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Abstract.

We propose that the spectrum of the surface area of the apparent horizon (AH) of de

Sitter (dS) spacetime leads to corrected temperature and entropy of the dS spacetime,

offering new insights into its thermodynamic properties. This is done by employing

the spectrum of the AH radius, acquired from the Wheeler–DeWitt (WDW) equation,

together with the Stefan–Boltzmann law, the time-energy uncertainty relation, and

the unified first law of thermodynamics.

Submitted to: Class. Quantum Grav.

1. Introduction

In the early 1970s, Jacob Bekenstein revolutionized our understanding of black holes

(BHs) by positing that the entropy of a BH is directly proportional to the area of

its event horizon [1]. This groundbreaking hypothesis laid the foundation for the

integration of thermodynamic principles into the realm of general relativity. A few years

later, in 1975, Stephen Hawking extended this paradigm by introducing the concept

of BH evaporation, thereby linking quantum mechanics with the thermodynamics of

BHs [2]. Recent observational studies have provided compelling evidence in support of

these theoretical frameworks. For instance, gravitational wave observations have been

employed to test the area-entropy relationship, yielding results that are consistent with

the predictions of Bekenstein and Hawking [3].
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These empirical validations have invigorated the scientific community’s interest in

the intricate interplay between thermodynamics, quantum physics, and the geometry

of spacetime horizons. Over the years, theoretical physicists have delved deeper into

this nexus, uncovering a rich tapestry of relationships that intertwine thermodynamic

temperature, quantum field theory, and the geometrical properties of horizons. These

discoveries have cemented the role of thermodynamics in the study of gravitational

systems and opened up new avenues for exploring the quantum nature of spacetime

itself.

In quantum gravity, it is possible to derive the thermodynamical characteristics

associated with a specific stationary spacetime by employing the technique of Euclidean

path integral [4]. The thermal equilibrium state of the system of spacetime, (M, g),

plus matter field, Φ, for the canonical ensemble is given by the partition function Z as

Z =

∫

Dg(E)DΦexp{I(E)[g(E),Φ]}, (1)

where Dg(E) and DΦ represent the path integrals over the Euclidean metric and matter

fields, respectively, and g(E) is the Euclidean metric of signature (++++) obtained from

the Lorentzian metric g by the Wick rotation t → −iτ , and I(E)[g(E),Φ] denotes the

Euclidean action functional ‡. In order to consider equilibrium states of spacetime with

a matter field, it is necessary to impose the periodic boundary condition in imaginary

time, τ , for both the metric and the matter field Φ.

Note that the fields g and Φ are not necessarily solutions of classical field equations,

however, one can expand these fields as g = gcl + δg and Φ = Φcl + δΦ around the

dominant classical solutions when the gravitational and matter fields are weak. As a

result, the Euclidean action functional becomes

I(E)[g(E),Φ] = I(E)[g
(E)
cl ,Φcl] + I(E)[δg(E)] + I(E)[δΦ] + higher order terms, (2)

where gcl and Φcl denote the classical solutions around which the fields are expanded,

δg(E) and δΦ denote quantum/statistical fluctuations of metric and matter fields, and

I(E)[δg(E)] and I(E)[δΦ] are quadratic in fluctuations.

Therefore, the partition functional (1) becomes

lnZ = lnZcl + ln

∫

D[δg(E)]eI
(E)[δg(E)] + ln

∫

D[δΦ]eI
(E)[δΦ] + higher order terms, (3)

where Zcl is the classical partition functional. The first term in the above includes only

the classical solutions and consequently, the partition function of the thermal equilibrium

‡ Because it enhances the convergence of path integrals, a wick rotation of the time axis is frequently

employed in quantum field theory. On the other hand, this is not the case in quantum gravity.

In general, the integral (1) is poorly divergent, and the gravitational component of the Euclidean

action is unbounded from below. Only partially successful attempts to solve this issue using analytical

continuation have been made, and it is still unknown if an integral like (1) can be defined in a meaningful

way [5].
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state of background classical spacetime and matter is defined by lnZcl = I(E)[g
(E)
cl ,Φcl].

Now, utilizing the Boltzmann’s relation, S = lnZ, one obtains the entropy of the

system. This shows that the standard Bekenstein–Hawking entropy (as well as other

thermodynamical properties) of an empty background spacetime horizon is encoded in

the classical geometry itself. In addition, the correction terms arise due to statistical

fluctuations around the thermal equilibrium of the classical geometry and matter field

[6, 7]. Also, in the presence of a matter field, one should use a proper regularization

method to compute the portion of quantum matter field in Eq. (3).

