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Abstract

Shanks conjectured that ζ ′(ρ), where ρ ranges over non-trivial zeros of the Riemann
zeta function, is real and positive in the mean. We present a history of this problem
and its proof, including a generalisation to all higher-order derivatives ζ(n)(s), for
which the sign of the mean alternatives between positive for odd n and negative
for even n. Furthermore, we give a simple heuristic that provides the leading term
(including its sign) of the asymptotic formula for the average value of ζ(n)(ρ).

1. Introduction

Shanks’ Conjecture (now a theorem), which dates from 1961, states that

ζ ′(ρ) is real and positive in the mean

as ρ = β+ iγ ranges over non-trivial zeros of the Riemann zeta function ζ(s). More

recently this assertion has been generalised to higher derivatives:

On average, ζ(n)(ρ) is positive if n is odd, but negative if n is even.

The aim of this paper is to show how one can heuristically derive this Generalised

Shanks’ Conjecture, indeed in quantitative form, almost immediately from an ex-

plicit formula known as the Landau–Gonek Theorem.
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The Riemann zeta function ζ(s) has infinitely many non-trivial zeros, which are

numbers ρ = β + iγ with 0 < ρ < 1 that satisfy ζ(ρ) = 0. The locations of these

non-trivial zeros, as we have known for a century and a half (since Riemann), are

intimately connected with the distribution of prime numbers. While impressive

calculations were done by hand over the years (culminating in Titchmarsh and

Comrie’s verification [18] that the first thousand zeros of ζ(s) lie on the critical

line β = 1
2 ), the advent of electronic computers in the middle of the 20th century

provided a significant boost to computations of the non-trivial zeros.

Shanks first made his conjecture [17] when he was reviewing Haselgrove’s tables

[10] of numerical values of the Riemann zeta function. He plotted the graph of

t 7→ ζ( 12 + it) and noticed that the way this curve approaches the origin, mainly

through the third and fourth quadrants, suggests the phase of ζ ′( 12 + iγ) is close

to zero in the mean and thus ζ ′( 12 + iγ) is positive and real in the mean. This

observation stands in contrast to the general behaviour of the function ζ ′( 12 + it),

whose mean value tends quickly to 0. We present a different graph to the one

Shanks created: Figure 1 shows the graph of ζ ′(ρ) for the first 100,000 zeros of ζ(s),

which clearly displays symmetry and a bias towards the positive side of the complex

plane.

Figure 1: Scatterplot of ζ ′(ρ) for the first 100,000 zeros of the zeta function

In 1985, Conrey, Ghosh and Gonek [3] were looking for a straightforward proof

of the fact that there are infinitely many simple zeros of ζ(s). To this end, they

used the Cauchy–Schwarz inequality to write
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where the star on the middle sum denotes counting only the simple zeros. To

complete the proof they used the asymptotic for the discrete second moment on

the right-hand side, which was proved by Gonek [7] in 1984, who showed under the

Riemann Hypothesis that

∑

0<γ≤T

|ζ ′(ρ)|
2
=

T

24π
(log T )4 +O

(

T (log T )3
)

,

and so they only needed to find the leading order behaviour of the sum on the

left-hand side. They finished their proof that there are infinitely many simple zeros

of ζ(s) by showing that

∑

0<γ≤T

ζ ′(ρ) =
T

4π
(log T )2 +O(T log T ), (1)

which proved Shanks’ conjecture as an additional benefit.

This approach shows the number of simple zeros is ≫ T , but was not strong

enough to show that a positive proportion of the non-trivial zeros of ζ(s) are simple

(a fact that goes back to work of Levinson [15]). However, later in 1998 they

were able [4] to prove, by modifying the method to include mollifiers, that at least
19
27 of these non-trivial zeros are simple assuming the Riemann Hypothesis and

the Generalised Lindelöf Hypothesis. In 2013, Bui and Heath-Brown [2] removed

the assumption of the Generalised Lindelöf Hypothesis through careful use of the

generalised Vaughan identity.

