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Economic Evaluation

Estimating and Extrapolating Survival Using a State-Transition Modeling
Approach: A Practical Application in Multiple Myeloma

Istvan Majer, PhD, Sonja Kroep, PhD, Rana Maroun, PhD, Claire Williams, PhD, Sven Klijn, MSc, Stephen Palmer, MSc

A B S T R A C T

Objectives: State-transition models (STMs) applied in oncology have given limited considerations to modeling post-
progression survival data. This study presents an application of an STM focusing on methods to evaluate the postprogression
transition and its impact on survival predictions.

Methods: Data from the lenalidomide plus dexamethasone arm of the ASPIRE trial was used to estimate transition rates for an
STM. The model accounted for the competing risk between the progression and preprogression death events and included an
explicit structural link between the time to progression and subsequent death. The modeled transition rates were used to
simulate individual disease trajectories in a discrete event simulation framework, based on which progression-free survival
and overall survival over a 30-year time horizon were estimated. Survival predictions were compared with the observed trial
data, matched external data, and estimates obtained from a more conventional partitioned survival analysis approach.

Results: The rates of progression and preprogression death were modeled using piecewise exponential functions. The rate of
postprogression mortality was modeled using an exponential function accounting for the nonlinear effect of the time to
progression. The STM provided survival estimates that closely fitted the trial data and gave more plausible long-term survival
predictions than the best-fitting Weibull model applied in a partitioned survival analysis.

Conclusions: The fit of the STM suggested that the modeled transition rates accurately captured the underlying disease
process over the modeled time horizon. The considerations of this study may apply to other settings and facilitate a wider use
of STMs in oncology.

Keywords: economic evaluation, extrapolation, multiple myeloma, multistate model, oncology, state-transition model, sur-
vival analysis.
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Introduction

Partitioned survival analysis has become the most commonly

applied decision-modeling approach for economic evaluations in

oncology.1–3 Partitioned survival models (PSMs) are character-

ized by several mutually exclusive health states, such as

progression-free (PF), postprogression, and death, that represent

the progressive nature of the disease. In PSMs, state membership

is determined by a set of survival curves fitted to time-to-event

data routinely reported for clinical trials, for example,

progression-free survival (PFS) and overall survival (OS). PSMs

are intuitively appealing and easy to communicate and generally

provide accurate estimates of OS for the within-trial period.1

Nevertheless, the survival curves that commonly capture some

of the same events are modeled independently and do not

represent mutually exclusive estimates of state membership. In

addition, the lack of structural relationship between progression

and subsequent death can limit the validity of long-term survival

extrapolations if those are based on the within-trial trend of OS

only. Therefore, the use of external evidence has been generally

recommended to support and validate longer-term

extrapolations.4

The most common alternative to the PSM approach is the

state-transition modeling (STM) approach, often applied in the

form of Markov models. STMs describe clinical pathways in terms

of mutually exclusive health states that patients move through

during the course of their disease.5–7 In STMs, the proportion of

patients occupying a health state at a certain time point is

determined by transition probabilities explicitly considering the

relationship between clinical events; therefore, model predictions

are closely linked to biological and clinical processes and are based

on a more direct use of information on prognostic intermediate

endpoints. Although, for the trial follow-up period, STMs and

PSMs are expected to give similar survival estimates because re-

lationships between outcomes are represented within the data,

STMs may provide more plausible extrapolations and improved

transparency and allowmore meaningful sensitivity analyses to be

conducted.1,7
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Partitioned survival analysis has faced considerable scrutiny

over recent years as a result of its lack of theoretical un-

derpinnings in modeling the disease process and consequent is-

sues with extrapolating survival data.8–11 To mitigate the

limitations associated with PSMs and to assess uncertainty in OS

extrapolations in decision models, the National Institute for

Health and Care Excellence (NICE) recommends the use of STMs

alongside PSMs.1 Earlier literature reviews reported that only a

small proportion of NICE technology appraisals in oncology used

STMs, and the NICE Technical Support Document 19 found that

STMs were often poorly implemented.1–3 A recent review of

modeling methods and NICE technology appraisals suggested that

there has been a growing number of empirical studies applying

STM approaches and that applications have become more so-

phisticated.7,12–15 The review also highlighted that earlier appli-

cations of STMs gave limited consideration to modeling

postprogression survival data; nevertheless, if the timing of pro-

gression is related to prognosis, for example, early progressors

have shorter survival than late progressors, then a naïve analysis

of postprogression survival data may bias survival extrapolations.