Another approach to acquiring the thermodynamic properties linked to a particular

static spacetime is through the utilization of canonical quantization of the relevant

gravitational system featuring a horizon, developed by V.F. Mukhanov [8]. In the case

of a Schwarzschild BH, the quantization of the system results in a discrete spectrum

of horizon areas. Bekenstein pioneered the concept of BH horizon area quantization,

proposing that the area, ABH, could be represented by discrete eigenvalues [9]:

ABH(n) = γL2
P n, n = {large integers}, (4)

where γ is a dimensionless constant of order one, depending on the details of the

quantization method [10], and LP =
√
G is the Planck length. Subsequently, numerous

studies (see, for example, [11] and the references therein) have been integrated into it,

all of which have played a role in bolstering the accuracy of the mass spectrum (4).

It can be hypothesized that a BH emits Hawking radiation during its spontaneous

transition from state n + 1 to the nearest lower state level, specifically, n. Supposing

the emitted thermal radiation’s frequency is denoted as ω0, it follows that

ω0 =M (n+1) −M (n) =
γMP√
2n

+ higher order terms =
γ2M2

P

2M
+ higher order terms. (5)

According to Mukhanov [8] this equation bridges the gap between quantum mechanics

and classical thermodynamics in the context of BHs.

The argument employed by Mukhanov to derive the thermodynamical characteris-

tics of a BH, as detailed in the reference [8], can be elucidated in the following manner:

Initially, he assumed that the spectrum of a BH adheres to the Eq. (4). Subsequently,

in his analysis to determine the rate of Hawking radiation, he proceeded to calculate

the BH’s lifetime while it is in a specific quantum state represented by the quantum

number n, as expressed in Eq. (5). Lastly, by incorporating the Stefan–Boltzmann

law in conjunction with the first law of thermodynamics and Mukhanov’s argument, as

elaborated in Refs. [12, 13, 14], one is able to deduce the temperature and entropy of a

Schwarzschild BH.

The advantage of this method of calculating entropy to Euclidean path integral

is its simplicity in calculating the higher-order correction terms: a Taylor expansion

of (5) at the desired order, gives us the corresponding order of correction term of the

entropy as well as the temperature of the BH. In addition, sometimes, we just know

the modified WDW equation, and the corresponding path integral is not developed
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enough. For example, in Ref. [13], the authors developed a fractional WDW equation

of a Schwarzschild BH. Also, a quantum deformed (through quantum groups) extension

of the WDW equation is represented in [14] for a Schwarzschild BH. In this method, the

corresponding extension of (5) immediately gives us the corresponding entropy of the

model under investigation.

In this article, we extend the aforementioned approach to a closed Friedmann–

Lemâıtre–Robertson–Walker (FLRW) universe with a positive cosmological constant,

in which the matter content is radiation. To achieve this objective, our first task

is to address the WDW equation of the model universe to acquire the appropriate

wavefunction. On the other hand, in order to acquire a finite value for the spectrum

of the cosmological constant, it is imperative to employ an appropriate regularization

technique that ensures a finite value for the vacuum energy associated with the

electromagnetic field. As a result of the holographic regularization method, a discrete

spectrum emerges for the dS AH, mirroring the characteristics of the spectrum observed

for a BH as delineated in Eq. (4). Note that one can use other regularization methods

[15, 16] to keep vacuum energy finite. However, the benefit of holographic regularization

is that the classical universe emerged from the quantum region as a universe without

the horizon, flatness, singularity, and cosmic coincidence problems [17].

The present paper is organized in the following manner: In Section 2, we delve into

a brief discussion regarding the WDW equation that governs the behaviour of a closed

FLRW universe in the presence of radiation as a matter field. Upon establishing the

fact that the dS AH radius undergoes quantization, we proceed to Section 3, where we

employ semiclassical arguments, to obtain the classical emergent dS universe. In section

4 the Stefan–Boltzmann law, the time-energy uncertainty relation, and the unified first

law of thermodynamics utilized to derive the corrected temperature and entropy of dS

space emerged from quantum cosmology. Lastly, Section 5 encompasses the conclusion

that further elucidates the findings and implications presented throughout this paper.