Before we describe the generalisation of Shanks’ conjecture to higher derivatives,

it is worth describing the ongoing research progress on the distribution of ζ ′(ρ). In

1994 Fujii [5] found explicit lower order terms for the asymptotic formula, Equa-

tion (1) (he later corrected [6] a slight error in the lowest-order coefficient when

writing a paper where he combined ζ ′(ρ) with the Landau–Gonek Theorem). The

full correct asymptotic is given by

∑

0<γ≤T

ζ ′(ρ) =
T

4π

(

log
T

2π

)2

+(−1+C0)
T

2π
log

T

2π
+(1−C0−C2

0 +3C1)
T

2π
+E(T )

where C0 and C1 are coefficients in the Laurent expansion of ζ(s) about s = 1.

(Unconditional effective bounds for E(T ) are known, and a savings of a power of T

can be shown under the Riemann Hypothesis. The best known unconditional error

term can be found in [11]). In 2021 Kobayashi [13] gave a similar result for Dirichlet

L-functions.

In 2010 Trudgian [20] gave an alternative proof of Shanks’ conjecture, based on

Shanks’ observation of the connection between arg ζ ′(ρ) and the so-called Gram’s

Law. Although care needs to be taken in the definition of the argument (a priori it
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is only defined up to a multiple of 2π), Trudgian was able to show that

∑

0<γ≤T

arg ζ ′(ρ) ≪ε T
ε

for every ε > 0.

We are now ready to explore the generalisation of Shanks’ Conjecture to ζ(n)(s),

the nth derivative of ζ(s), for every positive integer n. This extension, which we

call the Generalised Shanks’ Conjecture, states that ζ(n)(ρ) is real and positive in

the mean if n is even, while ζ(n)(ρ) is real and negative in the mean if n is odd.

Figure 2: Scatterplot of ζ(n)(ρ) for n = 2 and n = 3 for the first 100,000 zeros of
the zeta function

In 2011, using ideas similar to those in Conrey, Ghosh and Gonek’s proof of

Shanks’ original conjecture, Kaptan, Karabulut and Yıldırım [12] found the main

term for the summatory function of ζ(n)(ρ). Specifically, they showed that

∑

0<γ≤T

ζ(n)(ρ) =
(−1)n+1

n+ 1

T

2π
(log T )n+1 +O

(

T (log T )n
)

(2)

which clearly implies the Generalised Shanks’ Conjecture as stated above. They

have also proven a similar result for derivatives of Dirichlet L-functions, with the

same leading-order asymptotic term. (Note that Shanks’ Conjecture was first con-

jectured and later proved, in the usual order of events, but that we still call the

established assertion Shanks’ “Conjecture”. This nomenclature leads to an unusual

situation where the extension is reasonably labeled “Shanks’ Generalised Conjec-

ture” even though its first appearance in the literature was as a proven result!)

In 2022 the first and third author [11] investigated the Generalised Shanks’ Con-

jecture and found all the lower order terms for the asymptotic formula. The result
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can be stated in the form

∑

0<γ≤T

ζ(n)(ρ) =
(−1)n+1

n+ 1

T

2π

(

log
T

2π

)n+1

+
T

2π
Pn

(

log
T

2π

)

+ En(T )

where Pn(x) is a polynomial of degree n described explicitly in [11]; as with Fujii’s

result, unconditional effective bounds for the error term En(T ) are known, and a

power savings in T can be shown under the Riemann Hypothesis. Furthermore, the

third author [16] has also extended Fujii’s combination (mentioned earlier) of ζ ′(s)

and the Landau–Gonek Theorem to all derivatives of ζ(s).

All of the results we have described have complicated proofs, and it is unclear

that any of them provide an intuitive explanation for the alternating signs in the

Generalised Shanks’ Conjecture, or indeed of the positive sign in Shanks’ original

conjecture. We now present a simple heuristic that explains these signs, and indeed

recovers (nonrigorously) the leading-order term in the asymptotic formula given in

Equation (2).

2. Heuristic for the Riemann Zeta Function

We begin with some preliminaries concerning the Riemann zeta function, which for

ℜ(s) > 1 can be written as the convergent Dirichlet series

ζ(s) =

∞
∑

m=1

1

ms
.

