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It is useful to have a criterion for when the
predictions of an operational theory should be
considered classically explainable. Here we take
the criterion to be that the theory admits of a
generalized-noncontextual ontological model. Ex-
isting works on generalized noncontextuality have
focused on experimental scenarios having a sim-
ple structure: typically, prepare-measure scenar-
ios. Here, we formally extend the framework of
ontological models as well as the principle of gen-
eralized noncontextuality to arbitrary composi-
tional scenarios. We leverage a process-theoretic
framework to prove that, under some reasonable
assumptions, every generalized-noncontextual on-
tological model of a tomographically local opera-
tional theory has a surprisingly rigid and simple
mathematical structure—in short, it corresponds
to a frame representation which is not overcom-
plete. One consequence of this theorem is that the
largest number of ontic states possible in any such
model is given by the dimension of the associated
generalized probabilistic theory. This constraint
is useful for generating noncontextuality no-go
theorems as well as techniques for experimentally
certifying contextuality. Along the way, we ex-
tend known results concerning the equivalence
of different notions of classicality from prepare-
measure scenarios to arbitrary compositional sce-
narios. Specifically, we prove a correspondence
between the following three notions of classical ex-
plainability of an operational theory: (i) existence
of a noncontextual ontological model for it, (ii) ex-
istence of a positive quasiprobability representa-
tion for the generalized probabilistic theory it de-
fines, and (iii) existence of an ontological model for
the generalized probabilistic theory it defines.
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1 Introduction

For a given operational theory, underwhat circumstances
is it appropriate to say that its predictions admit of a clas-
sical explanation? This article starts with the presump-
tion that this question is best answered as follows: the
operational theory must admit of an ontological model
that satisfies the principle of generalized noncontextu-
ality, defined in Ref. [1]. Admitting of a generalized-
noncontextual ontological model subsumes several other
notions of classical explainability, such as admitting of a
positive quasiprobability representation [2, 3], being em-
beddable in a simplicial generalized probabilistic theory
(GPT) [4–7], and admitting of a locally causalmodel [8, 9].
(Note that the first two of these results are first proved
for general compositional scenarios in this paper.) Addi-
tionally, generalized noncontextuality can be motivated
as an instance of a methodological principle for theory
construction due to Leibniz, as argued in Ref. [10] and
the appendix of Ref. [11]. Finally, operational theories
that fail to admit of a generalized-noncontextual ontolog-
ical model provide advantages for information processing
relative to their classically explainable counterparts [12–
19]. Because the notion of generalized noncontextuality
is the only one we consider in this article, we will often
refer to it simply as ‘noncontextuality’.

To date, prepare-measure scenarios are the experimen-
tal arrangements for which the consequences of general-
ized noncontextuality have been most explored. A few
works have also studied experiments where there is a
transformation or an instrument intervening between the
preparation and the measurement [18, 20–24]. However,
generalized noncontextuality has not previously been
considered in experimental scenarios wherein the compo-
nent procedures are connected together in arbitraryways,
that is, in arbitrary compositional scenarios. Indeed, gen-
eralized noncontextuality has not even been formally de-
fined at the level of compositional theories prior to this
work; rather, it and several related concepts have only
been formally defined for particular types of scenarios.
In this work, we give a process-theoretic [25–28] formu-
lation of the various relevant notions of operational the-
ories and of representations thereof, enabling the study
of noncontextuality in arbitrary compositional scenarios,
and indeed of the noncontextuality of operational theo-

ries themselves. We then derive a number of results re-
garding the structure of noncontextual representations
of operational theories, and we ultimately put strong con-
straints on the nature of these representations.

Like Ref. [4], this work is sensitive to the distinction
between operational theories and quotiented operational
theories, commonly termed generalized probabilistic the-

ories (or GPTs) [27–31]. In an operational theory, one
understands the primitive processes (e.g., preparation,

transformation, and measurement procedures) to be lists
of laboratory instructions detailing actions that can be
taken on some physical system. Such a theory also makes
predictions for the statistics of outcomes in any given ex-
perimental arrangement (without making any attempt
to explain these predictions). As lists of laboratory in-
structions, the processes in an operational theory con-
tain details which are not relevant to the observed statis-
tics; any such details are termed the context of the given
process [1]. In contrast, a quotiented operational theory,
or GPT, arises when one removes this context informa-
tion by identifying any two processes that differ only by
context—that is, which lead to all the same statistical pre-
dictions, and so are said to be operationally equivalent.

Our formalization of both operational theories and
generalized probabilistic theories follows that of quo-
tiented and unquotiented operational probabilistic the-
ories (OPTs), as in Refs. [32–34]. For completeness, we
provide a pedagogical introduction to our notation and
conventions in Sec. 2. The framework presented here is
also a precursor to a more novel framework presented in
Ref. [35], which is motivated by the objective of cleanly
separating the causal and inferential aspects of a theory.

There are multiple different representations of opera-
tional theories and generalized probabilistic theories that
one can consider, often motivated by the aim of explain-

ing the predictions of the theory by appealing to some un-
derlying realist model of reality. The quintessential sort
of explanation is an ontological model of an operational
theory, which presumes that the systems passing between
experimental devices have properties, and that the out-
comes of measurements reveal information about these
properties. A complete specification of these properties
for a given system is termed its ontic state. The variabil-
ity in this ontic state mediates causal influences between
the devices. Ontological models may be defined for either
operational theories or generalized probabilistic theories.
Another type of representation which has been widely
considered (particularly by the quantum optics commu-
nity) is that of quasiprobabilistic representations. Such
representations are only defined for generalized proba-
bilistic theories, and can be viewed as ontological models
using quasiprobability distributions—that is, analogues
of probability distributions in which some of the values
can be negative.

Our formalization of ontological models is more gen-
eral than that which is usually given, since we define
them in a compositional manner, and for arbitrary theo-
ries rather than for particular scenarios. (Although note
that this was already done for the special case of quan-
tum theory in Ref. [36].) Furthermore, our formalization
of quasiprobabilistic representations is more general than
that which is usually given, since we define them for ar-
bitrary GPTs (not necessarily quantum). In this latter
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case, our formalization was strongly influenced by the
prescription suggested in Ref. [37].

We can now return to the question of when a theory’s
predictions admit of a classical explanation.

As argued above, our guiding principle is that of non-
contextuality. The principle of noncontextuality is a con-
straint on ontological models of operational theories:
namely, that the representation of operational processes
does not depend on their context. That is, operational
processes which lead to identical predictions about op-
erational facts are represented by ontological processes
which lead to identical predictions about ontological
facts. If such a noncontextual ontological model exists,
we take it to be a classical realist explanation of the pre-
dictions of the operational theory. Hence, the notion of
classical-explainability for operational theories is the ex-
istence of a generalized-noncontextual ontological model.

If one takes the processes of a generalized probabilistic
theory as the domain of one’s representation map, then
there is no context on which a given representation (be it
an ontological model or a quasiprobabilistic representa-
tion) could conceivably depend.This pointwas firstmade
in Ref. [4], and we expand on it in this work, in particular
in Appendix A. In such an approach, one cannot directly
take noncontextuality—independence of context—as a
notion of classicality for generalized probabilistic theo-
ries. Still, Ref. [4] showed that, in prepare-measure sce-
narios, the notion of noncontextuality for operational the-
ories induces a natural and equivalent notion of classical-
ity for generalized probabilistic theories. In particular, a
generalized probabilistic theory admits of a classical ex-
planation if and only if there is a simplex that embeds
its state space and furthermore the hypercube of effects
that is dual to this simplex embeds its effect space. Such
an embedding can be viewed as an ontological model of
a GPT [4, 5]. Hence, the resulting notion of classical ex-
plainability for a GPT is the existence of an ontological
model for it. Our work extends this result to the case of
arbitrary compositional theories and scenarios.

We also extend (from prepare-measure scenarios to ar-
bitrary compositional scenarios) the proof that positive
quasiprobabilistic models are in one-to-one correspon-
dence with noncontextual ontological models [2, 4]. Note
that our proof—like the special case given in Ref. [4]—
corrects some issues with the original arguments in
Ref. [2].1

1Ref. [2] was not careful to distinguish between quotiented and
unquotiented operational theories, and as such did not stipulate
whether quantum theory was being considered as an operational
theory or as a GPT. As a result, it failed to note that the most
natural domain for a quasi-probabilistic representation is quantum
theory as a GPT, while the domain of a noncontextual ontologi-
cal representation is necessarily quantum theory as an operational

theory. Also as a consequence, it argued that a positive quasiproba-
bility representation is the same thing as a noncontextual ontologi-

Note that simplex-embeddability can also be moti-
vated as a notion of classicality as follows. First, a simpli-
cial GPT, i.e., one in which all of the state spaces are sim-
plices, transformations are arbitrary convex-linear maps
between these simplices, effects are elements of the hy-
percubes which are dual to the simplices, and which is
tomographically local, has been argued to capture a no-
tion of classicality among operational theories [29, 30].
If a GPT satisfies simplex-embeddabiltiy, then it follows
that the set of states and the set of effects therein can
be conceptualized as a subset of those arising in a simpli-
cial GPT, implying that every experiment describable by
the GPT can be simulated within the simplicial GPT. It
follows that simplex embeddability captures the possibil-
ity of simulatability within a classical operational theory,
hence a notion of classicality. Furthermore, the existence
of a positive quasiprobabilistic representation is a notion
of classicality in the sphere of quantum optics. Hence, our
results ultimately show that three independently moti-
vated notions of classicality (namely these two, and the
existence of a noncontextual ontological model of an op-
erational theory) all coincide in general compositional
situations (such as is relevant, for example, in quantum
computation).