As a consequence, including a covariate in the postprogression

survival model that describes the prognosis at the time of pro-

gression may improve the accuracy of STM predictions.7

Given the importance of extrapolation methods for clinical and

policy decision making, the objective of our study was to present

an application of an STM using data from a clinical trial in multiple

myeloma focusing on methods to evaluate the postprogression

transition as a function of time to progression and its impact on

postprogression survival and OS. To illustrate the impact of dif-

ferences in structural assumptions, our study also compared sur-

vival outcomes obtained by the STM and the more conventional

PSM approach.

Methods

Data

Individual-level PFS, OS, and baseline characteristics data were

used from the phase 3 ASPIRE randomized controlled trial that

compared carfilzomib in combination with lenalidomide and

dexamethasone (KRd) with lenalidomide and dexamethasone

(Rd) in 792 patients with relapsed multiple myeloma. In ASPIRE,

KRd significantly improved both PFS (hazard ratio [HR] 0.66; 95%

confidence interval [CI] 0.55-0.78) and OS (HR 0.79; 95% CI 0.67-

0.95) versus Rd.16 For the present study, data from the Rd arm of

the trial (n = 396) were used because more PFS and OS events

occurred in the Rd arm. In addition, the purpose of the study was

to present and discuss the considerations associated with

modeling baseline transitions and ultimately to set up an STM.

Incorporating the treatment effect was beyond the scope of this

study.

By the time of the data cut (April 2017), 238 patients (60%)

experienced progression, 34 (9%) died before progression, and 124

(31%) were censored for PFS. Of the 238 patients who experienced

progression, 191 (80.3%) died after progression, whereas 42 of the

124 patients (33.9%) who were censored for PFS died. The median

follow-up for PFS and OS in Rd patients were 48.0 months and 67.1

months, respectively. The median follow-up for postprogression

survival was 54.9 months. Per protocol, disease assessment was

performed on day 1 of each treatment cycle; nevertheless,

assessment could also be done at any time in an unscheduled

fashion. For the PFS analysis, the date of the actual assessment was

considered. Similarly, for the OS analysis, the actual death date

recorded in medical records was considered. Details on baseline

characteristics of patients have been published elsewhere16,17 and

are presented in the Supplemental Materials found at https://doi.

org/10.1016/j.jval.2021.09.011.

Long-term data from a retrospective analysis of the Registry of

Monoclonal Gammopathies (RMG) were used to inform model

selection and validate OS predictions.18 The RMG registry was

founded in 2007 by the Czech Myeloma Group and is intended to

collect real-world clinical data regarding the treatment of patients

in Czech Republic and Slovakia. The analysis included 880 patients

who had received 1 to 3 previous therapies were treated with Rd

and had information on OS. Maximum follow-up in the analysis

cohort was approximately 9 years. A comparison of the ASPIRE

and RMG patient population is provided in the Supplemental

Materials found at https://doi.org/10.1016/j.jval.2021.09.011.

STM Approach

An STM was developed including PF, postprogression (PP), and

death (D) health states using monthly cycles. As in the commonly

applied illness-death structure,1 transitions were allowed from the

PF to the PP state (PF/ PP), from the PF to the D state (PF/ D),

and from the PP to the D state (PP/ D). All patients started the

model in the PF health state, from where they could either prog-

ress or die. Once patients progressed, they could die and transition

from the PP health state to the D health state (see Fig. 1).

By design, the STM accounted for 2 important features. First,

the competing risk between the mutually exclusive progression

and preprogression death events, which could occur to patients in

the PF health state, was explicitly modeled. Because the occur-

rence of one event precludes the occurrence of the other event,

the corresponding transition probabilities are not independent

and cannot be directly estimated from a single transition-specific

hazard alone.19 Second, the STM included an explicit structural

link between progression and subsequent death. As a conse-

quence, the modeled OS was a function of all 3 transitions because

the number of deaths was directly influenced by the mortality risk

of PF and PP patients and by the evolving number of PP patients,

which was affected by the risk of progression.

The STM was implemented in the R statistical software20 and

adopted a continuous-time multistate modeling framework. The

model can also be labeled as a state-arrival extended semi-Markov

model for the following reasons. First, for estimating post-

progression transition rates, the time was measured from entry in

the postprogression state; that is, the clock was reset for each

simulated patient upon entering the postprogression state and so

the model formed a Markov renewal or semi-Markov process.

Second, the postprogression transition hazard depended on the

time of arrival at the postprogression state; that is, estimation of

the hazard included a parameter associated with the time until

progression. The STM, using a discrete event simulation approach,

Figure 1. Model structure.