Since Dirichlet series converge locally uniformly we may differentiate term by term;

and since the derivative of 1
ms = e−s logm is (− logm)m−s, we see that

ζ(n)(s) = (−1)n
∞
∑

m=1

(logm)n

ms

for ℜ(s) > 1. This formula can be extended beyond the range of absolute conver-

gence in myriad ways. One such extension (see the appendix for a proof) states

that uniformly for σ ≥ σ0 > 0 and t > 2,

ζ(n)(s) = (−1)n
∑

m≤t

(logm)n

ms
+O(t−σ(log t)n). (3)

We state a corollary of the Landau–Gonek Theorem, found in [9], concerning

sums of the form Xρ over the non-trivial zeros of the Riemann zeta function. This

corollary is the main result that the heuristic relies upon. We call this result the

Landau–Gonek Theorem for the sake of brevity in this paper, but note it is given in
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a more general form in the cited papers. It was proved by Landau [14] for fixed X

and made uniform by Gonek [8, 9]. We note that while our quoted result requires

the assumption of the Riemann Hypothesis, the general result does not.

Theorem (Landau–Gonek Theorem). Under the Riemann Hypothesis, for T >

1,m ∈ N with m ≥ 2 and ρ a non-trivial zero of the Riemann zeta function ζ(s),

∑

0<γ≤T

m−ρ = −
T

2π

Λ(m)

m
+O(log(2mT ) log log(3m)),

where Λ(m) is the von Mangoldt function, which therefore only contributes when m

is a prime power.

2.1. The Heuristic

We now state the short heuristic argument which yields the Generalised Shanks’

Conjecture as stated in Section 1. We will mainly ignore error terms so the equal

signs are not ‘true’ equalities but show the general argument. (But see Section 2.2.)

Remark 1. As we were writing this paper, we became aware that the heuristic

presented in this paper can be found in [9] in a different context, where it can be

applied rigorously.

Throughout this section we write ρ = β + iγ for a non-trivial zero of ζ(s).

Using the approximate formula for ζ(s) given in Equation (3) and the Landau–

Gonek Theorem, we may write for n ≥ 1,
∑

0<γ≤T

ζ(n)(ρ) ≈ (−1)n
∑

0<γ≤T

∑

m≤γ

(logm)nm−ρ (4)

= (−1)n
∑

m≤T

(logm)n
∑

m<γ≤T

m−ρ

≈ (−1)n+1 T

2π

∑

m≤T

(logm)nΛ(m)

m
− (−1)n+1 1

2π

∑

m≤T

(logm)nΛ(m)

To finish the heuristic, we need to sum the series in the last line. By Chebyshev’s

Theorem [1],

C(x) =
∑

m≤x

Λ(m)

m
= log x+O(1)

so by partial summation, we have

∑

m≤T

(logm)nΛ(m)

m
= C(T )(log T )n − n

∫ T

1

C(x)(log x)n−1

x
dx

=
1

n+ 1
(log T )n+1 +O

(

(log T )n
)

.
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and similarly
∑

m≤T

(logm)nΛ(m) = O
(

T (log T )n
)

Combining this with our argument above, we have

∑

0<γ≤T

ζ(n)(ρ) = (−1)n+1 T

2π

1

n+ 1
(log T )n+1 +O(T (log T )n),

as T → ∞, which is the leading order the asymptotic result for the Generalised

Shanks’ Conjecture.

Remark 2. Note that this result assumes n ≥ 1. When n = 0 the LHS is trivially

zero, whilst the RHS, as written, is not. This is explained by noticing that for

n ≥ 1 the m = 1 term in the sum in Equation (4) is not present, since log(1)n = 0.

However, if n = 0 this term is present and is not accounted for in the Landau–

Gonek Theorem, which holds for m ≥ 2 only. The m = 1 term in that case clearly

contributes N(T ), which perfectly cancels the − T
2π log T +O(T ) term coming from

the calculation given above.