2. Quantum cosmology with holographic regularized vacuum energy

Consider a background minisuperspace, a spatially closed (k = 1), homogeneous, and

isotropic metric. The line element is

ds2 = −N2(t)dt2 + a2(t)hijdx
idxj , (6)

in which a(t) is the scale factor, N(t) is the lapse function, and hijdx
idxj = dχ2 +

sin2(χ)dΩ2
(2) is the line element on the unit 3-sphere, S3.

Consider the action functional for gravity and a minimally coupled electromagnetic

field Fµν with the standard form

I =
1

16πG

∫

M

(R − 2Λ)
√
−gd4x− 1

4

∫

M

FµνF
µν
√
−gd4x+ SGHY, (7)

where SGHY is the Gibbons–Hawking–York boundary term, g is the determinant of

the metric (6), and Λ is the cosmological constant. By Fourier expansions [15] of
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electromagnetic 4-vector fields Aµ

A0(x, t) =

∞
∑

j=0

j
∑

l=0

l
∑

m=−l

gjlm(t)Yjlm(x),

Ak(x, t) =

2
∑

B=0

∞
∑

j=jmin

j
∑

l=lmin

l
∑

m=−l

f jlm

(B) (t)Y
jlm

(B)k, k = 1, 2, 3,

(8)

in terms of the scalar hyperspherical harmonics, Yjlm(x), and the vector hyperspherical

harmonics, Y jlm

(B)k into the Maxwell action functional in the background (6), and choosing

the Coulomb-type (or radiation) gauge condition

A0 = 0, (3)∇iAi = 0, (9)

we arrive at the Arnowitt–Deser–Misner (ADM) Lagrangian and Hamiltonian (which

may be found in [15] for computational details), respectively

LADM =
3π

4G

(

− aȧ2

N
+Na−Λ

3
a3
)

+
1

2

2
∑

B=1

∞
∑

j=1

j
∑

l=1

l
∑

m=−l

( a

N
ḟ 2
(B)J−

N

a
(j+1)2f 2

(B)J

)

, (10)

HADM = N
{

− G

3πa
Π2

a −
3π

4G
a +

πΛ

4G
a3+

1

2a

2
∑

B=1

∞
∑

j=jmin

j
∑

l=lmin

l
∑

m=−l

(

Π2
(B)jlm + (j + 1)2f 2

(B)jlm

)

}

, (11)

where the expansion coefficients of Ai, f
jlm

(B) (t), depend only on the cosmic time t. Also,

Πa = − 3π
2G

aȧ
N

and Π(B)J = a
N
ḟ(B)J (we use compact notation J = {j, l,m}) are the

conjugate momenta of the scale factor, a, and f(B)J , respectively.

The ADM action of the model is given by

IADM =
1

16πG

∫ tf

ti

{

ȧΠa +
∑

B,J

ḟ(B)JΠ(B)J −NH
}

dt, (12)

where H is the super-Hamiltonian, given by

H = − G

3πa
Π2

a −
3π

4G
a+

πΛ

4G
a3 +

1

2a

∑

B,J

(

Π2
(B)J + (j + 1)2f 2

(B)J

)

. (13)

Therefore, the corresponding phase space is the cotangent bundle

Ω = {a, f(B)J , N,Πa,Π(B)J ,ΠN}. (14)

The ADM Lagrangian of the model (as all ADM Lagrangians in GR) is singular because

the conjugate momenta ΠN weakly vanishes

ΠN =
∂LADM

∂Ṅ
≈ 0, (15)
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meaning that the Legendre transformation

{a, f(B)J , N, ȧ, ḟ(B)J , Ṅ} → {a, f(B)J , N,Πa,Π(B)J ,ΠN}, (16)

is a surjective map and not an invertible map. Thus, we are working with a constrained

Hamiltonian system since the Legendre transform is non-invertible. According to Dirac

constraint theory, the fact that ΠN is weakly vanish means that N, the laps function, is

a freely selectable and physically irrelevant variable. Thus, the primary Hamiltonian of

the model is HPr = HADM + λΠN , where λ is a Lagrange multiplier. Now, we have

Π̇N = {ΠN , HPr} = H. (17)

This demonstrates that the primary constraint is not preserved, necessitating the

imposition of the following secondary [11] constraint

H ≈ 0. (18)

Utilizing the quantization map in the configuration space

(â, Π̂a) = (a,−i ∂
∂a

),

(f̂(B)J , Π̂(B)J ) = (f(B)J ,−i
∂

∂f(B),J

).
(19)

the super-Hamiltonian constraint (18) transforms to the WDW equation [15, 17], where

the super-Hamiltonian annihilate wavefunction

{

1

3πaM2
P

aq
d

da

(

a−q d

da

)

+
3πM2

P

4
a− 1

2a

∑

BJ

(

− ∂2(B)J

+ (j + 1)2f 2
(B)J

)

}

Ψ(a, f(B)J ) = 0, (20)

where q is the Hartle–Hawking–Verlinde [18, 19, 20] factor ordering parameter.