Progression-
free (PF) state

Post -
progression 

(PP) state

Death (D)
state

PF → PP

PP→ DPF → D
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simulated a large number of individual disease trajectories for

identical patients based on the transition-specific cumulative

hazards and estimated state occupancy probabilities by counting

the number of simulated patients in each state over time. This

approach provided a high level of convenience because, for

example, assessing various functional forms that captured the

impact of the time to progression on postprogression survival and

ultimately on OS was possible with little programming. Although

using a cohort simulation approach for such analyses is possible

and a transparent trace within an economic model is sometimes

explicitly required,21 it may have necessitated the use of a large

number of formulas and a consequent large Excel spreadsheet size

because postprogression survival should have been followed for

each subgroup of newly progressing patients in a cycle. The STM

simulated individual disease trajectories for a large sample of

patients (N = 10 000) using transition hazards for the 3 possible

transitions (ie, from PF to PP, from PF to D, and from PP to D). The

hazard functions specified the rate of progression, preprogression

death, and postprogression death at time t and were denoted by

lPF/PP(t), lPF/D(t), and lPP/D(t), respectively. The hazard for each

transition was determined based on event-history data from the

ASPIRE trial.

Transition hazards were modeled and extrapolated using

standard parametric distributions (ie, Weibull, exponential,

Gompertz, generalized gamma, log-logistic, and lognormal) and

piecewise exponential models. Piecewise models with a

Figure 2. Modeled transition rates. (A) Cumulative rate of progression and preprogression death. (B) Cumulative rate of
postprogression death. Note. AIC values for the different models: Linear, 1559.9; log-linear, 1548.9; linear spline, 1529.9; constant after 5
cycles, 1532.6. Cycle-specific raw mortality rate was estimated by fitting an exponential model to data from patients who progressed
during a given cycle.

AIC indicates Akaike information criterion.
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maximum of 3 cutoff points were explored. The number of cutoff

points applied was based on visual inspection of fitted models to

the cumulative hazards plot and goodness-of-fit statistic using the

Akaike information criterion (AIC). For estimating the hazard of

postprogression death, additional models were explored because

in a Cox proportional hazards model the time to progression was

found to have a statistically significant association with post-

progression survival (HR 0.97, P,.001) indicating that a patient’s

risk of death after progression decreased with 3% after each

additional month spent PF. Although this specific Cox model was

run as a preliminary analysis, it confirmed the presence of a strong

association, indicated evidence against the Markov property, and

suggested that including a covariate describing the time to

progression may improve the accuracy of postprogression survival

and ultimately OS predictions. Therefore, several models were

explored that estimated the hazards of postprogression mortality

as a function of the time to progression. The models postulated

various relationships, describing the impact of time to progression

on postprogression survival with increasing complexity including

linear, log-linear, and different spline functions (ie, linear, cubic,

and quadratic splines). The models were compared to identify the

functional form that provided the best fit to the data considering

the trade-off between the number of parameters and goodness of

fit. Given the complexity of the explored postprogression death

risk models in terms of the included covariate, the parametric

distribution for the baseline hazard model was determined

Figure 3. Modeled PFS and OS with state-transition and partitioned survival model. (A) PFS. Note. For the partitioned survival model, the
generalized gamma model was used. (B) OS. Note. For the partitioned survival model, the Weibull model was used.

OS indicates overall survival; PFS, progression-free survival.
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without the covariate and, supported by goodness of fit, was

preselected to be the exponential function (see Supplemental

Materials found at https://doi.org/10.1016/j.jval.2021.09.011). As a

result, the estimated postprogression mortality rate was constant

for the postprogression lifetime of patients who progressed in a

given cycle but this rate was different across patients who pro-

gressed in different cycles.

To estimate the rate of postprogression death, data from pa-

tients who progressed during the first 3 years of follow-up (224 of

238 patients) were used in the base case analysis because most

patients who progressed late were censored for death at the

trial data cut. In particular, 87% of patients who progressed

during the first 3 years subsequently died whereas for patients

who progressed after 3 years, it was only 14%. Similarly, the

follow-up time for postprogression survival in patients who pro-

gressed before 3 years was considerably longer (median 4.7 years)

than in those who progressed after 3 years (median 2.0 years). As

a result, postprogression mortality was notably lower for patients

who progressed after 3 years, but this was an artifact of the short

follow-up time to observe postprogression death in these patients.

Given that the time until progression was a predictor in the

postprogression mortality model, including these patients would

have distorted the estimated relationship between the time to

progression and postprogression death and ultimately would have

resulted in implausibly high OS estimates. The impact of including

all patients in the postprogression mortality model was explored

in a scenario analysis.

