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In this paper we investigate the massive Sine-Gordon model in the ultraviolet
finite regime in thermal states over the two-dimensional Minkowski spacetime.
We combine recently developed methods of perturbative algebraic quantum field
theory with techniques developed in the realm of constructive quantum field theory
over Euclidean spacetimes to construct the correlation functions of the equilibrium
state of the Sine-Gordon theory in the adiabatic limit. First of all, the observables
of the Sine-Gordon theory are seen as functionals over the free configurations
and are obtained as a suitable combination of the S—matrices of the interaction
Lagrangian restricted to compact spacetime regions over the free massive theory.
These S—matrices are given as power series in the coupling constant with values
in the algebra of fields over the free massive theory. Adapting techniques like
conditioning and inverse conditioning to spacetimes with Lorentzian signature,
we prove that these power series converge when evaluated on a generic field
configuration. The latter observation implies convergence in the strong operator
topology in the GNS representations of the considered states. In the second part
of the paper, adapting the cluster expansion technique to the Lorentzian case, we
prove that the correlation functions of the interacting equilibrium state at finite
temperature (KMS state) can be constructed also in the adiabatic limit, where the

interaction Lagrangian is supported everywhere in space.
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1. Introduction

The programme of constructive quantum field theory (CQFT) was initiated 80 years ago, yet, to this day,
only a handful of rather special models seem to have a chance to be constructible in 4 dimensions (for reviews,
see [45,41]). Yang-Mills and gauge theory on the other hand, have so far eluded all attempts and we have to
be content with perturbation theory. With this paper we propose to go back to a 2-dimensional model that
has been studied for decades [29-32], and to combine the techniques developed then with recent methods
that emerged in the context of perturbative algebraic quantum field theory (pAQFT) [17,3,40] in the hope
that such a combination of results might bring the whole programme of CQFT forward. We investigate
the massive Sine Gordon model in the ultraviolet finite regime (a? < 47 /h in (1)) in thermal states and
prove that the adiabatic (infinite volume) limit exists. Several results regarding Sine-Gordon models have
been obtained in the past, in particular, for finite volume or non vanishing mass, the construction of the
Sine-Gordon model in the Euclidean case for a® < 47/h has been obtained by Frohlich and Seiler in [26,27]
and it has been extended to a? < 87 /A by Dimock and Hurd in [18,19], see also [10,37] for earlier works
using a different approach. Further recent works on the subject are reported in [7], [14]. We stress that while
most work done in the past used the auxiliary Euclidean framework, we are able to remain purely in the
Lorentzian framework. This, in fact, turns out to simplify arguments and proofs. Most notably, we will see
how the time slice property [15] and causality allow us to reduce the problem of taking the adiabatic limit
to a one-dimensional problem, thus simplifying the estimates in the cluster expansion used in the Euclidean
case [27]. Our construction might also shed new light on Osterwalder-Schrader positivity and the Wick
rotation. It would be interesting to investigate the model’s analytically continued correlation functions,
calculated in thermal states, and study the resulting Euclidean theory. Finally, it should be noted that our
approach to the construction of the algebra of observables carries over to any globally hyperbolic spacetime.

To be specific, we construct a quantized x—algebra of the massive Sine-Gordon theory on the two-
dimensional Minkowski space M = (R2,7) with the Minkowski metric n = (—,+). We recall that the
classical Lagrangian of the Sine-Gordon theory is
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1 m?

L= —5890&,0 TR Acos(ap) (1)
where ¢ represents the Sine-Gordon field, m is the mass of the field, A is a coupling constant and a is a
parameter. We assume a? < 47 /A, so the perturbative series does not require renormalization (ultraviolet
finite regime). Working in the framework of pAQFT, the quantization of theory is achieved in two separate
steps. First, one constructs a x—algebra A; which contains fields observables as a formal power series
deformation of a classical Poisson algebra. In a second step, representations of this algebra are considered,
via the introduction of states (normalized positive linear functionals on Aj). This is fundamentally different
from other approaches to QFT, where a vacuum state is assumed along with the fields. The dynamics enters
the construction of both the algebra and the states. In this paper, we consider equilibrium states (KMS
states) and already in the case of free theories, the representations obtained at different temperatures are
not equivalent.

In the case of fields which satisfy a nonlinear equation of motion, we shall use perturbation theory to
construct interacting fields. The idea is then to construct A4, the x—algebra of free fields (the case A =0 in
(1)), we then find a map which permits to represent interacting fields, namely elements of A in A. This map
exists for the off-shell algebra, namely A is constructed by implementing the free, canonical commutation
relations but without assuming that linear fields satisfy the equation of motion. In other words, in A it is
possible to find an ideal Z generated by the free equation of motion applied to test functions and instead
of taking the quotient of A with Z at the beginning, we shall consider states over A which vanish over Z,
hence we are effectively taking the quotient at the very end of the quantization process.

The map which permits to represent off-shell interacting fields within the algebra of linear fields is
constructed using ideas of Bogoliubov and Stiickelberg ([13,44] and in particular constructing and using the
time ordered exponential of the interacting Lagrangian called the S-matrix. Usually, in higher dimensions,
the S—matrix is known as a formal power series in the coupling constant A or in the case of polynomial
interaction Lagrangian as a power series in h. For Sine-Gordon theory (1) in two dimensions, this S-matrix
can be shown to converge for various choices of the parameters m, A\ and a and in various forms, see e.g.
[18,19] for the case a < (87 /h).

To obtain the interacting fields perturbatively, we shall construct the S—matrix of the interacting La-
grangian

L1 = Acos(ap) (2)

as the time ordered exponential of £;. It is long known that S converges in the case of a Euclidean theory
[26,27]. The first step in this construction is the restriction of the support of the interaction Lagrangian
multiplying it with a suitable cutoff function g. It is also known that S converges for the massless two-
dimensional Lorentzian case provided the support of gL is restricted to a sufficiently small region [12,8]. In
[8], it is proved that in the GNS representation of the Derezinski-Meissner state [20], the series that defines
the S—matrix converges in the strong operator topology to a unitary operator.

In the first part of this paper we extend this construction to the interacting Lagrangian supported on
arbitrary compact regions (Theorem 2.8 below). In order to achieve this result we make use of techniques
like conditioning and inverse conditioning developed for the Euclidean case, see e.g. ([26,27,31,32]) and
extend them to the Lorentzian case. These results are used to prove absolute convergence of the S—matrix
when the interaction Lagrangian is supported on a small region uniformly on the field configuration. See
Theorem 2.6, which is a direct extension of the results of [12]. Observe that the analysis performed in this
part of the work can be extended also to generic globally hyperbolic two dimensional spacetime. We then
proceed to analyze adiabatic limits, i.e. limits where the cutoff function g is removed taking the limit g — 1
in a suitable sense. As a first step, in Theorem 2.8 we prove that the S—matrix converges also when g is
supported on a generic domain.
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In section 3, we investigate the equilibrium state for the interacting theory with positive mass at generic
temperature 5~'. When the interaction Lagrangian is of compact support, the construction is an extension
of the results of Fredenhagen and Lindner [22] which are based on ideas of Araki [2]. The investigation
of the adiabatic limit, however, is rather difficult for these states and requires a detailed analysis of the
decay properties of the free n—point functions at large spatial separation. To present this part in details,
we start by discussing some properties of thermal states for the free theory in subsection 3.2. In particular,
we argue that similar results as those given in Theorem 2.8 can be obtained also for an algebra whose
product is constructed with the two-point function of the free equilibrium state. The Fredenhagen-Lindner
construction uses two key properties, namely, the time-slice axiom for the interacting theory [15] and the
fact that (smooth) alteration of the interaction Lagrangian in the past of Xy, the time ¢ = 0 hypersurface,
results in an unitary transformation of the algebra of interacting observables supported in the future of 3,
[5,35,36]. These observations and the way in which they are used to compute adiabatic limits, are recalled in
subsection 3.1. Further properties of the interacting equilibrium state, and in particular their independence
on the time cutoff function are given in subsection 3.3. The interacting equilibrium state w?" is presented
in (38) and it is given in terms of the equilibrium state of the free theory w® and of U(if), the relative
partition function associated to the free and interacting dynamics, as

w?(FU(iB))
wi(U(if))

We then discuss the construction of the generating functional G(f) given in (39) of the equilibrium state

wﬁ’V(F) = F e A[.

for the interacting theory at finite temperature when the interaction Lagrangian is localized in a compact
region with cutoff function of the form g = yh with xy and h the time and space cutoffs, respectively,
as discussed in subsection 3.3. G(f) is obtained from the ratio above with F' the exponential of the field
localized by a cutoff function f, and with numerator and denominator given in (40). Furthermore, the
explicit form of the generating functional can be simplified with the following observations. The state
evaluated on observables supported in the future of ¥y does not depend on the particular form of the time
cutoff function y in the past of Xy. If the time cutoff function is chosen to be a Heaviside step function,
no further divergences are introduced in G(f). Furthermore, in this case, the corresponding interacting
Hamiltonian given in (41) is supported at time zero only. Using the time slice axiom of the free theory, we
can also move the support of f to be closer and closer to the hypersurface ¥y without altering the form
of the generating functional G(f). Therefore, instead of considering ¢'®/) in (39) with general f, we can
equivalently compute expectation values of fields entirely supported at the hypersurface 3y because (42)
holds up to contributions which vanish on shell and the state satisfies the free equation of motion.

Taking into account these observations, we have that the explicit form of the generating functional can
be obtained using (44) which is an expression given in terms of objects entirely supported on g. In this
expression, the covariance C2 € D'((0,8) x ¥y) appears. It corresponds to the analytic continuation of
the two-point function of the free KMS state given in (45). In (44), the spatial support of the interacting
Hamiltonian (at time ¢t = 0) is restricted by the spatial cutoff function h. The last step in the construction
of the equilibrium state for the Sine-Gordon theory consists in taking the limit where the spatial cut off
function h tends to 1 everywhere on Y. To study this limit, we adapt to one dimension the cluster expansion
originally proposed by Glimm, Jaffe and Spencer [29] for a two-dimensional Euclidean theory and used in the
context of Euclidean Sine-Gordon models by Frohlich and Seiler [27]. We recall that the cluster expansion,
originally proposed in [29], has been improved and generalized over the years in various works, see e.g.
[4,11,1].

In order to apply these techniques, the decay properties of the covariances with or without boundary
conditions are discussed in section 4. The details of the cluster expansion are given in section 5 where we
reduce to the one-dimensional case the cluster expansion given in [29] and in [27]. In particular, in Propo-
sition 5.1 and Proposition 5.2 we summarize some properties of the cluster expansion and in Theorem 5.3,
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we state the validity of the adiabatic limit in our context. In order to prove the finiteness of the adiabatic
limit, the decay properties for h with large support as stated in Lemma 5.5 are crucial. The proof of this
Lemma descends from some more technical lemmata collected in section 5.3.

1.1. Functional approach

In the functional approach to QFT, the observables of the theory are constructed as (formal power series
of) functionals on smooth field configurations. The set of these objects with a certain regularity is then
equipped with suitable products and involutions in order to obtain the x—algebra of field observables. The
commutation relations among fields are encoded at algebraic level in the product. Further details on this
construction can be found in [5,3,9,35,36,25], see also the recent books on the subject [40,21]. Here we recall
the main definitions. We shall formulate the formalism more generally than needed here, assuming M to be
a general globally hyperbolic manifold.

Starting point is the choice of possible field configurations. In our case of spin 0 fields, the set of field
configurations is simply the set of real-valued smooth functions

= {p € C™(M;R)}.

Observables of the theory are contained in the set of microcausal functionals which is the set of smooth
functionals over C that are of compact support and whose wave front set is microcausal, i.e.

Fe = {F € C ‘ F ¢ &(M™), WF(FM) N (VT UV )=0,neN }

where F(™) denotes the n-th functional derivative of F, WF(d) denotes the wave front set of a distribution
d € D'(M™), see e.g. [34] for a definition, and where V and V_ are the set of future-pointing and past-
pointing covectors in T*M™, respectively. The set of regular functionals over C is the subset

Freg i= {F € Fue | F™ e c(M™),neN }

Another relevant subset of F,. is the set of local functionals

Fioe = {F € Foo

FM e C> (M), suppF™ c D,, c M" ,neN },

where D,, denotes the diagonal in M™. A functional F' € F,, is said to be polynomial if only finitely many
functional derivatives are non-vanishing. We denote by F7. the set of polynomial microcausal functionals
and by FP

It the set of regular polynomial microcausal functionals.

Restricting the domain of integration by a compactly supported smooth function (“smearing” as it is
usually called), the interaction Lagrangian and fields themselves, gives rise to elements of Fi, in the following
sense: The smeared linear field is the functional ®(f) on C

B(f): o (o) = / J@e@)dus,  f € CF(M) (3)
M

where g is the measure induced by the metric of the spacetime M. The linear field is obviously a local regular
functional. The notation usually suppresses the p-dependence, i.e. we write ®(f) instead of ®(f)(¢). In a
similar way, the interaction Lagrangian gives rise to a local functional, which we define by means of the
smeared vertex operator, i.e. the exponential of the field
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VY = /ei‘“ﬁ(m)g(x)dux, a€R, gcC&P(M), (4)
M

where again, in the notation we suppress the ¢-dependence.

If we equip F. or Freg with suitable products and with a suitable involution, we obtain the classical or
quantum algebra which contains the observables of the free theory. More precisely, the involution we are
considering coincides with the complex conjugation, i.e.

F* () == F(e).
We now equip F,. with the pointwise product defined as
F-G=MF®G)

where M is the pullback of the map 2: C — C x C, (p) := (¢, ¢) on Fy. ® F,.. Effectively, this means that
F - G(p) = F(¢)G(p) with pointwise multiplication in C. The algebra A = (F.,-) is thus a commutative
x—algebra. We equip it with a topology by saying that a sequence A, € A converges to a functional A on
C if for any field configuration ¢ and for any k£ € N, the functional derivatives AP (@) converge to A ()
in the topology of distributions of compact support.

Observe that the field configurations which are considered in the construction of this algebra are not
necessarily solutions of any field equation, hence this algebra is called off-shell algebra of free classical
fields. The on-shell algebra of fields is obtained by taking the quotient with respect to Z, the ideal formed
by elements which vanish when evaluated on a field configuration ¢ that is a solution of the chosen equation
of motion. We avoid computing this quotient as it is easier to work off shell to obtain the correlation
functions of the theory. We will simply ensure that the chosen state that will define the representation of
the off-shell algebra, hence the correlation functions, is compatible with taking the quotient, i.e. that the
ideal 7 generated by the equation of motion is in the kernel of the state.

The canonical quantization of the free theory is realized by deforming the pointwise product to a non-
commutative product in terms of a formal power series with a formal parameter A, with & = 0 corresponding
to the classical theory (pointwise product). The deformed products we consider are of the form

FryG=Me"(FeaG), r, = /d,uxd,uyw(x,y) ® —— (5)
where w € D'(M?) is a suitable distribution of order A.

In order to encode the canonical commutation relations, making the deformed product the correct or-
dinary quantum product, w is chosen to be equal to %ﬁA where £ is the Planck constant and A is the
retarded minus advanced fundamental solution of the free equation of motion, also called the Pauli-Jordan
commutator function or the causal propagator. This choice makes the product %;;a /2 (also denoted by x
or even omitted when this does not create confusion), well defined on polynomial regular functionals and
that each term in the series is again (up to a power in h) a regular polynomial functional. Observe that the
resulting series’ only contain finitely many terms and hence, we can treat i as a number, not as a formal
parameter, justifying the notation (FZ,, ) instead of (FE,[[R]], ) for the x—algebra of free quantum fields.

reg’ reg
In particular, we have implemented the canonical commutation relations,

[@(f1), P(f2)]« = iR{f1,Af2), f1, f2 € CFF(M). (6)

We observe that x;za /2 cannot be directly extended to microcausal functionals because the singularities
of A are not necessarily compatible with the singularities of the functional derivatives of elements of F ..
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Hence, elements like the smeared interaction Lagrangian (2), the vertex operators (4) and even non-linear

polynomial local functionals are not contained in FZ_. On the other hand, physically relevant states like

reg*

the vacuum defined on the quantum algebra (FF.,,*) cannot be extended to F .. In order to overcome both
problems, a normal ordering procedure is used. The procedure of normal ordering on regular functionals is

to consider formal power series
Fip=a,'F € Fregl[M], F e Fieg,

where

. - 1 52
wF =€ F Ty == [ dusyd ,
! e “F, 2/ L iy w(z y)éw( (7)

)0 (y)
and where w € D'(M x M), the so-called 2-point function, is a suitable distribution, again of order A, which
is assumed to have the following properties: w is a solution of the free equation of motion up to smooth
remainder term, its antisymmetric part coincides with %hA so that the canonical commutation relations (6)
are still valid if x is replaced by x,,, and moreover, the symmetric part of w is real and it is chosen in such
a way that the wave front set of w satisfies the so-called microlocal spectrum condition. We recall that a
bi-distribution u satisfies the microlocal spectrum condition if

WE(u) = {(z,y: ko, ky) € T*M*\ {0} | (,ka) ~ (y. —ky), bz > 0} (8)

where (z,k;) ~ (y, k,) means that x and y are connected by a null geodesic v, with the vectors n~ 'k, and
n~'k, being tangent to v at = and y, respectively, and with k, being the parallel transport of k, along
v, and where k; >0 means that k, is future pointing. Observe that the existence of such functions w is
guaranteed by a deformation argument on general globally hyperbolic spacetimes, see e.g. [23].

A state w on (FPE

Feg»*) Whose 2—point function w(®(f)* ®(g)) satisfies the microlocal spectrum condition

given in (8) and whose truncated n-point functions with n # 2 are smooth functions, is called Hadamard
state [39,6]. In this paper we shall always consider normal ordering computed with respect to w given by the
massive vacuum two-point function, see subsection 1.2. Normal-ordered fields have finite expectation values
when tested on Hadamard states, however, as mentioned above, they are formal power series, in general.
Restricting to polynomial regular functionals, on the other hand, «,, introduced in (9) maps to honest
regular functionals (if, as explained above, & is treated as a number) and in fact, realizes a *-isomorphism
between (FE,,*) and (FE

fegs Fegs *w) Where %, is again given in terms of formula (5). Contrary to %, the product

in (]-'feg,*w) can be straightforwardly extended to polynomial local functionals. Furthermore, taking into
account this extension, (.F{gg,*) can also be extended accordingly, but the resulting space is not a space

of (formal power series over) functionals anymore. It includes formal objects like : F':,, with F' € F} |
which are constructed as limits of suitable sequences in regular functionals, see e.g. [3], and then mapped
to ordinary polynomial local functionals by o, (i.e. au(: F:y) = F, understood as an element of F}, ).
Now, the star-products *,, constructed via a 2-point function w with the properties stated above, are well
defined on polynomial microcausal functionals, but in fact they can be further extended to other elements
of F,c, such as the exponential of the fields. In this section, we will denote by F the set of functionals on
which x,, is defined and does not yield only a formal power series, but an honest functional in F if & is
treated like a number. Then A = (F,*,) is a unital x-algebra which contains observables of the theory,
such as exponentials of the field. We will discuss this in detail in subsection 1.4 where we shall define a set
FV of functionals which contains V¢ and which forms an algebra with respect to the various products used
in the present paper. Observe that for different choices of w, the resulting products x,, are equivalent to
each other in the sense of star products and thus produce isomorphic algebras. The isomorphism of (F, %)

with (F, %) is realized by
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Qo F = e'w-v'F, (9)
where T, is given in (7) and w — w’ is smooth.
1.2. States

A state is a positive normalized linear functional on (FE ., ) and, if it is of Hadamard form, it can be

reg’
extended to normal-ordered fields and it can thus be represented as a positive normalized linear functional

on A = (F,*u).
If w is a positive bidistribution, an example of a state on A = (F,*,) is given by evaluation at the
vanishing field configuration ¢ = 0,

w(A) :=evg(4) := A(0), A€ (F,*p) ,

whose 2-point function w(®(f)*,P(g)) coincides with w. This state is quasifree, i.e. its n-point functions
are determined by the 2-point functions, and vanish for odd n. Since a generic element A € (F,*,,) is not
invariant under the action of the x—homomorphism a,,_, that intertwines (F,*,,) and (F,x,), the state
evg depends on the choice of w.

