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ABSTRACT

We investigate the influence of streamwise pressure gradient on the Görtler vortex system initiation and
development in high-speed compressible boundary layers. We conduct a parametric study in which we vary the
pressure gradient in a supersonic flow at Mach number 3. Preliminary results include velocity and temperature
plots, vortex energy distributions, and velocity profiles.

1. Introduction

Streaks formation in pre-transitional boundary
layer flows over flat or curved surfaces occur when the
height of roughness elements exceeds a critical value
(e.g., White [1], Goldstein et al. [2], Wu & Choudhari
[3]), or when the amplitude of the freestream
disturbances exceeds a given threshold (e.g., Kendall
[4], Westin et al. [5], Goldstein & Sescu [6]).
The velocity component in the streamwise direction
exhibits elongated ‘streaky’ features, characterized
by adjacent regions of acceleration (high-speed)
and deceleration (low-speed) of fluid particles (e.g.,
Kendall [4] or Landahl [7]). In boundary layer
flow along a concave surface, streaks of counter-
rotating streamwise vortices form as a result of the
imbalance between radial pressure gradients posed
by the wall and centrifugal forces (e.g., Görtler [8],
Hall [9], Swearingen & Blackwelder [10], or Sescu
et al. [11]). The growth rate of these vortices
depends on the surface curvature and the receptivity
of the boundary layer to environmental disturbances
and surface imperfections. Vortex formation can
significantly alter the mean flow forcing the laminar
flow to break down into turbulence.

In the compressible regime, researchers conducted
a number of experimental studies to establish the
gross correlation between the transition Reynolds
number and freestream turbulence (FST) level.
They showed that the transition position shifts
significantly depending on both FST level (Dryden
[12], Schneider [13]) and the surface roughness
(Pate [14]). However, only few investigations of
the detailed physics underlying such correlation
exist. The experiments of Kendall [15] provide
much information concerning supersonic boundary-
layer transition under the influence of a high FST
level. A salient feature is that fluctuations over a
wide frequency range experience substantial growth
within the boundary layer. Sufficiently downstream,
a spectral peak emerges, which corresponds to the
Mack-I mode in the low-Mach-number supersonic
range (M < 4.5) (Mack [16]). For M > 4.5, a
secondary, less pronounced peak representing the
Mack-II instability appears. These results indicate
that some kind of receptivity mechanism operates to
generate instability waves in a nominally flat plate.

This paper explores the impact of streamwise
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pressure gradients on Görtler vortices in high-
speed compressible boundary layers. It analyzes
the development of streaks and vortices under
adverse or favorable pressure gradients using various
measurements and contour plots.

1.1 Governing Equations

In conservative form, the filtered Navier-Stokes
equations are written as

Qt + Fξ +Gη +Hζ = S. (1)

where subscripts denote derivatives, the vector of
conservative variables is given by

Q =
1

J
{ ρ, ρui, E }T , i = 1, 2, 3 (2)

where J is the Jacobian, ρ is the non-dimensional
density of the fluid, ui = (u, v, w) is the non-
dimensional velocity vector in physical space, and
E is the total energy. The flux vectors, F, G and H,
are given by

F =
1

J

{

ρU, ρuiU + ξxi
(p+ τi1), EU + pŨ + ξxi

Θi

}T

,

G =
1

J

{

ρV, ρuiV + ηxi
(p+ τi2), EV + pṼ + ηxi

Θi

}T

,

H =
1

J

{

ρW, ρuiW + ζxi
(p+ τi3), EW + pW̃ + ζxi

Θi

}T

where the contravariant velocity components are
given by

U = ξxi
ui, V = ηxi

ui, W = ζxi
ui (3)

with the Einstein summation convention applied over
i = 1, 2, 3, the shear stress tensor and the heat flux
are respectively given as

τij =
µ

Re

[(

∂ξk
∂xj

∂ui

∂ξk
+

∂ξk
∂xi

∂uj

∂ξk

)

−
2

3
δij

∂ξl
∂xk

∂uk

∂ξl

]

(4)

Θi = ujτij +
µ

(γ − 1)M2
∞
RePr

∂ξl
∂xi

∂T

∂ξl
(5)



S is the source vector term, and µ is the dynamic
viscosity.

The pressure p, the temperature T , and the
density of the fluid are combined in the equation
of state, p = ρT/γM2

∞
. The Jacobian of the

curvilinear transformation from the physical space
to computational space is denoted by J . The
derivatives ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, and
ζz represent grid metrics. The dynamic viscosity
is linked to the temperature using Sutherland’s
equation in dimensionless form,

µ = T 3/2 1 + C1/T∞

T + C1/T∞

, (6)

while the thermal conductivity k is obtained from
the Prandtl number, where for air at sea level, C1 =
110.4K. There are no subgrid scale terms in equation
(1) since an implicit large eddy simulation framework
is considered here.

1.2 Numerical Algorithm

The compressible Navier-Stokes equations are
solved in the framework of implicit large eddy
simulations, where numerical filtering is applied
to account for the missing sub-grid scale energy.
The numerical algorithm uses high-order finite
difference approximations for the spatial derivatives
and explicit time marching. The time integration
is performed using a third-order TVD Runge-Kutta
method (Shu and Osher [17]). written in the form

Q(0) = Qn

Q(1) = Q(0) +∆tL(u(0))

Q(2) =
3

4
Q(0) +

1

4
Q(1) +

1

4
∆tL(Q(1)) (7)

Qn+1 =
1

3
Q(0) +

2

3
Q(1) +

2

3
∆tL(Q(2)),

where L(Q) is the residual.
The spatial derivatives are discretized using the

dispersion-relation-preserving schemes of Tam and
Webb [18] or a high-resolution 9-point dispersion-
relation-preserving optimized scheme of Bogey et
al. [19]. The first derivative at the lth node is
approximated using M values of f to the right and
N values of f to the left of the node.