Note that the electromagnetic part of the above super-Hamiltonian,

Hm =
1

2a

∑

BJ

(

−∂2(B)J + (j + 1)2f 2
(B)J

)

, (21)

represents the contribution of an infinite number of harmonic oscillators with

eigenfrequencies ωj = (j + 1)/a.

If we rewrite the matter part of the super-Hamiltonian, instead of (f(B)J ,Π(B)J ), in

terms of the creation, Ĉ†

(B)J , and annihilation, Ĉ†

(B)J , operators

Ĉ(B)J :=
1

√

2(j + 1)

(

∂(B)J + (j + 1)f(B)J

)

,

Ĉ†

(B)J :=
1

√

2(j + 1)

(

−∂(B)J + (j + 1)f(B)J

)

,

[

Ĉ(B)J , Ĉ
†

(B′)J ′

]

= iδBB′δJJ ′,

(22)
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then, (21) will be

Hm =
1

a

2
∑

B=1

∞
∑

j=1

j
∑

l=1

l
∑

m=−l

(j + 1)

(

N̂(B)jlm +
1

2

)

, (23)

where N̂(B)J := Ĉ†

(B)J Ĉ(B)J are number operators. According to the above Hamiltonian,

the vacuum energy of the electromagnetic radiation is

H(vacuum)
m =

1

a

∞
∑

j=1

j(j2 − 1). (24)

All vacuum modes contribute to the zero-point energy, causing the sum in the above

relation to be divergent. Therefore, we must utilize a regularization method to reduce

it to a finite value. Inserting (24) into the WDW equation (20) gives us the following

WDW equation in the presence of the electromagnetic vacuum energy
{

− aq
d

da

(

a−q d

da

)

+

(

3π

2L2
P

)2

a2
(

1− a2

L2
Λ

)

− 3πaM2
PH(vacuum)

m

}

ψ(a) = 0, (25)

The contribution of vacuum energy is boundless, posing a significant challenge

to comprehending and regulating it effectively in the WDW equation. However, one

promising approach to regularize this energy is through holographic regularization, as

recently formulated in Ref. [17]. This novel technique, in summary, employs the Cohen–

Kaplan–Nelson holographic bound [21], which suggests that the UV cutoff of an effective

quantum field theory in a box of size L should be low enough that states of characteristic

energy density are not BHs. Employing this bound the authors of [17] showed that there

exist a jmax in which
jmax
∑

j=1

j(j2 − 1) ≃ j4max

4
=

1

4

(

LΛ

LP

)2

, (26)

as the cutoff on the wave number of the virtual photons. As per the findings in [17],

holographic vacuum energy regularization leads to the inception of a classical universe

at the Planck time, with a much larger scale factor than that of the Planck length.

Additionally, the emergence of such a universe can take place without any singularity,

horizon, or flatness issues. Notably, it proposes a fresh, non-anthropic solution to the

cosmic coincidence problem, which could potentially aid in eliminating fine-tuning.

Inserting (24) into the WDW equation (25) conducts us to the scale factor part of

the WDW equation, which is expressed as

−aq d
da

(

a−q dψ

da

)

+

(

3π

2L2
P

)2

a2
(

1− a2

L2
Λ

)

ψ(a) =
L2
Λ

L4
P

ψ(a). (27)

Let us redefine the wavefunction as π = a
q

2Φ(a). Then WDW equation (27) will

reduce to
1

2MP

d2Φ

da2
+ (E − V (a))Φ(a) = 0, (28)
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Figure 1. The ‘particle’s’ potential energy as a function of scale factor in the

WDW Eq. (28). The plot of V (a) for q > 0 or q < −2 is shown by the dot-line.