1.8. Bogoliubov map

A direct construction of the product among interacting fields is usually not available, however, it is
possible to use ideas of Bogoliubov and Stiickelberg ([13,44], see [40,21] for reviews) to represent interacting
fields as power series with coefficients in F,,. (with formal parameter given by the coupling constant).

The starting point of this construction is in the splitting of the Lagrangian in a free and an interacting
part. In two dimensions there are interacting Lagrangians like £; in (2), which give rise to series which are
in fact convergent at least in the weak sense, namely when evaluated on a generic field configuration ¢ € C.
As a first step, in order to avoid infrared divergences, one obtains the interacting potential as a local field
smearing £; with a suitable test function g € C§°(M), g >0, V9 := 1 [}, L1gdp,. In our case

V9=~ (VI+VE,) = /COS((MP(CU))Q(QT)de g9 € C°(M), (10)

DO | =

where V9 is given in (4). We then have to introduce the time ordering map 7 on multilocal fields by means
of a family of multilinear maps
To: Fio = Fue, with Ty =1, 71 =id,

where T([[/_, Fi) = ﬂ(H?:1®Fi) for F; € Floc, see [24]. The T, are such that 7 is symmetric and respects
the causal factorization property, which requires that if {F;} C Fioc and {G;} C Fioc

T(IEIIe) = TqIFE) «T(IG).  Fi 2 Gy, i,

where F' 2 G means that supp(F') does not intersect J~ supp(G), the past of supp(G).

Usually, the construction of a time ordering map is not straightforward and it requires a renormal-
ization procedure due to divergences which are present when the factors have overlapping supports. In
two-dimensional theories, the divergences present in the propagators are of logarithmic nature and thus
these divergences can be avoided at least when the local functionals do not contain derivatives of the field
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and are polynomial in the field configurations. As we shall see in subsection 1.4 and as was observed long ago
for the Euclidean case, the same is true also in the case of the smeared interaction Lagrangian f Lrgdu (10)
or V¢ in (4) with a sufficiently small a. Hence, in these cases, the causal factorization property determines
completely the time ordering map.

More concretely, on polynomial local functionals which are constructed with fields that do not contain
derivatives,

loc

Fib = {Fef”

F= [ AN @), | € CFOLR), A€ RalX] } ,

where Rg[X] is the set of polynomials in one variable X with coefficients in R, the time ordering map
does not require renormalization and induces a well defined associative product -7 when M is 2-dimensional
Minkowski space, see [24]. Observe that a definition of the time-ordered product consistent with causal
factorization and with the first-order condition 77 (F') = F' is

Fiopee o Fyi=Fyoge e Fr =T (FL®-@F,) = Me=i<i"wr (F, ® - ® F,), F, e 7. (11)
where I‘gF = fduxduwa(x’y)% ® &wa and 6/5p" is the functional derivatives acting on the i—th

element of the tensor product. Here, w" is the Feynman propagator associated to a two-point function w
as described on page 7,

w' = wihA4, (12)

where A4 is the advanced fundamental solution of the free equation of motion. Notice that A® = (F Ec’ “wF )
forms a commutative algebra. Here .FEC is the smaller subset of F,,. which contains F2. and where -,r
is defined. As we shall see in subsection 1.4 the time ordered product can be extended to more singular
objects, like products of Vg, without using any renormalization procedure.

Once the time ordering map is at disposal, we may introduce the S—matrix of the local functionals as

the time ordered exponential of its argument, namely

in

P
S(V)=>" T Ve, V€ Fie.

Observe that by definition of the time ordering, the S—matrix is a formal power series in A and a Laurent
series in fi. The relative S—matrix is then defined as

Sy(F):=S(V)'xS(V+F), V,F € Foc

where the inverse is calculated in the sense of formal power series. Finally, with the relative matrix at
disposal we get the Bogoliubov map of a local functional F' which is

hod
RV(F) = 71X@SV(MF) ) ‘/aF € -7:loc~

pn=0

Observe that Ry (®), for @ as in (3), solves the interacting equation of motion with interaction term
given by V(1. The algebra of interacting fields is thus the smaller subalgebra of A[[A]] which contains
{Rv(F) | F € Foc}. Notice that even if F' is a local functional, Ry (F) in A is in general not local.
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1.4. Algebras generated by vertex operators and linear fields

In this section we shall see that some of the formal power series presented in the previous sections are
actually ordinary elements of a well defined algebra when we specialize the construction for a 2—dimensional
Minkowski space M.

We are actually interested in finding a set of functionals which contains the vertex operators V/ given
in (4), the linear fields ®(f) given in (3) and their adjoints for f € C§°(M) and a sufficiently small.
Furthermore, the x,,—products, -,r and ‘gre, need to be internal in the set we are looking for, when w has
the form of two-point functions or Feynman propagators used in the next sections, namely w € D'(M?) is
such that

ih
w(z,z’) = hHY (z,2") + %Ao(l‘ —2') + s(x,2)

13
h ) (z —2')? +i0F (z — 2')° t 5o, a') (13)
=——1Io s(x,x
4 OB 4p? ’
where p is a fixed positive length scale, H} and A are real distributions whose explicit form is
1 (x —2')? 1 —(z —a")0 +(x—95')12
no_ A _

Hl (z,2") = Hi(x —2') = i log 12 i log 1 ) »

Furthermore, s in (13) is a continuous function on M? such that if (z,2;k, k') € WF(w) then k + k' = 0.
Notice that Ay is the causal propagator of the massless theory and that, denoting by A,, the causal
propagator of the massive theory, we have that A,, — Ag = (1 — Io(m\/x_Q))Ao where I is the modified
Bessel function of the first kind. A,, — Ag is actually a continuous function whose wave front set satisfies
the condition required for s in (13). Furthermore, as we shall see in section 2 and in section 3 the symmetric
part of both the massive, massless, thermal two-point functions used in this paper has the form hH} + s
where s’ is a symmetric continuous function whose wave front set satisfies the property required for s in
(13). Hence, in all these cases the two-point functions have the form given in (13). Further properties of Hj
will be discussed after (22).

Definition 1.1. Let 7V be the vector space formed by finite linear combinations of elements of the form

n m
Gamm(f) = / ¢ % are @)™ Xy asashti§ @ias) £ v T dpa, [T () dbty, (15)
i=1 j=1

M7L+Wl

where a is in (—a, )" C R™ with o? < 4% and f is a compactly supported bounded function on M"+™,
X =(21,...,zy) and Y = (y1,...,ym). Furthermore, f is chosen in such a way that for every [,

WEF(f) C Lyym = {($17~--,$n+m;k1, oy ki) € T*M™ ™\ {0}

n+m
> ki = 0} (16)

i=1
and HY' is given in (13).

As we shall discuss later, we notice that H)y which appears in (13) and in Definition 1.1 is the symmetric
Hadamard function of the massless field given in (22).
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Proposition 1.2. It holds that FV C Frc-

Proof. Observe that operating as in the proof of Theorem 6 of [12], (see also Lemma 2.7 below) we can show
that e~ Zi<j @%RHE (@025) jg o locally integrable function in M™. Hence, when multiplied with a bounded
compactly supported functions f it gives a distribution of compact support (which is of order 0). By
direct inspection we then have that for every I, G ,.m(f)V) € &' (M'). Notice that ¢ is smooth and if
(z,2';k, k") € WF(H}) then k 4+ k' = 0, hence, by an application of the second part of Theorem 8.2.10 in
[34], WF (e~ Xi<i @918 £y © L.\ .. Now, by applying Theorem 8.2.12 in [34] we get WF (G nm(f)?) C Ly.
This implies that elements of FV are microcausal functionals, actually, recalling the form of L; given in
Definition 1.1 we have that

Llﬂ(VJrUV_) =0

because if (x; k1,..., k) € V+, >, ki is a future pointing covector which vanishes only if k; = 0 for every i
and thus (141, ..., k) ¢ L. Hence, WF(Gan.m(f)®) NV " = . The same holds replacing V+ with V=
We have thus that F¥ C F.. O

We shall now see that the various products we are using in the rest of the paper are internal in 7. Hence,
thanks to the following proposition, we shall define the *—algebra in which we operate as AY = (FV x,),
where w is as in (13).

Pr0p0s1t10n 1.3. The operations *, %, in (5), Rew and -, in (11) with w of the form given in (13) and w¥
n (12) are closed in FV. Hence AV (FV, %) is a x—algebra over the complex numbers.

Proof. The * operation acts as complex conjugation on Gu.nm(f) € FV and, hence, since HY is a real
distribution, we have that G4 pnm(f)* is in F V. The same holds for the linear combinations.

We prove now that %, is internal in F V. Notice that Gan,m(f) can be obtained as linear combinations
of elements of the form 0O, "'abm/G(a,b),n-l—m’,O(fl)|b:0 with @ € (—a, @)™, b € (—a,a)™ and for various
m’ € {0,...,m} and with f’ which is constructed out of f and a. It is thus sufficient to check that the
product of two elements of the form Gy 0(f) and Ga v 0(f') is internal in FV.

To this end, recall that w given in (13) has the form

ih
w:hH{f—f—%Ao—i—s

where s is a continuous function and Ag is a bounded function.
Applying (5) we get

Ga,n,O(f) *w a’,n’, O =M Z I a n, O )® Ga’,n’,O(f/))-

1>0
Notice that this series converges because %eib@(“’) = ibe!®?(®)§(x, y) and hence

pw(eibw(x) ® eib/so(y)) - _(bb'w(%y))leibw(ﬂv) ® elt'ev)

. . — /
where w is a smooth function almost everywhere, furthermore, e =%

points for b,b’ € (—a, a). Hence, it holds that

is locally integrable at the discontinuity

Ga,n,O(f) *w Ga’,n’,O(f/) = G(a,a’),nJrn’,O(h)
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where h is a function on M™ x M™ obtained from f and f’ in the following way
MX,Y):=¢" i aia}(w(xi,yj)—ﬁH('f'(xi,yj))f(X)f’(Y)

with X = (21,...,2,) € M" and Y = (y1,...,Yn’) € M™". Since w — hHg is locally bounded, f and
/! are compactly supported, we have that h is a bounded compactly supported function. Furthermore, if
(z,2';k, k') € WF(w) then k + k" = 0 and the same holds for Hf. Hence by the second part of Theorem
8.2.10 in [34] about multiplication of distributions we have that WF(h) C L4, thus completing the proof
that *,, is internal in V. The proof that the same holds for Re, and -, can be obtained in a similar way
noticing that both Rew — HJ and w" — H{' are locally bounded and that, if (z,2’; k, k') € WF(Rew) or if
(z,2';k, k') € WF(wY), k+ Kk =0. O

We have seen that the vertex operators V7 and the smeared interaction Lagrangian V9 are elements of
AY. At the same time all the time ordered product of n factors of the form V9 gives an element of AY .
Hence we may write S(V9) as a power series in the coupling constants whose elements are in A" . Later we
shall prove that when evaluated on a generic field conﬁguration the series converges absolutely.

From now on we shall work directly in AY = (F", %,,) where all the elements are well defined. To simplify
the notation, whenever it will not be strictly necessary, we shall denote AY, by AY. Furthermore, local fields
in FV are now understood as being normal ordered with respect to w. The quantum states on (Freg, *) need
to be pulled back to (Freg, *w) accordingly and there extended to AV In particular, the functional evy on
AV determines a well defined state which is the quasi free state constructed out of the two-point function
w.

2. Convergence of the S-matrix of the massive theory

Consider M a two dimensional Minkowski space with Lorentzian signature (—, +). Let us denote by w,,
the vacuum state. Hence, the canonical two-point function w? of the massive Klein Gordon field is given
by the vacuum expectation value of the product of two fields, wS9(f,g) := wm(P(f) x P(g)) and it takes
form

9 = tim b [ S+ AL+ ie)dndiy, S.g € CFM)

where, €® = (1,0) and the regularized integral Kernel A7 is given in terms of the function
1
Al (x) = Q—Ko(m\/ x?), (17)
™

here K is the Mac Donald function also known as modified Bessel Function of the second kind and a2
the Lorentzian square 2% = 7(x0)2 + (zl)Z.

The Feynman propagator A is obtained as the time ordered version of A}
Ay () = A7 () +1A7, (2),

with the advanced fundamental solution A# of the massive Klein-Gordon equation. With this canonical

m
choice of the time ordering, the S—matrix of the interaction Lagrangian V¢ given in (10) can thus explicitly

be computed,

st -3 (3) R o

n
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where the time ordered product of n—copies of the interaction Lagrangian can be further expanded as

n

RAT, L gmy _ 1 n\ AL Coek g (k)

ToSm (V9 )_2—712(,6)7; (Ve o v, ).
k=0

Recalling the definition of the smeared vertex operator V, given in (10) and the map 7 given in (11) we get

the following by directly applying the map 7 given in (11) to VZ ® ---®@ Vg,
F .
%ﬁAm (Vagl R ® Vai) - /eIZk akp(Tr) o= Xi<icj<n aiajﬁAfn(zi,zj)g(xl) coog(@n)dig, .. dpg,

where ay, is equal to either a or —a and where with a little abuse of notation AY (z,y) = AF (z —y). Notice
e~ Tigicjgn 4eRAL (@025) §g o locally integrable function because A, = HJ + s where s is a locally bounded
function and the local integrability of e~ Licicion @0 MHE (0,25) oo be proved as in the proof Theorem 6 of
[12] or as in Theorem 2.6 and in Lemma 2.7 below. Hence, since ¢ is a smooth function and g is compactly

supported and smooth ’E?AE"” (Vg @---®@ V7 ) is well defined for every value of . In the next we want to
prove the convergence of the sum given in (18) whenever g has sufficiently small compact support. Later
we shall remove the hypothesis on the smallness of the support. In the case m = 0 the convergence of the
corresponding S—matrix has been obtained in Theorem 6 in [12].

The idea we want to implement is the following. We notice that

F
Tam(VI © - ® Vagn)] < /e— Yagicien WM @02 g0y (2, )dpg, - . . dite, (19)

where H,, is the real part of AL . Its form is discussed in (25) and (24). We furthermore observe that the
right hand side of (19) is the expectation value in a state evo(F) = F(0) of the n—th power of V9 computed
with respect to the commutative product ;g and it is positive for every n. Hence, we get

m

m 1A
STV ()] < o oevo (T (V957)) (20)
where T"Hm is the map defined in (11) constructed with wf" replaced by hH,,. As discussed above, this is
a deformation of the pointwise product which is like the time ordering map with H,, at the place of AL .

Remark 2.1. If we have an estimate such as (20) for every n, and if the right hand side gives rise to a
convergent series, the left hand side gives an absolutely convergent series, and the result is less than or
equal to the limit on the right hand side. Observe that we will state such inequalities even when considering
formal power series, as a matter of notation, meaning that if the series converge, the inequality holds. A
similar argument is used in Proposition B.1 to which we refer for further details.

I—Ierlce7 m lhlS Sense, we haVe
|S( )| <— E |Sn ( )| <— C 0 E::I:hH >\ (21)
— m h

where expyp is the time ordered exponential constructed with the time ordering map 7. We further-
more observe that exp,p (%Vg ) is the exponential of %Vg with respect to -, . Hence, we can thus bound
|S(V)| with a power series of 2V computed in the commutative x—algebra (FV, np,,) evaluated in state
evg. Now, adapting similar methods developed for the case of Euclidean background to the Lorentzian one,
shall show how to control the expectation value of the exponential computed in the massive theory with
the massless one.
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2.1. The Cauchy-Schwarz inequality, conditioning and inverse conditioning

We draw from the techniques of conditioning and inverse conditioning to control the massive theory by the
massless one, cf. [26] and [31,32]. In Proposition B.1 and Proposition C.6 in the appendix we recall the main
points of these techniques as far as they are relevant for our constructions. We start by recalling that a bi-
distribution w : C§°(M;R)? — R is positive if w(f, f) > 0 for every f € C§°(M;R). For such distributions,
we have the following theorem in which we use the x—algebras generated by V¢ = [ cos(ap(z))g(z)dp,
whose elements are contained in V. The construction of these *—algebras is also discussed in Remark A.3.
The expectation values of exponentials of V9 appearing below need to be understood as limits of the
corresponding partial sums. Later we shall prove that the partial sums converge when evaluated in evy(F) =
F(0).

Theorem 2.2. Let us consider two positive, real valued, symmetric, bi-distributions wi and wqy in D' (M?)
such that -, is well defined on FV . Suppose that

wozP—N+w1

where P and N are also positive symmetric bi-distributions and that N can be restricted on the diagonal
and there it is bounded, namely,

st;p{N(x, )} <K

for some positive constant K. Then for V9 = [ cos(ap(z))g(z)du, as in (10), assuming that the partial
sums defining the right hand side converge, we have the following estimates:

evo(exp,, (A\V7)) < evg(exp,, (AVY)) < 2evg(exp,, (2@“2%)\‘/9))
where vy is wo + N and where we used the notation of (21).

Proof. The distribution w1, vg and wq are real valued, hence, the terms of the series defining evo(exp,,, (AVY)),
evo(exp,, (AVY)) and 2evo(exp,, (26‘12%)\‘/9)) can be directly computed as in (19) and they are positive.
Hence, since the partial sums defining 2ev0(expw0(26a2%>\Vg )) are convergent by hypothesis all the three
series are absolutely convergent. Since vy > wy, in the sense that vg — w; is a positive distribution, the first
inequality descends from conditioning (Proposition B.1 and the discussion given in Remark A.3). In partic-
ular, to apply Proposition B.1 we observe that considering f, , a sequence of smooth compactly supported
function converging to the Dirac delta function centered in z we can write V9 as a limit of polynomial
regular functionals in the following way

1 i) .
VI = E(Vag_‘_vga)’ Vag = lim lim Z@/é(.ﬁn,myduw

n—00 N—o0 4 j!

and by direct inspection evo(Vy -y - -+ -w V) is positive.
Furthermore, since wg < vg and vg(z,z) — wo(x,2) < K, the second inequality descends from inverse
conditioning (Proposition C.6). O

2.2. The massless Hadamard function

Consider the function H{ on two-dimensional Minkowski spacetime M which has been introduced in (14)
and which takes the form
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1'2

1
Hg@) = ——log 4—ﬂ2

where as before p is a positive length scale. Notice that H{) is locally integrable, hence we may associate a
symmetric distribution (two-point function) namely an element of D'(M?) in the following way

HE(f,9) /’H” z —y) f(2)g(y)dpdpy. (22)

With a little abuse of notation, in (14) we have denoted the integral Kernel of H} with the same symbol.
The distribution HY' is symmetric however it is not positive. We would like to prove that its restriction on
a diamond

Dyim{w=(t,5) € M|~ i< (t+5) < p, —po < (¢ —5) < i} (23)
is positive. We have the following proposition.
Proposition 2.3. The distribution H{ introduced in (22) is symmetric and positive on D(D,, x D).

