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Abstract

Object and scene perception are intertwined. When objects are expected to appear within a
particular scene, they are detected and categorised with greater speed and accuracy. This
study examined whether such context effects also moderate the perception of social objects
such as faces. Female and male faces were embedded in scenes with a stereotypical
female or male context. Semantic congruency of these scene contexts influenced the cate-
gorisation of faces (Experiment 1). These effects were bi-directional, such that face sex also
affected scene categorisation (Experiment 2), suggesting concurrent automatic processing
of both levels. In contrast, the more elementary task of face detection was not affected by
semantic scene congruency (Experiment 3), even when scenes were previewed prior to
face presentation (Experiment 4). This pattern of results indicates that semantic scene con-
text can affect categorisation of faces. However, the earlier perceptual stage of detection
appears to be encapsulated from the cognitive processes that give rise to this contextual
interference.

Introduction

Visual scenes contain statistical regularities such as co-occurring objects and common spatial
configurations. Consequently, when objects are expected to appear within a particular scene
(e.g., toasters appear in kitchens), they can be detected and categorised with greater speed and
accuracy compared to when they are unexpected [1-6]. Object perception is therefore proac-
tive, as the visual system is continually generating predictions about the objects it is likely to
encounter, based on the surrounding context [7-10]. These processes are also fast. The con-
ceptual gist of a scene context-that is, its global structural and semantic properties—can be
extracted from brief presentations (e.g., 20ms) [11-15] and object likelihood predictions may
be generated in as little as 80 milliseconds [4].

While scene gist information can influence the rapid processing of objects in general [16],
there is also evidence that predictions about social objects, such as faces, can be generated from
the visual context to influence perception. Impressions of faces, such as judgements about
their emotions, traits and social categories can be biased by contextual information from the
scene background [17-21]. For example, observers’ judgements of face ethnicity (e.g., White
or Asian) are systematically biased toward the cultural context of the scene (e.g., stereotypically
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American or Chinese settings) [18,19]. This finding demonstrates that some face processing
tasks can be influenced by the semantic consistency with the scene background. However,
faces were always presented as salient, centrally-presented objects in those experiments. It is
not clear whether these effects would extend to the categorisation of faces in peripheral vision
[22,23].

One task that requires the perception of faces in the visual periphery is detection. Detection
is an important process: before a face can be categorized on any dimension, its presence in the
visual field must first be determined. It is also a rapid perceptual process [24-26] that is based
on general visual properties of faces such as colour and shape [27-33]. For example, when
veridical skin colour information is removed from faces or they are rendered in unnatural col-
our tones [27,31], or the aspect ratio is distorted [29], detection performance suffers.

Such findings suggest that face detection might operate via a template that codes low-level
visual information. This might be subserved by a specialized processing channel that facilitates
face detection through the activation of hard-wired integration fields that interact with atten-
tion [34]. However, recent work indicates that this process is also modulated by differences
between social categories [27]. In that study, observers were asked to detect faces that varied
systematically by ethnicity. Differences in observer’s detection templates, tuned through per-
ceptual experience with faces of different ethnicities, led to ingroup biases in detection perfor-
mance. If detection templates can be tuned to such stable aspects of our environment, then the
question arises as to whether they can also be updated flexibly to reflect expectations about
social categories generated from the scene context. The alternative is that performance on face
detection tasks is unaffected by scene context. This alternative is plausible. Face detection
appears to be fundamentally different to tasks that require face categorisation [22], and the
speed and accuracy with which faces can be detected [24-26] may encapsulate this process
from concurrent contextual information, such as scene gist.

To investigate this question, the current experiments explored whether scene-object seman-
tic congruency can influence the rapid and more elementary task of face detection. We first
investigated whether the categorisation of faces (Experiment 1) and scenes (Experiment 2) can
be influenced by face-scene semantic congruency. We then explored whether semantic con-
gruency effects extend to the more basic level of face detection (Experiments 3 and 4). Specifi-
cally, we measured participants’ performance for stimuli in which female and male faces
appeared within stereotypically female and male scenes (i.e., clothing shops). Faces appeared
without body cues [35], and were distributed systematically across image regions to control for
location effects [36]. The semantic scene context was therefore not informative as to where the
face appeared, but only as to which category of face it is—that is, female or male. Although previ-
ous work has found that scene context can influence categorisation of centrally-presented
faces [18,19] and other objects [4], it was unclear whether contextual influences would extend
to faces in the visual periphery.