Remark 3. This argument can be applied mutatis mutandis for Dirichlet L-

functions, yielding exactly the same leading-order behaviour as for the Riemann

zeta function. This result was already known [12, 13].

2.2. The Error Terms

In the previous section in the last part of Equation (4) we ignored the error terms

coming from the Landau–Gonek Theorem. Including them one can see that they

contribute

≪
∑

m≤T

(logm)n log log(3m) log T ≪ T (log T )n+1 log log T

which dominates the main term! However, these are worst-case point-wise estimates

and take no account of any potential cancellation when averaged, so it is likely

that when summed over m the true error is smaller and the main term is correct.

(Indeed that is what is proved, by different methods, in [3, 12] for n = 1 and n ≥ 2

respectively).

The point is that whilst this method must remain a heuristic, it is a much quicker

approach to find the main term in the overage of ζ(n)(ρ) and gives some sense of

why the Generalised Shanks’ Conjecture holds true, that is why the mean of ζ(n)(ρ)

is real and positive / negative.

Remark 4. In [11] the first and third authors prove that the true value of the

mean of ζ(n)(ρ) (that is, the main term and all the lower-order terms up to a power
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saving) is given by
∑

ℓ,m

ℓm≤ T

2π

Λ(m)(logm)n

which shows that the heuristic in the previous section can only yield the main term

since the last line of Equation (4) differs from the true value by O(T (log T )n).
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A. Appendix: Proof of Equation (3)

We sketch the proof for Equation (3), using an adaptation of the method found

in Titchmarsh [19, pages 74–77]. Equation (4.11.2) from that book shows that for

σ > 0 and N ∈ N,

ζ(s) =

N
∑

m=1

1

ms
−

N1−s

1− s
+ s

∫ ∞

N

[u]− u+ 1/2

us+1
du−

1

2
N−s.

If we differentiate this equality n times with respect to s, we get

ζ(n)(s) = (−1)n
N
∑

m=1

(logm)n

ms
−

dn

dsn

[

N1−s

1− s

]

−
1

2
(− logN)nN−s

+ n

∫ ∞

N

([u]− u+ 1/2)(− log u)n−1

us+1
du+ s

∫ ∞

N

([u]− u+ 1/2)(− log u)n

us+1
du.

(5)

When σ > σ0 for a fixed σ0 > 0, the last three terms can be uniformly estimated as

−
1

2
(− logN)nN−s ≪

(logN)n

Nσ0

∫ ∞

N

([u]− u+ 1/2)(− log u)n−1

us+1
du ≪

(logN)n−1

Nσ0

s

∫ ∞

N

([u]− u+ 1/2)(− log u)n

us+1
du ≪ |s|

(logN)n

Nσ0

.
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Moreover, if we define g(m) = (logm)n

mσ and f(m) = − t logm
2π , we may apply [19,

Lemma 4.10] to get

(−1)n
∑

t<m≤N

(logm)n

ms
= (−1)n

∑

t<m≤N

g(m)e2πif(m)

= (−1)n
∫ N

t

g(u)e2πif(u)du+O

(

(log t)n

tσ

)

=

∫ N

t

(− log u)n

us
du+O

(

(log t)n

tσ

)

.

On the other hand,

∫ N

t

(− log u)n

us
du =

dn

dsn

[

N1−s

1− s

]

−
dn

dsn

[

t1−s

1− s

]

(to see this, note that for n = 0 the integral is directly calculable, and for n > 1

simply differentiate both sides with respect to s the appropriate number of times).

If we restrict ourselves to t > 2, we obtain

dn

dsn

[

t1−s

1− s

]

≪
t1−σ(log t)n

|1− σ + it|
≪ t−σ(log t)n

Therefore, plugging all this back into Equation (5), we have shown that when σ > σ0

for a fixed σ0 > 0,

ζ(n)(s) = (−1)n
∑

m≤t

(logm)n

ms
+O

(

|s|
(logN)n

Nσ0

)

+O

(

(log t)n

tσ

)

;

letting N → ∞ completes the derivation of Equation (3).