Proof. Since H{(x) = H{(—x) € R, H{ is symmetric. We observe that if f,g € D(D,) we have
H(f,9) = / HE(u— ' v — o) f(u, v)g(u', v ) dudvdu' dv'
M2
where v = ¢ 4 s and w =t — s are null coordinates and

A, v) = L(u) + L(v) = —16% (log ‘%’ () + log ’%‘ x(v))

where y is the characteristic function of the interval [—2u, 2u]. Hence H coincides with H on D,xD,. L
is a function from R to R, its Fourier transform is

where Si(z) is the sine integral function and ¢ an appropriate constant. Hence we have that

H(IJL(fag):C// ( ).f(pua ) (pu7 )dpu"'cl/ ( )f(o pv) (Ovpv)dpv

R R
—¢ [ L) (F0.09(6.0) + 7(0.0)3(0.9)) dp
R

where f and § are the Fourier transform of f and g in M. Since Si(z)/z is positive, L is positive and we
have proved that H/' on D(D,, x D,,) is positive. 0O

2.8. The massive Hadamard function

Consider now the symmetric part of the massive two-point function A}, given in (17). Its integral kernel
is the real part of (17), i.e
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1
_ N
Ho(z) = 27rRe (Ko(m x )) . (24)
The distribution

HﬁUﬂ):/yudw—Mf@m@Mm@w (25)
M2

is the symmetric or real part of the two-point function of the massive vacuum and it is also equal to the
real part of the Feynman propagator.

Proposition 2.4. The distribution H,, is symmetric and positive.

Proof. By definition H,, is symmetric. As is well-known, positivity follows from the fact that its Fourier
transform is the Schwartz distribution

A~

1
Hon(p) = 560" +m?)
which is positive. O
2.4. Comparison

To apply Theorem 2.2 we have to analyze HY — H,, on D(DZ)7 extract its positive part P and its negative
part N and subsequently, find a bound for N(z,z). To do this in practice, we consider HY' — H,, on D(M?)
and restrict the domain with a smooth compactly supported positive symmetric function Q@ € C5°(M) which
is equal to 1 on Dy, x Dy, when composed with the map from 2 : M? — M, 1(z,y) = x — y, namely we use
as integral kernel (Hf — H,, )2 at the place of (K5 — H.,). Let us denote this distribution by

W(f®g) = / (HE(x — ) — Honl — 9)2x — ) F(@)g(y)dprodpsy.
M2

Clearly for f,g € D(D,), W coincides with H}' — H,,. Furthermore, since H{j — H., is a locally integrable
function we have that (H} — H,,)Q € L'(M). Hence, there is a constant C, such that

W(f ®9)l < Clfll2llgll2-

This implies that W can be extended by continuity to a bounded quadratic form W on L2 (D,,) and then, by
a corollary of the Riesz representation theorem, W is represented by a bounded linear operator on L2(Du).
This operator, associated to W, is multiplicative in the Fourier domain and it corresponds to

W(f®g) = / Wik) f (k)3 (k) dk
RZ

for a suitable function W. Actually, by the Riemann Lebesgue lemma, W is a continuous function vanishing
at infinity. Furthermore, both H{ —H.,, and Q are symmetric real functions, hence W is real. To decompose
W in its positive and negative part we just need to decompose the real continuous function W in its positive
and negative part

A~ ~

W=pP-N
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where now both P and A are positive. Both N and P are convolution operators

- / Nz — 9) (2)g(y)dpiadpsy

P(f.9) = / Pl — ) (2)g(w)dpadp,

M2
and
N(z,z) = N(0) :/N(k)d%.
Furthermore, since N is a positive distribution, N > 0, and thus N'(0) = [g. N(k)d*k = |N1. The

following proposition shows that W is integrable and hence, so is its negatlve part N
Proposition 2.5. The Fourier transform W of
W = (HE — Him)Q,

is in L'(R?). The intersection of the supports of its positive and negative part in the Fourier domain is a
null set. It follows that also N s integrable, so there is a constant K such that

N K
IN(z,z)| = [Nl < =

The constant K can be chosen to be equal to h|W|;.

Proof. Notice that

2
HY(0) = Hon(2) =~ tog (L) 1= B &) 4 10 (26)

where Ij is the modified Bessel function of the first kind. Furthermore, In(mvx?2) and r(z) are smooth
functions on M. We also have that

_i log <|4522|> (1 — Io(mV2?)) = so(x) + log (%) r'(x)

where 7/(z) is a smooth function and it is of order O((z?)?) near 22 = 0 and where

m2 I’Q
so(x) = ~Ton log (%) z2. (27)

Notice that r(x)Q(x) is a compactly supported smooth function. Its Fourier transform is a Schwartz function,
hence it is integrable. We now observe that, the Fourier transform of I;(z) = r/(z) log |22|Q(x) is also in L*.
Actually, using null coordinates u =t — s and v = ¢ + s to parametrize x = (¢, s), we have that

11 (1, v) = log [olr” (u, v)§2(u, v) + log |ulr’ (u,1)Q(u,v).

Hence, [; is an integrable function because it is of compact support, both log |v| and log |u| are locally
integrable near v = 0 or u = 0 and  and 7’ are smooth compactly supported functions. Hence, the Fourier
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transform of I; € L' (M) exists and it is a bounded continuous function, namely by |I;| < ||l1 1. We can now
improve that bound to get that /1 is integrable too, actually near v = 0 log |v|r’ (u, v)Q(u, v) = clog o] (viu?+
O(v?)) where c is a suitable constant and similarly, near u = 0 log |u|r’(u, v)Q(u, v) = clog |u|(v?u? 4+ O(u?)
and hence we have that

83l1(u, v), Ggll(u, ), 8233l1(u, v),

are integrable functions because they are locally integrable near v = 0 or v = 0, smooth if w % 0 and v # 0
and of compact support. This implies that

i1 (ko k) (L4 ) (L4 K2) < C = Ll + 1050l + 103011 + 105051 1

and hence [; is also integrable.
To conclude the proof, we need to be sure that also Iy = sof2 is such that [y is an element of L'. Using
null coordinates we have that

Hence,
Q Q 2 b
o 0) = sofu, )2, 0) = 0 S ) T - o (LY weague) (28)
where f(v) := —m?2vlog|v/b| for v on the interval [—b,b] and 0 outside, with b chosen sufficiently large

to have that x|_p 4 (v)Q(u,v) = Qu,v) and x[_pp)(u)Q(u,v) = Q(u,v), where x[_p ;) is the characteristic
function of the interval [—b, b].

To prove that Iy exists as an element of L! we analyze the Fourier transform of the three contributions
lo1, lo2 and loz at the right hand side of (28) separately. lo3(u,v) := —’;—; log (%) uvQ)(u,v) is smooth and
compactly supported, hence, its Fourier transform is a Schwartz function and thus also integrable.

Let us study the Fourier transform of

uQ(u, v)

lo1(u,v) = f(v)g(u,v) == f(v) 167

g is smooth and compactly supported hence, its Fourier transform g(k,,k,) is a Schwartz function. Fur-
thermore, by the convolution theorem in one dimension

lo1 (Fu, kv) W /dpg w ) f (ky — p).

Hence in order to prove that lo7 is integrable it is sufficient to prove that the Fourier transform of f is in

ko o . |2 (sin(bk) — Si(bk))
P dy = 2\/; 12

it vanishes in k = 0 and it decays as 1/k? for large k and it is thus an integrable function. Similarly we can
vQ(u,v)
167

L'. By direct inspection, we have that

b
f(k)=%/vlog‘%
b

prove that le2, the Fourier transform of lps := f(u) ,is in L'. Hence, le = Z01 + le2 + le3 is a sum of

three integrable functions hence it is integrable.
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This discussion implies that Wisin L! and hence, so is its negative part N , furthermore, since supp]\7
intersect supp P in a null set we have that ||y < [|Nl1+[|P|l1 = [|[W]|1, so K = h|W||; is a finite number
which bounds N(z,z). O

2.5. Convergence of the S-matriz on a sufficiently small local region

In this section we prove the analogue of Proposition 6 in [12] where the convergence of the S-matrix
of the massive Lorentzian Sine-Gordon theory was proved. Beyond what was proved there, we gain a
clearer understanding of the estimate’s dependence of the support of the cutoff function (adiabatic switching
function) g that cuts off the interaction V9. We shall work in A)‘{Aiﬂ = (FY,%ua+), hence the smeared
interaction Lagrangian V9 seen as an element of A}{A$ corresponds to the interaction Lagrangian normal
ordered with respect to the massive vacuum. The state we shall consider is the Minkowski vacuum and
it is represented by the positive linear functional evy on AXAJr. To simplify the notation, unless strictly

m

necessary, from now on, we shall omit the symbol x and *,, to denote the product in the used algebra.

Theorem 2.6. Let g > 0 be a cutoff function whose support is contained in D,, given in (23) and which
is equal to 1 on D, for some p' < p. Let S;*(V9) be the n—th perturbative order of the S matriz of
V9 = [cos(ap(x))g(z)du, constructed with respect to the linear theory with mass m. Where the constant
a is positive and o = a®h/(4mw) < 1. Then for any real number p in [1,a~"), there are constants K and C,
such that

na B%K " 1
ST < oo (” ; ) loll )"

with 1/q+1/p = 1. Choosing p > 1, it follows that the sum S(VI) =" -, S (VY) is absolutely convergent
for every v € C.
Observe that the constant K is the one obtained in Proposition 2.5 and in fact does not depend on p.

Proof. In (18) we have seen that S(V9) can be expressed as a power series whose coefficients are elements
of (F,*+ ). We want to prove that, for every ¢ € C, the sum is absolutely convergent. We have seen in (21)
that if the series defining evg (exph H,, (%V‘] )) converges, the series defining S(V9) is absolutely convergent
and it can be further bounded by

SV < 21T < e (exp,wm <2V))

where exppy s the time ordered exponential constructed with the time ordering map THHm  We may
now use Theorem 2.2 to control the convergence of evy (expr1 H,, (%Vg )) by means of evg (expﬁHg (%Vg))
provided the series defining the latter converges. Furthermore, notice that H{' is positive on D, x D,
and since the support of g is in D,, the fact that H} is not positive in M does not prevent us to apply
Theorem 2.2. To be more precise, we can multiply Hg and H,, with the cutoff function € o introduced in
section 2.4 without altering finial result.

Actually, thanks to the discussion presented in section 2.4 and thanks to the results of Proposition 2.5,
we may extract the positive and negative part of

(HY — Hy)Qo1=P— N

K
h>

furthermore, the integral kernel of the negative part N is such that N(z,z) < hence, we may now use

Theorem 2.2 to obtain
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2
A 2e T K
evo <exthm <£Vg>) < 2evy (exthét ( eh2 Vg>> , (29)

where K is the constant given in Proposition 2.5. To prove that the right hand side of the inequality (29)
is the result of an absolutely convergent power series in A we proceed as in the proof of Proposition 6 in
[12]. Let w be any positive distribution of Hadamard type, then the functional evy(F') := F(0) is a linear
normalized positive functional on the commutative x-algebra (FV,-,) generated by V¢ and V9* with the
-w product, see Remark A.3 for further details, and hence the Cauchy-Schwarz inequality holds

levo(A -w B)| < Vl]evo(A* - A)[V/|evo(B* - B)].
Choosing B = 1, we obtain
levo(A)|* < levo(A™ -y A)|- (30)

With this observation used with w = hH{', to estimate the convergence of the sum present in the last term
on the right hand side of (29) we notice that

n
n g g
evo(V9 pppe - nmp V) = o= > <k> evo | Vi nmy - nmp V3 onmy Vaa g - nmp Vg

n k n—=k

=

1 - (n
g g g g
< o E g ) levo [ Va nmg - nmy Vi nmg Vaa mmgy - nmp V=g
k=0
n n
1
2
— g g g g
=levo|Va ‘hHE C ChHY Vi ‘hHY VZa ‘hHE " ChHE VZ,
n n

where we used (30) in the first inequality and that V9 = V¥ . Now, since g € D(D,,), by Lemma 2.7 we
have that

Vo (VI e - ppp VI) < (20)"|lg]| 2 (C™n) 7.

n

Together with the discussion presented above and in particular (29), this implies that

nao G%K " 1/
ENOIEDIEIGIEDD 2(25!) (” . ) lgll® (Gt /P (31)

where K is given in 2.5, and thus the sum defining S(V9) for a generic ¢ converges absolutely because ||g||,
is finite and the right hand side of (31) does not depend on ¢. Hence, considering a suitable number of
derivatives in A and evaluating at A = 0, the last inequality in (31) improves (20) to give

1Sy (V) ()l <

2w (AT EN"
- ( | lally (€ )"

which concludes the proof. O
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In the proof of Theorem 2.6 given above we used a known result originally obtained by Cauchy, see also
[26,12,8], to estimate the expectation values in evy of the n — th power of V9. We collect this result in
the following Lemma where we highlighted the dependence on p in the obtained estimates and Y)vl;ere we

1
adapted the result known in the Euclidean case to the more extended singularities present in log |%\
with respect to log \%|
Lemma 2.7. (Cauchy determinant) Let p be a fized number, and let go € C3°(D,,). Consider the following

expression

— g g go go
O=evo | VI pmp - nmp V® nmp Vaa nmp - nmp Vo | =

n n

= /67 Yicicj<on aiath(l;(Ii’Ij)go(ﬂfl) oo 90(@2n)dpa, - - dpiay,

na H 1<j n|(x1_x)2”(yl_y)2| “
= (@) /( = f-ff T ‘(;,7y4>2| - 90(x1) -+~ go(Tn)go (Y1) - - - Go(Yn)dpiz, - - - dpiz, dpty, - - - dpuy,,
i=111j=1 1\&i j

where a; = a if i € {1,...,n} and a; = —a if i € {n+1,...,2n} and where a = a*h/(4) is assumed to be
smaller than 1. For any p € [1,a~1) there exists a constant C such that

no n n 1
0] < (4p%)" |l go 2" (C*" (n1)*) 7,

where g =p/(p —1).

Proof. Consider an element z = (2°,2!) € M, in terms of the ordinary null coordinates (z¥ = 2° 4+ 2! and

% = 2% — 2%) we have that the Lorentzian squares factorize |r?| = |2?||z*|. Notice that by a lemma of

Cauchy which holds also when the squares are the Lorentzian squares

H1§i<j§n |(zi — xJ)QH(yz - yj)2|
[Timi Ty (i = 5)?]
v

where DY is an n x n matrix whose entries are D}, = 1/(x} — yj) and D* is an n x n matrix whose entries

= | det D"|| det D¥|

are D} = 1/(x} — y}). Hence we have
O = (4p2)re / | det D*|°] det D'[*G(X, Y)dXdY

where X = (z1,...,2,), Y = (y1,...,¥Un), dX = dpy, ...dug,, dY = duy, ...dp,, and G(X,Y) =
IL 90(xi)go(yi). We observe that

det D’ = ZH E ), be {u,v}

T 4=1 x"_yﬂ'(z)

where the sum is taken over all possible permutations of (1,...,n).
Following Theorem 3.4 in [26] we have that

O] < (4®)" |G llqll] det D¥|*| det D* |||,

where the norms are computed over Dz" and 1/p+1/q = 1 hence both p,q > 1.
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Since we are in the regime where a = %h < 1, for any p such that

1
1<p<—
«

we have that ap < 1. This implies that [, ; 1/|xb —y?\ap for b € {u, v} are locally integrable and in that case
||| det D¥|*| det D*|*||,, is finite because the norms are computed on the compact set D2". More precisely

1/p

0] < (42" Gl ZZ/dXdYH — H —
E4 yml |z y/(]\

where we used the fact that (3°, |a;|)*? < >, ]a;|*? when ap < 1 and where both sums are taken over all

possible permutations of (1,...,n). There exists a suitable constant C' such that for every =

/dXdY1:[1 Ty L H FrETC <o,

’(J)

y
Since
2
1Gllq = llgollg"
and since the number of possible partitions 7 is n! we thus conclude the proof. O

We observe that the absolute convergence of the series defining S(V)() for every ¢ € C can be obtained
even if g is in L4 for every ¢, actually, Lemma 2.7 can be proved also for those g. We shall use this extension
for g which are characteristic functions of finite regions of Minkowski space.

2.6. Convergence of the S-matriz on every local region
In Theorem 2.6 we established the convergence of the S—matrix when V9 is the interaction Lagrangian
smeared with g with a support contained in D, for a fixed p. In this section we want to prove absolute

convergence when g has values in [0, 1] and has generic compact support independent on p. To this end
recall the form of the series defining S(V') in (18) and we start again from the estimate (21) which we recall

|S(V9)| < evg (exthm (%V9)> .

We can improve the bound using conditioning and inverse conditioning. In particular, consider the following

here,

set of squares in the Minkowski space M constructed with respect to a standard coordinate system
Q:={[lLl+1]xnn+1]CM|l,neZ}
we denote by Z, the subset of Q formed by squares which intersect the support of g, namely

I, ={Q € Q| Q@nNsuppg # 0}. (32)

Let Z; = Ugez,@ be the union of the set of squares in Z,, we denote by V, the volume of Z, and by g
the characteristic function of Z,. Hence the cardinality of Z, coincides with the volume V, of Z,. With this
notation, we have the following theorem.
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Theorem 2.8. Consider u > 1 a fized parameter. Let g be a compactly supported smooth function with
values in [0,1] and which is 1 on a large region of the spacetime. Let gy be the characteristic function of
B = [0,1]> C M. Let the V, be the volume of the union of elements of I, given in (32). Let ST (V9) be
the n—th perturbative order of the S matriz of V9 = [ cos(ap(z))g(x)du, constructed with respect to the
linear theory with mass m, where the constant a is positive and a*h/(4n) < 1. Then, for every ¢ € C, and
choosing the parameters p, C, K as in Theorem 2.6, it holds that

|Sn<vg><so>|s(7f!)131/p< . >|90||q(0 ey

Hence, for every ¢ € C the sum S(V9) =3_ -5, (V7) is absolutely convergent.

Proof. We start considering Z, the set of squares of edge 1 which are intersecting the support of g given in
(32) and their union Z,. We denote by g the characteristic function of Z;. We have by construction that
0 < g < g. Recalling the steps to obtain (19), and observing that H,, is real valued, we have, by direct
inspection, that the inequality (21) can be further bounded

A A -
|S(Vg)| < evp (exthm (hvg)> < evg (exthm (hV9)> .

We now decompose VI ZQGI V92 where g¢ is the characteristic function of the square Q.

We shall then use Proposition D.1 to further improve this bound, to match the hypothesis of that propo-
sition, V9 needs to written with positive functionals. Let us start observing that V9 can be approximated by
a sequence of positive regular functionals in (FV, g, ) plus constant functionals. Let f,., > 0 with z € M
and n € N a sequence of compactly supported smooth functions which converges to the Dirac delta function
centered in x for large n. Observe that

VI = lim [ cos(a®(fr.n))d(x)dpts

n— oo

furthermore,
cos(a®(f)) = 2T 2 RH o (f.6) cos(Z‘P(f)) “hH., COS(%@(f)) _ eé"%Hm(f,f)_
Hence
Vi = nh_}rrolo PI 1o (33)

where P¢ is a positive regular functional and ¢J is a constant functional hence

Als A A g A
evo (exthm (hvg)) = nhﬁngo evo (exthm (hPﬁ + hcg)> = nlin;o e%c'nevo <exthm (hPﬁ))

where in the last equality we used the fact that cZ is a constant functional.
To estimate the N —th contribution to the exponential (exph o, (%Pé

7)) we proceed as follows

N
evo(Pd “wa,, * nit,, PJ) = evo Z PI° hpg,, - chH,, Z Pje) = Z evo(H P

X Q€I, QeT, (@1, Qn)ETY  j=1
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where the product in the last term of the chain of equalities is computed with respect of the commutative

product -5, . We may now apply Proposition D.1 and more precisely equation (97) to obtain

m

N
J g 9Q; 9gQ,;\ L
vo(Py hm, - onm, Pr) < > [[evo(Pn® na,, - nm, Pa®)™.