The potential energy plot for −2 < q < 0 is shown by the dashed line, while

the V (a) plot for q = 0 is represented by the red line. The dotted line shows

the harmonic potential term of V (a).

where realizes a Schrodinger equation of a ‘particle’ with Planck mass, and the following

potential energy, and energy, respectively

V (a) =
1

2MP

{

q

2
( q
2
+ 1)

a2
+

(

3π

2L2
P

)2

a2
(

1− a2

L2
Λ

)

}

, (29)

E =
1

2

(

LΛ

LP

)2

MP. (30)

The particle energy, E, is always less than the maximum of the potential barrier

Vmax =
9π2

32

(

LΛ

LP

)2

MP =

(

3π

4

)2

E. (31)

In addition, the classical turning points, see Fig. 1, are given by

a± =

√

1

2
± 1

2

√

1− 16

9π2
LΛ. (32)

It is straightforward to verify that at the turning point a−, the ratio of the

anharmonic term to the harmonic term of the potential is equal to a2−/L
2
Λ ≃ 0.05.

This suggests that the anharmonic part of the potential energy in (31) can be ignored

in the area (I) of Fig. 1 and in the semi-classical approximation. This is seen in Fig. 1,
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where the potential energy coincides with the quadratic potential (indicated with dots)

up to the classical turning point for all values of the ordering parameter q.

Ignoring the anharmonic term of potential in (29) in the region (I), the solution of

the WDW equation (28) is a confluent hypergeometric (Kummer) function. Thus,

ψ(a) = a
q

2Φ(a) = Ce
− 3πa2

4L2
P aq+1

1F1

(

− 1

6π

(

LΛ

LP

)2

;
q + 3

2
;
3πa2

2L2
P

)

, (33)

where C is a constant of normalization.

In order for the wavefunction to be square-integrable, it is imperative that the

hypergeometric series 1F1(α; β; ξ) be a finite polynomial of degree n. This can be

accomplished if and only if a non-negative integer n exists, such as α = −n. In

consequence, one arrives at the quantization of the dS AH radius

LΛ =

√

6π

(

n +
3 + q

4

)

LP ≃
√
6πnLP. (34)

Since we are interested in semiclassical approximation (n ≫ 1), we omitted (3 + q)/4.

Refs. [22, 23] yields a similar conclusion for quantization of dS radius; however, there,

the coefficient of n is 2 rather than 6π.

The energy scale of inflation is typically expected to be around 10−6MP. Therefore,

LΛ ≃ 106LP, which shows that n ≃ 1011.

3. Emerged de Sitter universe

In the present paper, we focus on a semiclassical approximation, disregarding operator

ordering. Consequently, we set the ordering parameter q to zero. The WKB, Linde–

Vilenkin or Hawking no-boundary, wavefunction of the one-dimensional WDW equation

mentioned above for a ≥ a+, (region III of Fig. 1), is

ψ(a)± ∝ 1√
Πa

exp

{

±i
∫ a

a+

Πada∓ i
π

4

}

, (35)

where Πa is the classical conjugate momenta of the scale factor, obtained from the

classical equation

Πa = −
√

2MP(E − V ) ≃ −LΛ

L2
P

√

1 +

(

3π

2L2
Λ

)2

a4. (36)

Note that in this relation we ignored the factor ordering and the harmonic potential

terms in potential (31) for a≫ a+.

For the leading order in the WKB approximation, it is easy to verify that the

wavefunctions (35) are also the eigenvectors of the operator Πa [24]

Π̂aψ±(a) = ±Πaψ±(a), (37)
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Therefore, the wavefunction described above exhibits an oscillatory pattern, indicating

an infinitely expanding, ψ−(a), (also a contracting, ψ+(a)) and the flat universe. The

definition of the conjugate momenta of the scale factor Πa = − 3π
2G

aȧ
N

in (11), and (36)

result

a2ȧ2 =

(

2LΛ

3π

)2
{

1 +

(

3π

2LΛ

)2

a4

}

, (38)

leading to the Friedmann equation

H2 =
4

3π2Λ

1

a4
+

Λ

3
, (39)

where we used the definition of LΛ =
√

3/Λ.