Experiment 1

In this first experiment, we sought to replicate previous findings that have shown face categori-
sation to be sensitive to semantic scene context [18,19]. To this end, we systematically manipu-
lated stereotypical female-male congruency of faces and scenes, and measured its effect on face
sex categorisation. If semantic congruency matters for face categorisation, then this should be
evident in greater response speed and accuracy on congruent trials (i.e., same sex for face and
scene) relative to incongruent trials (i.e., different sex for face and scene). By doing this, we
planned to extend prior work in two important ways. Firstly, the faces in this experiment were
comparatively small, and presented in the visual periphery (see Fig 1)-rather than the large,
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Fig 1. Examples of stimuli used in Experiment 1. Each of the four face-scene congruency combinations are represented: Male face in a male scene (top
left); female face in a female scene (top right); male face in a female scene (bottom left); female face in a male scene (bottom right).

https:/doi.org/10.1371/journal.pone.0304288.g001

centrally-presented images used in previous categorisation experiments. This methodological
change served to clarify whether scene congruency effects generalise to different viewing con-
ditions. Secondly, Freeman and colleagues [18,19] investigated the effect of scene context on
the categorisation of faces by ethnicity, and thus the current experiment sought to extend these
findings to the categorisation of faces by sex.

Methods

Participants. A power analysis was conducted with G*Power (Version 3.1) based on a
two-tailed repeated-measures t-test with a medium effect size of .5, power of .95, and an alpha
threshold of p = .05. A medium effect size was chosen for this calculation to reduce the likeli-
hood of Type 2 errors from small samples associated with large effect-size predictions. This
suggested a minimum sample size of 54 participants. We rounded this estimate to 60 and
adopted this as the sample size for all experiments in this study. For Experiment 1, our sample
of 60 participants (30 females; Age M = 35.98, SD = 8.18) was recruited online using Prolific
(www.prolific.co). Aside from demographics, information relating to participant identity was
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not recorded, and participants were differentiated using an anonymous code provided by Pro-
lific. Recruitment for this study began in December 2021, following ethics approval from the
School of Psychology’s Ethics Committee at the University of Kent. All participants were pre-
screened to ensure all were in the age range 18-60, were fluent in reading English, and self-
reported normal or corrected-to-normal vision. Additionally, participants were screened
according to their self-reported ethnicity, ensuring all participants identified as White, given
previously-reported evidence that ethnicity can bias detection performance [27]. To monitor
data quality, we included eight catch trials to measure participants’ attention, consisting of
inverted face-absent scenes that required participants to press ‘Spacebar’. Consequently, five
additional participants were excluded: two for failing to reach the 75% threshold on catch tri-
als, and three for incorrect screen calibration.

Stimuli. To investigate whether face-scene semantic congruency influences categorisation
performance, participants were presented with 160 scene images, all of which contained a face.
Half of all faces and scenes were female, and half of all faces and scenes were male. Face-scene
combinations included two congruent pairings (female face in a female scene; male face in a
male scene), and two incongruent pairings (female face in a male scene; male face in a female
scene), with 40 trials each (see Fig 1 for examples).

One hundred and sixty front-facing face images were selected from an existing image set
[27], originally sourced from an online face generator (https://thispersondoesnotexist.com).
The sex, race and age assignments for this face set were validated by 90 independent observers
[27]. For this experiment, we selected faces that were perceived to have the same approximate
age (‘young, i.e., 18-30 years old) and the same race (White), but that differed according to
their perceived sex (80 female, 80 male).

Scenes images were comprised of 20 female and 20 male clothing shops sourced from
online image repositories (e.g., Unsplash.com, Pexels.com) that provide freely usable images
(CCO license). To validate the female and male assignments of these scenes, we asked 30 inde-
pendent observers (15 females) to rate each scene as either ‘female’, ‘male’, or ‘no gender’. We
found high concordance between observers’ classifications and our category assignments for
both female (M = 95.61% ‘female’, SD = 3.43%) and male scenes (M = 95.97% ‘male’,

SD = 4.27%). To create the 160 experimental trials, each scene was repeated four times: twice
with a female face, and twice with a male face.