N (Q1,....QN)ETY j=1 N
By translation invariance, we have that for every j € {1,..., N}
90, 90,
evo(Pn™ “nh,, -+ n, Po) = evo(P nm,, - ha,, P°)
N N
hence
g g N
evo(Py nm,, -+ nh, PR) < > evo(PE m,, e, PP =V Nevo(PL na,, - ni,, P
N (le---aQN)EIé\r N N

where the last equality holds because the number of squares in Z, coincides with the volume V,. By
translation invariance it holds that ¢f = V,c% hence

o (ot (22 28)) < (o, (2 3,28)

finally taking the limit n to infinity on both sides of the inequality we obtain

Az A
evy (exthm <EV9>> <evy (exthm <VgﬁVg°)> .

[S(VI)| < evy (exthm <Vgi—);Vg°)> .

Hence we have that

Applying Theorem 2.6 with AV, in the place of A and with y =1 we have proved the claim. O

Remark 2.9. With the estimates used to prove Theorem 2.6 and Theorem 2.8, we can repeat an argument
presented in [8] (see Proposition 7) to prove that the sum which defines S(V)) = 3 S, is actually convergent
in the strong operator topology of the GNS representation of 2 the Weyl algebra of the free field in the
vacuum state wy,. To present this argument in some details, consider the GNS tripe (9,7, ) of the free
Weyl algebra of massive observable in the vacuum state w,,. Consider D the dense set in $) spanned by
vectors m(el?))Qy with any f € C;°(M;R), where ¢?/) are the Weyl generators of the algebra which
are represented by e!®(f) in (Freg, *) and by e—2w(F.)ei®(f) ip (Fregs *w). The estimates used to prove
Theorem 2.6 and Theorem 2.8 are sufficient to prove that the double sum
(S =S I SN v g0 vp)
n! 2nh» @ an

n a;Exa

converges in the strong operator norm on the dense domain D. Hence w(S(AV)) is an operator on D and
with values in £). Actually, by direct inspection, since f is real, we get that

I (T(VE @ @ VINT(EIN0* < evo(VE na,, - ntt VE b Vo hitty + htt V)

n n
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and the right hand side does not depend on f. Hence, estimates similar to those used in Theorem 2.6 or in
Theorem 2.8, permit to obtain the desired convergence of the sum in the strong operator topology. Finally,
following Proposition 8 in [8], we also obtain that as an operator on ), 7(S(V9)) preserves the norm, hence,
since S(V) is formally unitary, it can be extended to an unitary operator on £).

3. Thermal state on local region for the generating functional
3.1. Causality and the algebraic adiabatic limit

In this section we shall discuss the construction of equilibrium states for the interacting Sine-Gordon
theory for a field with finite mass. The observables of the interacting theory are represented as power series
in the coupling constants whose coefficients are elements of the massive Klein-Gordon theory by means
of the Bogoliubov map which is given in terms of the S—matrix. Once a cutoff function g with compact
support is used to smear the interaction Lagrangian,

ve = [ geostapldn

and the algebra of interacting fields AY (M) is constructed as the smaller subalgebra of AY[[)\]] which
contains {Rys(F) | F € FV N Fioe(M)}. As discussed in section 1.3 the Bogoliubov map Ry (F) is
proportional to the derivative of S(V9)~1S(V9 + bF') with respect to b evaluated at vanishing b. Hence, in
the two-dimensional Sine-Gordon case, the power series in A describing Ry (F)(¢) evaluated in a generic
field configuration ¢ is actually an absolutely convergent series for any finite value of A, because, as shown
in Theorem 2.8, this holds for S(V9).

Any quantum state w of AY (M) is thus a state for the algebra of interacting fields AY (M). Hence, the
expectation values of the interacting local fields F' € AY (M) are then obtained as

w!(F) = w(Rys(F)).

To obtain w! we thus construct w on AY (M). Its pullback to AY (M) is then straightforward. Furthermore,
in many cases, like for evy, the pointwise convergence of the power series describing Ry (F') on a generic
field configuration ¢, implies the convergence of the power series of expectation values w’(F). We shall show
that this is the case also for the thermal state we are aiming to construct also in the limit g — 1, even if in
that case w will be described by a power series in . In the case of states represented by evy in (FV, *wee ),
as discussed in [8] and in Remark 2.9, the pointwise convergence implies convergence in the strong operator
topology on the Hilbert space of the GNS representation of the studied state.

In view of the time slice axiom [15], the state w, is completely fixed by its restriction on A" (%.) (the
smaller subalgebra of A" which contains the local fields whose support is contained in X.) where X is a
time slab namely a small neighborhood of the Cauchy surface with vanishing Minkowski time,

Y = {(z%,2') € M | |2°] < €}
Furthermore, in view of causal properties of the .S matrix, for observables supported on X we may modify
the form of the interaction Lagrangian in the complement of the past of ¥, without altering the action of

Ry g, namely

RV.q (F) = RVQ, (F)



26 D. Bahns et al. / J. Math. Anal. Appl. 526 (2023) 127249

if supp(g —¢’) € (M \ J~(2)). Similarly, if we modify g in the complement of J*(X.), we obtain an
equivalent representation of A}/. This equivalence is described by the adjoint action of a suitable unitary
operator, namely

Rys(F) =URyy (F)U™

if supp(g—g') € (M\JH(%.)). Here i = S(V9)~1S(V9') and it is formally a unitary element of the algebra
which does not depend on F. Hence, in order to construct an equilibrium state for the interacting theory,
we restrict our attention to observables supported on 3. and we choose the cutoff function of the following
form

g(z°,2") = x(a%)h(z") (34)

where y is a smooth compactly supported function on R with values in [0, 1] which is equal to 1 on [—¢, €] and
whose support is contained on [—2¢, 2¢]. Furthermore, h is a space cutoff, namely it is a smooth compactly
supported function on R which is 1 on large regions of the space.

We shall thus construct a state with fixed h and x and later, in order to discuss the adiabatic limit, we
analyze a suitable limit where h — 1 as the limit of {h,} for n — oo where h,, is equal to 1 on [—n,n].

Even if the Bogoliubov map Ry depends on the cutoff functions, the causal factorization property implies
that for F' € Fioc(O) (the set of local fields supported in O), with O C X, there exists an N, which could
depend on F, such that for every [,n > N € N

vahn (F) — RVX’ll (F)

With this observation, we have that the limit n — oo can easily be taken at algebraic level. As we shall see
in short, in order to obtain an equilibrium state for the interacting theory, the state itself will depend on
the cutoff function and in particular on h. We have thus to analyze the adiabatic limit at this level as well.

8.2. Thermal states for the free theory

The starting point for the construction of an interacting equilibrium state is the equilibrium state for
the free theory. On infinite systems, the condition of being an equilibrium state at a fixed temperature is
captured by the Kubo-Martin-Schwinger (KMS) condition [33]. We recall that a state w on a C*—algebra 2
satisfies the KMS condition at inverse temperature 8 with respect to the time evolution 7; : 2l — 2(, which
is a one parameter group of *—automorphisms if, for every A, B € 2 the function

fap:t— w(AnB)
is analytic in the strip Im¢ € (0, 8) and continuous at the boundaries and if

fA7B(’Lﬂ) = w(BA)

If the C*—algebra 2l is generated by a field, similar relations hold for the n—point functions computed in
the state w. In the case of x—algebras, the KMS condition given above can be given in terms of suitable
relations satisfied by the n—point functions. Further details can be found e.g. in Definition 1 in [22] to which
we refer for a complete definition in the x—algebraic case. For free fields, the free time evolution is described
by the x—automorphisms which implements the time translation and thus it is constructed in the following
way
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7 (F) = F, Fi(p) = F(pt), ot(r) = p(z + teg).

In the case of strictly positive mass m, there exists an unique quasifree KMS state at inverse temperature
B with respect to 7; which we denote by w?. The integral Kernel of the two-point function of this state has
the form w? (z,y) = w?(z,y) = hAP(z — y) where

: 1 —i —pou ,ipxT 1 :
AP(t —iu,z) = o /dpdpoe pote~pouel? 1_67_5,705(1?% —p* —m®)sign(po)
1 1 : ) .
—_ d ( —iwpt ,—wpu iwpt 7(ﬁ7u)wp) ipx 35
o p—2wp(1 T e e +eVrle e (35)

where w, = 1/p? + m2. A” is an analytic function for u € (0, 3). Since the state is quasifree, the n—point
functions with n # 2 are given in terms of the two-point function. Notice that limg_, AP = A>® = At
given in (17).

In order to compute expectation values in the state w? it is easier to represent observables in (FV,%,s).
To this end, we observe in particular that s(z,y) = A(A? — A®)(z — y) is a smooth function, hence,
proceeding as in Proposition 1.3 we get that the action of x,s is closed in FV. Furthermore, we can obtain
elements of (FY, x,s) simply applying a to (F",*.e). The state w” is then simply represented by evy on
(.FV, KB )

The normal ordered interaction Lagrangian : V9 := % :VI9+VY, : acquires an extra factor when represented
in (FY, %,s). In particular, we have

(1.2 oo
aps V9= V9 = e M (AP=AT) Oy ¢ (FY %)
At the same time, we have that

w’(f, f) = w(f, f), (36)

hence, by an application of conditioning and inverse conditioning, namely by an application of Theorem 2.2,
we can control the theory at finite temperature with the one at zero temperature. Furthermore, when

S(e‘hg(Aﬂ_Aw)(O)V) is constructed in (FV,%,s), we have that an analogue of Theorem 2.6 and of The-

Rz (AP —A)(0

orem 2.8 holds with V' multiplied by the extra factor e~ ) and with K constructed in such a

way that (36) is taken into account.
3.3. Thermal states for interacting theories and their properties

To obtain a KMS state at finite inverse temperature for the interacting theory, we follow the approach of
[22]. The starting point is the automorphisms of the interacting dynamics which is represented in the free
algebra as

7 (Ry(F)) = Ry (F).
We notice that 7 and 7; are intertwined by a cocycle. For ¢ > 0, and for F with supp F' C J*(Xg) we have
() =UOROUE®*  UR)=8V) 'S(V).

The cocycle is such that

Ut +s) = U(t)r(U(s)) = U(s)7s(U(2))- (37)
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The interacting KMS state is (see Fredenhagen Lindner [22] and Araki [2])

v _ WB(FU(W)) Vi+
WAV(F) = “BTE) Fe AV (J*H(%))). (38)
Notice that U(s) is constructed as a power series in the coupling constant whose coeflicients are elements
of AV. Hence, w®V (F) is also as a power series in A too, we shall later prove that for certain choices of
F' that power series converges also in the adiabatic limit. Furthermore, the wellposedness of the analytic
continuation of s — w?(FU(s)) necessary to get w?" can be shown to hold order by order proceeding as
in [22]. The state w”" constructed in this way is invariant under time translation, actually

WV (1Y F) = WHUMn(F)UOUGR) _ W (r(FU (U B)Ts(U (1))
t wB(U(if)) w?(U(iB))
_ W (n(F)nUG8) _ W (FU(iB))
w?(U(iB)) w?(U(iB))

where we used the property (37) in the third equality and the KMS condition of w” in the last one. w®V
satisfies the KMS condition with respect to the interacting time evolution 7". For a proof of the analytic
properties of ¢ — WV (F7Y(G)) we refer to the work of Araki [2] or Fredenhagen Lindner [22]. Here we
check that, thanks to the cocycle condition,
wﬁ’V(FTi‘é(G)) _ wﬁ(FU(lﬂ)Tlg(G)U(lﬂ)ilU(lﬁ)) — WB(GFU(Iﬁ)) — wﬁ,V
w?(U(ip)) w?(U(iB))

(GF).

Hence, using the KMS condition of w?, we may change x to x’ without changing the state, actually, assuming
suppx C M \ J*(supp F) and supp x’ C M \ J* (supp F), we notice that

S(VX4 F)=S(VX + F+ VXX = S(VX 4+ F)S(VX)~1S(VX) = S(VX + F)Wysy

where, thanks to the fact that F' 2> VX_X,7 we used the casual factorization property of the S matrix which
descends from the causal factorization property of the time ordered product, see [40] for further details.

Furthermore
Syx(F) = Wiy Sy (F)Wyry
and
Uy(iB) = S(VX) " g (S (VX)) = Wi, Uy (i8)7i5 (Wier).
Hence

W (S (FYU(1B)) = & (WgL Sy (YU (i8)75(Wyy)) = &P (Syns (F)U(18))

where in the last equality we used the KMS condition of the free state. This proves that, if supp x8~ C
M\ J*(Xo) where 8~ (20) = 0(—2"),

SV (Syn(F)) = w0V (Syv (F)),  suppF C %,

namely the state restricted to observables supported in the future of ¥ does not depend on Y.
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8.4. Choice of the time cutoff function and the adiabatic limits

To compute the correlation functions of the KMS state at inverse temperature S for the interacting
theory we consider the following generating functional

G(f) =V (W(f), [ eD(M), (39)
where W(f) is the exponential of ®(f) which is namely
W(f) = et

and, up to the factor e~ 3w (1.1 it coincides with the exponential of i®(f) computed as the limit of partial
sums contained in the algebra (Freg,*,5) C AV which are thus contained in the domain of w”V. Further-
more, the state w™V is given in terms of the KMS state of the free theory in (38). The correlation functions
of w#V as a state over the free theory A" are then obtained by means of a functional derivative of G(f)
with respect to f. Following Fredenhagen and Lindner [22], in terms of the KMS state of the free theory w?,
the generating functional G given in (39) can be computed as the ratio in (38) once we have the following
explicit expressions

S W(HUEB) = / dUW” (W () * Tiay (Ryx (KX)o -1 Ti,, (Ryx (KX)))

n

Bsn
(40)
AU = Y [ A0 (s (R (K)o -+ 7, (R ()
" BSn
where U = (uy,...,u,) and 8S, = {U e R" |0 < uy < -+ <wu, < B} and it is the n—dimensional simplex

of edge 8. Furthermore, as shown in [22], the interacting Hamiltonian has the form

KX = / X(@®)0(—20)h(z) cos(ap(x))dia

where 6(—x°) is the Heaviside step function.

We want to prove that the sums in (40) exist and that the limit & — 1 of their ratio can be taken. To
this end, we use the freedom in the choice of x discussed in the previous section and we choose a time cutoff
function which is the Heaviside step function. Contrary to the 4d case this does not give origin to further
divergences. Actually, the estimates in the proofs of the Theorems given in the previous sections involve
only integrals of the coupling constants and not of its derivatives. This implies that the limit where x tends
to the Heaviside step function can be taken. Furthermore, under this limit xy — ¢ and, formally,

Ryx(KX) -V = /dx cos(ap(0,x))h(x). (41)
To be more precise the n—th order contribution in A to Ryx(KX) is

1 (_i)l(i)n_l i3 aip(Ti) )= Do1<icicy GiawPF (z4,25)
R, = e' i @i Tile isi<gst T B
2 9n+ L [1(n — 1)
(a1, sany1)€{—a,a}ntt 0<I<n Mn+1

B,F B
- i a;a;w Xi,T - : y . a;a;w" (T;,T .
e I+1<i<j<n+1 4% €2 J)e 1<i<t 24l41<j<n+t1 @idj (zi J)g(xl) . -g(mn)g(xn 1)d,uzl o d“znﬂ

where w?F = wf + ihA is the Feynman propagator associated to w?. Notice that the real part of w? ¥,
wPF and of w? coincides. We denote it by hH? = Rew? and Hf differs from H,, in (25) by a smooth
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function. Furthermore, by the causal properties of the Bogoliubov map the domain of integration can be
(non-optimally) restricted to J~ = {(z1,...,%n, Tnt1)|Tny1 € M,z € J‘(xnﬂ),x? >0,5 €{1,...,n}},
hence

1 _ A RHP (25 1 .
|Ral < > 3 [ ¢ Do S o) ()00,

(a17"')a7z+1)6{_aaa}n+1

With an estimate similar to the one used to prove that S(V') is an absolutely convergent series for every ¢
we can thus prove that the series defining Ry (K) is an absolute convergence series for every ¢.

Notice that e~ Z1<ici<ntr 60 hHL (@i2)) 4o o locally integrable function because H? differs from H,, by
a smooth function and, as discussed above, e~ 21<i<j<n+1 @M m(@i2;) jg locally integrable. Furthermore,
in the limit where x — 6, J~ becomes a zero measure set. Since g is uniformly bounded by 1 also in the
limit, this implies that all the integrals over z1,...,z, in R, are integrals of integrable functions over zero
measure sets hence they give zero abd thus |R,,| — 0 uniformly in ¢ for n > 1 while Ry — V.

Notice that V is outside A", however, G(f) in (39) and the correlation functions computed directly with
X = 0 are still finite. In order to further simplify (40) we may use the time slice axiom [15] of the free theory
to restrict the observables (generating functional) to ¥. In this way the problem of taking the adiabatic
limit is only one dimensional.

Actually, for f € C§°(JT(20); R) we have, up to solutions of the free equation of motion,

P(F) _ gio(p.y) i®(P(x2 A" f)) (42)

where 1y = A(f), A being the causal propagator of the free theory, A4 is the advanced propagator
P = 0O—m? is the differential operator which represents the free equation of motion, s is a smooth function
invariant under spatial translation which vanishes on (—oo, —¢) and which is 1 on J*(2g). Furthermore,

o(p,¥f) = / (pOuiby — Ovpiby) Orxa-
M
Notice that the integrand appearing at the right hand side is supported on (—¢,0) x R C M and in the limit
€ — 0, namely when x» tends to the Heaviside step function o(p, %) converges to the standard symplectic

form of the free theory. Since ®(P(x2A“f)) vanishes when evaluated on a state, to obtain the generating
functional G(f), we just need to consider expectation values of €l?(#%¥s) namely expectation values of

A@p, ') == el P($0ix2) 10 P (9 Bix2) (43)

with v and v’ compactly supported real functions whose support is near X selected in such a way that
YO x2 = OphsOrx2 and ¥ Oix2 = —1p0;x2. Summarizing this discussion, assuming to have A as in (43)
with ¢ and v’ supported near ¥ and taking the limit y — 6 and x2 — 6 we have

W (W(HU(iB)) = w” (AU (B)) = | 2— / dUw” (A@tos, ~p) % Tiua (V) 7 -1 Tia, (V)
n 8S

where both * and -7 are defined with respect to w?. More explicitly, denoting by (x) := (0, x) we have
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A6 =3 5eae [ v [axnencn)

" BSn
Z o S il [ dxoth(x0) Ol (i x0—%:) + X, ash [ dxo’ (x0)9uCE, (s, %0 —xi) (44)
a;==xa

3
67 Zl§i<]’§n aiathfn(uifuj ,wifwj)

where h®"(X) = h(x1)...h(z,) and where the covariance C? (u,z) := AP(—iu,z) with A? given in (35).
We preliminary study some properties of the quantities appearing in (44). In view of the form of (35) we
have that

o0

1 3 1 1 —UW —(B—u)w 1T
Onlw,w) = A~ 2) = /dva (e emtomome ) eiow
- (45)
1 1 h((5 —
= /d —COS (( W) cos(zp)
27 " Wp Slnh( Wp)

where w, = /p? + m2. Hence we observe that C% (u,z) on (0, 3) x R is real. Furthermore, it possesses the
following symmetries

CB (u,z) = C8 (u, —x), Ch (u,z) = CP (B — u, —x). (46)
Notice that
Lemma 3.1. C7 (u,z) is positive on (0, 3) x R.