It is worth noting that the Friedmann equation (39) shows that the classical flat

universe with radiation and cosmological constant emerged after the quantum tunnelling

of the universe for a > a+. On the other hand, the same equation shows that the ratio

of the radiation density, ργ = 4
3π2Λ

1
a4
, to the density cosmological constant, ρΛ = Λ

8πG
at

a+ is
ργ
ρΛ

∣

∣

∣

a=a+

=
8

9π2

1

1 +
√

1− 16
9π2

≃ 0.05. (40)

This means that the emerged universe is already cosmological constant dominated just

after tunnelling. Therefore, for a > a+ (39) gives us the dS spacetime a = a0 exp
(

t
LΛ

)

with the Hubble constant

H =
1

LΛ
=

√

Λ

3
. (41)

The aforementioned Hubble parameter is responsible for the expansion of dS at a later

stage.

Note that in quantum cosmology, usually the assumption is tunnelling of the

Universe from ‘nothing’ into dS universe [25, 26, 27, 28]. Therefore, in these approaches,

we have only regions 2 and 3 of Fig. 1. However, in the model studied here, we have

a finite vacuum energy of the electromagnetic field, which is proportional to the square

of the dS radius. This energy generates region I of Fig. 1.

Note that in quantum cosmology, the quantum universe is often assumed to tunnel

from “nothing” into the dS space. As a result, only regions II and III of Fig. 1 are

present in these models. On the other hand, the electromagnetic field in the model

under study has a finite vacuum energy that is proportional to the square of the dS

radius. The energy in question produces region I of Fig. 1 and is responsible for the

quantisation of LΛ in (34).

At this juncture, we are poised to synthesize our findings. This synthesis will serve

to elucidate our route in subsequent sections aimed at deriving the temperature and

entropy of dS spacetime. Our observations indicate that the model universe tunnels

through a potential barrier and emerges in a dS universe, characterized by a quantized

cosmological constant. Consequently, as delineated in Eq. (34), the resultant system
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resembles a simplistic model akin to the hydrogen atom. In the hydrogen atom,

the interaction with electromagnetic radiation leads to the spontaneous emission and

absorption of electromagnetic radiation. This process entails emitted radiation energy

equating the energy differential between the atom’s energy levels. It is noteworthy

that the atomic spectrum exhibits non-negligible width [29] and the emitted radiation

adheres to the Stefan–Boltzmann law when in a state of equilibrium.

Similarly, we propose that the energy of emitted Hawking radiation from the

apparent horizon of dS space is equal to the Misner–Sharp–Hernandez (MSH) energy

difference of the simple quantized dS system between two states n + 1 and n. This,

in combination with the energy-time uncertainty relation, leads us to calculate the

time variation of MSH energy of dS spacetime due to thermal radiation. Assuming

the system is in thermodynamic equilibrium, the emitted thermal radiation follows

the Stefan-Boltzmann law, similar to the hydrogen atom example. This assumption

allows us to determine the dS temperature. Finally, by using the unified first law of

thermodynamics, we can calculate the entropy of dS space.

4. de Sitter entropy

Numerous studies, including [30, 31] as well as other referenced works, have extensively

researched the relationship between geometry and thermodynamics in FLRW spaces.

In particular, researchers have modified thermodynamic equations applicable to the

dS event and AH for the non-static AH of FLRW space. This AH is distinct from

the event horizon, which may not even exist, and is often considered a causal horizon

linked to gravitational temperature, entropy, and surface gravity in dynamic spacetimes.

References such as [32, 33, 34] support the argument that these properties also apply to

cosmological horizons.

The dS horizon has thermal properties, including temperature and entropy, similar

to those of the Schwarzschild event horizon, which was discovered through the utilization

of Euclidean field theory techniques [35]. In their study, Gibbons and Hawking [35]

evaluated the thermal bath perceived by a timelike geodesic observer in dS space while

carrying a (scalar) particle detector that is restricted to a small tube surrounding the

observer’s worldline.

Cai and Kim [31] originally showed the equivalence between the Friedmann equation

and the first law of thermodynamics on the AH in the framework of general relativity,

as well as in the Gauss–Bonnet and Lovelock gravity theories. Later, by Akbar and Cai

[36], this analysis was expanded to incorporate f(R) gravity and scalar-tensor gravity

theories. The first law of thermodynamics was therefore derived by the use of the

Friedmann equations. This connection between thermodynamics and cosmology has a

significant impact on our understanding of the universe [37, 38, 39].