Faces (143 x 214 pixels) were edited to remove the image background and embedded in
scenes (2500 x 1500 pixels). The locations of the faces were determined by a 2 x 2 grid dividing
the scene into quarters (1250 x 750 pixels each). For each face-scene category combination,
there were an equal number of faces appearing in each of the four regions. Within each region,
the precise location of the face was selected at random-aside from defining a 100-pixel border
where faces did not appear, preventing placement too near the centre or edge of the scene.
Across two counterbalanced versions, each scene was displayed eight times, with one female
and one male face appearing in identical locations within each scene region.

Procedure. The experiment was conducted online. As stimuli were displayed on partici-
pants’ personal computers, we included a screen calibration procedure to ensure that they
would be presented at a standard size, by asking participants to adjust an onscreen image to
the dimensions of a credit card. Following calibration, scene stimuli were displayed at
21 x 15.75 cm for all participants (visual angle of 19.85° x 14.96°, assuming a 60 cm viewing
distance). Faces in scenes were displayed at 1.5 x 2.25 cm (1.43° x 2.2°). Participants were
instructed to respond as quickly and as accurately as possible by pressing either ‘F’ or ‘M’,
depending on whether they judged the face to be female or male, respectively. Eight attention
check trials consisted of inverted scenes and were presented at pseudo-random intervals.
When participants encountered an inverted scene, they were instructed to press ‘Spacebar’.
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Experimental trials were presented in a fully randomised order, with a 1000ms pause between
each trial. Participants were also offered the option of a break after 80 trials.

Results and discussion

The data for this experiment, and all subsequent experiments, can be accessed at https://osf.io/
uzcsj/. In all experiments reported here, to gauge whether faces in semantically congruent
scenes were categorised more easily than those in semantically incongruent scenes, we
recorded the proportion of correctly classified trials as an indication of categorisation accu-
racy, and median response times (RTs) for correct trials as an indicator of categorisation
speed. To summarise the effects of scene context on categorisation performance within a single
metric, we also analysed Inverse Efficiency Scores (IES), which are computed by dividing RTs
by the proportion of correct responses [37].

We conducted a series of paired t-tests and found clear differences in categorisation perfor-
mance (see Fig 2). Accuracy scores did not differ between conditions (M., = 98.73%, M, =
98.42%), t(59) = 1.41, p = .164, d = .18, but participants showed faster (RTs: M,,,, = 893ms,
M, =917ms), H(59) = 4.54, p < .001, d = .17, and generally more efficient face categorisation
(IES: M,,,, = 905ms, M;,,. = 931ms), #(59) = 4.55, p < .001, d = .19, when faces and scenes were
congruent.

These data were also analysed by participant sex (female versus male) with a series of
mixed-factor 2 (participant sex) x 2 (congruency) ANOV As for accuracy, response times and
Inverse Efficiency Scores. This did not reveal interactions of participant sex and congruency
for accuracy, F(1,58) = 1.07, p = .305, response times, F(1,58) = 1.81, p = .184, and Inverse Effi-
ciency Scores, F(1,58) = 2.61, p = .111. Similar results were obtained for all experiments
reported here, indicating that participant sex is not an important moderator of these effects.
This exploratory analysis can be accessed in full in the supplementary materials (S1 File).

To investigate the stability of the by-subjects results, we also conducted item-wise t-tests
by analysing the accuracy and response times for individual stimulus displays on a cross-sub-
ject basis. This showed comparable accuracy for congruent and incongruent conditions, ¢
(159) = 1.19, p = .235, d = .14, but improved categorisation performance on congruent trials
for RTs, #(159) = 2.69, p = .008, d = .21, and Inverse Efficiency Scores, #(159) = 2.64, p = .009,
d = .22. Together, these results replicate and extend previous work investigating the role of
scene context in social categorisation [18,19], by demonstrating that the stereotypical female/
male context of the scene background can influence the efficiency of face sex assignments.