Proof. In view of the symmetry (46), we just need to check the claim for u € (0, g) and for > 0. The
case © = 0 descends for the last equality in (45). To treat the case x > 0 we preliminary observe that for
u > 0 and = > 0 it holds that the modified Bessel function of the second kind Kj, also called Mac Donald
function satisfies the following integral representations

oo

— 1 —uwp 7 myVaTFutw
Ko(m 1‘2 + U2) 2 / dpe w COS px = /d'l,Uﬁ (47)
p —

— 00
These equalities hold by an application of Jordan Lemma, used to prove that for x > 0

1 eiz;v
ja =3 ———dz
2) V2241

with T'y, = {z(t) = cosasinht + isinacosht|t € R}, does not depend on o € [0, 5]. Furthermore, one of
the integral representations the modified Bessel function of the second kind Kj given e.g. in 10.32.6 in [38]
gives that Jp(z) = Ko(x).

By the last equality in (47), we thus have that Ko(mz) is positive. Moreover, we can write C2 (u, ) as
a linear combination of modified Bessel functions of the second kind, actually, from (45) we have

ch P (u,x) / p— Ze vy ( —uwp 4 o= (B- “)W”> cos(xp),

P =0
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hence for x > 0

Cﬂux ZKom\/m)

n=—oo
and thus C2 (u,z) is positive because it is a sum of positive functions. 0

Notice that in view of (35) AP(—iu,z) = CP (u,x), hence the imaginary part of A”(—iu;,xo — x;) is 0
and the real part of AP(—iu;,x¢ — x;) is equal to C2 (u;,xo — x;). We furthermore observe that

KAP (—iu, z) = i0,CP (u, x)

and thus 0; A? (—iu, ) is purely imaginary because C2 is a real function. We thus have that if f and thus
w"f are real, the contribution due to
e Xi aihi [ dxotp’ (x0) 0 AP (—iui,xo—x;) _ o105 aih [ dxod (x0)0u O (ui X0 —xi)
is a pure phase.
s

The limit h — 1 of % can be taken adapting the estimates of the cluster expansion discussed
in section IIT of the work of Glimm Jaffe Spencer [29], see also Frohlich and Seiler [27]. Notice that they
discuss the cluster expansion of a two-dimensional theory. Here we are in a simpler case, the limit we have
to do is h — 1 and h is supported on some interval of R.

4. Covariance and boundary conditions

Let us recall C2 given in (45) which is the covariance without boundary conditions and possess the
following symmetris

Cﬁz(uax) = Crﬁn(ua —l'), Cvéz(ua 33) = Oﬁq(ﬁ —u, —J?)

on (0,3) x R. Notice that, having a translation invariant covariance C2 (u,z; — x2), we can construct a
covariance with Dirichlet boundary condition in & = b using the image charge method. The new covariance
C®(u,z1,72) is non zero only if z; > b Vi € {1,2} or z; < b Vi € {1,2}. Furthermore, if z; > b Vi € {1,2}

we have

Cb(u,xl,xg) = C’ﬁl(u,ml —I9) — Cﬁl(u,xl — (—(x2 = 1) +))

(48)

= CP (u, 1 — ) — CP (u, w1 + x5 — 2b)
if we now consider an interval [a,b], a covariance with Dirichlet boundary condition is formed by three
components. If both 1 > b and x5 > b just use the covariance obtained above, if both 21 < a and z3 < a
we just adapt the previous covariance, if both {x1, 22} C (a,b) we use recursively the image charge method.
To obtain

Clap) (U, 21, 22) = Z (C’,ﬂn(u, x1 —x2+2(b—a)n) — C’,ﬂn(u, x1+ a9 —2b+2(b— a)n)) (49)

n—=—oo

In view of the exponential decay for large |x| of C2 (u, ) the infinite sum present above is convergent. The
resulting covariance decays exponentially.
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Consider now T, a finite set of elements of Z, and decompose R \ T" in its connected components X;

r|
R\T = [ J X;.
i=0

33

For simplicity we also assume that X; < X;y;, (namely for z € X; and y € X;411 we have z < y). In
{Xi|ie€{0,...,|T|}} there are two non compact elements X and X|p| and the other |TI'| — 1 elements are
compact. The distribution C* (u, z1,73) is now the covariance with 0—Dirichlet data on T, hence

o OV (u,1,22) is non vanishing only if 21, x5 lie in the same X;

o if 21,29 € X; for some 0 < i < [T

CY (u,z1,29) = Ox, (u, v1, T2)

where Cx; is given in (49),
o ifzxy,z0€ X;for=0o0ri=1

CF(U7$1,$2) = CaXi(U@h@)

where C?% is given in (48)

Later we shall use C' at the place of Cfn in (38) to analyze the adiabatic limits. Hence, in the next we shall

derive some estimates satisfied by CZ and by CT

4.1. Path integral representation of C2,

For later purposes it will be useful to have another representation of Cﬁr We recall that, using the Wiener

measure, we can rewrite the (one dimensional) fundamental solution of the Heat equation

1 _(=z—y)?
2T

as a sum over the paths joining  and y in a time 7.

KoyT) = [ du ()

where pl y is the Wiener measure.
x,

(50)

; A 2
We observe that the spatial Fourier transform! of K (z,y;T) is K(p,T) = e*¥, hence, to write 1% as a

sum over paths we integrate K(xz,y;T) in time, actually

and

! Here we use the convention that f(p) =/ P f(x)dx.
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1 o0
Gl T) = - [ [ dut ()i
0

With these observations we now construct C2 (u,z — ), we compute its Fourier transform in x — y and its
Fourier coefficients in u. We get

oY p———ay s CE S C P
—00

w(p)? + () 2

where c is a suitable constant, hence recalling that w(p)? = p? + m? and proceeding as before we have that

C(n;z,y) = lim —// " + ) du;y(w)dt

T—oo 47

hence
B _ i20 na & _ “ 2T nu m?+ ?7( )% t
Crn(u, z,y) ;e 8 C(n, z,y) Th_{r;o WZ // dpy, , (w)dt

/ [ Wi w)de

2 t
where W (¢, u) is a suitable positive weight. Actually for ¢ = e_(T) 2and z=¢"#"

(51)

0o 2 ') e}

W(t7u) _ Z ei%‘nue_(%ﬂ") 5 _ Z ann2 — H (1 _ qm)(l +zq2m—1)(1 +Z—1q2m—1)

n=-—o00 n=-—oo m=1

where the last equation is nothing but the Jacobi triple product formula. Observing that (1 + z¢?™~1)(1 +
z_qum_l) = 1+ (z+ 27 H* 1 + ¢¥=2) we get that W (t,u) is positive because 0 < ¢ < 1 and
z4+2z7t = 2cos(2[§r u) and thus W (t, u) is a product of positive factors.

Now if a boundary condition is imposed we have simply to restrict the set of paths over which the
Wiener integral is taken [42,28,29,43,16]. In particular, let T" be a set of points of R. To represent Cr(z,y)
the covariance which vanishes for y in I', the Wiener integral is restricted to paths which do not touch the
elements of T'. So let w(t) be a path in R starting in = and ending in y, and let b € R a point where we

impose boundary conditions, we introduce the following

0 if w(t)=">b forsomete (0,T)
-1

1 otherwise

hence

(w.2:9) / [ IWE ) I @) dt ) (52)
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and
Clap (u, z59) = //‘ W(T,u) [ Jy(w)dpl,(w)dT (53)
pe{a,b}

4.1.1. Decay properties of C2 for large separation
We derive some bounds satisfied by C2 given in (45).

Proposition 4.1. Consider C2 given in (45), for x > « it holds that

m
— =l

OB (u,2)| <
O (u, )| < €5 —

where the bounds hold uniformly in u and the constant is such that

2 1
CB = - s *
’ B 1—e v2 %
Proof. Since C? (u,x) is symmetric we need to check only the case z > 0. Notice that thanks to Lemma 3.1
we know that C' is positive, furthermore, from (45), we have that

1 [ 1 cosh((4 - |
Oﬁl(u ;17) = — / dp— cos (( U)Wp) ezpas
27T700 Wy sinh(Sw,)
iy ]
_ 1 dpi wp cosh((5 — u)w,) gipa
27 w2 sinh(Zw,)

where w, = /p? +m?2. We use some complex analysis to estimate this integral We observe that the

integrand is an holomorphic function in p which has simple poles where either w? or smh( wp)/w, vanish.

Compute a contour integral over yr which is a counterclockwise oriented Contopur formed by the interval
[—R, R] of the real line and by a semicircle of radius R centered in the origin and lying in the upper half
plane. We notice that for = > 0, in the limit R — oo the contribution on the semicircle vanishes because e’?*
vanishes exponentially for p with large imaginary part and so in that limit the integral over v gives the

desired result. We use residue theorem to estimate these integrals. The poles contained in 7., are located

2
at p= P, :=iy/m? + (%) for n € N. More precisely l/Wf7 has a pole in Py whose residue is ﬁ while

f= mh&;ﬁ has poles for p = P, with n > 1 and the corresponding residues are

Res(f)p, = (~1)" "

Hence we get the following estimate

2
|C1§1(U7$)| < ﬁie*mm + 1 ei‘zl m2+(2T)
m
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< Loy 2y k(e 252)

~ pm pm =
e Ly, 2y
Bm Bm eﬁ% -1

This concludes the proof. O

For later purposes it will be useful to derive a bound for the following

DiCluay) = [ [ W w [[0 - I @)t (w)dr (54)
3 ier

where T is some set of points in Z C R, where du] ,(w) is the Wiener measure and W (T',u) is the weight

appearing in the path integral representation of C2 which we recall here

1 T m?2
Chtway) = 1= [ [ FTWE WL, @)ar.
0

(w)) in DrC force the Wiener integral to be taken over the paths

?

We observe that the factors [],cp (1 — J;
that touches all the points in T.
We observe that the following proposition holds

Proposition 4.2. Consider T' a subset of Z C R formed by at least two elements and DrC given in (54).
Then, for every couple of points z,y € R and u € [0, 8],

1 —m —m —m
|DrC(u,z,y)| < c—e A =g d,l) = d(y,D)
m

where A(T) is the mazimum of the distances of between any two points in T, d(x,T') is the minimum distance
between x and the extreme points of I' and where ¢ is a suitable constant which depends only on 3.

Proof. The points in I' are contained on R and thus they can be ordered according to their real value.
Without loosing generality we suppose that x < y and we consider some cases. Suppose for now that the
two points x,y are chosen in such a way that z < I' and y > T'. In this case, because of continuity and
because R is one dimensional, the paths joining z and y in the Wiener integral representation of DrC' are
forced to pass through all the points of T, hence [, (1 — J

(w)) gives one for every path joining z and y

and thus in this case

DrC(u,z,y) = //67m2TW(T, u) H(l - JiT(w))d,uf)y(w)dT =C(z,y)
0

el

where C' = C8. Hence, in this case Proposition 4.1 yields the claim. Suppose now that 2 < I', z < y but
there is one point z in I' (the largest extreme) which is larger than y. In this case the paths w contributing
to the Wiener integral in (54) joining x and y are forced to pass through z. Let €2, be the set of all the
paths joining x and y in a time 7" passing through z. We notice a path w € €2, can be divided in two parts.
w is actually formed by a path w; joining x and z in a time 77 < T and a path wsy joining z and y in a time
T — T'. Here T’ is the first time at which w reaches z. Notice that thanks to the properties of the Wiener
measure, we can reflect the second branch of the path, r,ws = wj with respect to z without altering the
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weight associated by the Wiener measure. Actually, if we denote by w’ the path formed by w; and wj we
have that

dﬂ’z;,y (w) = dy’zﬁz—y (w/) .

If we do this for all the paths in the set 2, we get £’ which is formed all the paths joining x and 2z — y in
a time T. The map we have described is a bijection from €2, to €', hence

DiCluay) = [ [ TWE il @t = [ [ TWE .. )T
0 Q 0

= DrC(u,x,2z —y) = C(u,x,22 — y)

where as before C = C2. We have reduced this case to the first one, hence the claim holds also in this
case. The same arguments can be applied also in the symmetric situations. It remains to discuss the case
where both z < y are contained in I', namely where znin < * < ¥y < Zmax Where zpyin and zpax are the

minimum and maximum of I'. In this case we shall divide the set of considered paths 2 in two €y

Zmin;Zmax
and 25 where € contains the paths which start at x and reach zy;, for the first time before z,.x and
Qo = Q0 zoex \ £21. Now a path in 5 can be divided in two contributions. The one from z to zyax, and
from zpax to y. It is then possible to reflect the second branch of the path with respect to zy,, without
altering the weight associated to the Wiener measure. If we do this reflection for all the paths in ; we get
a set of paths joining x to 2z — y in a time 7' and passing through zy,;, before reaching zp.x. This set is
strictly smaller than the Q. . (x,2zmax — ¥y), the set of paths joining x, 2z1,.x — ¥ and passing through zyiy,.
Despite this fact we can bound the Wiener integral over Q; with the integral over Q. . (z,22max — y). Then
operating as in the second analyzed case (namely the case where zpin < & < Zmax < y), this last integral is

again equivalent to the integral over (2zmin — , 22max — ¥), namely

T T T
/ Apty y < / Ay 92—y = / A2 20— 2 2mas—y

Q1 szin (z,22max—Y)

The contribution over {25 can be treated similarly. We have thus that
DrC(u,z,y) < DrC(u, 2z2min — T, 22max — Y) + DrC(u, 22min — ¥, 22Zmax — )

and both contributions at the right hand side of the inequality can be bounded as in the first part of the
proof hence concluding the proof. 0O

For the case where I' is formed by a single element we have the following proposition.

Proposition 4.3. Consider T' = {b} withb € Z C R and DrC given in (54). Then, for every couple of points
z,y € R with |[x — b+ b —y| >«

1 o gioy o
DrClu, 2, )] < ere D) o= Tt
m

where d(z,T") is the distance between x and b and where ¢ is a suitable constant which depends on o and on
B. (c diverges is o — 0.)

Proof. We proceed as in the proof of Proposition 4.2. In the expansion of DrC' as a sum over paths joining
x and y, we have that all paths need to pass through b. Furthermore, the constraint |z — b + |b — y| > «
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implies that the minimal length of these paths is a. Using the symmetry of the problem in the same way
as in the proof of Proposition 4.2 and the decay properties of C stated in Proposition 4.1 we have proved
the claim. 0O

For later purposes we need also the following bounds

Lemma 4.4. Consider C2 given in (45). We have for p > 1 and for large values of m that

c

1Cally < —
mr

where the subscript u indicates that the integral in the p norm is computed on the x direction only, keeping
u fived and where the constant c is uniform for u € [0, 3].

Proof. Because of the symmetry of CZ given in (46), without loosing generality we restrict ourself to the
case u € [0, g] Furthermore, triangle inequality implies that

ICRlly < ICa Iy + ICm, = Carlly
Let us recall that
O (u, 2) = AT (i, 7) = %Ko(m\/m)
where K is the modified Bessel function, which is positive and monotonically decreasing function, hence,
C32 (0, 2)| < 5 Ko(mv/a)
hence

—Ko(m 2) <

/dm|Cﬁf(u,x)\p §/dx

where c is a positive constant which does not depend on m. Hence

cP
m

c

G 1l <

mer

We discuss now the second contribution C2 — C2°, notice that, since u € [0, 3/2], we have

oo

1 e Pwr
CB _ O™ < dp——— (e~ uWp UWp,
Ch () m<u,x>|_47r/ P e ()
g_ v cosh(uw,)
4 Wy sinh(Zw,)
o0 8

| /\

1 —2Wp 2
d 14+ —
47T p Wy < + Bwy, )

()

I /\
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Hence

jos - oo < L2 (1+i).

* = o1 Bm Bm

We furthermore observe that C2 (u, 2)—C2° (u, x) is positive. This can be proved as in the proof of Lemma 3.1
noticing that

oo

Chfu,) = € () = [ dof(uwy) cos(pr)
0

B
1 e~ 2% cosh(uwy)
where W = 5= B3 <
f( p) 2 wp sinh(%wp)

u € [0, g] Hence,

which is a positive monotonically decreasing function of w, for every

oo 8
1e 2™ cosh(um)

1 2
B _ (0||u — B _ (> — - - P\ e =

— 00

hence, for u € [0, g]

1 1 2 ¢
B _ voo|ju < B _ vooju \p—1 B _ voojju)p < c 1 <
||Cm Cm Hp = ((”Cm Cm ”oo) ||Cm Cm Hl) = m 617% < + 5771 = m%

where the last inequality holds for fm > 1 and for a suitable redefinition of the constant. Combining these
bounds we have proved the claim. O

5. Cluster expansion and the adiabatic limit

In this section we discuss the existence of the following limit

i &AW U (8))
el WBUGR))

(55)

where the numerator and denominator of the ration at the right hand side are computed as in (44). Here
A, ') is given in (43) where its connection with the generating functional G(f) given in (39) is also
discussed. We shall adapt to the present context, the cluster expansion proposed by Glimm Jaffe and
Spencer [29] which was also used in the context of Sine-Gordon theories in the euclidean domain in [27].
See [1] and reference therein for further generalization of the original cluster expansion.

5.1. Basic ideas of the method

The basic idea of the cluster expansion is to analyze the limit (55) for a theory where the covariance
CB (u,x — y) is replaced with a covariance CT(u,z,%) of a theory with vanishing boundary conditions on
I' € Z C R which was constructed in section 4. Notice that R \ " is a union of disjoint open intervals and
the correlation functions among two elements which are supported on two disjoint intervals vanish if they
are computed with C' (u, z,y) for this reason the elements of I' C Z C R are called bonds. Furthermore the
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limit h — 1 can easily be taken in the case of C* when I' has sufficiently many elements. The idea is thus
to control the limit obtained in (55) with a particular expansion of similar contributions computed with CT
for various I'. In order to see how the limit can be taken for CT with a I" with sufficiently many elements
we proceed as follows. Consider now a generic finite set of bonds I' C Z, R\ T is the union of r = [I'| +1
disjoint open connected components X;

LTJXZ-:R\F.

=1

Let us discuss wl (AU(if3)) where wgf; is the positive functional obtained with the covariance CT and hy
is the characteristic function of the set A C R. We shall denote this contribution by

Fer(A) = wih (AU (iB)).

Hence, its explicit expression is as in the right hand side of equation (44) where CZ is replaced by CT and

m
where hy, the characteristic function of the set A, is used at the place of h. Similarly, the corresponding

contribution with A = 1 is denoted by

Zer () = Wi (U(B)).

Its explicit expression is again as in (44) with CT at the place of CZ and with hs at the place of h. With
this notation, the adiabatic limit (55) we aim to control is

lim

no1 WP (U(B)) AR Zgs (A)

Notice that in view of the clustering properties of C'', Zor (A), factorizes in a product over the connected
components X; of R\ ', namely

Zer(A) = H Zorox; (AN X).

K2

Furthermore, we denote by Y = J(supp(W(f)))ls, = supp(A(#, 7)), and we introduce the following two
disjoint sets Y7 Y5 formed by suitable unions of the sets X; introduced above

Yl = U Xj, YQ = U Xj.