(

∂f

∂x

)

l

≃
1

∆x

M
∑

j=−N

ajfl+j (8)

By taking the Fourier transform of the above
equation, the coefficients aj are found by minimizing
the integrated error of the difference between the
wavenumber of the finite difference scheme and the
wavenumber of the Fourier transform of the finite
difference scheme.

2. Results

In figure 1, the mesh consisting of roughly 2
million grid points is displayed (every other mesh
point is shown in all directions). The mesh is

Fig. 1 Mesh used for the simulations (every other
mesh point is shown in all directions).

Fig. 2 Contour plots of the streamwise velocity in
different crossflow planes).

clustered at the wall and stretched towards the
upper boundary. No slip boundary condition
for velocity and either adiabatic or isothermal
condition for temperature is imposed at the wall.
We impose vanishing gradients at the top and
outflow boundaries and periodic conditions along
the spanwise direction since we only simulate two
streamwise counter-rotating vortices (corresponding
to one mushroom shape). A transpiration condition
imposes the streamwise pressure gradient on the top
boundary.

Figure 2 shows velocity contour plots in
the streamwise direction. The contour plots
visually illustrate the growth of the centrifugal
instabilities along the curved surface. The upstream
perturbations trigger the counter-rotating vortices
that gradually accelerate moving downstream. The
high-velocity streaks result in faster flow circulations.
This increase in angular velocity is seen visually
as an increase in the amplitude of the mushroom
structures.

Figure 3 illustrates the velocity contours of
a single crossflow plane mushroom-like structure
plotted at the same streamwise coordinate for three
pressure gradient conditions; zero, favorable, and
adverse. The simulation setup and freestream
conditions are the same for all three cases. In terms
of the amplitude of the mushroom-like structure,



(a) (b) (c)

Fig. 3 Contours of streamwise velocity at a certain
location: a) zero pressure gradient; b) favorable
pressure gradient; c) adverse pressure gradient.

a qualitative assessment of the plots indicates that
the adverse pressure gradient case results in the
highest amplitude, followed by the zero gradient
case resulting in medium size structures, then the
favorable pressure gradient case, which results in
the lowest amplitude. On the other hand, a close
examination of the velocity magnitude inside the
mushroom-like structures indicates that the flow
is fastest for the favorable pressure gradient case,
followed by the zero pressure gradient case resulting
in slower streamwise velocity flow particles, then
the adverse case where the flow velocity is almost
negligible.

To put these observations in perspective, we
examine the velocity profiles in the wall-normal
direction along the center of the mushroom-like
structure for the three pressure gradient cases, as
shown in figure 4a. We start by looking at the zero
pressure gradient case to set a reference for the other
two cases. In this case, the boundary layer flow
experiences the inherent adverse pressure gradient
due to the surface curvature, which decreases its
velocity. From this point, imposing the adverse
pressure gradient condition adds to the inherent
effects due to the surface curvature and causes the
velocity of the flow to decrease further. On the
other hand, imposing a favorable pressure gradient
counteracts the inherent adverse pressure gradient,
and the flow velocity decreases at a lower rate.
The velocity profiles between the mushroom-like
structures in figure 4b do not indicate significant
disparities between the three cases.

Figure 5 shows the vortex kinetic energy
distribution in the streamwise direction. The adverse
pressure gradient case results in the highest energy
level compared to the other two cases. Also, the
energy starts picking up at an earlier streamwise
location and has a higher growth rate than the zero
and favorable pressure gradient cases. The zero
pressure gradient case results in the second highest
energy level, while the favorable pressure gradient
case results in the lowest kinetic energy level, almost
half that of the adverse pressure gradient case. On
the other hand, the flow under the favorable pressure
gradient condition reaches energy saturation first,
followed by the zero pressure gradient and the
adverse pressure gradient cases, respectively.

(a)

(b)

Fig. 4 Wall-normal profiles of streamwise velocity:
a) between mushroom shapes; b) in the center of the
mushroom.

Figure 6 shows the spanwise averaged wall shear
stress for the three pressure gradient cases. The
adverse pressure gradient case shows the highest
drop in the wall shear stress. The decrease in the
wall shear stress initiates at an earlier streamwise
location and a steeper slope compared to the other
pressure gradient cases. There is a subtle decrease in
the zero pressure gradient case, while the wall shear
stress follows a positive growth rate in the favorable
pressure gradient case. Alike the pattern of figure
5, the flow under the favorable pressure gradient
condition reaches saturation first, followed by the
zero pressure gradient and the adverse pressure
gradient cases, respectively.



Fig. 5 Vortex energy distribution in the streamwise
direction.

Fig. 6 Wall shear stress distribution in the
streamwise direction.

3. Conclusion

This paper presents the findings of a simulation
study investigating fluid flow over a curved
surface. The results reveal the formation and
evolution of counter-rotating vortices, which are
initiated by upstream perturbations and gain
momentum downstream due to high-velocity streaks.
The analysis of velocity contours and profiles
sheds light on the impact of different pressure
gradient conditions on the size and velocity of
mushroom-like structures. Specifically, the adverse
pressure gradient case exhibits larger structures but
significantly lower flow velocity, while the favorable
gradient case shows the opposite trend. The
distribution of vortex kinetic energy and wall shear
stress confirms these observations, with the adverse
gradient case displaying the highest energy level
and the most pronounced decrease in wall shear
stress. These findings contribute to a deeper
understanding of fluid flow dynamics and have
potential implications for the optimization and
design of curved surfaces in various engineering
applications.
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