Transition hazard models were fitted to each transition sepa-

rately and were compared based on their goodness of fit using the

AIC and visual assessment. In particular, for lPF/PP(t) and

lPF/D(t), the fitted models were visually compared with the

observed cumulative hazards, whereas for lPP/D(t) the estimated

postprogression mortality rates were visually compared with the

“raw” postprogression mortality rates. The raw rates were ob-

tained by fitting a separate exponential survival model to post-

progression survival data in each subset of patients who

progressed in a given cycle. Hence, these raw rates gave an indi-

cation of the postprogression mortality rate given the time of

progression. This more complex approach for visualizing modeled

versus raw postprogression mortality rates helped greatly to un-

derstand the relationship between time to progression and post-

progression death risk. In addition, selection of transition rate

models was informed and validated by the comparison of survival

predictions with the STM versus long-term OS based on matched

RMG data.

Individual times elapsing until an event occurred (ie, pro-

gression, preprogression death, postprogression death) were

simulated based on the general inversion method using the cu-

mulative hazard functions for each possible transition.22 Then,

based on the simulated time-to-event values, patient-level disease

trajectories were constructed as follows. If for a patient the

simulated time to preprogression death was shorter than the

simulated time to progression (tPF/D , tPF/PP), the patient was

considered to have died before progression. In this case, the life-

time of the simulated patient was equal to the time the patient

spent in the PF state. In contrast, if for a patient the simulated time

to progression was shorter than the time to preprogression death

(tPF/PP # tPF/D), the patient was considered to have experienced

progression. In this case, the simulated postprogression survival

time was added to the simulated time to progression, and the

lifetime of the patient was equal to the sum of the time spent

before and after progression (see Fig. S1 in the Supplemental

Materials found at https://doi.org/10.1016/j.jval.2021.09.011 that

illustrates the approach).

Using the simulated patient trajectories, health state mem-

bership was determined for each month. Subsequently, PFS and

OS were estimated by the proportion of patients in the PF health

state and by the sum of patients in the PF and PP health states,

respectively. Finally, the mean PFS and OS were determined by

calculating the area under the predicted PFS and OS curves over 30

years.23 Confidence intervals (CIs) around the mean estimates

were generated by nonparametric bootstrapping method.24 To

ensure the modeled risk of death is not less than that for the

general population, age- and sex-adjusted US all-cause mortality

was applied.25 All analyses and simulations were performed in R.

Survival analyses (Cox proportional hazards models and para-

metric survival analyses) were performed using the survival and

flexsurv packages,26,27 the ASPIRE trial data were prepared for

estimating transition-specific hazards models by using the mstate

package,28 and the different splines for the postprogression mor-

tality risk models were constructed using the splines package.29

Piecewise exponential hazards models were fitted to data split

into time intervals with an indicator for each period. The R pro-

gram codes are provided in the Supplemental Materials found at

https://doi.org/10.1016/j.jval.2021.09.011.

PSM

PFS and OS were also estimated by the PSM approach. In

particular, PFS and OS were predicted by fitting standard para-

metric and piecewise exponential functions to the individual

patient-level PFS and OS data from the ASPIRE trial and extrapo-

lating over a 30-year time horizon. The PFS and OS models were

selected based on the AIC values, visual assessment of the fitted

models versus the Kaplan-Meier curves, previously accepted OS

models in relapsed/refractory multiple myeloma by health tech-

nology assessment bodies, and clinical plausibility of long-term

extrapolations using external data.

Model Validation

Predictions of the STM and the PSM were compared with

matched long-term OS data derived from a retrospective analysis

of the RMG registry.18 The estimated OS range was 13.7% to 15.4%,

2.9% to 5.7%, and 0.1% to 2.6% at 10, 20, and 30 years, respectively.

Details on the matching procedure and how survival estimates

based on the matched registry data were obtained are provided in

the Supplemental Materials found at https://doi.org/10.1016/j.

jval.2021.09.011.

Results

STM Approach

Several distributions were assessed to model and extrapolate

the rate of progression (lPF/PP(t)) and preprogression death

(lPF/D(t)). Regarding the rate of progression, the piecewise

exponential model with cutoff points at cycle 1, 22, and 45 pro-

vided the best fit (AIC 2107.7) and captured the shape of the cu-

mulative hazard function well. Other functions had considerably

worse fit (eg, Weibull AIC 2143.8) or resulted in overly optimistic

extrapolations of PFS. The generalized gamma function yielded

predictions similar to the piecewise exponential model; never-

theless, it had a worse goodness of fit (AIC 2113.2). Overall, the

piecewise exponential model was selected for the base case

analysis. Regarding the rate of preprogression death, the piecewise

exponential model with a cutoff point at cycle 4 was selected (AIC

437.7). Other functions captured the higher preprogression mor-

tality risk during the first few cycles less accurately. Of the para-

metric functions, the Weibull model had the best fit (AIC 438.8).
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The observed versus modeled cumulative hazards for the 2 tran-

sitions in the base case analysis are presented in Figure 2.