Most importantly, this equivalence allows us to prove
that every noncontextual ontological model of a tomo-
graphically local operational theory which satisfies an as-
sumption of diagram preservation has a rigid and simple
mathematical structure. In particular, every such model
is given by a diagram-preserving positive quasiprobabilis-
tic model of the GPT associated with the operational
theory, and we prove that every such quasiprobabilistic
model is in turn a frame representation [3, 38] that is not
overcomplete. As a corollary, it follows that the number
of ontic states in any such model is no larger than the di-
mension of the GPT space.

This rigid structure theorem and bound on the num-
ber of ontic states shows that there is much less freedom
in constructing noncontextual ontological models than
previously recognized. In particular, it means that once
the representation of the states is fixed (i.e., by choice
of frame) then there is no remaining freedom in the rep-

resentations of the measurements and transformations.
Moreover, in many ontological models the number of on-
tic states is taken to be infinite (e.g., corresponding to
points on the surface of the Bloch ball); however, all
such models are immediately ruled out by our bound on
the number of ontic states. These results also imply new

cal model. Our recasting of the relation between quasiprobability
representations and noncontextual ontological representations is
explicit about such distinctions, and consequently we show that
a positive quasiprobability representation is not in and of itself a
noncontextual ontological model. Rather, it is just that the sets of
these are in one-to-one correspondence.
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proofs of the fact that operational quantum theory does
not admit of a generalized-noncontextual model and sim-
plifies the problem of witnessing generalized contextual-
ity experimentally.

Categorically, we view the GPT as being a particu-
lar monoidal category, and the representations thereof
as being particular strong monoidal functors into sub-
categories of FVectR (the category of linear maps be-
tween finite dimensional real vector spaces). In the case
of tomographically local GPTs, our structure theorem
states that any such functor is naturally isomorphic to a
standard representation of a tomographically local GPT
within FVectR. In particular, this means that ontologi-
cal models for such theories, should they exist, are essen-
tially unique.

We now summarize our key results and main assump-
tions in more detail.

1.1 Results

We begin by providing informal statements of our main
results. The first result in this list extends the results of
Ref. [4] from the case of prepare-measure scenarios to ar-
bitrary scenarios. The second entry in the list constitutes
the main technical result of this work. The third is a pri-
mary consequence of this for the study of noncontextual
ontological models.

1. We refine and generalize the notions of quasiproba-
bilistic models and ontological models of operational
theories and of GPTs to arbitrary compositional sce-
narios and theories, and we show a triple equivalence
between:
(a) a positive quasiprobabilistic model of the GPT

associated to the operational theory,
(b) an ontological model of the GPT associated to

the operational theory, and
(c) a noncontextual ontological model of the oper-

ational theory.
2. We then prove a structure theorem for representa-

tions of a GPT which implies that:
(a) every diagram-preserving quasiprobabilistic

model of a GPT is a frame representation that
is not overcomplete, i.e., an exact frame repre-
sentation

(b) every diagram-preserving ontological model of
a GPT is a positive exact frame representation,
and

(c) every diagram-preserving noncontextual onto-
logical model of an operational theory can be
used to construct a positive exact frame rep-
resentation of the associated GPT, and vice
versa.

3. A key corollary of these is that the cardinality of the
set of ontic states for a given system in any diagram-

preserving ontological model is equal to the dimen-
sion of the state space of that system in the GPT.
For instance, a noncontextual ontological model of
a qudit must have exactly d2 ontic states. Similarly,
the dimension of the sample space of any diagram-
preserving quasiprobabilistic model is the GPT di-
mension.

These results show that by moving beyond prepare-
measure scenarios, the concept of a noncontextual on-
tological model of an operational theory becomes con-
strained to a remarkably specific and simple mathemati-
cal structure. Moreover, our bound on the number of on-
tic states yields new proofs of the impossibility of a non-
contextual model of quantum theory (e.g., via Hardy’s
ontological excess baggage theorem [39]) and dramatic
simplifications to algorithms for witnessing contextuality
in experimental data (e.g. reducing the algorithm intro-
duced in Ref. [4] from a hierarchy of tests to a single test).

1.2 Assumptions

The assumptions that are needed to prove our results will
be formally introduced as they become relevant. For the
sake of having a complete list in one place, however, we
provide an informal account of them here. These assump-
tions can be divided into two categories.

First, we have assumptions limiting the sorts of opera-
tional theories that we are considering.

1. Unique deterministic effect: We consider only opera-
tional theories in which all deterministic effects (cor-
responding to implementing a measurement on the
system and marginalizing over its outcome) are op-
erationally equivalent [32].

2. Arbitrary mixtures: We assume that every mixture
of procedures within an operational theory is also an
effective procedure within that operational theory.
That is, for any pair of procedures in the theory,
there exists a third procedure defined by flipping a
weighted coin and choosing to implement either the
first or the second, depending on the outcome of the
coin flip.

3. Finite dimensionality: We assume that the dimen-
sion of the GPT associated to the operational the-
ory is finite.

4. Tomographic locality: For some of our results, we
moreover limit our analysis to operational theories
whose corresponding GPT is tomographically local
(namely, where all GPT processes on composite sys-
tems can be fully characterized by probing the com-
ponent systems locally [29]).

Second, we have assumptions that concern the onto-
logical model (or quasiprobabilistic model).

1. Deterministic effect preservation: Any determinis-
tic effect in the operational theory is represented by
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marginalization over the sample space of the system
in the ontological (or quasiprobabilistic) model.

2. Convex-Linearity: The representation of a mixture
of procedures is given by the mixture of their rep-
resentations, and the representation of a coarse-
graining of effects is given by the coarse-graining of
their representations.

3. Empirical adequacy: The ontological (or quasiprob-
abilistic) representations must make the same pre-
dictions as the operational theory.

4. Diagram preservation: The compositional structure
of the ontological (or quasiprobabilistic) representa-
tionmust be the same as the compositional structure
of the operational theory. (Formally, this means that
we take these representations to be strong monoidal
functors.)

The most significant assumption regarding the scope
of operational theories to which our results apply is that
of tomographic locality. Among the assumptions concern-
ing the nature of the ontological (or quasiprobablistic)
model, the only one that is not completely standard is
that of diagram preservation.

As we will explain, however, the assumption of dia-
gram preservation does not restrict the scope of applica-
bility of our results; rather, it is a prescription for how
one is to apply our formalism to a given scenario. Fur-
thermore, our main results do not require the full power
of diagram preservation, but rather can be derived from
the application of this assumption to a few simple scenar-
ios: the identity operation, the prepare-measure scenario,
and the measure-and-reprepare operation. However, full
diagram preservation is a natural generalization of these
assumptions, as well as of a number of other standard
assumptions that have been made throughout the liter-
ature on ontological models, and so we will build it into
our definitions rather than endorsing only those partic-
ular instances that we need for the results in this paper.
We discuss these points in more detail in Section 5, and
provide a defense of full diagram preservation in Ref. [35].

2 Preliminaries

In this section we provide a pedagogical introduction to
the diagrammatic notation that we will employ and its
application to operational theories, tomographically lo-
cal GPTs, and their ontological and quaisiprobabilistic
representations. This section should be treated largely as
a review of the relevant literature, which we include to
have a self-contained presentation of the necessary for-
malism for our main results.

2.1 Process theories

In this paper we will represent various types of theories as
process theories [26], which highlights the compositional
structures within these theories. We will express certain
relationships that hold between these process theories
in terms of diagram-preserving maps2. We give a brief
introduction to this formalism here. Readers who would
like a deeper understanding of this approach can read,
for example, Refs. [25–28, 35].

A process theory P is specified by a collection of sys-
tems A,B,C,... and a collection of processes on these sys-
tems. We will represent the processes diagrammatically,
e.g.,





f

B
B A

A C

,

C

a

D

E

,

A

c

E

,

B B

b

D





⊂P, (1)

where we work with the convention that input systems
are at the bottom and output systems are at the top. We
will sometimes drop system labels, when it is clear from
context. Processes with no input are known as states,
those with no outputs as effects, and those with neither
inputs nor outputs as scalars. The key feature of a process
theory is that this collection of processes P is closed under
wiring processes together to form diagrams; for example,

f

B B

A

A

C

a

b
c

D

E

D

∈P. (2)

Wirings of processes must connect outputs to inputs such
that systems match and no cycles are created.