In this part, let us review the Hamilton–Jacobi tunnelling proposition for BHs

and the FLRW model, a topic that is likely to captivate the audience. The Hawking

radiation computation on the FLRW AH was executed in the Refs. [40, 41]. The
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calculation was replicated by the authors of Refs. [39, 42] using the Hamilton–Jacobi

method within the Parikh–Wilczek framework, initially designed for BH horizons. In

this specific scenario, the emission rate of particles under the WKB approximation

signifies the probability of tunnelling for trajectories that are classically prohibited,

transitioning from the interior to the exterior of the horizon. This rate of emission

can be delineated as Γ ∼ exp (−2Im(I)) ≃ exp (−ω
T
), where I indicates the Euclidean

action with an imaginary part Im(I), ω denotes the angular frequency of the emitted

particles, and the Hawking temperature is deduced from the Boltzmann factor formula,

T = ω/2Im(I). The energy of the emitted particles, labelled as ω, is defined in a manner

that remains unaltered as ω = −Ka∇aI, where K
a symbolizes the Kodama vector and

the action I complies with the Hamilton–Jacobi equation. Although the definition of

energy is coordinate-invariant [43], it depends on the choice of time.

In the present article, we employ the irreducible energy (mass) through the

utilization of equation (34) as referenced in [8, 12] to determine the temperature and

entropy of the dS spacetime. This provides a simple and consistent interpretation of

entropy and energy for dS spacetime. The AH’s volume of dS spacetime, VAH, and the

MSH mass, MAH, emanating [44]

VAH =
4π

3
L3
Λ, M

(n)
AH =

Λ

8πG
VAH = γ

√
nMP, (42)

where, in obtaining the last equality, we used (34), and γ =
√

3π
2
. The above equation

shows that the MSH mass of dS spacetime is quantized, and its spectrum is identical to

the BH mass given by Eq. (4).

Let us assume that Hawking radiation is emitted from the dS horizon spontaneously

as the system transitions unpremeditatedly from state n+ 1 to the nearest lower state,

n. We can then refer to the frequency of the resulting thermal radiation as

ω0 =M
(n+1)
AH −M

(n)
AH =

γMP

∞
∑

i=1

(

1
2

i

)(

γMP

MAH

)2i−1
γ2M2

P

2MAH

(

1− γ2M2
P

4M2
AH

)

+O
(

MP

MAH

)5

. (43)

This shows that dS space radiates with a characteristic temperature T ∝ 1/MAH,

matching the dS Hawking temperature.

The lifetime of a quantum system in stateM (n+1) until its decay into the lower state

M (n), known as the characteristic time, has been defined as τn = ω0/ṀAH, where a dot

denotes time derivative, and ṀAH is the mass loss of the dS space due to its evaporation.

Due to the fluctuations of the vacuum of the quantum fields in the vicinity of the AH,

it is observed that the states’ width, denoted by Wn, is not negligible. The estimation

of the width of state n can be obtained through the utilization of established methods

[8] and expressed as Wn = βω0, where β is a numerical dimensionless factor. Utilizing

the uncertainty relation, Wnτn ≃ 1, and the above relations, one can easily find

ṀAH =
βγ4

4

M4
P

M2
AH

(

1− γ2M2
P

8M2
AH

)

. (44)
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In the context of BH thermodynamics, Bekenstein [45] utilized the above argument

to draw a parallel between a BH and an atomic system by highlighting the presence of

a quantum number and its associated mass level, much like in atomic structures. The

phenomenon of photon emission bears resemblance to atomic transitions, showcasing

similarities in the underlying processes. Bekenstein goes as far as delving into the

discussion of Einstein coefficients pertaining to the spontaneous emission and absorption

of a Schwarzschild BH, further solidifying the comparison to atomic behaviours. A

common formula is often applied to gauge the duration of the excited state of an

atomic nucleus in spectroscopy, mirroring the methods used in estimating aspects of

BH dynamics.

At this point, we utilize the Stefan–Boltzmann law to introduce an effective

temperature for AH. This serves as an extension of the concept applied in establishing

the temperature of a Schwarzschild BH [12, 13, 14]. If we make the additional

assumption that the source of the Hawking radiation arises from the highly blue-shifted

modes just inside the AH and simultaneously consider the dS horizon as a blackbody,

then the emitted power can be expressed using the well-established Stefan–Boltzmann

law

ṀAH = σAAHT
4, (45)

where σ = π2/60 is the Stefan–Boltzmann constant, and AAH = 4πL2
Λ is the surface

area of the AH. Equating the mass loss terms from Eqs. (44) and (45), and selecting

β = σ
πγ2 = 2

45
, we obtain the dS temperature

TAH =
1

2πLΛ

(

1− γ2L2
P

2L2
Λ

)

. (46)

It should be noted that as the authors of [46] demonstrated, the temperature (46)

is only well defined in the cosmic rest frame, in which the background acts as a physical

heat bath whose energy density obeys the Stefan–Boltzmann law. This justifies the

application of (45) for the AH of dS space. Furthermore, the Stefan–Boltzmann law

may be used to derive the thermodynamical characteristics of a variety of BHs, as

demonstrated by Refs. [47, 14, 13, 48, 49] and others.