Experiment 2

The previous experiment found that scene background congruency can affect the categorisa-
tion of female and male faces embedded in natural scenes. These findings suggest that gist
information from the scene context was extracted sufficiently early to either aid or hinder face
categorisation, and is congruent with previous reports of rapid gist extraction from natural
scenes [12-15,39]. Interestingly, previous work has also shown interference in the other direc-
tion: that is, salient foreground objects interfering with scene categorisation [4,40-42]. Conse-
quently, objects and scenes are likely to be processed in parallel, resulting in bi-directional
contextual interference. If faces in the visual periphery are detected with sufficient rapidity
[34,43,44], the categorisation of scenes might also be better on trials where faces and scenes
have semantically congruent category information. In Experiment 2, we tested this assumption
by repeating Experiment 1, but instead asked participants to categorise the scene backgrounds
as female and male, rather than the sex of the faces embedded within them.
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Fig 2. Mean inverse efficiency scores, response times and accuracy for congruent and incongruent face-scene
conditions in Experiment 1 (face categorisation), Experiment 2 (scene categorisation), Experiment 3 (face
detection), and Experiment 4 (face detection with scene context preview). Above each plot, the results of paired t-
tests between conditions are reported. Error bars represent within-subject variability via 95% Cousineau-Morey
confidence intervals [38]. *p < .05, ** p < .01, ***p < .001.

https://doi.org/10.1371/journal.pone.0304288.g002

Methods

Participants. Sixty new participants (30 females; Age M = 35.03, SD = 10.46) recruited on
Prolific were included in the final analysis. The same eligibility and inclusion criteria used in
Experiment 1 were applied here, and four additional participants were excluded for failing to
reach the 75% threshold on catch trials.

Stimuli and procedure. Experiment 2 was identical to Experiment 1 except that partici-
pants were instructed to categorise the scenes—again by responding ‘F for female or ‘M’ for
male. Importantly, participants were also instructed to disregard the sex of the face when mak-
ing their scene judgements.
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Results and discussion

As illustrated in Fig 2, participants’ ability to categorise scenes was influenced by the semantic
congruency of an embedded face. When female / male information in faces and scenes was
congruent, participants were more accurate (M, = 98.31%, M, = 97.46%), t(59) = 2.50,

p =.015, d = .36, faster (RTs: M,,,, = 739ms, M;,. = 760ms), (59) = 2.58, p = .012, d = .14, and
generally more efficient (IES: M,,,, = 752ms, M;,,. = 780ms), #(59) = 3.44, p = .001,d = .19, at
categorising scenes. These effects were also present in item-wise t-tests for accuracy, #(159) =
2.78, p =.006, d = .29, RTs, #(159) = 1.92, p = .057, d = .13, and Inverse Efficiency Scores, #(159)
=2.81, p =.006, d = .20. In combination with Experiment 1, these results suggest that faces rap-
idly capture attention, leading to bidirectional contextual influences between embedded faces
and scene backgrounds during categorisation.

Experiment 3

The findings from Experiments 1 and 2 converge with those from the object categorisation lit-
erature [4,40-42] to suggest that semantic information from faces and scene contexts are pro-
cessed concurrently, and that their interaction affects social categorisation performance. For
embedded faces to influence scene categorisation, faces must have been detected and catego-
rised rapidly by observers-despite being irrelevant to the task-highlighting the automaticity of
early face processing. Scene gist extraction was also sufficiently rapid and automatic to influ-
ence face perception at the categorisation level (Experiment 1), yet it remains unclear whether
the interactivity between face and scene processing extends to earlier perceptual stages—includ-
ing whether or not a face is present at all. In Experiment 3, we investigated whether scene con-
text effects on face categorisation extend to the level of face detection.

Methods

Participants. Sixty new participants from Prolific (30 females; Age M = 26.93, SD = 8.18)
were included in the final analysis, using the same inclusion criteria as the two previous experi-
ments. Three additional participants were excluded for failing to reach the 75% threshold on
catch trials.

Stimuli and procedure. The primary difference between this and previous experiments
was that participants were instructed to judge whether a face was present or absent, rather
than make a categorisation decision. Participants were instructed to press ‘P’ (present) if they
thought the scene contained a face, and ‘A’ (absent) if they thought it did not contain a face, as
quickly and as accurately as possible. To fulfil the demands of the task, an additional 160 face-
absent trials were added, forming 320 trials in total. Face-present stimuli were identical to the
stimuli used in Experiments 1 and 2, and the same scenes (without faces) were used as face-
absent stimuli. We also doubled the number of catch trials to 16, in accordance with the
increased total trial number.