We will commonly draw ‘clamp’-shaped higher-order

2This work could also be presented in the language of category
theory. In particular, process theories can be viewed as symmetric
monoidal categories [26] and diagram preserving maps as strong
monoidal functors between them [40].
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processes [41, 42] such as:

τ

A

B

(3)

which we call testers. These can be thought of as some-
thing which maps a process from A to B to a scalar via:

T

A

B

7→ T τ

A

B

. (4)

These are not primitive notions within the framework of
process theories and instead are always thought of as be-
ing built out of particular state, effect and auxiliary sys-
tem3. In other words, the tester τ is really just shorthand
notation for a triple (sτ ,eτ ,Wτ ) where:

τ

A

B

=

A

B

sτ

eτ

Wτ . (5)

A diagram-preserving map M :P →P ′ from one pro-
cess theory P to another, P ′, is defined as a map taking
systems in P to systems in P ′, denoted as

S →M(S), (6)

and processes in P to processes in P ′. Taking inspiration
from [40, 44] this will be depicted diagrammatically as

M ::

A1

B1 Bm

An

f

···

···

7→

A1

B1 Bm

An

f

M

M(A1) M(An)

M(B1) M(Bm)

···

···

···

···

, (7)

such that wiring together processes before or after apply-

3The recent work of Ref. [43] has shown how these, and other,
higher order processes can actually be incorporated as primitive
notions within a process-theoretic framework.

ing the map is equivalent, that is:

f

B B

A

A

C

a

b
c

D

E

D

M

M(D)

M(A) M(D)

= f

a

b

c

M

M

M

M

D

B B

B B

A E

A

A C

C E

D

M(D)

M(B)

M(B)

M(E)

M(A) M(D)

M(C)

M(A)

, (8)

and such that wirings are mapped to wirings, e.g.

B B

D

M

M(D)

M(B) M(D)M(B)

M(B) M(B)

=

M(D)

M(B) M(D)M(B)

M(B) M(B)

. (9)

In particular, this means that M maps the identity pro-
cesses in P to identity processes in P ′.

Remark 2.1. If we interpret these process theories as
symmetric monoidal categories, then any strict monoidal
functor M̄ defines a diagram preserving map M , simply by
taking M(A)=M̄(A) and M(f)=M̄(f). Note that this
latter equation is not obviously well-typed, as, according
to Eq. (7), M(f) : M(A1) ⊗ ··· ⊗ M(An) → M(B1) ⊗
···M(Bm) while M̄(f) : M(A1 ⊗···⊗An) → M(B1 ⊗···⊗
Bm). However, in the case of strict monoidal functors, we
have that M̄(A1 ⊗···⊗An) = M̄(A1)⊗···⊗M̄(An), and
so this is not actually a problem. If, on the other hand,
one instead has a strong monoidal functor, M̄ , in which
this equality is relaxed to the natural isomorphism [45] µ,

M̄(A1⊗···⊗An)
µ
∼=M̄(A1)⊗···⊗M̄(An), one can still use

this to define a diagram preserving map. The difference is
that now (following Ref. [40]) we need to use the natural
isomorphisms µ in order to define M(f), that is, we define
M(f) := µ−1 ◦M̄(f)◦µ. In this paper we will always be
considering strong monoidal functors where M̄(I) = I,

but if one merely had that M̄(I)
ϵ
∼=I, then one must also

incorporate this natural isomorphism when defining the
action of M on states, effects, and scalars.

We will also use the concept of a sub-process theory,
where the intuitive idea is that P ′ is a sub-process theory
of P, denoted P ′ ⊆ P, if the processes in P ′ are a subset
of the processes in P that are themselves closed under
forming diagrams. Formally, we do not require that a
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sub-process theory is such a theory, but only that it is
equivalent to such a theory; that is, we say that P ′ ⊆P if
and only if there exists a faithful strong monoidal functor
from P ′ into P.

The key process theory which underpins this work is
FVectR, defined as follows:

Example 2.2 (FVectR). Systems are labeled by finite
dimensional real vector spaces V where the composition
of systems V and W is given by the tensor product V ⊗
W . Processes are defined as linear maps from the input
vector space to the output vector space. Composing two
processes in sequence corresponds to composing the linear
maps, while composing them in parallel corresponds to
the tensor product of the maps. If a process lacks an
input and/or an output then we view them as linear maps
to or from the one-dimensional vector space R. Hence,
processes with no input correspond to vectors in V and
processes with no output to covectors, i.e., elements of
V ∗. This implies that scalars—processes with neither
inputs nor outputs—correspond to real numbers. FVectR
is equivalent to the process theory of real-valued matrices.
However, representing the former in terms of the latter
requires artificially choosing a preferred basis for the vector
spaces.

The first is the process theory of (sub)stochastic pro-
cesses. Here, systems are labeled by finite sets Λ which
compose via the Cartesian product. Processes with in-
put Λ and output Λ′ correspond to (sub)stochastic maps,
and can be thought of as functions

f :Λ×Λ′ → [0,1] :: (λ,λ′) 7→f(λ′♣λ) (10)

where for all λ ∈ Λ we have
∑

λ′∈Λ′ f(λ′♣λ) ≤ 1. When
this inequality is an equality, they are said to be stochas-

tic (rather than substochastic). For any pair of functions
f :Λ×Λ′ → [0,1] and g :Λ′×Λ′′ → [0,1] (where the output
type of f matches the input type of g), sequential com-
position is given by g◦f :Λ×Λ′′ → [0,1] via the following
rule for composing the functions:

g◦f(λ′′♣λ) :=
∑

λ′∈Λ′

g(λ′′♣λ′)f(λ′♣λ). (11)

For any pair of functions f : Λ×Λ′ → [0,1] and g : Λ′′ ×
Λ′′′ → [0,1], parallel composition is given by g⊗f : (Λ′ ×
Λ)×(Λ′′′×Λ′′)→ [0,1] via:

g⊗f((λ′′′,λ′′)♣(λ′,λ)) :=g(λ′′′♣λ′)f(λ′′♣λ). (12)

It is sometimes more convenient or natural to take an
alternative (but equivalent) point of view on this process
theory (e.g., this view makes it more clear that this is a
sub-process theory of FVectR). In this alternative view,
the systems are not simply given by finite sets Λ, but
rather are taken to be the vector space of functions from Λ
toR, denotedR

Λ. Then, rather than taking the processes
to be functions f : Λ×Λ′ → [0,1], one takes them to be

linear maps from R
Λ to R

Λ
′

, denoted by:

f :RΛ →R
Λ

′

::v 7→ f(v) (13)

where for all λ′ ∈ Λ′, we define f(v)(λ′) :=∑
λ∈Λ

f(λ′♣λ)v(λ). It is then straightforward to show that
sequential composition of the stochastic processes corre-
sponds to composition of the associated linear maps and
that parallel composition of the stochastic processes cor-
responds to the tensor product of the associated linear
maps. For example, for sequential composition we have
that for all v∈R

Λ,

(g◦f)(v)(λ′′)=
∑

λ∈Λ

g◦f(λ′′♣λ)v(λ) (14)

=
∑

λ∈Λ

∑

λ′∈Λ′

g(λ′′♣λ′)f(λ′♣λ)v(λ) (15)

=
∑

λ′∈Λ′

g(λ′′♣λ′)

(
∑

λ∈Λ

f(λ′♣λ)v(λ)


(16)

=
∑

λ′∈Λ

g(λ′′♣λ′)f(v)(λ) (17)

=g(f(v))(λ) (18)

Moreover, consider processes with no input—that is, lin-
ear maps p :R→R

Λ. By using the trivial isomorphism
R ∼= R

⋆ where ⋆ is the singleton set ⋆ := ¶∗♢, one can
see that these correspond to functions p : ⋆ × Λ → [0,1]
such that

∑
λ∈Λ

p(λ♣∗) ≤ 1; following standard conven-
tions, we can denote this as p(λ) :=p(λ♣∗). So p just cor-
responds to a subnormalised probability distribution, as
expected. Similarly, processes with no output, such as
r : RΛ → R, correspond to response functions, that is,
functions r : Λ × ⋆ → [0,1] such that for all λ one has
r(λ) := r(∗♣λ) ∈ [0,1]. Finally, it follows that processes
with neither inputs nor outputs, s :R→R, correspond to
elements of [0,1], i.e., to probabilities.

Summarizing the above, we have:

Example 2.3 (SubStoch). We define SubStoch as
a subtheory of FVectR where systems are restricted to
vector spaces of the form R

Λ and processes are restricted
to those that correspond to (sub)stochastic maps.