To model the rate of postprogression death (lPP/D(t)), the

exponential model was selected (AIC 1561.8) (see Supplemental

Materials found at https://doi.org/10.1016/j.jval.2021.09.011).

Given that the time to progression was a strong and significant

predictor of postprogression survival, in the next steps, the rate of

postprogression death was modeled with a series of functions that

included a covariate indicating the cycle in which the patients

progressed. The first model assumed a linear relationship between

the cycle of progression and the log-rate of postprogression

mortality. Compared with the first model, the fit was improved

(AIC 1559.9) and the time covariate was highly significant, indi-

cating that patients who progressed in earlier cycles had a higher

risk of postprogression death. To explore possible further im-

provements, instead of a linear relationship between the time to

progression and postprogression death, the log-linear

relationship, spline models of various degrees, and models

assuming constant effect beyond a certain cycle were assessed. Of

these, the linear spline model with knots placed at 12 and 16

cycles had the best fit based on the AIC (AIC 1529.9) and visual

assessment. Hence, this latter model was selected for the base

case analysis. The raw versus predicted mortality rates based on

various postprogression mortality rate models are presented in

Figure 2. The parameters of the different postprogression mor-

tality hazard models are provided in the Supplemental Materials

found at https://doi.org/10.1016/j.jval.2021.09.011.

The STM provided PFS estimates that fitted the PFS Kaplan-

Meier curve remarkably well (see Fig. 3) and yielded plausible

long-term predictions (ie, 7.1%, 1.0%, and 0.0% at 10, 20, and 30

years, respectively). In terms of OS, the base case STM seemed to

have a very good fit to the Kaplan-Meier curve (see Fig. 3) and

provided OS rates of 12.5%, 2.6%, and 0.3% at 10, 20, and 30 years,

respectively. These were generally below the OS rates indicated by

Table 1. Comparison of overall survival estimated by state-transition models and partitioned survival models.

Model type Model OS, year 1 (%) OS, year 2 (%) OS, year 3 (%) OS, year 4 (%)

Observed data Kaplan-Meier estimate
(ASPIRE)

82.8 (79.1-86.7) 65.0 (60.4-70.0) 54.2 (49.4-59.5) 41.6 (36.9-46.9)

State-transition model Base case model 83.3 (80.8-86.6) 67.1 (63.5-71.6) 53.3 (48.8-57.8) 41.9 (37.3-46.8)

PP MR constant after 5
cycles

84.1 (82.0-86.9) 67.5 (64.6-71.6) 53.5 (49.4-58.2) 42.2 (37.4-47.0)

PP MR constant after 5
cycles, including all
patients*

84.7 (82.2-87.4) 68.7 (65.3-72.9) 55.1 (50.7-60.1) 43.6 (38.9-49.1)

PP MR has log-linear
relationship with TTP

84.3 (81.9-87.6) 66.6 (63.4-71.4) 52.6 (49.1-58.0) 42.8 (38.4-47.6)

PP MR has linear
relationship with TTP

86.1 (83.7-89.1) 67.9 (63.9-73.1) 53.1 (48.4-58.5) 42.3 (37.3-47.0)

PP MR independent from
TTP

86.9 (85.0-89.6) 69.3 (65.4-73.9) 53.6 (48.7-59.0) 40.7 (36.0-46.6)

PP MR independent from
TTP (generalized gamma
function)

87.1 (84.5-89.7) 69.2 (64.3-72.9) 53.1 (48.1-57.9) 41.1 (36.1-46.4)

PP MR independent from
TTP (Gompertz function)

86.7 (84.4-89.4) 68.2 (64.3-73.2) 53.4 (48.4-58.3) 41.3 (36.1-46.4)

PP MR independent from
TTP (Weibull function)

87.1 (85.0-89.9) 69.0 (65.7-73.6) 52.9 (49.3-58.6) 41.3 (36.7-46.3)

Progression rate modeled
with generalized gamma
function

83.4 (80.6-87.0) 67.4 (63.8-72.2) 53.5 (49.1-58.6) 42.2 (37.7-47.5)

Preprogression MR
modeled with Weibull
function

83.2 (80.5-86.6) 66.9 (63.4-71.2) 53.2 (49.1-57.7) 41.9 (37.6-46.6)

Partitioned survival model Weibull OS (base case) 83.2 (80.0-86.4) 67.2 (63.4-71.1) 53.4 (49.4-57.7) 42.1 (37.8-46.6)