Results and discussion

First, we compared performance on face-present (FP) and face-absent (FA) trials, to determine
if participants were adhering to task demands. We found faster responses for face-present trials
(Mpp = 614ms, Mg, = 883ms), #(59) = 10.22, p < .001, d = 1.40, which is expected given that
visual search is terminated once a face is located. Furthermore, we found greater accuracy on
face-absent trials (Mgp = 95.62%, M4 = 98.29%), t(59) = 4.22, p < .001, d = .54, as participants
are more likely to miss a face that is present, than to detect a face where there is none.
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Next, we analysed differences between congruency conditions. In contrast to face categori-
sation, face detection performance was not influenced by face-scene semantic congruency (see
Fig 2). Paired t-tests between congruency conditions found no differences in detection accu-
racy (Mo = 95.96%, My, = 95.27%), £(59) = 1.92, p = .06, d = .11, RTs (Mo, = 614ms, M;,,. =
615ms), #(59) = 0.32, p =.751, d = .01, and Inverse Efficiency Scores (M,,,, = 648ms, M;,,. =
645ms), t(59) = 0.41, p = .683, d = .02. Similarly, item-wise t-tests found no congruency effects
for accuracy, #(159) = 1.43, p = .156, d = 0.12, RTs, #(159) = 0.21, p = .833, d = 0.01, or Inverse
Efficiency Scores, t(159) = 1.32, p = .188, d = 0.09. Unlike categorisation, the present findings
therefore suggest that scene context has little influence on detection performance.

Considering the absence of semantic scene context effects on face detection, we explored
whether other scene aspects might influence detection, such as where faces are likely to be
located. For example, as faces are normally attached to the top of a body, they might be located
more effectively in upper than lower scene regions. We explored whether such ‘syntactic’
information from scenes might interact with face-scene semantic congruency by conducting a
series of 2 (congruency: congruent vs. incongruent) x 2 (location: upper vs. lower scene half)
ANOVAs across test items. For accuracy, this showed that faces were detected more reliably in
upper than lower scene regions (M,,per = 96.79%, Migye, = 94.44%), F(158) = 10.11, p = .002,
» = .06. An effect of congruency was not found, F(158) = 2.10, p = .149, ,* = .01, but there was
an interaction of location and congruency, F(158) = 6.27, p = .013, ,” = .04. However, contrary
to the congruency effects observed in Experiment 1 and 2, post-hoc tests (Bonferroni) shower
better detection accuracy for faces in the lower scene regions on incongruent than congruent
trials (Mo, = 93.50%, M, = 95.38%), #(159) = 2.49, p = .030, and no congruency effect was
observed for faces in upper scene regions (M, = 97.04%, M, = 96.54%), t(159) = 0.87, p =
.774. In terms of RTs, faces were detected faster in upper than lower scene regions (M, =
582ms, Mjpyer = 656ms), F(158) = 42.51, p < .001, PZ = .21, but there was no significant effect
of congruency, F(158) = 0.04, p = .833, ,” < .01, or interaction between these factors, F(158) =
42.51, p < .001, ,> = .21. When accuracy and RTs were combined as Inverse Efficiency Scores,
again only a main effect of location was found (M, e, = 604ms, Mi,,,e, = 706ms), F(158) =
27.78, p < .001, ,* = .15, indicating more efficient face detection in upper scene regions. There
was no significant main effect of congruency, F(158) = 1.76, p = .186, ,” = .01, or interaction
between factors, F(158) = 2.25, p = .135, ;> = .01. Together, these results suggest that some fac-
tors, such as expectations about location, influence face detection consistently, when semantic
cues from the scene context do not.

Experiment 4

The results of Experiment 3 suggest that face detection might be cognitively impenetrable to
the effects of semantic scene context. This would be consistent with prior work, which suggests
that face detection and categorisation are qualitatively different tasks [22]. As stimuli were
identical to the previous experiments, these results cannot be explained by differences in sti-
muli, only by the task itself. However, it is possible, given the rapidity of face detection, that
these findings reflect differences in processing time between detection and categorisation,
rather than the independence of detection from scene context per se. If this is the case, detec-
tion should show congruency effects when observers are provided with the semantic scene
context prior to the detection trial. We tested this alternative explanation in Experiment 4.