The second subtheory of FVectR is QuasiSubStoch,
which is the same as the process theory of (sub)stochastic
processes, but where the constraint of positivity is
dropped. The systems can be taken to be finite sets Λ,
and the processes with input Λ and output Λ′ can be
taken to be functions

f :Λ×Λ′ →R :: (λ,λ′) 7→f(λ′♣λ). (19)

These are said to be quasistochastic (as opposed to qua-
sisubstochastic) if they moreover satisfy

∑
λ∈Λ′f(λ′♣λ)=

1 for all λ∈Λ. The way that these compose and are rep-
resented in FVectR is exactly the same as in the case of
substochastic maps.
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Summarizing, we have

Example 2.4 (QuasiSubStoch). We define
QuasiSubStoch as the subtheory of FVectR where sys-
tems are restricted to vector spaces of the form R

Λ and
processes are those that correspond to quasi(sub)stochastic
maps.

By construction, SubStoch ⊂ QuasiSubStoch ⊂
FVectR; however, in contrast to FVectR, SubStoch
and QuasiSubStoch do come equipped with a preferred
basis for each system. It is known that quantum theory
as a GPT (QT) can be represented as a subtheory of
QuasiSubStoch (see, for example, [37]).

2.2 Operational theories

We now introduce a process-theoretic presentation of the
framework of operational theories as defined in Ref. [1],
resulting in a framework that is essentially that of (unquo-
tiented) operational probabilistic theories [34]. An oper-
ational theory Op is given by a process theory specifying
a set of physical systems and the processes which act on
them (where processes are viewed as lists of lab instruc-
tions), together with a rule for assigning probabilities to
any closed process. A generic laboratory procedure has
an associated set of inputs and outputs, and will be de-
noted diagrammatically as:

T

...

...
A1 An

B1 Bm

. (20)

Of special interest are processes with no inputs and pro-
cesses with no outputs, depicted respectively as

P
,

E
. (21)

The former is viewed as a preparation procedure and the
latter is viewed as an effect, corresponding to some out-
come of some measurement. We depict the probability
rule by a map p, as

E

P
p

=Pr(E,P )∈ [0,1]. (22)

That is, the application of p on any closed diagram yields
a real number between 0 and 1. Note that this is not
a diagram-preserving map as it can only be applied to
processes with no input and no output. (Nonetheless, we
will see shortly how it has a diagram-preserving extension
to arbitrary processes—namely, the quotienting map).

This probability rule must be compatible with certain
relations that hold between procedures [31, 41]. First, it

must factorise over separated diagrams, for example,

E1

P1

p

P2

E2

=
E1

P1

p

E2

P2

p

(23)

= Pr(E1,P1)Pr(E2,P2). (24)

Moreover, if T1 is a procedure that is a mixture of T2 and
T3 with weights ω and 1−ω respectively4, then it must
hold that for any tester τ , we have

T1 τ

p

=ω T2 τ

p

+(1−ω) T3 τ

p

(25)

Additionally, if one operational effect E1 is the coarse-
graining of two others, E2 and E3, then Pr(E1,P ) must
be the sum of Pr(E2,P ) and Pr(E3,P ) for all P .

Our main result holds only for operational theories
satisfying the following property:

∀E1,E2,P1,P2 T

E1 E2

p

P1 P2

= T ′

E1 E2

p

P1 P2

⇐
⇒

∀E,P T

E

p

P

= T ′

E

p

P

. (26)

In other words, any two processes T and T ′ that give the
same statistics for all local preparations on their inputs
and all local measurements on their outputs also give the
same statistics in arbitrary circuits. Such operational the-
ories are alternatively characterized by the fact that the
GPT defined by quotienting them satisfies tomographic
locality, as we show below.

Two processes with the same input systems and output
systems are said to be operationally equivalent [1] if they
give rise to the same probabilities no matter what closed
diagram they are embedded in. The testers from Eq. (5)
facilitate a convenient diagrammatic representation of
this condition. That is, two processes are operationally

4That is, either T2 or T3 is implemented, as determined by the
outcome of a weighted coin-flip.
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equivalent, denoted by

T T ′≃

A A

B B

(27)

if they assign equal probabilities to every tester5, so that

∀τ T τ

p

T ′ τ

p

= . (28)

It is easy to see that operational equivalence defines an
equivalence relation. Hence, we can divide the space of
processes into equivalence classes, and each process T in
the operational theory can be specified by its equivalence
class T̃ , together with a label cT of the context of T ,
specifying which element of the equivalence class it is. For
a given T , cT provides all the information which defines
that process which is not relevant to its equivalence class.
Hence, each procedure is specified by a tuple, T :=(T̃ ,cT ),
and we will denote it as such when convenient. In the case
of closed diagrams, the equivalence class can be uniquely
specified by the probability given by the map p, and so
any information beyond this forms the context of the
closed diagram.

Next, we define a quotienting map ∼ which maps pro-
cedures into their equivalence class (exactly as is done to
construct quotiented operational probabilistic theories
in Ref. [34]). Given a characterization of each procedure
as a tuple of equivalence class and context, the quotient-
ing map picks out the first element of this tuple, taking
(T̃ ,cT )→ T̃ . 6 Diagrammatically, we have

(T̃ ,cT )
∼

= T̃ .

We prove that it is diagram-preserving in Appendix E.1.
For processes which are closed diagrams, one can al-
ways choose the representative of the equivalence class
to be the real number specified by the probability rule.

Hence, the map ∼:Op→ Õp can be viewed as a diagram-
preserving extension of the probability rule p. This im-
plies that the quotiented operational theory reproduces

5The recognition that (for operational theories corresponding to
GPTs that are not tomographically local) one must consider testers
that allow for side channels can be found in Refs. [31, 34, 46] .

6This notation is very convenient in practice, but it is worth
noting that it has the awkward feature that two operationally

equivalent procedures S and T would map to S̃ and T̃ (respectively),
which constitute two distinct labels for the same equivalence class

(since S̃ = T̃ ).

the predictions of the operational theory, since

P̃

Ẽ

=

P

E

∼

∼

=
P

E

∼

=
P

E

p

= Pr(E,P ). (29)

It is worth noting that in the quotiented operational the-
ory, a closed diagram is equal to a real number (the prob-
ability associated to it), while in the operational theory
these are not equal until the map p is applied to the closed
diagram.

We will assume that every deterministic effect for a
given system, A, in the operational theory (correspond-
ing to implementing a measurement on the system and
marginalizing over its outcome) is operationally equiva-
lent. We denote these deterministic effects as:

c

A
(30)

where c labels the context.

2.2.1 The GPT associated to an operational theory

It is well known [31–33] that a quotiented operational

theory, Õp, is nothing but a generalized probabilistic the-
ory [29, 30], and in fact for this paper we view this as
the definition of a GPT. We will now demonstrate this
by showing that Õp is tomographic (a notion that will
be defined momentarily), is representable in real vector
spaces, is convex, and has a unique deterministic effect.
This is analogous to how quotiented OPTs arise from un-
quotiented OPTs in [32, 33].

Firstly, note that the quotiented operational theory
is tomographic. For a generic process theory, P, being
tomographic means that processes are characterized by
scalars. That is, given any two distinct processes f,g :
A→B ∈P,

f ̸= g , (31)

there must exist a tester h ∈ P that turns each of these
processes into a closed diagram, i.e., a scalar, such that
the scalars are distinct:

∃h∈P : f h ̸= g h. (32)

That Eq. (32) implies Eq. (31) for processes in a quo-
tiented operational theory is trivial; we nowgive the proof
that Eq. (31) implies Eq. (32). Consider two distinct pro-

cesses, T̃ and T̃ ′, in the quotiented operational theory—
the images under the quotienting map of process T and
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T ′ in the operational theory—such that:

T̃ T̃ ′̸=

A A

B B

. (33)

By definition, we know that T̃ ̸= T̃ ′ implies that T ̸≃ T ′,
and hence there exists some tester τ such that

T τ

p

T ′ τ

p

̸= . (34)

Since the action of p is identical to that of ∼ on closed
diagrams, this implies that

T τ

∼

T ′ τ

∼

̸= . (35)

Finally, we can use the fact that the quotienting map is
diagram-preserving to write that there exists τ̃ such that

T̃ τ̃ T̃ ′

τ̸̃= . (36)

This establishes that Eq. (31) implies Eq. (32), and so
the quotiented operational theory is tomographic.

This means that we can identify an operational equiv-
alence class of processes, T̃ , with a real vector, K

T̃
, liv-

ing in R
T

A→B

, where T A→B denotes the set of testers for
processes with input A and output B. Concretely, we de-
fine these vectors component-wise via

[
K

T̃

]
τ

:= T̃ τ̃ . (37)

Clearly, following on from the discussion around Eq. (36),

we have that K
T̃

=K
T̃ ′

if and only if T̃ = T̃ ′. This vector
space representation, however, is generally infinite dimen-
sional, and gives a highly inefficient characterisation of
processes. We can instead focus on some minimal subset
of fiducial testers FA→B ⊂ T A→B which, for notational
convenience, we index as FA→B :=¶τ̃α♢α=1,2,...,mA→B .