Xj ﬂY;é@ X]‘ nYy =0

Notice that Y3 is non empty only if I' ¢ Y. With this decomposition, if Y5 # (), Y3 is not compact and
furthermore we have that also For(A) factorizes in a product of two contributions namely

FCF (A) = Fcr‘ (A n Yl)Fcl“ (A n YQ)
we furthermore observe that For(ANY;) = Zor(ANYs) because A is 1 on Ya, hence
Fcr (A) = Fcl“ (A N Yl)ZcF (A n YQ)

If Jsupp(W(f))|s, is contained in Y7, which is a union of X; of compact support, the limit A — R which
correspond to the limit h — 1 can be easily taken, namely
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where hy, is the characteristic function of the set Y;. In the next section we shall see how obtain (55) from

B ’ . F
the previous limit by means of the cluster expansion of % = m

Z
ch,

5.2. The details of the method

We use now the cluster expansion and its properties discussed above to construct the adiabatic limit of
the original theory. We consider a covariance operator C(s) which is a convex sum of CT over all possible
I’ C Z. More precisely, s is the collection of elements, s, € [0, 1] for every b € Z,

s = {sp}vez-

The covariance operator C(s) depending on all these parameters is

C(s) = Z Hsi H (1—s;)C"" (56)

ICZiel' jere

where I'® is the complement of I' € Z. With this definition we have that C'({0,0,0,...}) is the solution with
zero Dirichlet data on every bond i € Z, while C({1,1,1...}) corresponds to the original covariance CZ..
We substitute C2 with C(s) in the explicit expressions of w?(A(v,")U(iB)) and of w?(U(iB)), given in
(44) and we use the following notation

F(s,8) = Fos)(A) = weiy (A, 9 U (18))
Z(Sv A) = ZC(S) (A) = WZ'/ES)(UOB))

Notice that F(0,0,...) and Z(0,0,...) it is completely clustered while F(1,1,...)=w’(A(¢,%')U(iB)) and
Z(1,1,...) =P (U>IB)).

Proposition 5.1. The cluster expansion is then a sum over all possible finite set of bonds I' C Z and it is

F(s)= Y / ' F(o(I))do (57)

FCZ;|F\<OOOSO_SS(F)

where

Furthermore o < s if and only if o, < sy for all b and
0
o = -
H 831,
Hence, at the right hand side of (57), the integral is taken over a region of dimension |T|.

The proof of (57) is given in Proposition 3.2 of [29], here we recall the main steps of this proof.
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Proof. The essential idea of the proof is the following, notice that

S0

d
F(So,O,O):F(O,)+/d§0—~F(§070,)
dSo
0

This formula can be written as
F(So,0,0...) = (E0+§0)F

where E; and 0; are two operators acting on the i—th components of the s coordinates. E;F(s) :=
F(... 8- 1,0,51-“...) is the evaluation in 0 of the i—th component of the entry of F' and §;F(s) =
fos‘ d‘; F(...,8i-1,0,8i+1...)do. Hence, if one uses this formula for every bond one gets the desired ex-
pansion.

F(s) = H(EZ + ;) F(s)
i€Z

ST 6:F(s))

I'czier

= > / O"F(o(I))do O

FCZ;|F\<000SO_§S(F)

Consider now I' C Z with finite number of elements and let I'“ be its complement in Z. Divide the space
R\ I' in connected components X;

R\ T = U; X;. (58)
Notice that s(I'); vanishes for every j on I'® hence, if supp A(¢, ') C X, we have that
F(s(T),A) = [[F(s(T 0 X;), AN X;) (59)

if this property holds, we say that F'(s) decouples at s = 0. Similarly, we have also that Z(s) decouples at
s = 0. We use now this property in (57) in order to partially resume the series.

We operate as follows, suppose now that Yy = supp A(¢,¢’), for a generic I, consider the decomposition
X; of R\ T given in (58). We combine these sets in two disjoint sets Y7 Y» formed by suitable unions of
the sets X; introduced above

vi= |J X = X (60)
X;NYo#0D X;NYo=

Introduce now I'; = I' N'Y; we have that (57) with (59) gives

Y 10 / O™ F(o(T3), AN Y:)do. (61)

T ie{12}g< o Zo(ry)

A similar decomposition holds also for Z(s, A) and, because of the support of A(«,1)), we have that the
second factor in each element of the sum in F coincides with the corresponding factor present in Z.

There are various subsets I' which lead to the same Y; and I'y, we partially sum over all these I's. We
obtain
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s(T'1) s(T'2)
F(s,A)= ) " F(oy(Th), AN Yy)doy | > / "2 Z(09(T2), ANYs)do

Y1,I 0 >

The sum over all possible I's C Z \ Y7 can be taken and using (57) it gives

s(T2)
> / "2 Z(02(T3), AN Ys)do = F(s(Z \ Y1),A\ Y1)

o 0

furthermore, if s, = 1 for every b € Z,

F(s(Z\ Y1), A\ Y1) = Z(s(Z \ Y1),A\ Y1)
= Zpom (A\ V1)

where Zoov, (A\ Y1) is computed with the covariance C?¥* which has bonds in 9Y;. Hence, calling Y = Y;
and ' =174

s(T)
Fs,0) =Y / 9" F(o(T), AN Y)do Zeor (A\ Y). (62)

Y.I' §

)

The cluster expansion is now obtained evaluating F' at s = 1 and dividing by Z(A). We have actually the
following proposition

Proposition 5.2. The expectation value of wh VA (W(f)) where hy is the characteristic function of the
interval A C R can be written as

s(T)

_ W (A, $YU(iB) _ e _ Zoov(A\Y)
SW) = 5 h ) 7; 0/ O"F(o,ANY)d 70 (63)

where s(I'); is 1 if i € T and 0 otherwise. The sum in the previous formula is taken over all possible Y, T with
the following properties following from (60). Let Yy be a fized compact interval which contains the support
of A(Y,v") on X then

a) Yo CY andY = (a,b) C R with a,b e Z,
by rcvy,
c) (T°NY) CYy.

The last requirement in the choice of T over which the sum in (63) is taken implies in particular that for
a given Y, I' is then chosen in such a way that all the bonds in Y outside Yy are in I', namely

(ZN(Y\Yy)) T
Theorem 5.3. Under the hypothesis of the Proposition 5.2, it holds that the limit
AV = li A
WV (I (f)) = lim S(A)

exists.
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Proof. The limit A — R in each term of the sum on Y,T in (63) can be taken because of the clustering
properties discussed above. To prove the converge of the sum we make the following observations. Condition
a) in Proposition 5.2 implies that the number of Y in the sum (62) with fixed volume |Y'| is bounded by |Y|.
Furthermore, once Y is chosen for Y; of compact support, conditions b) and c¢) satisfied by the elements of
the sum given in equation (62) in Proposition 5.2, imply that the number of possible I is bounded by 2!¥o!
which does not depend on A. With these two observations, Lemma 5.4 and Lemma 5.5 imply now that for
sufficiently large mass m the sum in (62) converges. (Notice in particular that for each term in the sum (62)
every h is bounded to be supported in Y. Hence the estimate of Lemma 5.5 is used with Y at the place of
A). In the proof we have also used that |T'| is essentially the volume |Y'|, more precisely

Y[ — Yol < [T < Y,
and |Yp] is the volume of Y; which depends only on the support of ¢ and ¢’ or of f. O

We now estimate Zgov (A\Y)/Z(A) and the sum over Y, T" with fixed |Y|. We can do it using proposition
5.2 of [29], see also a similar analysis in [27].

Lemma 5.4. It holds that

Zeov (A\Y)
Z(A)

‘ < Yl

where k does not depend on B, on A and on m for sufficiently large m and for small a.

Proof. We present a detailed proof in the case Y = [l1,l2] C A with Iy < I3 and I3, € Z. This proof can
be obtained noticing that

c%Y < 0P, (64)

This inequality can be proved using the path integral representation of C2 given in (51) and observing
the C9Y is a similar integral (52) which is however taken over a smaller set of paths. Furthermore, as
discussed after (51), the weight e*m;tW(t, u) which appears in (51) and in (52) is positive. Now, knowing
(64), conditioning and the clustering properties of C%" used in a similar way as in the proof of Lemma 5.11
imply that

Z(A) = PPN U(iB)) = Wl (U(i8)) = Wity (U(iB) i (U(iB)) = Zoov (A Y) Zgav (Y)

from which

(65)

Zeor (A\Y) 1
o Bl Pl

The last step can be accomplished as follows. Similarly to (64) we have that
c%Y > C(0,...)
hence again conditioning and the clustering properties of C'(0) give
Zoov (Y) > Zo)(Y) = (Zew) Q)Y

where @ = [0,1] and |Y| = ls — [; is the volume of |Y|, this chain of inequalities implies that
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Lo RIYT < kAl (66)
Zcoy (Y) B B

for some constant k. Combining (65) with (66) we have proved the claim. O

The limit A — R in each term of the sum on Y, T" in (62) can be taken because of the clustering properties
discussed above. The sum can be proven to converge thanks to the following observation (Proposition 5.3
in [29] and Proposition 2.2 of [27])

Lemma 5.5. Consider I' a finite set of elements of Z,

s(I)
/ O (o, A)do | < e FiITHkalAl (67)

ko does mot depend on m. ki depends on the mass m. For any ki there exists mo(k1) such that for any
m > mo(k1) the bound holds.

Proof. We start analyzing how F(o, A) depends on ¢ and ¢’. To this end, recalling (44), we observe that
(1, 1") enters w?(A(xp, " )U(iB)) as exponential of terms proportional to

k(u,z) = f/dmm/)(xo)Cfn(u,xo — x)+i/dx0w'(xo)8uC£L(u,xo — ). (68)
Notice that this contribution can be written as
bu2) = [ doodun fun, 20)Cluo — w0 — ) + g1, (69)

for two suitable smooth functions f and g supported on [0, 3] x R with compact support in the second
variable. Here C'(u,z) = C8 (u,z) if u € [0, 8] and C(u,x) = C2 (—u,z) if u € [-5,0). To find the precise
forms of f and g we construct a current J on [0, 3] x R whose component are

Jj(uo,xo) = p(uo,xo)ﬁjé(uo — U, Ty — 33) - 3jp(uoa ﬂfo)é(uo —U,To — 33)7 JjE€ {07 1}~

p € C*(]0,8 x R]) and p is compact in space. We notice that the divergence of the corresponding current
gives

0;J;(uo, zo) = p(uo, 20) Ay zC (1o — u,zo — ) — Ay zp(uo, o) C(ug — u, xo — )

= mzp(uo, mo)é(uo —u, g — x) + plug, £9)d(ug — u)d(xo — )

— Ay,zp(uo, 20)C(uo — u, 20 — )

where A, = 02 4+ 92 and where we used the fact that A, ,C(u,z) = m?>C(u,z) + 6(u)d(x). Here § are
ordinary delta functions. We observe also that, for u € [0, 5] in view of the symmetry satisfied by C'ffl,

C(B —u,z) = C(~u,x), 2.C(B —u,x) = 9,C(~u, x).

Hence divergence theorem implies that
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/ / duodzo0;J;(ug, o) = — /d:co (p(B,z0) — (0, 20)) . CZ (u, zo — )
R (0,8)
= [ 0 @up(3.0) ~ p(0.20)) € .20 ~ ).
Choosing

Pl 20) = 5 (a0 = )0 (20) = 5 (w0 — 5)w(a0)

the boundary integrals coincide with k(u,x) in (68). The searched functions f and g in (69) are thus given
in terms of p as

f=m’p—Au.p, g=np

Recalling (44), we notice that the terms e9 obtained as the exponential of (69) can be seen as a rescal-
ing of h to h = e9h. For simplicity we shall perform the subsequent analysis discarding this factor, the
correct estimate can be restored a posteriori. The relevant contribution which requires an estimate is thus
wW(f)U(iB)). Here W(f) = expg id(f), the exponential of the linear field i¢(f) taken with respect to C.
We discuss the detail of the proof in the case of f € C§°([0, 8] x R). The same results can then be obtained
also in the desired limit. Hence, by direct inspection, we have that

20V

for W(f) = expg(,) i¢(f) where f is a smooth compactly supported function on [0, 5] x R. Furthermore,
Vh=[dx foﬂ duh(z) ) cos(ap(x)). We have that

_ 20V}
F(o,A) =evg eXPE (o) ip(f) "C(a) XPC()

' 20V}

= evo | eXPo(g) | 10(F) + ——
s i ' 20V
= evo | 7 Cm expg | 16(f) + —=

its derivative along a generic I is
g i 22V
1 .1 .
OV F(o,A) = Z evg H Fa]w('j(g) exi<i e €XPg (@(f) + Tﬁ>
weP(T) YET \i<j

we can now localize the spatial variables of the points z,y in the factors 87C/(c)(z,y) present in 9" F(o, A)
on spatial intervals of unit length. Namely on elements of

Z:=A{[l,l+1cR|leZ}

and further decompose it as a sum over all possible intervals, actually, we are using
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DC(s)ij = »_ 9C(s

1,JeT

where 870(5)%’12 = 07C(8)ijh1, h1, and hy is the characteristic function of the interval I. Hence 07C(s )ZI]J
is supported on (0, 8) x I x (0,3) x J. With this decomposition

i AV
I _ ZL J Ls o 1 B
0 F(o,A) = Z evg H Z ZFB’YCI 1) | € <77 C@) expg <1¢(f) + 3 >

meP(T) yem \ I,J i<j

2AV/]

ij . TY s
Z Z Vo H Fajvc"'fvv’"r(a) eZLQ “( expg <l¢(f)+ h)

7 €P(D) {(I5.7,)} yen \i<y
) 20V}
Vo | B ((1,,0,)} "6 (o) @XPe(o) | 10(f) + 5 (71)

where in the second equality we have interchanged the product over v € 7 with the sum over copies of

TeP(T) {(1y,75)}

intervals. Hence, after the interchange, the sum is over all possible |7r| couples of intervals and each element
in a generic couple is labeled by 7. Namely the set over which this sum is taken is

{(Zy, Jy) }ryer € (T x I)‘WL

Hence, 0" F'(0, A) is a sum of terms indexed by all possible partitions and by the |7| couples of localization
intervals {(Z,, J,)}. Furthermore R 1(r, 7 )} is itself a sum of contributions of the form

k
L(w') = / W, (x1) ‘Clo) "7 C(o) W, (xi)w' (X1, - - -, X) Hdixi (72)
((0,8)xR)* =t
where x; = (u;,2;) and 6; € {—a,0,a} and
o(x), ifo6=0
W(x) = w7 if0=a>0
Y exp(;biaqb(x))’ ifh=—q<0
and
w'(x1,. .., XE) = w(X1,. .., Xk) H NC (o) (%, y) (73)
yeT
w being a tensor product of h or f and x, € (x1,...,%x;) and y, € (X1,...,Xg). With the constraint
that x, # y, and for every x € (x1,...,X;) there exists at least one v € 7 such that either x = x, or
X = y.,. Furthermore k < 2|T'| and there are at most 32/Tl|7|! contributions of the form L in R (L)}
These contributions, arise by application of HvETr (Zi<j ngwélw,w (U)> to expg ( o(f) + 2,\Va ) and thus

by using the Leibniz rule.
We study one of this contribution to ' F(o, A), namely we analyze

22V}
K =evy (L “G(o) EXPE (o) <— o(f) + T))
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We can use Cauchy-Schwarz inequality to bound the resulting term

= (e ) (o (e () g

We have that the second factor does not depend on 7 nor on the particular form of L and it can be controlled

h
ev ~ —4)\V’8 < ceclM 75
o | exPe(o) . < ceB (75)

We are thus left with the remaining contribution

using results of Lemma 5.11

Kl = €Vo (L* 'Cv(a,) L) .

Notice that we can use conditioning and inverse conditioning to control evy (L). Actually, recalling (75) and
by the Cauchy-Schwarz inequality as in (74), we get a corollary of Lemma 5.6, namely we have that

Ky < cflw'||2 [ [N (D)7 ez A,
I

Furthermore, if w’ is of the form (73) by an application of Holder inequality we have that

< g0 o35 17l

[T (o)

ye™

[[o7¢%" (o)

yem™

||w/H2p < ”pro

T T

where 1/r 4+ 1/pp = 1/(2p) and where we used the fact that w is a product of various h and f hence
[w]lo < (14 [flloc)® < expklfllcc. To estimate ||T],c, d7C™ 77 ()|, we use the decay properties of
07C(s) established in Proposition 4.2 and Proposition 4.3 for distant I, and J,. The detailed estimate
needed in the proof can be found in Lemma 5.8. We furthermore need an estimate of M = M (7w, {(Z,, J)})
the number of contributions of the form L in Ry (1., 7,);- This is given in Lemma 5.7.

With the Lemmata given in section 5.3, we can now conclude the proof. Actually, from Lemma 5.11,
Lemma 5.6 and by Cauchy-Schwarz inequality, we have for a suitable constant

P FE A< Y Y M@ {1, )} |w||2pH aech

7€P(D) {(1.J5)}

Where N(I) is the number of I, or J, equal to I in {(I,, J5)}. Recalling the form w’, we obtain

0 FeA) < S S M AL, )}

meP (D) {(15,J5)}

[[o¢%" (o)

YET

Jeollp, [TV e,

I

T

Hence, using Lemma 5.8, we have

" Fon) < Y Y HprOH N(DsetMeea Il T eem e 40 bt M (x, {(I,, J,)})

meP(T) {(Iy,J4)} YE™

hence we can decouple the difficult sums
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2|1

|8FF(O', A)| gew(||f“oo+10g/3)ec\/\|e—cz\Fl Z e—zmﬁA(’Y)
TeP(T)

swp |3 TIv (e [T ee 5540 P00 o (1, 1))
T€PM) \ (1,0} I NET

where we have used the fact that w is a tensor product of f and h. The sum over P(T) is controlled by the
results of Lemma 5.10. We have

|07 F (0, A)| <elMeme2ITle eIt
sup <H<N<I>!>q [T ce™ 52905 M M (r, {(, Jw>}>>
{15,750y "€PO T yer

with Lemma 5.7 we can bound M (m,{(,, )} and have that

10" F (0, A)] <[lw]lppe!Meme2 ey eczITeer T

sup <H(N(I)!)q+1 H e Ké,cwd(“%m)

(1,0 *€PO 7 ot

Finally Lemma 5.9 can be used to control the sum over {(I,, J,)}. It gives that
0" F (o, A)| <eflMlg=ezlTl g gealllger|T]

co is the only constant which depends on the mass and furthermore it diverges in the limit m — co. We
have thus concluded the proof of Lemma 5.5. O

5.8. Technical lemmata

We collect in this subsection some more technical lemma used in particular in the proof of Lemma 5.5.

Lemma 5.6. (Lemma 2.4 in [27]) Consider w' € LP(R?*) with p > 1 a function which is supported in the
cartesian product Hle(O, B) x I; where I; € T are intervals of unit length whose extreme points are in Z.
Let L be as in (72) and denote by N(I) the number of elements j of {1,...,k} such that I; = I. It holds
that

evo(L) < ||w'|p H(N(I)!)ch(I)
1

where 1/p+1/q =1 and c is a suitable constant.
Proof. We need to estimate

X = / dx ... / dxy levo(We, (X1) ¢ o) 60y Wor (i) [[0 (X1, %) .