Methods

Participants. Sixty new participants (30 females; Age M = 30.50, SD = 10.59) were
recruited on Prolific, using the same eligibility criteria as the previous experiments. In
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Experiment 4, eight additional participants were excluded for failing to reach the 75% thresh-
old on catch trials.

Stimuli and procedure. In this experiment, we adapted Experiment 3 to provide partici-
pants with the scene context prior to the detection trial. In Experiment 2, scenes were classified
in 750ms (see Fig 2). Based on these timings, on each trial of Experiment 3 participants were
first shown a face-absent scene for 550ms. This was then followed by a 200ms grey mask
image, before the same scene image was presented again either with (face-present trials) or
without a face (face-absent trials). In this way, the scene context was provided 750ms prior to
the detection test, but the 200ms ‘flicker’ was included to disrupt straightforward perception of
the change in the scene-that is, the addition of a face on face-present trials [45]. All other
aspects of the stimuli and procedure were the same as Experiment 3.

Results and discussion

As in Experiment 3, we compared participants’ performance on face-present and face-absent
trials. Here, we also found faster responses on face-present trials (Mzp = 578ms, Mg =
796ms), 1(59) = 8.13, p < .001, d = 1.13, and more accurate responses on face-absent trials
(Mpp =95.00%, Mr4 = 98.44%), (59) = 6.76, p < .001, d = 1.15, indicating that participants
were adhering to task demands.

For our main comparison of interest, we found that participants’ detection performance
was not affected by face-scene semantic congruency (see Fig 2), despite providing the scene
context prior to detection. Paired t-tests found no differences in detection accuracy (M., =
94.79%, M, = 95.21%), t(59) = 0.95, p = .345, d = .10, detection speed (M., = 581ms, M, =
576ms), #(59) = 1.37, p = .175, d = .06, or Inverse Efficiency Scores (M,,,, = 613ms, M, =
605ms), #(59) = 1.87, p = .067, d = .10. Similarly, item-wise t-tests found no congruency effects
for accuracy, #(159) = 0.81, p = .417, d = 0.06, RTs, #(159) = 1.19, p = .235, d = 0.08, or Inverse
Efficiency Scores, t(159) = 1.27, p = .206, d = 0.08.

Once again, we investigated whether scene sematic context interacted with participants’
prior expectations about face location by conducting 2 (congruency: congruent and incongru-
ent) x 2 (location: upper and lower) ANOVAs across test items. For accuracy, this showed that
faces were detected more often in upper than lower scene regions (M,,per = 96.35%, Miqyer =
93.66%), F(158) = 9.32, p = .003, P2 = .06, but there was no effect of congruency, F(158) = 0.66,
p =418, ,> < .01, and no interaction between factors, F(158) = 0.80, p = .373, ,* = .01. Likewise
for RTs, detection was faster for faces in the upper scene regions (M,,ppe, = 565mS, Mjoyer =
604ms), F(158) = 19.95, p < .001, p2 = .11, but the main effect of congruency, F(158) = 1.42,
p=.236,,”=.01,and the interaction, F(158) = 0.26, p = .609, ,* < .01, were not significant.
And when these measures were combined as IES, detection was also more efficient for upper-
half faces (M,,pper = 589ms, Mj,y,.r = 657ms), F(158) = 15.06, p < .001, P2 =.08, but no effect of
congruency, F(158) = 1.61, p =207, ,” = .01, and no interaction were present, F(158) = 0.23,
p=.635,,” <.0L. Considered in combination with Experiment 3, our results therefore show
that face detection remains largely unaffected by semantic cues from the scene context. This is
found even though other factors, such as observers’ expectations about the probable locations
of faces in scenes, consistently affect detection performance.

Saliency analysis

After finding that face detection was not influenced by differences in face-scene semantic con-
gruency but by scene location (Experiments 3 and 4), an additional analysis was conducted to
explore whether our results may have been influenced also by low-level cues such as image
saliency. Within complex scenes, certain visual attributes such as contrast intensity or colour
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opponency involuntarily attract attention [46,47]. These low-level cues can also interact with
high-level semantic information to determine which aspects of a scene are encoded [48]. The
visual information within scenes that reliably guide bottom-up attention can be summarised
within a saliency map [47]. Here, such maps were generated to quantify the change in visual
saliency that occurred once a face was added to a scene region. First, we investigated whether
face-saliency differed systematically between congruency conditions within our stimulus set. If
saliency were to differ between conditions, then effects of congruency on behavioural perfor-
mance (Experiments 1-4) may not have been driven solely by high-level semantic information.
Second, the role of saliency was investigated more generally, to determine the extent to which
visual attention was guided by the low-level visual attributes of scenes.