The term fiducial means that this subset of testers
satisfies two key properties. The first is that they must
also suffice for tomography, i.e.,

T̃ τ̃α T̃ ′ τ̃α̸=∃α∈¶1,...,mA→B♢ :⇐⇒T̃ T̃ ′̸=

A A

B B

.

(38)
We can therefore use these fiducial testers to define a

finite dimensional vector representation R
T̃

of a process

T̃ , defined componentwise via

[R
T̃

]α := T̃ τ̃α (39)

for α = 1,2,...,mA→B . This new representation, R
T̃
, has

a straightforward relation to the original vector represen-
tation, K

T̃
; all one must do to go from the original to the

new representation is to restrict the K
T̃

vectors to the
relevant subset of their components. We can think of this

as a linear restriction map
∣∣
FA→B : RT

A→B

→ R
F

A→B

::
K 7→K♣FA→B . This allows us now to relate these two rep-
resentations via the observation that K

T̃
♣FA→B =R

T̃
for

all processes T̃ :A→B.
The second key property of fiducial sets of testers is

that they define a linear compression of the K
T̃

vectors.
Formally, what we mean by this is that there is a linear

map EA→B : RF
A→B

→ R
T

A→B

which is the inverse to
the restriction map

∣∣
FA→B on vectors K

T̃
, that is, for all

T̃ we have that EA→B(R
T̃

)=EA→B(K
T̃

♣FA→B )=K
T̃
.

We reiterate that FA→B is taken to be a minimal fidu-
cial set of testers, which means that it is a minimal cardi-
nality set of testers satisfying these two properties. Note
that minimal fiducial sets are typically not unique.

Consider now how the sequential composition of pro-
cesses is represented. Given representations of a pair of
processes (R

T̃
, R

T̃ ′
) we know (as R is injective) that

we can determine T̃ and T̃ ′, compute their composition
T̃ ′◦T̃ , and via Eq. (39) obtain R

T̃ ′◦T̃
. We denote the se-

quential composition map on the vector representation
as R

T̃ ′
□R

T̃
:=R

T̃ ′◦T̃
. Similarly, for parallel composition

we can define R
T̃ ′

⊠R
T̃

:=R
T̃ ′⊗T̃

. As we demonstrate in
Appendix E.2, both □ and ⊠ can be uniquely extended to
bilinear maps on the relevant vector spaces. Specifically,
we have:

Lemma 2.5. The operation □ can be uniquely extended
to a bilinear map

□ :
(
R

mB→C

,RmA→B


→R
mA→C

, (40)

and the operation ⊠ can be uniquely extended to a bilinear
map

⊠ :
(
R

mA→B

,RmC→D


→R
mAC→BD

. (41)

This implies that transformations act linearly on the
state space, and also that the summation operation dis-
tributes over diagrams, i.e.:

R
T̃

∑
iriRT̃i

R
T̃ ′

=
∑

i

ri

R
T̃

R
T̃i

R
T̃ ′

. (42)
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It is generally easier to work with this vector represen-
tation of processes rather than directly with the abstract
process theory of operational equivalence classes of pro-
cedures. We will do so when convenient, abusing notation
by dropping the explicit symbol R, and simply denot-
ing the vector representation of the equivalence classes in
the same way as the equivalence classes themselves. That
is, we will denote R

T̃
by T̃ . For example, we will write

Eq. (42) as

T̃

∑
iriT̃i T̃ ′

=
∑

i

ri

T̃

T̃i T̃ ′

. (43)

Note that generic linear combinations such as
∑

iriT̃i

need not correspond to any process in the operational
theory. However, some linear combinations correspond to
mixtures and coarse-grainings, and these will correspond
to other processes in the operational theory. Namely, if
T1 is a procedure that is a mixture of T2 and T3 with
weights ω and 1−ω, then by Eq. (25) it follows that

T1 τ

p

=ω T2 τ

p

+(1−ω) T3 τ

p

(44)

for all τ , which in turn implies that

T̃1 τ̃ =ω T̃2 τ̃ +(1−ω) T̃3 τ̃ , (45)

and so by the fact that quotiented operational theories
are tomographic,

T̃1 =ωT̃2+(1−ω)T̃3. (46)

Hence, the mixing relations between preparation proce-
dures in the operational theory are captured by a convex
structure in this representation. More generally we find
that

∀τ T τ

p

=
∑

i

ri Ti τ

p

⇐⇒ T̃ =
∑

i

riT̃i (47)

for arbitrary coefficients ri. Hence, for example, the
coarse-graining relations that hold among operational ef-
fects are captured by the linear structure in this repre-
sentation of the quotiented operational theory.

If one makes the standard assumption that every pos-
sible mixture of processes in the operational theory is an-
other process in the operational theory, then it follows
that the quotiented operational theory is convex.

Finally, the fact that we assumed that each system A

had a unique equivalence class of deterministic effects
means that the quotiented operational theory will have
a unique deterministic effect [32] for each system:

A
:=

A
∼

c
. (48)

In summary, a quotiented operational theory satisfies
the key properties of a GPT: being tomographic, repre-
sentability of each system in R

d (for some d), convexity,
and uniqueness of the deterministic effect for each sys-
tem. Henceforth, we will refer to the quotiented opera-
tional theory as the GPT associated to the operational

theory, and we presume that every GPT can be achieved
in this way.

For example, quantum theory qua operational theory
is the process theory whose processes are laboratory pro-
cedures (including contexts), while quantum theory qua
GPT is the process theory whose processes are com-
pletely positive [47, 48] trace-nonincreasing maps, whose
states are density operators, and so on. When one quo-
tients quantum theory qua operational theory, one ob-
tains quantum theory qua GPT.

It is worth noting that a quotiented operational theory
should not be viewed as an instance of an operational the-
ory7. In an operational theory, it is not merely that con-
texts are permitted, rather they are required in the defini-
tion of the procedures. The primitives in an operational
theory are laboratory procedures, and these necessarily
involve a complete description of the context of a proce-
dure. For example, “prepare the maximally mixed state”
specifies a preparation when viewing quantum theory as
a quotiented operational theory, but not when viewing
it as an operational theory. In the latter case, one must
additionally specify how this mixture is achieved, e.g.,
which ensemble of pure states was prepared or which en-
tangled state was followed by tracing of a subsystem.

2.2.2 Tomographic locality of a GPT

Tomographic locality is a common assumption in the
GPT literature—indeed, in some early work on GPTs it
was considered such a basic principle that it was taken as
part of the framework itself [30]. Intuitively, it states that
processes canbe characterized by local state preparations
and local measurements. In this section, we will show
that all tomographically local GPTs can be represented

as subtheories Õp⊂FVectR, using arguments similar to
those in, e.g., the duotensor formalism in Ref. [31].

A GPT is said to satisfy tomographic locality if one can
determine the identity of any process by local operations

7Although this is not captured by the formal definitions in this
paper, it is captured by the more refined formalization in Ref. [35].
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on each of its inputs and outputs:

∀Ẽ,Ẽ′,P̃ ,P̃ ′
T̃

Ẽ Ẽ′

P̃ P̃ ′

= T̃ ′

Ẽ Ẽ′

P̃ P̃ ′

⇐
⇒

T̃ = T̃ ′ . (49)

One can immediately verify that an operational theory
satisfies Eq. (26) if and only if the GPT obtained by quoti-
enting relative to operational equivalences is tomograph-
ically local.

There are many equivalent characterizations of tomo-
graphic locality for a GPT. The most useful for us is the
following condition, first introduced in Sections 6.8 and
9.3 of [31], which allows us to show that tomographically
local GPTs can be represented as subtheories of FVectR.

Consider an arbitrary set of linearly independent and
spanning states ¶P̃ A

j ♢j=1,2,...,mA on system A and an ar-
bitrary set of linearly independent and spanning effects
¶ẼB

i ♢i=1,2,...,mB on system B. (If the systems are com-
posite, these should moreover be chosen as product states
and product effects respectively.) Define the ‘transition

matrix’ in this basis for a process T̃ from system A to sys-
tem B as

[N
T̃

]kj :=

ẼB
k

T̃

B

P̃ A
j

A

. (50)

Lemma 2.6. A GPT is tomographically local if and only
if one can decompose the identity process, denoted 1̃A, for
every system A as

A

=
∑

ij

[M
1̃A

]ji

ẼA
i

A

A

P̃ A
j

, (51)

where M
1̃A

is the matrix inverse of the transition matrix
N

1̃A
of the identity process, that is,

M
1̃A

:=N−1

1̃A

. (52)

This was originally shown in [31, Sec. 6.8], and we re-
prove this in our notation in Appendix E.3.