Generalized gamma OS 83.1 (79.8-86.3) 66.7 (62.5-70.9) 53.0 (48.4-57.5) 41.9 (37.4-46.4)

Piecewise exponential OS 81.7 (79.2-84.2) 66.7 (62.8- 70.9) 54.5 (49.7-59.7) 42.5 (38.2-47.1)

Note. Values in parentheses indicate the 95% confidence intervals. In the base case state-transition model, the rates of progression and preprogression death were
modeled using piecewise exponential functions, whereas the rate of postprogression mortality was modeled using an exponential function accounting for the nonlinear
impact of time to progression with splines.
LE, life expectancy; MR, mortality rate; OS, overall survival; PP, postprogression; TTP, time to progression.
*Including all progressed patients in the postprogression mortality model. Progression time was made equal to 3 years if the true progression time was larger than 3
years.
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the matched RMG data (21.2% point, 20.3% point, and 0.2% point

at 10, 20, and 30 years, respectively) and were considered clini-

cally plausible. The predicted life expectancy with the base case

model was 4.9 years (95% CI 4.2-6.4).

Other STMs had worse fit to the Kaplan-Meier OS curve and

provided higher survival estimates at 20 and 30 years. When the

impact of the time to progression was excluded from the post-

progression mortality rate model, OS predictions had a consider-

ably worse fit to the Kaplan-Meier curve particularly during the

first years. This was also true when alternative parametric models

(generalized gamma, Gompertz, Weibull) without the covariate

for time to progression were explored, supporting the finding that

adding the event history was key to achieving a better fit to OS

(see Supplemental Materials found at https://doi.org/10.1016/j.

jval.2021.09.011). Although to a lesser extent, OS was still over-

estimated with postprogression death rate models that captured

the impact of the time to progression in a linear or log-linear

fashion. The life expectancy estimated with these models was

5.6 (95% CI 4.6-6.9) and 5.3 (95% CI 4.6-6.2) years, respectively.

Other scenarios (ie, assuming constant postprogression death risk

beyond 5 cycles, generalized gamma model for the rate of pro-

gression, Weibull model for the rate of preprogression death) had

a smaller impact on the results although these yielded worse fit to

the OS data. The results for the different STMs in terms of the

predicted OS rate at different years and the estimated life expec-

tancy are detailed in Table 1.

PSM

Of the survival models fitted directly to the PFS data, the

generalized gamma function provided the most plausible long-

term PFS estimates (6.3%, 1.8%, and 0.1% at 10, 20, and 30

years, respectively) and had the third-lowest AIC value.

Although the log-logistic and lognormal models had somewhat

better fit to the data, these models predicted implausibly high

long-term PFS rates and so were discarded. Among the standard

survival regression models directly fitted to the OS data, the

Weibull was considered to be the most suitable model because

it had the lowest AIC value and it was accepted in recent health

technology appraisals by the NICE.30,31 The Weibull model

provided lower long-term OS rates than the STM and the

matched RMG data (9.0%, 0.5%, and 0.0% at 10, 20, and 30 years,

respectively) and an estimated life expectancy of 4.4 years (95%

CI 3.9-4.9).

Table 1. Continued

OS, year 5 (%) OS, year 6 (%) OS, year 7 (%) OS, year 10 (%) OS, year 20 (%) OS, year 30 (%) LE (years)

32.3 (27.8-37.4) 26.8 (22.3-32.2) - - - - -

33.2 (28.6-38.6) 27.0 (21.9-32.5) 22.1 (16.7-28.0) 12.5 (6.7-19.8) 2.6 (0.3-9.1) 0.3 (0.0-1.7) 4.9 (4.2-6.4)

33.6 (28.6-38.2) 26.8 (22.0-31.1) 21.8 (17.0-26.0) 11.5 (7.7-15.9) 1.7 (0.4-4.5) 0.1 (0.0-0.7) 4.8 (4.1-5.5)

34.8 (30.0-40.3) 27.9 (23.2-33.5) 22.6 (18.0-28.0) 12.2 (8.3-17.2) 1.6 (0.4-4.9) 0.1 (0.0-0.8) 4.9 (4.3-5.8)

35.2 (30.3-39.9) 29.1 (24.4-33.7) 24.3 (19.7-28.9) 15.1 (10.9-19.4) 3.6 (1.4-6.9) 0.5 (0.1-1.2) 5.3 (4.6-6.2)

34.4 (29.2-39.0) 28.2 (23.4-33.3) 23.8 (18.9-29.2) 15.4 (10.2-21.6) 6.0 (1.5-11.1) 1.1 (0.1-2.1) 5.6 (4.6-6.9)