In this article, we employ the first law of thermodynamics to obtain the entropy

of AH. The first law of thermodynamics for AH of FLRW universe, under the name of

‘unified first law,’ [44] is given by

TAHṠAH = ṀAH +
p− ρ

2
V̇AH, (47)

where SAH is the entropy of dS AH, and p = −ρ = Λ
8πG

represent the pressure and the

energy density of the vacuum in our study. Generally, ρ and p are the energy density and

the pressure of the cosmic fluid. It is important to note that the equation mentioned

above represents the differential form of the Friedmann equation [36]. Although the

expansion law varies in different gravity theories for both flat and non-flat universes as

demonstrated in Refs. [50, 51], the unified first law remains consistent in any gravity
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theory. Substituting the mass and volume change rates–both of which are intrinsically

negative–into the unified first law, ṀAH = − L̇AH

2L2
P
, V̇AH = −4πL2

AHL̇AH into unified first

law (47) gives us the entropy of the AH

SAH = SdS −
5πγ2

2
ln(SdS) + const., (48)

where SdS = πL2
Λ/L

2
P = AAH/(4G) is the well-known entropy of the dS horizon.

This shows that the entropy is quantized evenly, with the spacing between the

entropy spectrum given by ∆S = 6π2. Furthermore, the reading of ∆AAH = 24π2

reveals the quantum of the horizon area. The formula for entropy (48) resembles the

Bekenstein–Hawking entropy formulation for BHs [52]. However, it is important to note

that in this particular instance, the horizon’s properties depend on the observer, leading

to ambiguities with regard to which BH concepts can be extended to dS space.

It should be noted that the same leading order logarithmic correction term has

been obtained using other methods, as evidenced by Refs. [53, 54]. In Ref. [53],

the authors showed that by applying the generalized uncertainty principle (GUP) to

the AH of dS space, one can obtain the logarithmic term with a positive coefficient

πα/4, where α is a dimensionless constant realizing GUP. In Ref. [54], by applying the

tunnelling method, the author obtained the logarithmic term with a positive coefficient

4πα1/3, where α1 is an unknown constant. On the other hand, the authors of Ref.

[55] find the same correction term with a negative unknown coefficient, by arguing

that the entropy of dS space corresponds to the entanglement between disconnected

regions. Our research has shown that the coefficient of this term is determined by

the dimensionless positive constant γ =
√

3π/2, which is, in turn, dependent on the

regularization technique utilized in Eq. (26). Furthermore, incorporating higher-order

correction terms from expansion (43) leads to additional entropy terms proportional to

the inverse powers of SdS. These extra terms and the logarithmic term are typically

viewed as quantum correction terms for the semiclassical analysis [52]. The logarithmic

correction completely predominates over other corrections in the large limit of the dS

radius. Furthermore, since the logarithmic entropy correction is inextricably linked to

the structure of all quantum gravity models, regardless of the methods used, it appears

to be universal.

5. Conclusion

In this investigation, we conducted a rigorous thermodynamic analysis of dS space,

particularly emphasizing its AH. Employing the unified first law of thermodynamics as

our analytical framework, we derived an entropy formula for the dS AH incorporating

quantum corrections. Our finding of a logarithmic correction term enriches the

complexity of dS AH thermodynamics and challenges the conventional understanding.

Significantly, we unveiled that the entropy of dS AH exhibits quantized spectral spacing,

a characteristic reminiscent of black hole entropy. However, it’s crucial to acknowledge
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the observer-dependent attributes of the dS horizon when attempting to extend black

hole thermodynamic concepts to dS spaces. The implications of our research are

manifold: they deepen the scientific comprehension of dS space thermodynamics, open

avenues for exploring the intriguing but nuanced relationship between dS space and black

holes, and lay a foundation for potential advancements in cosmological applications.
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