The vector space spanned by the set ¶P̃ A
j ♢j=1,2,...,mA

of states is RmA

, and the vector space spanned by the set

¶ẼB
i ♢i=1,2,...,mB of effects is RmB

. Note that in general,

ẼA
j ◦P̃ A

i ̸=δij
8, which generically implies that M

1̃A
is not

the identity matrix (nor is it equal to N
1̃A

), counter to in-
tuitions one might have from working with orthonormal
bases. The following corollary then makes explicit some
extra structure which was implicit in the vector represen-
tation R

T̃
of the previous section. In particular, it shows

that the vector space RmA→B

of transformations from A

to B is isomorphic to the vector space of linear maps from

R
mA

→R
mB

, where a process T̃ is represented as a vec-
tor R

T̃
in the former and a matrix M

T̃
in the latter.

Corollary 2.7. A GPT is tomographically local if and
only if one can decompose any process T̃ as

T̃

B

A

=
∑

ij

[M
T̃

]ji

ẼA
i

A

B

P̃ B
j

, (53)

where M
T̃

=M
1̃B

◦N
T̃

◦M
1̃A

.

Proof. To prove that a GPT is tomographically local if one
can decompose any process as in Eq. (53), simply note that

for the special case of T̃ = 1̃A, Eq. (53) implies Eq. (51),
and hence, by Lemma 2.6, implies tomographic locality.

To prove the converse, we assume tomographic locality
and apply Lemma 2.6 to decompose the input and output
systems of an arbitrary process T̃ as

T̃

B

A

=

ẼB
k

T̃

P̃ A
j∑

ij

[M
1̃A

]ji

∑

kl

[M
1̃B

]lk

P̃ B
l

ẼA
i

=

∑

ij

[M
1̃A

]ji

∑

kl

[M
1̃B

]lk

P̃ B
l

ẼA
i

[N
T̃

]kj

(54)

8This fails to be an equality whenever the spanning effects Ei

do not perfectly distinguish the spanning states Pj . Note that this
will be the generic case, as it is only in a simplicial GPT that there
is a spanning set of states which can be perfectly distinguished.

Accepted in Quantum 2024-03-06, click title to verify. Published under CC-BY 4.0. 12



which can be rewritten as:

T̃

B

A

=
∑

il


∑

jk

[M
1̃B

]lk[N
T̃

]kj [M
1̃A

]ji




P̃ B
l

ẼA
i

(55)

=
∑

il

[M
1̃B

◦N
T̃

◦M
1̃A

]li

P̃ B
l

ẼA
i

(56)

at which point we can simply identify M
T̃

=M
1̃B

◦N
T̃

◦
M

1̃A
, giving the desired result.

Given the vector representation of two equivalence
classes, R

T̃
and R

T̃ ′
, we showed how to compute the rep-

resentation of either the sequential or parallel composi-
tion of these (via □ and ⊠, respectively). However, if we
represent equivalence classes by matrices M

T̃
instead,

then how must we represent the parallel and sequential
composition of processes? It turns out that parallel com-
position is represented by

M
T̃ ⊗T̃ ′

=M
T̃

⊗M
T̃ ′

(57)

where the ⊗ on the left represents the parallel compo-
sition of equivalence classes, while on the right it repre-
sents the tensor product of the two matrices. Meanwhile,
the sequential composition of this matrix representation
is given by

M
T̃ ′◦T̃ ′

=M
T̃ ′

◦N
1̃B

◦M
T̃

(58)

where on the left-hand side ◦ represents the sequential
composition of the equivalence classes, while on the right-
hand side it represents matrix multiplication. These two
facts are proven in Appendix E.4.

The fact that Eq. (58) is not simply the sequential com-
position rule for FVectR, namely the matrix product of
M

T̃ ′
and M

T̃
, implies that this matrix representation is

not a subtheory of FVectR, nor even some other diagram-
preserving representation of the GPT. This form of com-
position has, however, appeared numerous times in the
literature, for example in Refs. [3, 31, 37, 49]. There is,
moreover, a well known trick to turn this representation
into a diagram-preserving representation in FVectR: one
simply defines a new matrix representation by replacing
M

T̃
with M

T̃
◦N

1̃A

9. It is then easy to verify that these
do indeed compose using the standard composition rules
(tensor products for parallel composition and matrix mul-
tiplication for sequential composition), and to verify that
the identity process is represented by the identity matrix.

Putting all of this together we arrive at the following.

9In the language of duotensors [31] this means that we put the
duotensors into standard form.

Theorem 2.8. Any tomographically local GPT has a
diagram-preserving representation in FVectR given by
the map

A 7→R
mA

on systems and the map

T̃ 7→M
T̃

◦N
1̃A

on processes, where

[N
T̃

]kj :=

ẼB
k

T̃

B

P̃ A
j

A

(59)

for some basis of states ¶P̃ A
j ♢ and effects ¶ẼB

k ♢, and where

M
T̃

:=N−1

1̃B

◦N
T̃

◦N−1

1̃A

. (60)

This result is implicit in the work of Refs. [31, 34] and
more explicit in the quantum case of [37].

Effectively this means that we can view any tomo-
graphically local GPT simply as a suitably defined sub-

theory Õp ⊂ FVectR. For the remainder of this paper
we restrict our attention to tomographically local GPTs,
and we will moreover abuse notation and simply denote
the linear maps in this representation by T̃ rather than
by M

T̃
◦N

1̃A
, and similarly, the vector spaces as A rather

than by R
mA

. That is, we will neglect to make the dis-
tinction between the quotiented operational theory and
its representation as a subtheory of FVectR, as preserv-
ing the distinction is unwieldy and typically unhelpful.

Quantum theory is an example of an operational the-
ory, and it is well known that the GPT representation of
quantum theory is tomographically local. The latter is
a subtheory of FVectR, as B(H) is a real vector space
and completely positive trace non-increasing maps are
just a particular class of linear maps between these vec-
tor spaces. Classical theory, the Spekkens toy model [50],
and the stabilizer subtheory [51] for arbitrary dimensions
are also tomographically local. Examples of GPTs which
are not tomographically local are real quantum theory
[52] and the real stabilizer subtheory.

2.3 Representations of operational theories and
GPTs

One often wishes to find alternative representations of
an operational theory or a GPT, e.g., as an ontologi-
cal model or a quasiprobabilistic model (to be defined
shortly). A key motivation for studying ontological mod-
els is the attempt to find an explanation for the statis-
tics in terms of some underlying properties of the rele-
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vant systems, especially if this explanation can be said
to be classical in some well-motivated sense. In this sec-
tion, we introduce the definition of ontological models
and quasiprobabilistic models, and in the next section
we discuss under what conditions one can say that such
representations provide a classical explanation of the op-
erational theory or GPT which they describe.

2.3.1 Ontological models

Anontologicalmodel is amapassociating to every system
S a set ΛS of ontic states, and associating to every process
a stochastic map from the ontic state space associated
to the input systems to the ontic state space associated
with the output systems.

It is important to distinguish between ontological mod-
els of operational theories and ontological models of
GPTs, as was shown in Ref. [4]. In particular, the former
allows for context-dependence while the latter does not.
See App. A for a detailed discussion of this point.

Definition 2.9 (Ontological models of operational the-
ories). An ontological model [53] of an operational the-
ory Op is a diagram-preserving map ξ :Op→SubStoch ,
depicted as

ξ :: T

A

B

7→ T

R
ΛA

A

B

R
ΛB

ξ

,

from the operational theory to the process theory
SubStoch, where the map satisfies three properties:

1. It represents all deterministic effects in the opera-
tional theory appropriately:

R
ΛA

A
ξ

c =

R
ΛA

= 1.

2. It reproduces the operational predictions of the oper-
ational theory (i.e., is empirically adequate). That
is, for all closed diagrams:

P

E

ξ

=
P

E

∼

=Pr(E,P ).

3. It preserves the convex and coarse-graining relations
between operational procedures. E.g., if T1 is a pro-
cedure that is a mixture of T2 and T3 with weights ω

and 1−ω, respectively, then it must hold that

T1

ξ

=ω T2

ξ

+(1−ω) T3

ξ

.

(61)

This diagrammatic definition of an ontological model
reproduces the usual notions [1] of ontological represen-
tations of preparation procedures and of operational ef-
fects. In particular, an operational preparation procedure
is an operational process with a trivial input, and by di-
agram preservation of ξ, this is mapped to a process in
SubStoch with a trivial input, that is, to a probabil-
ity distribution over the ontic states: P 7→ ξ(P ) : Λ →
R

+ s.t.
∑

λξ(P )(λ) = 1. Similarly, an operational effect
is an operational process with a trivial output, and by di-
agram preservation of ξ is mapped to a substochastic pro-
cess with a trivial output, that is, to a response function
over the ontic states: E 7→ ξ(E) :Λ→ [0,1] s.t. ξ(E)(λ)≤
1.

Definition 2.10 (Ontological models of GPTs). An on-
tological model ξ̃ of a GPT Õp is a diagram-preserving

map ξ̃ : Õp→SubStoch , depicted as

ξ̃ :: T̃
A

B

7→ T̃

R
ΛA

A

B

R
ΛB

ξ̃

,

from the GPT to the process theory SubStoch, where the
map satisfies three properties:

1. It represents the deterministic effect for each system
appropriately:

R
ΛA

A
ξ̃

=

R
ΛA

= 1.