(0,8)x I (0,8)x I,

We can find a finite series of elements of non overlapping support of the form FJ = ff ® -+ ® f,g with
0 < f] € LP((0,8) x I;), which converges to |w'| in LP. Hence ||w'[|, = limy_ o0 Z;vzl |F7|, and ||F7]|, =
Hle | #71l,- We thus start considering
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XT = levoWa, (1) oy oy War (FD)I-

Notice that {I;}; is made of | < k different disjoint open intervals {J; € Z} which are labeled in such a way
that J; < J;+1. We use a technique similar to the one used to prove Lemma 5.11 to factorize the expectation
values of products of Wy in a product of expectation values of Wy supported in the same interval. First of all
we use Cauchy-Schwarz inequality to factorize the expectation values of fields supported on even intervals
E = U;Jy; from those supported on odd intervals O U; Jo;4;. In this way we are sure that intervals are not
touching. We now factorize the expectation values of different odd intervals using inverse conditioning and
a covariance with boundary conditions in a collection of points, one for every even interval. By conditioning
and inverse conditioning, these single factors can be controlled with a covariance a log((z2 +u?)/u?) where u
is a suitable constant as in the proof of Lemma 5.11. We do the same with the even intervals. Finally, in each
factor, we use again Cauchy-Schwarz inequality to separate the fields Wy = ¢ from Wy with 6 € {a, —a}.
The factor which contains only Wy can be directly estimated, with C"n! where n is the number of fields in
the factor. The factor which contains only Wy can be treated using results similar to the one obtained in
Lemma 2.7. Collecting all these estimates and observing that by Stirling approximation \/(2—71)' < ¢"n! for
a constant ¢ = 2e we have that

k
X0 < L (v @) T,

where 1/p+1/¢ =1 and ¢ is a suitable constant. Summing over j we get the assertion. O

Lemma 5.7. (replacement of Lemma 2.6 of [27] or Lemma 10.1 of [29]) Consider R ((1,.5,)} of the form
(71). Let M = M(m,{(I, J,)} the number of contributions of the form L given in (72) in Ry (1, 1,)}- Let
N(I) be the number of I, or Jy in {(Iy,Jy)} such that I =1, or I = J,. It holds that

M < eI N)!
I

for a suitable constant.

Proof. Applying N(I) functional derivatives to exp W we obtain at most N (I)! terms which contain products
of functional derivatives of WW. Furthermore we recall that W is a linear combination of three local fields,
#(f), Vo and V_,, hence, taking into account this decomposition in total there are at most 3NN (I)!
contributions of the form L given in (72). We observe that in R 1,,7,)}» for a given partition 7 of I' in the
product X = [[ ., Iy, 1,.0, there is a product of 2|w| < 2|I'| functional derivatives. Notice that we can
combine the functional derivatives present in X as a product over all possible intervals I € 7 and for every
interval I we have N(I) functional derivatives. Hence, we have that > N(I) < 2|T'|, and we conclude that
there exists a suitable constant ¢; such that

M<[[3NON@ < e N[N O
I I

Lemma 5.8. (replacement of Lemma 2.7 of [27]) Consider the product [, 97CT74 (o) present in L in
(72) through w' in (73). It holds that

[[o ¢ (o)

ye™T

< g—c2lT| H co— L d(y.1,,05)

r yeT
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where d(, L, J) = A(7y) + supye., dist(b, 1) + dist(b, J,) and A(y) is the minimal length of a path in R
which starts and ends in vy and which touches all the points of y. K(m) is a positive continuous function of
m which vanishes in the limit m — oo. Furthermore co tends to oo when m — oo too.

Proof. To prove this Lemma we need some further control on C(s) and on 9'C(s). Let us start recalling
the form of C(s) given in (56)

s) = Z Hsi H (1—s;)C"".

rcZiel jeTe
Proceeding as in (52) and (53) we have that
// 7mTWTu HJT duxy w)dT
pele
and thus substituting in (56), considering the combinatoric of a product of binomials we get

S [Is [T -5 // W(T,u) [ 7 (@)duT, (w)dT

I'czZiel’ jere pele

= //e* "EQTW(T, u) H(Sb +(1 - sb)JbT(w))duiy(w)dT.
0

beZ

Now we can take the derivatives with respect to any s; to obtain

asz // FTWT w1 - I w) [ (so+ (1= s0)J7 @))dpT, (w)dT

bEZ b#i

furthermore

and

5) = //e”'? TW(T, w) H(l — J;T(w)) H (sp+ (1 — sb)JE(w))duiy(w)dT_ (76)
0

iel berle

The factors [,.(1—J (w)) force the Wiener integral to be taken over the paths that touches all the bonds
in I'.

In view of the positivity of W (u,T) discussed after (51), we thus have that 0 C(z,y) is controlled by
DrC given (54) and, if T has more than one point the latter is bounded thanks to Proposition 4.2

1 —_m m
0< OFC(JU,y) < CE@ BAD) ,~Tsd@T) — Qd(y,l“)’ T > 1 (77)

where here A(T") is the maximum distance of any two points in T'. If T" is formed by a single element, we
may use Proposition 4.3 to get that
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1 —_m —_m
0<0"Cla,y) <c—e vad@D =D = ) e — b+ b—y| > a (78)

Furthermore, recalling Lemma 4.4 we can derive the following bounds

c
10" C(z, )l < —

mre

which is then used when I" contains a single element b and when |z — b| + |b — y| < a to get that also in this
case the limit m — oo vanishes. The proof is a direct consequence of these estimates, with the observation
that there exists an mg such that for every m > mg 1/mP < e 0. 0O

Lemma 5.9. (replacement of Lemma 10.2 of [29]) Let m € P(T') and r > 0, there exists a constant ¢ such
that

> [Le ot IV < e,

{(I4,Jy)} vE™ I

Where N(I) be the number of I, or Jy in {(I,,Jy)} such that I = L, or I = J,, and where K(m) is the
positive continuous function of m which vanishes in the limit m — oo obtained in Lemma 5.8.

Proof. The proof follows in a similar way as the proof of Lemma 10.2 in [29] with some differences due to
the one dimensional nature of the clustering we are considering here.
We shall prove that there exists a suitable constant, independent on m such that

TIN @Y™ < el T el

I YET

with this estimate, if m is large enough, the sum over various I can be taken thanks to the weights
_ K(m) d(

e 714:73)  We observe that for a fixed I we can control N(I) with the distance of v from I namely

N(I) < Cs, s = sup d(y, Iy, Jy).
{1 Ie{l,,J5}}

Furthermore, since different +s in 7 are non overlapping, the number of vin {vy € 7| € {L,, J,},d(v, I, J,) <
r}, is controlled by r, hence

> d(v,1,,Jy) > CN(I)?
{’Y‘IE{I‘Y’J‘Y}}
hence
[Tvay < [Tw@y~0 < er Xt

I I

< ECEI Y rety . Iy )} d(%[me)ec\Fl

S eclr‘ H €Cd(77I'yaJ'y). O
ye™

We finally prove a combinatoric lemma which is a simplified version of Proposition 8.2 in [29].

Lemma 5.10. Let I' C Z, if m is large enough, there exist two positive constants c1 and co such that

S [[e 80 < e

TeP(I') veET

where the sum is taken over all possible partitions w of T'. Furthermore A(y) = sup,, e~ [T — y|.
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Proof. Fix r € N and let A = {a; € N UO0}; be a finite sequence of natural number such that >, a; = 7.
The number of elements of A is bounded by |T'|. Let us estimate n(A), which is the number of partitions
m € P(T') such that A(y;) = a; where {v;}; = 7 and ~; # ;. Furthermore, ; are labeled in such a way that
the smallest element in ~; is smaller than the smallest element in ;4. Let b; be the smallest element in v,
notice that it coincides with the smallest element of I'. We observe that since A(v;1) = a; every b’ € I such
that b > by 4+ a1 cannot be in ~q, furthermore every b” € (b1, b1 + a;) N T may or may not be in ;. Hence
there are at most 21 ~! possible choices of ;. Let by be the smallest element of o, notice that b, must be
either in I = (by,b; + a;) NT or it must be the smallest element of the complement of I = (by, b1 + a1],
namely in T'\ 1. Hence there are at most a; + 1 possibilities to choose bs. If we continue in this way we get
that the number of possible partitions n(A) is bounded by

n(A) < 9> ai—1 H(1 +a;) < e(1+10g(2)) 32 ai — (1+log(2))r (79)

%

Let np|, be the number of possible sequences {a; € N}; such that ZZ a; = r with a; > 0 and with at most
|| elements. We have that

nyp, < 2271 (80)

Actually, we observe preliminarily that the number of possible sequences {¢; € N \ 0}; such that ). ¢; =r
is bounded by 277!, actually, the first unit in r is for sure in ¢;, suppose that the j—th unit in r is in
¢; for some ¢ then the j + 1—th unit in r may be either in ¢; or in ¢;41, there are only 2 possibilities,
hence the number of possible {¢;}; is 2"~1. Now, let A = {a; € N}, be a finite sequence of positive natural
numbers. We denote by ¢(A) the subsequence obtained extracting the non vanishing elements of A. Fix now
C = {¢; € N\ 0}; be a subsequence of strictly positive natural number such that ) . c¢; = r. We observe
that the number of possible As with at most |I'| elements is bounded by 2/Tl because the i—th element of
A may be either 0 or in (0,00) and there are at most |I'| elements in A. Combining these observations we
get the bound in (80).
With, (79) and (80) we can now estimate

oo
Z H o 2B AM) < ZQ|F\27~—16(1+10g(2))r672L;5

TeP(I') vem r=0

notice that the sum at the right hand side of the previous inequality can be taken if m is large enough. In
this way we get the assertion. O

Lemma 5.11. Let h be the characteristic function of the connected closed set A = [—1, k] C R with |,k € N.
There exists a suitable positive constant ¢ such that

WU (iB))] = | Zep (M) < e (81)
where |A| denotes the volume of the set A which here coincides with k + L.

Proof. Recalling (44) we have that

1 Am
wﬁ(U(iﬁ))zzfnh—n / dU / dXhM(X) ¢ Ticicjcn 0i0g RO, (wi—uj @i —a;)

n a;==+a

®n = Yicicjn @i hCR, (ui—uj,zi—;)
nl hn /dU/dXh ;ae 1<i<j<n MY ! !
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where we used the symmetry property of C2 (KMS condition) to reduce the domain over which the dU
integration is taken. Furthermore, introducing the covariance C? (u,x) which is CP (u,z) = CP (u,z) if
u >0 and C8 (u,z) = CP (—u, z) for negative u, we have that

1 n ~ . .
wB(U(w)):Za;—n / dU / dXhE(X) § e Tasicjn o0 (s i)

n a;==*a

0,5)"
Hence, we may observe that

o 20V}

W’ (U@EB)) = evo(expa@l T)

where the exponential is computed with respect to the product obtained with hC’ff1 and where

V= / du / dx cos(ap(u, x))h(x).
0

We now decompose Vé’ = Vﬁhl + Vﬂh2 in contributions with disjoint supports, which are such that
supp Vﬁhl c D, supp Vﬁhz C D.+(0,1),

where D, = {(u,x) € (0,8) x R |z mod 2 € [0,1/2]U[-1,—1/2]}. Notice that V;z coincides to Vﬁhl up to
a spacelike translation. We now observe that in view of translation invariance of C’ffw we can proceed as in
the prof of Theorem 2.8. Actually, Vﬁhi can be obtained as (the limit of) a sum of a positive functional plus
a constant functional similarly to (33).

Vﬁhi = lim PA” + cfj’.

n—oo

Hence, using the fact that c? is a constant functional, we get

22V 2\
evo (expéa hﬁ> = lim e%cﬁevo (expéﬁb P,’Z) .

n—oo h

Observe that the N—th order in Acontribution to evg (expéfn %P,’}) can be bounded by an application of
Proposition D.1. We get

2 2
evo (P! TR Phy = eVO(Z Phi T Zpéh) < 2Nevq(PM ) P,

i=1 i=1
N N
N

Taking the sum of the power series in A and the limit n — co we get
- 2X 4N
PN = eva (expeg, 2 PE) < v (enpey (2007) ).

Modify now the product ‘s imposing boundary conditions on B = {2Z — %} and denote by Ei the

corresponding covariance. Since B does not intersect D., the points over which Ufn — CP diverges are
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outside of the support of Vﬁhl. Notice that also that the covariance C(u, z) with boundary conditions on B
is smaller than C as can be seen from its definition in terms of the sum over paths similarly to what it is
done in (53). Hence, if we apply inverse conditioning, namely by Proposition C.3, we have that

2 i AV
|WB(U(lﬁ))| < 2evq | expgs | 8e” ?T .

However, we have also that Ui(u7xi,xj) vanishes if |z; — ;| > 1, if we denote by Z the set of connected
components of D,, we have that the expectation values of the product of two elements supported on two
different elements of 7 factorize, hence

.
wWw@ap)l<2  J[ evo (expcfn (86“’5%)) (82)

{X€T|XCA}

where hx is the characteristic function of the set X. We observe that, in view of the periodicity of 6i

— s x

(Ci(u,xl,xg) = Cfn(uwl +2n, 22+ 2n), n € Z, evo(expgs /\Vg ) does not depend on X. Observing that

there are |A|/2 elements {X € Z|X C A} and thus there are |A|/2 equal factors in the product at the right
©hx rhx

hand side of (82) the claim holds if evo(expaan /\Vg ) is finite for every A. To prove that evg (eXpéi AV%)

is finite we use conditioning and inverse condition as in the proof of Theorem 2.6 three times. Actually, we
h - h

AV, . AV, X e =B . .
control evo(expgs —5—) with evo(exp.s —;—) by means of conditioning because cs — Ci is positive

. . . VXL
(as can be seen using the path integral representation). Afterwords, we control evo(expys —7—) with

)\V}LX . L . . . . )\th
evo(expoo —¢—) by means of inverse conditioning because C;? — OB is negative. Finally, evy(exp oo g—)
. AVX .
can be controlled with evo(exp¢, , —4—) for a sufficiently large p where Co ;. (u, z) = A 1og(uzu%””2) by means
. G . L . - AV X
of inverse conditioning because CpY — Cy,, is positive. The obtained contribution evo(exp¢, . £—) can be

shown to be bounded as in Theorem 2.6 or as in the similar analysis performed in the Euclidean case, see
e.g. [26]. O
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Appendix A. Jensen inequality in the functional approach

The result of this section is valid in the commutative *—algebra of regular functionals with finitely many
non vanishing functional derivatives equipped with the pointwise product or a deformation of the pointwise
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product. Under certain hypotheses, as we shall see in the last proposition, Jensen inequality holds also in
the case of local functionals.

Proposition A.1. (Jensen inequality) Consider G € A = (Freg, *) a selfadjoint functional over a smooth field
configuration p € C°(M;R). Let f : R — R a smooth convex function. Let w a state (a positive normalized
linear functional over Freg). It holds that

w(f(G)) = f(w(G)),
where f(G)(p) := f(G(p))-

Proof. Since f is a smooth convex function, for every copy of selfadjoint elements F, G € F.c, and for every
field configuration ¢ it holds that

F(G(@)) = F(F(9)) = f(F(0))(G(e) = F(y)),

this means that f(G)— f(F)— f'(F)- (G —F) is a positive element of F. Hence choosing F' to be a constant
functional equal to w(G), we have

f(G) = f(w(@) = f(w(@)(G - w(@)),

the positivity of the state implies that

w(f(G) = f(w(@) Z w(f(w(@)(G —w(G))),

the state is linear and normalized hence

w(f(@)) = f(w(@)) =20. O

The same proof holds also for more singular functionals and in the case of deformed algebras. To see
this in details we shall here consider the polynomial subalgebra AP C A = (Ficq,-) which is the smallest
subalgebra of 4 which contains the linear fields. Furthermore, let us consider AP which is the algebra
containing the same elements as AP and whose product is -, a deformation of the pointwise product
realized in the following way

P
dp(x) — dp(y)

F-,G=M 6Fw (F ® G), Iy = /d,UJTd,uyw(xa y) (83)

where w € D'(M?) is a symmetric, real, positive distribution (for every f,g € D(M)w(f,g) = w(g, f) =
w(f,q), w(h,h) > 0) of order h. As usual, if w is sufficiently regular, the product -, can be extended to
more singular objects like local observables.

Notice that AP and AP = are *—isomorphic. The isomorphism «,, : AP — AP is realized by

o (F)(p) = e} ] e @) sy (), (84)
and

F G =ayu(ay' (F)-a,t(Q)).

w

The set of microcausal functional F,,. is linear, we equip it with the topology induced by the following
seminorms labeled by ¢, a field configuration, [ € N and f € £(M?),
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||G||<P;l7f = IG(Z)(QOv f)|’ Ge IMC‘

Hence, we say that G,, € F,. converges to G' € F,. if for every [ and for every ¢ € C, Gg)(ap) — GW(p)
in the topology of £&'(M!) and, as usual, we say that D,, converges to D in & (M!) if for every f € £(M')
lim,, 00 Dy (f) = D(f). With these definitions we have that the product -, on A%, is continuous with respect
to the topology of F .

We observe that, every smooth function f : C — C can be promoted to a function on f : A — A
F(F)(p) := f(F(p)), furthermore at the same time, if f is a polynomial function we may obtain a function
fuw + Aw — Ay applying ay,

Jw = Ofoa1_u1~

If f is convex, Jensen inequality holds also in the deformed algebra.

Proposition A.2. (Jensen inequality (deformed algebra)) Let f : R — R be a real convexr function, let
w € D'(M?) be symmetric, real and positive. The following holds

(1) If f is a polynomial function, for every state w on AL, and for every G = G* € AP the following
inequality holds

w(fuw(G)) = f(w(@)), (85)

(2) Suppose that G = G* is a local functional which can be obtained as the limit of Gy, € AY, C Fy.c. Suppose
that w is reqular enough to have G+™ well defined for every n € N. Let A’é)w the polynomial algebra
generated by G together with the identity. If w is a state for A’C’;,w which is obtained as the extension of
a state w (continuous with respect to the topology of Fuc) on AL and if f is a polynomial function (85)
holds.

(3) In the hypothesis of point (2), suppose that the function f can be obtained as the pointwise limit of a
sequence { fn}nen of convex polynomial functions. Suppose that lim,_, o w(fnw(G)) = L € R then (85)
holds with w(f,(G)) = L.

Proof. In the hypothesis of item (1) we have that w o a, is a state on AP and that a,'(Q) is selfadjoint in
AP. By Proposition A.1, we have

W(fuw(G)) = wlow(f(ey, (G))) = f(w(G))

thus concluding the proof of item (1).

To prove item (2) we have by hypothesis that there exists a sequence of elements G,, € AL which converges
to G in the topology of F,,.. Furthermore, we have that w(G,,) and w(f,(G,)) converge respectively to w(G)
and w(fy(G)) for large n in view of the continuity of the state w and because f is a polynomial function.
For every n it holds that by the first part of this proposition

w(fw(Gn)) = f(w(Gn))

hence taking the limit on both sides, also in view of the continuity of f, we get the statement of item (2)
To prove item (3) notice that for every f, equation (85) holds

W(fnw(@) = fr(w(G))-

The claim follows by taking the limit n to infinity on both sides of the inequality. O
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The previous Proposition will be used in the following way.