Saliency maps for the stimuli of Experiments 1-4 were computed using two separate
saliency algorithms, both of which were provided by the ‘OpenCV’ computer vision library
and implemented in Python [49]. The first ‘course-grained’ method extracts the spectral resid-
ual information from the log-spectrum of an image [50], while the second ‘fine-grained’
method calculates saliency using centre-surround differences inspired by the ganglion cells of
the human eye [51]. Example outputs of these two saliency algorithms can be viewed in the
central and right-hand panels of Fig 3, respectively.
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Fig 3. Image saliency for face-present and face-absent scenes (left-hand images) were compared using course-grained (central images) and fine-
grained (left-hand images) saliency maps. Face saliency scores were computed by subtracting the sum of pixel values for the face region (red box, lower
images) from the corresponding region in face-absent scenes (red box, upper images). Face saliency was highly correlated between congruency conditions
for both course-grained (a) and fine-grained (b) methods. Furthermore, face detection performance in Experiments 3 and 4 (Inverse Efficiency Scores

[IES]) showed negative correlations with face saliency scores for both course-grained (c and d) and fine-grained (e and f) saliency methods, indicating that
salient face regions were detected more efficiently.

https://doi.org/10.1371/journal.pone.0304288.g003
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After generating course- and fine-grained saliency maps for each of the stimuli used in
Experiments 1-4, we then focused our analysis on a 180 x 200 pixel region of the saliency map
surrounding the location of the face, and its equivalent in face-absent scenes (see Fig 3). We
then calculated the sum of the pixel intensities for these regions, and computed the difference
between corresponding face-absent and face-present scenes. In this manner, we produced a
dataset (N = 160) corresponding to the change in regional saliency after the addition of a face
for both congruent and incongruent conditions. We first compared differences in saliency
between these conditions, before comparing saliency values to the behavioural data collected
in detection Experiments 3 and 4.

The change in visual saliency that resulted from adding a face to an image did not differ
between semantic congruency conditions for course-grained, #(159) = 0.49, p = .627, and fine-
grained approaches, #(159) = 0.08, p = .940, and was also strongly correlated in both, r(158) =
0.70, p < .001 and r(158) = 0.87, p < .001 (see Fig 3a and 3b). This demonstrates that faces,
regardless of their sex, showed highly similar saliency scores when placed in identical locations
of the same scene. It also indicates that the detection and categorisation results presented in
the preceding experiments are unlikely to be caused by systematic differences in visual saliency
between conditions.

After establishing that saliency scores were highly similar for congruent and incongruent
trials, we collapsed saliency scores across conditions by computing the mean. We then com-
pared the combined scores to the behavioural data in Experiments 3 and 4, to determine
whether face detection performance was influenced by bottom-up image saliency [46]. For the
course-grained spectral residual method, face saliency scores were positively correlated with
detection accuracy for Experiment 3, r(158) = 0.14, p = .033, and Experiment 4, r(158) = 0.23,
p =.004. We also found negative correlations between face saliency and participants’ response
times in Experiment 3, r(158) = -0.21, p = .007, and Experiment 4, r(158) = -0.28, p < .001. In
addition, the combination of these measures in the form of Inverse Efficiency Scores (IES)
were also negatively correlated with face saliency in Experiment 3, 7(158) = -0.19, p = .018, and
Experiment 4, r(158) = -0.25, p =.001 (Fig 3c and 3d).

For the fine-grained centre-surround method, face saliency also a showed positive correla-
tion with detection accuracy for Experiment 4, r(158) = 0.17, p = .036, but the effect was mar-
ginal for Experiment 3, r(158) = 0.14, p = .069. However, negative correlations between face
saliency and RT's were found for both experiments, r(158) = -0.19, p = .018 and r(158) = -0.17,
p =.034. Finally, the corresponding IES were also negatively correlated with face saliency for
both Experiment 3, #(158) = -0.16, p = .049, and Experiment 4, r(158) = -0.17, p = .036 (Fig 3e
and 3f).