2. It reproduces the operational predictions of the GPT
(i.e., is empirically adequate), so that for all closed
diagrams,

P̃

Ẽ

ξ̃

=
P̃

Ẽ
=Pr(Ẽ,P̃ ). (62)

3. It preserves the convex and coarse-graining relations
between operational procedures. E.g., if

T̃1
=ω T̃2

+(1−ω) T̃3
(63)
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then it must hold that

T̃1

ξ̃

=ω T̃2

ξ̃

+(1−ω) T̃3

ξ̃

.

(64)

In analogy with the discussion above, one has that nor-
malized GPT states on some system are represented in
an ontological model by probability distributions over
the ontic state space associated with that system, while
GPT effects are represented by response functions.

The state spaces in SubStoch form simplices, and so
we will sometimes refer to an ontological model of a GPT
as a simplex embedding. This terminology is a natural
extension of the definition of simplex embedding in [4].

2.3.2 Quasiprobabilistic models

We now introduce quasiprobabilistic models of a GPT.
One could analogously define quasiprobabilistic models
of an operational theory (as diagram-preserving maps
from Op to QuasiSubStoch). However, given that the
expressive freedom offered by the possibility of context-
dependence is sufficient to ensure that every operational
theory admits of an ontological model, and hence a posi-

tive quasiprobabilisticmodel, there is no need tomake use
of the additional expressive freedom offered by allowing
negative quasiprobabilities, and hence no motivation to
introduce such models. On the other hand, in the case of
GPTs, there does not always exist an ontological model,
hence quasiprobabilistic models are a useful conceptual
and mathematical tool for assessing the classicality of a
GPT.

Definition 2.11 (Quasiprobabilistic models of GPTs).

A quasiprobabilistic model of a GPT Õp, is a diagram-

preserving map ξ̂ : Õp→QuasiSubStoch , depicted as

ξ̂ :: T̃
A

B

7→ T̃

ΛA

A

B

ΛB

ξ̂

,

where the map satisfies three properties:
1. It represents the deterministic effect for each system

appropriately:

R
ΛA

A
ξ̂

=

R
ΛA

= 1. (65)

2. It reproduces the operational predictions of the GPT
(i.e., is empirically adequate), so that for all closed

diagrams,

P̃

Ẽ

ξ̂

=
P̃

Ẽ
=Pr(Ẽ,P̃ ).

3. It preserves the convex and coarse-graining relations
between operational procedures. E.g., if

T̃1
=ω T̃2

+(1−ω) T̃3
(66)

then it must hold that

T̃1

ξ̂

=ω T̃2

ξ̂

+(1−ω) T̃3

ξ̂

.

(67)

One can see that the only technical distinction between
an ontological model of a GPT and a quasiprobabilistic
model of a GPT is that in the latter, the probabilities are
replaced by quasiprobabilities, which are allowed to go
negative.

In analogy with the discussion at the end of Sec-
tion 2.3.1, one has that GPT states on some system are
represented in a quasiprobabilistic model by quasidistri-
butions over the sample space associated with that sys-
tem, that is, functions on Λ normalised to 1 but where the
values can be negative, while GPT effects are represented
by arbitrary real-valued functions over the sample space.

3 Three equivalent notions of classicality

The only ontological models that constitute good classi-
cal explanations are those that satisfy additional assump-
tions. One such principle is that of (generalized) noncon-
textuality [1]. It was argued in Refs. [1, 2, 4, 54] that
an ontological model of an operational theory should be
deemed a good classical explanation only if it is noncon-
textual. We now provide the definition of a noncontex-
tual ontological model in the framework we have intro-
duced here.

Definition 3.1 (A noncontextual ontological model of
an operational theory). An ontological model of an op-
erational theory ξnc :Op→SubStoch satisfies the prin-
ciple of generalized noncontextuality if and only if every
two operationally equivalent procedures in the operational
theory are mapped to the same substochastic map in the
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ontological model. That is, if

T ≃ T ′ =⇒ T

R
ΛA

A

B

R
ΛB

ξnc

= T ′

R
ΛA

A

B

R
ΛB

ξnc

. (68)

Another way of stating this condition is that the map
ξnc does not depend functionally on the context of any
processes in the operational theory, so that for all T :=
(T̃ ,cT ) one has ξnc(T )=ξnc(T̃ ).

Ontological models of GPTs (as we have defined
them) cannot be said to be either generalized-contextual
or generalized-noncontextual (in contrast to ontological
models of operational theories, which can). This is be-
cause the domain of our notion of an ontological model of
a GPT has no notion of a context on which the ontolog-
ical representation could conceivably depend. (This was
first pointed out in Ref. [4], and we explain it further in
Appendix A.) However, Ref. [4] showed (in the context
of prepare-and-measure scenarios) that the principle of
noncontextuality nonetheless induces a notion of classi-
cality within the framework of GPTs: namely, the GPT
is said to have a classical explanation if and only if it ad-
mits of an ontological model. (Not all GPTs admit of an
ontological model, even if the operational theory from
which they are obtained as a quotiented theory do. This
is a consequence of the representational inflexibility re-
sulting from the lack of contexts on which the represen-
tation might depend.10) We now extend this result (The-
orem 1 of Ref. [4]) from prepare-and-measure scenarios
to arbitrary scenarios.

Proposition 3.2. There is a one-to-one correspondence
between noncontextual ontological models of an operational
theory, ξnc :Op→SubStoch , and ontological models of

the associated GPT, ξ̃ : Õp→SubStoch .

Proof sketch. The idea of the proof is captured by the

10Accordingly, the Beltrametti-Bujaski model [55] can be viewed
as an ontological model of the single qubit subtheory qua operational

theory, but not as an ontological model of the single qubit subtheory
qua GPT. This can be seen by noting that this model is explicitly
contextual while the single qubit subtheory qua GPT has no contexts.
Equivalently, it can be seen by noting that the single qubit subtheory
qua GPT does not admit of any ontological model. The same can
be said of the 8-state model of Ref. [56] relative to the stabilizer
qubit subtheory: it is an ontological model of the stabilizer qubit
subtheory qua operational theory (a contextual ontological model)
but not of the stabilizer qubit subtheory qua GPT. The latter has
no contexts and does not admit of any ontological model.

following diagram:

Op Õp

SubStoch

∼

ξnc
ξ̃

C

,

where C is defined as a map, which is not diagram-
preserving (hence the dashed arrow), and which takes

any process T̃ in the GPT Õp to some process T =(T̃ ,cT )
in the operational theory. There always exists at least
one such map C (in general, there exist many), and all
of these satisfy ∼◦C =Id (in general, no choice of C will
satisfy C◦∼=Id).

Now, consider an operational theory Op and the GPT

Õp it defines.

Given an ontological model ξ̃ of Õp, one can define
a noncontextual model ξnc of Op via ξnc := ξ̃ ◦ ∼. The
map constructed in this manner cannot depend on the
contexts of processes in the operational theory, since these
are removed by the quotienting map ∼. As such, the
map ξnc necessarily satisfies Eq. (68), and hence is indeed
noncontextual.

Given a noncontextual ontological model ξnc of Op, one

can define an ontological model ξ̃ of Õp via ξ̃ := ξnc ◦C.
Because the map ξnc does not depend on the context, the
map constructed in this manner does not depend on the
choice of C, and is unique.

For completeness, we prove in Appendix C that ξnc :=
ξ̃ ◦ ∼ indeed satisfies the relevant constraints to be an
ontological model of an operational theory, and similarly,
that ξ̃ :=ξnc◦C satisfies the relevant constraints to be a
valid ontological model of a GPT.

Finally, we note that this notion of classicality of a
GPT is closely linked to the positivity of quasiprobabilis-
tic models. This result can be seen as an extension of the
equivalence in Ref. [2] from the prepare-and-measure sce-
nario to arbitrary compositional scenarios.

Definition 3.3 (Positive quasiprobabilistic model of a to-
mographically local GPT). A positive quasiprobabilistic
model of a tomographically local GPT Õp is a quasiproba-

bilistic model ξ̂+ : Õp→QuasiSubStoch in which all of
the matrix elements of the quasisubstochastic maps in the
image of ξ̂+ are positive, that is, if and only if all of the qua-
sisubstochastic maps in the image of ξ̂+ are substochastic.

Simply by examining the definitions, it is
clear that a positive quasiprobabilistic model

ξ̂+ : Õp→QuasiSubStoch of a GPT is equivalent to

an ontological model ξ̃ : Õp→SubStoch of that GPT.
It follows that:
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Proposition 3.4. There exists a positive quasiprobabilis-
tic model of a GPT Õp if and only if there exists an onto-
logical model of Õp.