31.8 (26.9-37.3) 25.2 (20.4-30.3) 20.0 (15.4-24.9) 10.9 (6.6-15.7) 1.5 (0.3-5.1) 0.1 (0.0-0.9) 4.7 (4.0-5.6)

32.2 (27.4-37.7) 26.0 (21.1-31.2) 21.0 (16.1-26.4) 11.7 (7.5-16.9) 1.6 (0.5-4.8) 0.1 (0.0-0.7) 4.8 (4.1-5.7)

32.1 (27.7-37.6) 25.7 (21.2-31.3) 20.5 (16.4-26.3) 10.7 (7.5-17.5) 1.6 (0.5-6.2) 0.1 (0.0-1.0) 4.7 (4.2-5.9)

32.4 (27.5-37.3) 26.3 (20.8-30.4) 21.4 (15.8-25.3) 11.6 (7.0-15.7) 1.9 (0.3-4.6) 0.1 (0.0-0.7) 4.8 (4.1-5.6)

33.3 (28.6-38.8) 26.7 (21.4-32.6) 21.7 (16.1-28.0) 12.1 (7.3-19.5) 3.1 (1.1-9.0) 0.5 (0.1-1.7) 5.0 (4.2-6.4)

33.4 (28.8-38.4) 27.4 (22.3-32.6) 22.6 (17.0-28.2) 13.1 (7.4-20.3) 3.0 (0.5-10.2) 0.4 (0.0-1.9) 5.0 (4.2-6.6)

33.0 (28.5-37.5) 25.7 (21.2-30.2) 19.9 (15.6-24.2) 9.0 (5.8-12.6) 0.5 (0.1-1.4) 0.0 (0.0-0.2) 4.4 (3.9-4.9)

33.1 (28.6-37.6) 26.1 (21.4-30.6) 20.5 (15.7-25.3) 10.0 (5.3-15.0) 0.9 (0.0-3.7) 4.5 (4.0-5.3) 4.5 (4.0-5.3)

33.2 (28.9-37.8) 26.0 (21.8-30.6) 20.3 (16.2-25.1) 9.7 (6.7-13.7) 0.8 (0.3-1.9) 0.1 (0.0-0.3) 4.5 (4.0-5.1)
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Discussion

This study presented an application of an STM using data from

the control arm of the ASPIRE trial in relapsed multiple myeloma.

The analysis focused on the modeling and extrapolation of tran-

sition hazards and assessed various functions to accurately cap-

ture the relationship between the time of progression and

postprogression mortality. Transition rates from the PF health

state were estimated with piecewise exponential functions

whereas the transition rate from the PP health state was modeled

with an exponential function accounting for the impact of time to

progression. The modeled transition rates were used to simulate

individual disease trajectories in a discrete event simulation

framework based on which PFS and OS were derived.

The STM predicted the observed trial data remarkably well. In

particular, the modeled survival had excellent fit to the Kaplan-

Meier curve, to longer-term trial OS data, and to matched

external data, indicating that the modeled transition rates

appropriately captured the underlying disease process. The mean

OS predicted by the STM was 4.9 years, which was approximately

half year longer than that estimated by the best-fitting Weibull

model applied directly to the OS data in a PSM. Scenario analyses

suggested that predictions of the mean OS were robust (range 4.8-

5.6 years) although the estimated survival had worse fit to the

Kaplan-Meier curve when alternative postprogression survival

modeling assumptions were used.

Our study found that piecewise exponential models approxi-

mated the shape of the progression and preprogression death rate

profile most closely. This is consistent with a previous analysis

that fitted a 3-state multistate model to Rd data from the pooled

MM-009/010 trials in multiple myeloma.32 The analysis found that

piecewise models with cutoff points determined at 6 months and

2 years estimated PFS and OS reasonably well and provided clin-

ically plausible survival extrapolations. Regarding the association

between the time to progression and postprogression survival in

our study, a linear spline model fitted the data best. The spline

model suggested that patients who experience progression later

have longer postprogression survival. This positive correlation is

supported by previous clinical studies and to some extent

explained by the heterogeneity of the patient populations

observed (eg, cytogenetic abnormalities) and not observed

(response to treatment) at baseline.33–36 In ASPIRE, early relapse

was primarily associated with worse stage of disease, worse per-

formance status, and refractoriness to the last previous line of

therapy. An overview of patient characteristics in ASPIRE by the

time of relapse is presented in the Supplemental Materials found

at https://doi.org/10.1016/j.jval.2021.09.011.