Taken together, the saliency analysis indicates that the low-level visual saliency of a face
within a scene affects detection performance, as more salient faces tend to be detected with
greater speed, accuracy, and efficiency relative to less salient faces. Nevertheless, we found no
evidence for visual saliency differences between congruency conditions, suggesting that any
behavioural differences between these conditions were not driven by saliency cues.

General discussion

The findings of Experiment 1 and 2 demonstrate that face and scene perception are inter-
twined, whereby the semantic congruency of scene context influenced the sex categorisation of
faces, and vice versa. This demonstrates that social category information about faces and
scenes is processed in parallel and integrated in real time, even when faces are presented in the
visual periphery or are irrelevant to the task, and extends the growing body of work reporting
bidirectional effects of scene-object congruency [4,23,40-42,52] to the rapid processing of
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these social objects. This finding is of general relevance to face perception research as these sti-
muli are often studied in isolation, separated from their natural scene context [17-21,53]. It
also converges with theoretical approaches predicting that semantic expectations generated
from visual context can influence early perceptual processing [7-10,54,55].

The question arises as to whether the interference effects from female and male scene con-
texts in Experiment 1 and 2 extend beyond binary classifications of biological and physiologi-
cal sex differences between faces. The social construct of gender, for example, refers to greater
diversity between people than sex. In this study, female and male information in scenes was
also socially constructed and is therefore more representative of gender than sex. The observa-
tion that the gender of scene contexts influenced the sex categorisation of faces, and vice versa,
therefore suggests that these effects are transferable-at least in some cases—between biological
and social information.

However, Experiment 3 and 4 also show that face detection is not subject to the same con-
textual influences as face categorisation, as the search for these targets was not affected by the
congruency of the semantic scene gist with face sex. Face detection is a highly rapid perceptual
process, that is seemingly robust to natural variability in facial appearance [26,44,56]. Faces
also appear to “‘pop-out’ in visual search grids, which suggests that they are detected using a
parallel, pre-attentive search strategy, even outside of their natural context [25,57,58]. Thus,
face detection might be encapsulated from cognitive processes that can interfere with higher-
level face decisions. Alternatively, while the cognitive mechanism underlying detection is sen-
sitive to differences in ethnicity, based on a participants’ exposure to faces from different
groups [27], it may be ‘sex agnostic’ given the approximately equal representation of female
and male faces in our visual diet.

Although there was no effect of semantic gist on detection performance in Experiment 3
and 4, some information about the visual context was extracted during detection, as faces were
located faster and more accurately in the upper than the lower regions of scenes. This finding
might reflect expectations about face locations, whereby faces are located more effectively in
scene regions where they might typically appear, attached to the top of a body. This converges
with other studies in which syntactic gist-that is, the relative locations of scene elements—can
aid the selection of likely target locations [59-63], and in which detection is affected by the
location at which faces are presented in the visual field [36]. The finding that location affected
detection in the current experiments when semantic congruency did not, strengthens the con-
clusion that detection is encapsulated against interference from scene gist.

While face detection might be encapsulated from cognitive processes such as the process-
ing of semantic gist, there are also alternative explanations for the absence of semantic con-
gruency effects on face detection performance. For instance, there are cortical constraints on
perception in the visual periphery, such as reduced acuity and crowding [64,65]. These con-
straints may limit the influence of face sex information presented in the visual periphery on
detection [34,66], and previous work has already shown that scene context can influence
categorisation of centrally-presented faces [18,19]. Therefore, semantic congruency effects
from stereotypically female and male scenes might emerge when faces are presented foveally.
However, this presentation would also eliminate important characteristics of the detection
process, such as the search for face candidate regions in the periphery [22,53]. It also remains
possible that other contexts might facilitate face detection in contrast to the null effects that
were observed with stereotypically female and male scenes in Experiment 3 and 4 here, for
example, such as busy inner city versus remote natural environments [27]. As the current
experiments investigated semantic face-scene associations based on sex categories only,
future work could explore the relative contributions of a wider range of semantic scene gists
on face detection.
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