Remark A.3. Consider V, , = [ %@ g(x)du, with sufficiently small a, ¢ € C and g € C§°(M), we have
that it generates a x—algebra Ay, ., where the product is -, with w(z,y) = — 4 log(|(z — y)?|) + s(z,y)
and where s is a continuous function on M2. The same holds for V, _, and for V.= (V. + V, _4)/2.
Consider now VN, = 37" of (l‘w’ )" 0 (2)dp, where N = [@)d1/n(y — x)dp, and where . is a set
of compactly supported smooth functlons which converge to the Dirac delta function for e — 0. ng\g

polynomial local functionals in A? which converges to V, 4 in the topology of F,.. The evaluation functional
evo(G) = G(0) is a state on Ay, Wthh is continuous with respect to the topology of F,.. Consider the
polynomial functions f,(z) = ?no 7r- Uniformly on every compact set, the function f,, converges to exp for
large n, furthermore, for n > 0 f,, are real positive and convex. If evo(fn,w(Vy,qa)) is a convergent sequence,

considering V = (V; o + V. _4)/2 we are in the hypothesis of item (3) of Proposition A.2 and thus
evg(exp,, (V)) > exp(evo(V))

where evo(exp,, (V')) is understood as the limit for n — oo of evo(fn,w(Vg,a))-

A.1. Jensen inequality C*—algebraic case

Jensen inequality holds also on a (non-commutative) C*-algebra.

Proposition A.4. Let 2 be a C*—algebra, f a differentiable real, convex function and w a state on A, then
for every A= A* €2

w(f(A)) > f(w(A))
where f(A) € A is obtained with the standard functional calculus for C*—algebras.

Proof. Notice that I and A generate a C* —subalgebra B of A, furthermore B is commutative. The element
f(A) is in B. w restricted on B is there a state. Jensen inequality can be proved as in the proof of Propo-
sition A.1, alternatively we obtain the standard Jensen inequality noticing that by Gelfand duality B is
isomorphic to C(c(A)) the C*—algebra of bounded functions on o(A) which is the spectrum of A. By the
Riesz-Markov theorem a state w on C(c(A)) is represented by a probability measure p,,, such that

Applying the known Jensen inequality for probability measures we get the assertion. O
Appendix B. Conditioning

The following result and its proof is the translation to the functional formalism of the Theorem 2.1 (1)
n [26]. See also [31,32].

Proposition B.1. Let w,v € D’(M x M) be two symmetric positive distributions such that w — v is also
positive. Consider f,(x) = l2n0 ”l“, ,and V =V* € Freg N AP. Suppose that the sequences evo(fn,w(V)) =

Frw(V)(0) and evo(frno(V)) = fau(V)(0) converge for large n. If we denote respectively by evo(exp,(V))
and by evg(exp, (V) the resulting limits it holds that
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evo(exp,, (V) > evo(exp,(V)). (86)

If for every n, evo(V'*™) is positive, the convergence of evo(fn,o(V)) to evo(exp,(V)) follows from the
convergence of evo(fn,w(V)).

IfV=V*€ Fioe N FY can be obtained as the limit of polynomial reqular functionals, if evo(fn.w(V)) is
convergent, and evo(V'*™) is positive for every n, (86) holds also in this case.

Proof. To every functional F on C°°(M;R) we can associate a functional F on C? = C°°(M;R) x C=°(M;R)
in the following way

F(p1,92) = F(p1 + ¢2).

Furthermore, using the state evo(F) = F(0,0) on the functionals over C2, we have that

evo(F) = evo(F).

Let us discuss the case where V = V* is a polynomial regular functional.
Notice that

eVO(fn,w(V)) = eVO(awfn(O‘:ulv)) = eVO(O‘vawfvfn(O‘;l—vazjlv))

~ —1 1~
= &vo(ayag,_yfula?,_ya', V)

w—v

= (aba? _, fala®, L0t 7))(0,0)

w—v

where a! and a2, are defined as in (84) where the functional derivatives in o act only on ¢;. For this
reason they commute. For every n, f2n is pos21tive, because in the point x,, where f, takes its minimum
1 (xm) =0and fo(zm) = f1(zm)+ % = % > 0. For every n, f, is also convex, actually f/ = f,_1 and
fn—1 > 0. Hence we may apply Jensen inequality. For a fixed ¢; Jensen inequality given in Proposition A.2

holds with respect of @o, and with respect to a state G2 (EF) = F(g1,0), namely

(@2 fu(@®0 0 7)) (01,0) > fulady, ' V) (01,0) = fulay ' V)(g1)

this implies that

Fp) = (a2 _, fula®, 1,0t 7)) (9,0) — fulay ' V) ()

is a positive element of Fres N .AP. Hence, since evg o o, is a positive state on AP, evaluating F' on evg o a,
we get for every n

eVO(fm’w(V)) Z €Vo (fn,v(v))

The previous inequality holds for every n, both sequences converge, hence the previous inequality holds also
in the limit n — oco. Hence we get

evo(exp,, (V) > evo(exp,(V)).

If evo(V'™) is positive for every n, evo(fn(V)) is actually an absolutely convergent series because
evo(fn,w(V)) converges. This concludes the proof of the first part of the statement. To prove the sec-
ond part of the statement we have now that V' = V* is such that together with -,, generates a x—algebra,
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evo(fn,w(V)) is convergent and V can be obtained as the limit j — oo of polynomial regular functionals
Vj = V;". By the first part of the statement we have that, for every j and every n

eVQ(fn,w(‘/j)) > evy (fn,v (V]))

Taking the limit j — co we get that the previous inequality holds for every n also in the limit

eVO(fn,w (V)) > evy (fn,w(v))'

Since evo(fnw(V)) is in n a convergent sequence, and since evy(V'*™) is positive, we have that the series
defining ev(fn,(V)) is also absolutely convergent and controlled by evg(exp,, (V). Hence, the previous
inequality holds also in the limit n — oo thus getting the assertion. O

In the present paper, we are interested in using the results of the previous Proposition for V, =
[ cos(ap(x))g(z)dp,, this can be done following a discussion similar to the one presented in Remark A.3.

Appendix C. Inverse conditioning

This section is based on [26]. Consider w € D'(M?) which is symmetric and positive (for every f,g €
D(M), w(f®g) =w(g® f) and w(f® f) > 0). We also require that the integral kernel of w is described by
a function on M? (which with a little abuse of notation we denote by w) which makes e~@192%(*:%) ]ocally
integrable for a; € (—a, ). To any symmetric and positive two-point function wy : D(M)? — C analyzed
in the reset of the paper we can associate an unique element w € D’(M?) such that w(f @ g) = wa(f, g).
To better present the result of this appendix it is easier to work with two-point function seen as elements
of D'(M?). The distribution w is then used to construct a symmetric product among regular functionals as
in (5) and suppose that w is sufficiently regular to allow the extension of -, to local functionals. We shall
thus work in A = (F,-,) where A is generated by local functionals. Consider the following functionals

Vi(p) = / 99 () dp, (87)
M

which are elements of 4. We also use the following notation
Vi(e) =V (p).
Notice that

‘/ag1 w Va92 _ /eia1L,O(:L’)+ia2<p(y)670«1azw(m,y)g(z)g(y)d’uxd‘uy.

M?2

We shall consider g > 0, hence we have that

|Vag|2 =V, Vag* — /ei““"(z)*i“”(y)e“Qw(z’y)g(x)g(y)duxd,uy

M?2

Consider the state evy defined by
evo(F) := F(0), VF e A.

We thus have that
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2
evo([VI?) = Vi - VI (0) = /ea w9 g(2)g(y) dpe iy
M2

We shall now prove that evo(|V,2]?) is larger than evy(VY -, V.9). To reach this result we need the following
lemma which involves the set of symmetric distributions

D(M?) ={w e D'(M?) | w(f ®g) =wlg® f),Vf,g € D(M)}.

We call an element of D,(M?) a symmetric two-point function. Notice that I(f ® g) := [ fdu [ gdu is an
element of D,(M?). Furthermore, w € D,(M?) is positive if w(f ® f) > 0 for every f € D.

Lemma C.1. Let N be a positive normalized linear functional on the set of symmetric distributions D%(M?),
namely

N(I) =1, N(w) >0 if w>0.
Then, for every positive w in DL(M?) such that e¥(f ® g) = (e¥, f ® g) is also in D,(M?), it holds that
N(e¥) > N(e™™).

Proof. Consider E()\) = N(e*) for —1 < A < 1. The exponential is a convex smooth function and N is a
positive normalized functional on symmetric distributions D’ (M?), hence by Jensen inequality

N(e)\w) > eAN(w).
This inequality holds for every |A| < 1 hence, since w is positive, it implies that
Nw"™) > Nw)" >0

where w"(f ® g) = (w", f ® g) are well defined because e’ € D(M?). Consider now S(\) = E()\) — E(—=))
and notice that for A > 0

)\2n+1 S )\2n+1 )
— n > n+l _ : > 0.
S(N) 227(2714—1)!]\7(10 ) *227(2714—1)!]\7(“)) 2sinh(AN(w)) >0

n>0 n>0

Hence S(1) > 0 and this implies the claim. 0O
The following proposition holds

Proposition C.2. Consider g > 0, and w a real positive distribution which makes -, well defined on local
functionals. It holds that

evo([VI[?) = evo(Ve -0 Vi)
Proof. Let us start observing that
2
B i= [ D a)g(y)dpadn,
M2

is positive for every A because the integrand is positive. Furthermore F(1) = evo(|V|?) and E(-1) =
evo (V9 -, V9), moreover
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E(\) = [|gl3N (X ™)

where N(A) := [,;2 A(@,y)gn(2)gn(y)dpzdp, and where g,(x) = g(z)/||g|l1. Notice that N is a positive
normalized functional on symmetric distributions in Dy(M?), hence Lemma C.1 implies that

2 7(1211]
E(1) = [lgliN(e™™) > [lg|IN(e™**) = B(-1)
and thus we have proven the claim. 0O

Using the symmetry of w, the fact that w is real and g > 0 we have

evo(VI - VI8 ) = / e 2i< “i“jw(”i’“f)g(xl) oo g(Tn)dptg, - dpg, > 0. (88)
M”L

Suppose now that —a;a; > 0 for a fixed copy of indices 7, ;. Then we may obtain a lower bound for

evo(V® .y, -+ - - V%) changing the sign of —agajw(xg, 1;5) in the argument of the exponential of the right

hand side of (88). If w is regular enough, we have actually that

N(A) := / Az, x5)e” Lici (£ W@t gy g2 )dpg, - - . dpis,
M’IL

gives origin to a positive normalized functional N(A) = N(A)/N(1), hence Lemma C.1 applied to this N
furnishes the desired bound.
Consider
Zn(w,g) == evo((V{ - VI)m)
where the product in the n—th power of Vfr] -w VY is taken with respect to -,,. Notice that Z,, can be
understood as the canonical partition function of a system formed by n positively and n negatively charged
particles, which interacts with the two-body potential w each of which is confined by an external potential

of the form log(g). Lemma 2.1 in [26] implies the following

Proposition C.3. (Inverse Conditioning) Consider wy and wy symmetric positive two-point functions. If
wi(f, f) > walf, f) for any real f such that [,, fdu =0, and if

sup{wy (z,z) —wa(z,2)} < K
it holds that
Zy(wi,g) < " K Z, (w2, g).
Proof. The proof is exactly the same as the proof of Lemma 2.1 in [26]. We need to compute
Zu(wng) = [ dX"aY"g(xX")g(y e Uer (7

where X" = (x1,...,2,), g(X") = H?Zl g(z;) and dX™ = dz;...dz,. Furthermore, in terms of the
two-point function W
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—Uw (X" Y") o= —a® Y (W(wi,z) + Wy ) + 6 Y Wii,y))

1<i<j<n ij=1
Consider

n

S(@) =) a((z — ;) — 6z —y;))

Jj=1

Notice that

U ==y [ty @W S0+ 5 S W ay2) + W)

hence, since 0 < g <1
Zn(w1,9)
- / AX"dY " g(X")g(¥ ™) XY e e (X
- /andyng<Xn)g(yn>e—Uw2(Xn,Yn)e—%fdwdyE(w)(wl—wz)(x,y)E(y)e§ 325 (w1 —w2) (w5,@5)+(w1 —w2)(y5,9;))
< /andyng(Xn)g(yn>e—Uw2(X’ZY")e—%fdxdyE(w)(wl—wz)(:c,y)Z(y)ea% supp(w1—w2)(z,z)
< Z(ws,g)e"™ O
Consider
Zai(w, g) = evo(V) w0+ -, (VE)uln=a)) (89)

notice that Z9 (w,g) = Z,(w,g). Equation (88) implies that Z;Z(w,g) > 0, hence, since the algebraic
product we are considering is commutative and the state w,, is positive, we have the following proposition

Proposition C.4. It holds that
0 < Z3H(w,g) < Zn(w,g) (90)
Proof. By direct inspection,

Z2%(w, g) = /exp — Z w(w;, xj) — Z w(yi, y;)

M2n i<j<n+q i<j<n—q

+ > wny) | [T 9@ TT 9wi)ds,duy,

i<n+gq;j<n—gq i<n+gq j<n—q

hence Z29(w, g) > 0 because g > 0. Furthermore, Z, (w, g) = Z3, (w, g) hence the number of w with positive
signs in the exponential in Z,, is n? which is larger than in Zgg(w, g) where it is n? — ¢?. Hence Lemma C.1
applied ¢? times as in the discussion after (88) implies the claim. O
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Furthermore, we observe that

V1 = cosle)(9) = [ costel@)a(ehds = 5 (v + V) (91)
M
hence, expanding the products and comparing with (89)
L evofoos()a) ) = g 30 Lz (92)
(2n)! 22n = q'(2n —q)! 7"
hence, as also discussed in [26], we have
s o Zal0:9) < eevaleos(9)(0) ) < i Znlg) < i 2. ), (93)

where in the first inequality we used the fact that all the elements in the sum (92) are positive hence we
considered only the element ¢ = n of the sum while in the second inequality, we used (90) and the binomial
formula for (14 1)?". Now, we define

=(w,20) = Y = revo(cos(p)(g) *") = evolexp, (V)
n=0
and
o 2n
Heosh(w, 2g) :== Z Wevo(cos(ga)(g)'“’%) = evg(coshy, (2V7))
n=0 !

where 2 cosh,, (V9) = exp,,(V9) + exp,,(—V9), as well as

> 2n

Z(w, zg) = Z (2!)2 Zn(w, g),

n=0

which correspond to the gran canonical partition function. By direct inspection and using (93), we then
have

2n
= - - z
|Z(w, zg9)| < E(w, |2|g) < 2Zcosn(w, zg) < 22 (2n)' (w,zg) < 22 (w,9) =2Z(w, zg)

and again by (93)

Z(w,zg) = )

ww (cos(p)(g)™ = Ecosh (w, 22g) < 25(w, |22|g).

n(w,g) SZ
n

Let us summarize this discussion in the following theorem

n

Theorem C.5. Let g be a positive function, then it holds
Ecosh(w7 g) < Z(’LU, g) < ECOSh(’wv 29)
and

E(w, g) < 2Zcosh(w, g) < 25(w79)~
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Combining Proposition C.3 with Theorem C.5 we have that

Proposition C.6. (Inverse Conditioning) Consider g > 0 and let wy and wy be two positive, symmetric
two-point functions, such that

wl(f7f) Zwo(fuf)
for every real valued function f. Assume furthermore that
sup{ws (z,z) —wo(z,2)} < K
then

K
2

2
E(w1,g) < 2E(wo, 2¢* 2 g)

or using another notation
W, (€XPy,, (V7)) < 2w, (expy,, (2@“2 5 V)
Appendix D. Cauchy-Schwarz and Holder inequalities
D.1. Cauchy-Schwarz inequality
Notice that expyy (%V) is the exponential computed in the commutative x—algebra

Au, = (FV,-u,).

m

Furthermore, the functional evo(F) := F(0) is a linear normalized positive functional on Ay, . In view of
the positivity of evy we have in A4, that Cauchy-Schwarz inequality holds
levo(A -w B)| < Vl]evo(A* - A)[V/|evo(B* - B)]
hence, with B = 1 we obtain
levo(A)[* < levo(A™ - A)| (94)

and
levo(A + B)[? < evo((A* + B*) -w (A + B))
= eVO(A* ‘w A) + evo(A* ‘w B) + eVo(.B}k ‘w A) + eVO(B* “w B)
< (Vevo(A* - A) + v/evo(B* - B))?

if now B = A, is obtained translating A and in the direction x and if w is invariant under spacetime
translations, we have that |evy(A)|? = |evo(A,)[? and |evo(A - B)|? = |evo(Ay - B.)|? hence

levo(Az + Ay)? < dlevo(A* - A)|

Iterating this procedure we have that

n

levo ()~ Aa) )P < n®levo(A* - A)

J=1
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D.2. Hélder inequality

Let us start considering .4, which is a commutative x—algebra of (not necessarily smooth) functionals
over smooth field configurations constructed with the pointwise product and with the involution defined
by the complex conjugation. Consider also a generic state @ on A.. We say that an element of A € A,
is positive if A = CC* for some C' € A.. If A and B are positive elements of A Holder inequality holds,
namely

H(AB) < &(AP)7&(BY)

for 1/p+1/q=1.

This inequality can be proven for the algebra of functionals proceeding in the following way: Consider
A= Ap/@(Ap) and B := B?/&(BP) where AP(p) = A(g)P. It holds that (A) = 1 = &(B). The functionals
A and B are positive, hence for a generic ¢ we can write A(¢) = e and B(p) = €¥. Since e” is a convex
function we have that

=
Q=

Y 1 1 ~1 ~ ~ -
erta < —e% 4 —¢Y, namely Ar B A+ -B.

%I»—*
Q| =

@ is a positive functional, hence the previous inequality holds evaluating both sides on @. We thus obtain

Q=

B

3 |-

CD(A ) -+ Kl
which is the desired Hélder inequality. For n,l € N with [ < n, Hélder inequality implies that for A; positive
elements of A

Using recursively this relation we have that

o([T4) Hw (A7) (95)
i=1 i=1

Contrary to p and ¢ above n in (95) is an integer, hence the very same inequality (95) holds also for A;
positive elements in A C A, the subalgebra of A, formed by smooth functionals. Furthermore, a similar
inequality holds also in the deformed algebra A,, where w is a symmetric, positive distribution (w(f, f) > 0
for every f € C5°(M)) whose integral Kernel is a smooth function. We recall here that an element A € A,
is positive if A = C -, C* for some C € A,,. The following proposition holds.

Proposition D.1. Let w a state on A, where w is a positive symmetric bidistribution whose integral kernel
is described by a smooth function. Consider A;, i € {1,...,n} positive elements of A,,. Then it holds that

W(Al’w""wAn)SHW(Ai’w""wAi)%~ (96)
i=1
Inequality (96) holds also in (FV,-nm, ), namely, consider now A; = C; -pm, CF positive elements of

(FV, nm,,) then

evo(Ar n,, -+ nm, An) < [ evo(As nm,, - nm,, A7 (97)
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Proof. Let us start considering the isomorphism of algebras a,, : A — A,, given in (84) and observe that
W(A1 v w An) = wlow(ag' (A1) ... ag,' (An))).

Notice that for every state w on A,,, @ := w o ay, is a positive normalized linear functional hence a state on
A, furthermore, B; := a,,'(A;) are positive elements of A, hence we may use (95) to obtain

W(A] - w Ap) < H@(Bziw")%.
i=1

To conclude the proof of the first part of the proposition we use the properties of «,, to observe that the
previous inequality is (96).

To prove the validity of (97), consider a sequence of smooth functions w; which converges to AH,, in
D'(M?) for large j. For every j we have that (FV,-,,) is a subalgebra of A,,, hence, applying (96) we have
that for every j

Vo((Ct w, CF) wy = wy (Con -y C)) < HeVO((Ci - Cr) iy

=1

and the inequality holds also in the limit of large j. However, in the limit j — oo the left hand side converges
evo(As ‘nm,, -+ n,,) while the right hand side converges to [}, evo(A;"™")/". Hence we get (97). O
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