], but the dependence on the CVs was not
solved. In this respect, ML approaches were recently
combined with free-energy calculations to solve this
issue: specifically, it was shown how a supervised ML
approach can be implemented using as inputs unbiased
“downhill” trajectories initiated near the transition state
(TS) ensemble of the unbinding path. The model was
then exploited to identify key ligandeprotein in-
teractions driving the system through the TS [49] and

the free energy barrier for the ligand unbinding process,
therefore providing quantitative information about the
residence time of a specific ligand. The key role of ML is
in allowing a combination of automated iterative addition
and removal of the collective variables determining an
unbinding trajectory to identify the relevant interactions
during the unbinding process. This allows the methods
to provide consistent free energy barriers, despite un-
binding trajectories showing different paths between
different replicas for the same system.

Perspectives
Absolute biding free energies from apo-structures

Machine learning approaches to automatize CV selec-
tion have brought significant improvements to CV-based
methods for free-energy calculations. However, espe-
cially for deep-buried binding pockets, they still need
training on the ligandeprotein complex, i.e. holo
structure of the target protein. As such, they might not
perform well when only the native unbound conforma-
tion (or apo) is available and/or the bound one is ob-
tained by docking of the ligand on an apo-structure,
which is known to be less reliable [50]. Enhanced
sampling of pocket shape was proposed as a viable so-
lution by Vargiu and co-worker [51], with remarkable
results for a chosen ensemble of proteins undergoing
different extents of conformational changes upon ligand
binding. More generally, it would be very interesting to
explore the possibility to develop ML approaches
trained on dedicated data-sets of apo-proteins [52] to
develop CVs able to capture (un)binding processes
when no holo-structures are available.

Kinetics predictions and machine learning/molecular

mechanics potential

Making QM/MM MD and free energy methods a stan-
dard for pharmacology would represent a breakthrough
under many aspects (see Figure 2). For virtual screening
campaigns, by substantially increasing the efficiency in
discriminating true from false positives. For rational drug
design, by providing high quality structural information
and microscopic insights for the engineering of novel li-
gands. Furthermore, using transferable ab initioDFTQM/
MM would avoid the burden of re-parametrization
needed by semi-empirical and classical FFs when
moving to new protein/ligand complexes. Of particular
appeal is the possibility to predict with QM accuracy li-
gands’ residence times, which have been shown to
strongly correlate to drug efficacy [53]. In this respect,
we currently witness a gap between the methodological
advancement in the field of MD-based enhanced sam-
pling methods (helped by ML) [3,54] and the limita-
tions of QM/MMMD simulations. In fact, in absence of
well-established adaptiveQM/MMalgorithms, largeQM
regions are needed to describe ligand unbinding, espe-
cially from deep-buried pockets. Exascale machines and
ML can be leveraged to overcome this obstacle. On one
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hand, coupling general QM/MM frameworks likeMiMiC
with highly scalable DFT codes that can run on thou-
sands of GPUs [55e57] can enable large scale simula-
tions including thousands of atoms in the QM region. On
the other hand, the development of hybrid ML/MM
potentials [21,58e63] trained over such data can
significantly extend the time scale of simulations to
improve statistical accuracy. Finally, data-drivenmethods
applied to free energy perturbation calculations [64,65]
can be used to correct for the loss of accuracy ofML/MM
potentials. At the moment, proof-of-concepts of these
approaches have been already published and real world
applications can be foreseen in the near future.

Applications to nucleic acids

DNA and RNA play essential roles in many biological
processes and represent an important class of drug tar-
gets [66]. Small molecules interact with nucleic acids
using different mechanisms: intercalation, cross-linkage,
strand-cleavage, and reading-molecules. Unfortunately,
if from a structural point of view nucleic acids result in
being suitable for target-based drug discovery, the high
prevalence of charges and metal ions poses a major
challenge: In solution, the negative phosphates are
normally neutralized by counterions as Sodium ions
(Naþ). Their mobile nature is difficult to handle with
traditional in silico drug design approaches like molecular
docking. Also, the presence of the phosphate negative

charges brings along a multitude of metal ions and water
molecules strongly interacting to each other. A particular
challenge is represented by the water polarization effect
caused by the frequent presence of charges and ions,
which might reflect their effect at several layers of dis-
tances. Therefore, to disrupt the hydration shell ligands
need high polarity when considering the polyanionic
character of the nucleic acid molecules. All these issues
impact a number of factors that are not limited to wrong
FF parameters. QM methods are theoretically exact,
capturing the underlying physics of the system and ac-
counting for all missing effects in FFs (such as electronic
polarization, covalent-bond formation, and coupling
among terms). In this respect the results obtained using
QM approaches are very encouraging, but still different
sources of error should be addressed in order to improve
accuracy and predictability of thesemethods: (i) they are
still system-dependent; thus, further validation and
benchmarking are needed; (ii) in spite of the progress in
computational speed, most QM applications to drug
discovery cannot still be used in industrial settings,
highlighting the need for further optimized codes,
especially those using GPUs and exascale.

Applications to covalent ligands

Covalent drugs are currently showing great promise for
systems that are normally difficult to target with small
molecules therapies [6]. This renewed interest has
spurred the refinement of existing computational
methods as well as the design of new ones, expanding the
toolbox for discovery and optimization of selective and
effective covalent inhibitors. Current covalent docking
methods mostly focus on modeling the conformation of
covalent inhibitors in the bound covalent complex but
they ignore the energetics of covalent bond formation,
enforcing an idealized bond and scoring docked com-
plexes primarily on the noncovalent interactions [67].
Retrospective comparisons of such docking methods
indeed show that they are effective in reproducing
observed covalent complexes about half of the time and
that the success is system-dependent, i.e. it depends on
the size and flexibility of the ligands, as well as the
accessibility and flexibility of the target amino acid side
chain, with significant differences between different
types of reactive group [68,69]. Methods such as QM/
MM would be able to quantitatively characterize the
entire process of binding and covalent attachment.
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Figure 2

The advent of the exascale era brings an opportunity to develop high-

throughput in silico pipelines combining traditional approaches and data-

driven methods with more rigorous QM/MM MD-based free energy cal-

culations for optimized drug design.
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