Several published studies have compared survival estimates

obtained by STMs and PSMs suggesting that these 2 approaches

can give considerably different survival predictions.12–14,37–39

Although STMs were considered to outperform PSMs,7 they

often had implementation challenges. In addition, the risk of

progression was sometimes derived directly from time to pro-

gression data,14,40 even though in the presence of competing

events the hazard of progression itself does not determine the risk

of progression.19 Such an approach may provide biased number of

progressing patients and predictions for OS. The relationship be-

tween time to progression and postprogression survival has been

rarely explored. We are aware of one study where survival pre-

dictions were done by stratifying patients into groups based on

time to progression.14 The current study represents an improve-

ment compared with previous applications in this respect because

several postprogression mortality models were explored to accu-

rately capture the relationship between time to progression and

postprogression survival and ultimately to improve the within-

trial fit to the observed data and extrapolations. Recently, Wil-

liams15,39 published a series of tutorials on the use of STM for cost-

effectiveness analysis in oncology and encouraged the adoption of

the multistate modeling approach. Similarly to the present study,

the authors proposed the use of a simulation approach when the

underlying structural assumptions are complex.

Our study has relevance for economic evaluations in oncology

because cost-effectiveness analyses typically require clinical end-

points to be extrapolated beyond the observed trial data. Because

the method chosen for the extrapolation is often a key driver of

the estimated cost-effectiveness, progress in survival modeling

methods have received increased attention.4,11,15,41 For the present

study, by explicitly modeling the underlying transitions between

health states, understanding the causal relationship between

progression and postprogression death was achieved by assessing

several functional forms. This in turn provided more plausible

survival predictions and allowed more meaningful scenario ana-

lyses to be performed than the PSM. Although assessing the

treatment effect on the transitions was not in the scope of this

study, it should be noted that estimating the postprogression

hazards for the KRd arm of the ASPIRE trial may be limited by

insufficient and immature data. In such a situation, the modeled

relationship between progression and subsequent death should be

subject to careful consideration including a comparison of patient

characteristics at progression and subsequent treatments across

the treatment arms and whether the treatment itself affects

postprogression survival.

The findings of this study may be also relevant for situations

when adjustment for treatment switching or reflecting local

treatment patterns is required. With the increasing availability of

novel treatments in multiple myeloma, patients in clinical trials

may go through different treatment pathways depending on the

study drug they receive.42 As a consequence, postprogression

treatments may be imbalanced, which in turn can confound OS

results. In addition, treatments that clinical trial patients receive

over the course of the disease may differ from the treatments

available in a given country. In these situations, estimating post-

progression survival with models that include covariates indi-

cating specific postprogression therapies may provide helpful

insights.

There are several limitations associated with the use of STMs in

oncology that are applicable to our study. First, analysis of post-

progression data may be subject to informative censoring;

therefore, the estimated relationship between time to progression

and postprogression survival may be biased and the trend

observed in the trial period for postprogression death may

misinform the extrapolation period. Given the relatively long

follow-up in ASPIRE and the high number of patients with docu-

mented progression event, such risk was deemed to be small for

the current study. Second, it has been recognized that achieving a

satisfactory fit to the observed survival is often challenging

because OS is determined by the combined effect of all modeled

transitions. Although, in the present study, the observed and

estimated survival were remarkably aligned, it required a post-

progression survival model with a nonlinear covariate to be set up.

Estimating a complex relationship for the postprogression survival

may be particularly challenging because the model should capture

the changing relationship between the time to progression and

postprogression survival and the potential change in the shape of

the postprogression survival itself. For the current study, the shape

of postprogression survival was assumed to remain the same,

which allowed focusing on a simpler problem and facilitated vi-

sual comparison of the raw and modeled mortality rates. Further
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research may explore the use of alternative methods, such as

those applied for population mortality forecasts,43 that model

changes in both the scale and the shape of mortality profiles over

time. Finally, it has been recognized that relying solely on AIC or

other goodness-of-fit measures to select transition hazard models

may have limited validity in the presence of competing risks.39 For

the present study, goodness of fit to the observed data was

considered together with both a visual assessment of the fitted

and extrapolated outcomes and the validity of predictions

compared with external registry data. Nevertheless, in general,

better fit to the data does not necessarily translate to better pre-

dictive outcomes in extrapolation.

Conclusions

STMs applied in oncology have given limited consideration to

modeling postprogression survival data. This study presented an

STM applied to data in multiple myeloma and assessed various

models to capture the relationship between time to progression

and subsequent death. Early relapse has been established as a risk

factor for survival in other hematologic malignancies and solid

tumors14,44; therefore, the considerations of this study may apply

to other settings, facilitate a wider use of STMs in oncology, and

ultimately improve clinical and policy decision making.

Supplemental Materials

Supplementary data associated with this article can be found in the

online version at https://doi.org/10.1016/j.jval.2021.09.011.
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