Although Proposition 3.4 follows immediately from
the relevant definitions, we have nonetheless highlighted
it here. This is because a generic quasiprobabilistic model
of a GPT has no meaningful conceptual relationship to
an ontological model of a GPT, and so it is conceptually
important to understand in what special cases the two
notions coincide. Furthermore, we hope that highlighting
this fact will encourage more dialogue between those re-
searchers studying quasiprobabilistic models and those
studying ontological models.

Putting Props. 3.2 and 3.4 together, one has that:

Corollary 3.5 (Three equivalent notions of classicality).

Let Op be an operational theory and Õp the GPT obtained
from Op by quotienting. Then, the following are equiva-
lent:
(i) There exists a noncontextual ontological model of Op,
ξnc :Op→SubStoch .

(ii) There exists an ontological model (a.k.a. sim-

plex embedding) of Õp, ξ̃ : Õp→SubStoch . (iii)

There exists a positive quasiprobabilistic model of Õp,

ξ̂+ : Õp→QuasiSubStoch .

This generalizes the results of Refs. [2, 4, 5] from
prepare-measure scenarios to arbitrary compositional
scenarios.

4 Structure theorem

With this framework in place, we can prove our main
results. We start with a general theorem, leveraging the

fact that Õp ⊂ FVectR, as stated in Theorem 2.8. We
then specialize to the various physically relevant cases.

Theorem 4.1. Any convex-linear, empirically
adequate and diagram-preserving map (Eq. (8)),

M : Õp→FVectR , where Õp is tomographically local
can be represented as

T̃

M

VA

A

B

VB

= T̃

χB

χ−1
A

VA

A

B

VB

, (69)

where for each system A, χA :A→VA is a invertible linear
map within FVectR. Moreover, the χA are uniquely
determined by Eq. (69).

Note that we have colored the linear maps χA to make
it immediately apparent that they came from the associ-
ated diagram-preserving map.

The proof consists of three main arguments, provided
explicitly in Appendix B and sketched here.

First, we leverage tomographic locality of the GPT, as
well as convex-linearity and diagram preservation of the
map, to prove that one can represent the action of the
map on a generic process in terms of its action on states
and effects

T̃

M

VA

A

B

VB

=

M

∑

ij

rij

Ẽj

P̃i

VB

VA

=
∑

ij

rij

M

Ẽj

P̃i

M

VB

VA

. (70)

Second, using convex-linearity of the map, we prove
that one can represent the action of M on states and
effects simply as some linear maps within FVectR; that
is,

P̃i

M

VB

B

=
P̃i

χB

VB

and
Ẽj

M

VA

A =

Ẽj

φA

VA

, (71)

which relies on the isomorphism between vectors (or cov-
ectors) in V and linear maps from R to V (resp. V to
R). Note that χB and ϕA are uniquely fixed by Eq. (71),
which means that there can be no other choice made for
the χA appearing in Eq. (69).

Next, we leverage empirical adequacy, that

Ẽ

P̃
M

=
P̃

Ẽ
(72)

for all P̃ and Ẽ, together with the fact that they span the
vector space and dual, to show that

A

=

χA

φA

A

VA

A

; (73)

that is, that ϕA is the left inverse of χA.

Finally we consider the representation of the identity
as,

M

= , (74)
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which is a consequence of diagram preservation, to prove
that,

VA

=

χA

φA

VA

VA

A , (75)

which means that ϕA is also the right inverse of χA, and
hence that it is unique such that we can write ϕA =χ−1

A .
This shows that the only freedom in the representation

is in representation of the states, via the choice of linear
maps χS , of the theory; after specifying these, one can
uniquely extend to the representation of arbitrary pro-
cesses. It also shows that the representation M is neces-
sarily invertible as we can always define the inverse of M

by using the inverses of the χ’s.
One key consequence of this result is the following

corollary, whose significance we investigate in Section 4.3.

Corollary 4.2. The dimension of the codomain, VA of
the map χA is given by the dimension of the GPT vector
space A.

Proof. The linear map χA is invertible, so the dimension
of its domain and of its codomain must be equal, and its
domain is the GPT vector space.

Note that the proof of the structure theorem and this
subsequent corollary do not require the full generality of
diagram preservation, only the (mathematically) much
weaker conditions that:

M

= ,

M

Ẽj

P̃i

=

M

Ẽj

P̃i

M

, and
Ẽ

P̃
M

=

Ẽ

P̃

M

M

.

(76)
We will give justifications of these (for the case of onto-
logical models and quasiprobabilistic models) in Sec. 5,
and will discuss further consequences of general diagram
preservation in Sec. 4.4.

4.1 Diagram-preserving quasiprobabilistic models
are exact frame representations

As mentioned in the introduction, SubStoch and
QuasiSubStoch are subprocess theories of FVectR,
SubStoch⊂QuasiSubStoch⊂FVectR. This implies
that our main theorem applies to these special cases. The
fact that the codomain is restricted can then equivalently
be expressed as a constraint on the linear maps χA. In
the case of quasiprobabilistic representations we obtain:

Proposition 4.3. Any diagram-preserving quasiproba-
bilistic model of a tomographically local GPT can be writ-
ten as

T̃

ξ̂

R
ΛA

A

B

R
ΛB

= T̃

χB

χ−1
A

R
ΛA

A

B

R
ΛB

(77)

for invertible linear maps ¶χS :S →R
ΛS ♢ within FVectR

for each system, where these satisfy

χS = . (78)

Proof. Since ξ̂ satisfies the requirements of Theorem 4.1
we immediately obtain Eq. (77). For the particular case
of the deterministic effect, we have that

ξ̂
= χ−1

S
. (79)

Recall that, by definition, a quasiprobabilistic model
satisfies Eq. (65):

ξ̂
= . (80)

Combining these gives

= χ−1
S

. (81)

Composing both sides of this with χS gives Eq. (78).

The extra constraint of Eq. (78) is not part of the general
structure theorem because an abstract vector space does
not have a natural notion of discarding. Such a privileged
notion is found within, for example, SubStoch, as the
all ones covector, which represents marginalization.11

Since the χS are just invertible linear maps, this map
can be seen as merely transforming from one represen-
tation of the GPT to another. Critically, however, one
must note that the vector spaces in QuasiSubStoch are
all of the form R

Λ, and so they come equipped with ex-
tra structure—namely, a preferred basis and dual basis.

11Even within vector spaces with an associated physical interpre-
tation of vectors as processes, there is not always a unique discard-
ing map; for example, in the vector space of quantum channels, ap-
plying the channel to any fixed input state and tracing the output
constitutes a discarding operation.
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Hence, these representations are effectively singling out
this preferred basis for the GPT.

To see this more explicitly, denote the preferred basis
and cobasis for RΛ as{

λ

R
Λ
}

λ∈Λ

and

{
λ

R
Λ

}

λ∈Λ

respectively, (82)

which, in particular, means we can decompose identities as

=
∑

λ∈Λ λ

λ

. (83)

This means that, for any system A in the GPT, we can
write χA as:

χA =
∑

λ∈ΛA

χA

λ

λ

=:
∑

λ∈ΛA D̃A
λ

λ

, (84)

As χA is invertible, then ¶D̃A
λ ♢λ∈ΛA

is a cobasis for the
GPT: 




D̃A
λ





λ∈ΛA

, (85)

whereby condition (78) becomes

∑

λ∈ΛA

D̃A
λ = . (86)

Similarly, we could run the same argument using χ−1
A

to single out a basis, ¶F̃ A
λ ♢λ∈ΛA

for the GPT:


 F̃ A

λ





λ∈ΛA

, (87)

where (by Eq. (81)) ∀λ,

F̃ A
λ

=1. (88)

Moreover, this decomposition, together with reversibility

of χA means that

∑

λ,λ′∈ΛA

D̃A
λ′

F̃ A
λ

λ′

λ

=

χ−1
A

χA

=

=
∑

λ,λ′∈ΛA

δλλ′

λ′

λ

, (89)

and hence

F̃ A
λ

D̃A
λ′

= δλλ′ . (90)

That is, ¶F̃ A
λ ♢λ defines a basis of VA and ¶D̃A

λ′♢λ′ defines
a dual basis of V ∗

A.

We can then represent the action of ξ̂ as:

T̃

ξ̂

R
ΛA

A

B

R
ΛB

=
∑

λ∈ΛA,λ′∈ΛB

T̃

D̃B
λ′

F̃ A
λ

λ′

λ

R
ΛA

R
ΛB

(91)

which can be viewed as a quasistochastic map defined by
the conditional quasiprobability distribution

ξ̂(T̃ )(λ′♣λ)= T̃

D̃B
λ′

F̃ A
λ

. (92)

Finally, we note that Proposition 4.3 also implies that
any quasiprobability representation constructed using
an overcomplete frame necessarily fail to be diagram-
preserving.

4.1.1 Diagram-preserving quasiprobabilistic models of

quantum theory

We now consider the case of quantum theory as a GPT.
The basis ¶F̃λ♢λ∈Λ is a basis for the real vector space
of Hermitian operators for the system while the cobasis,
¶D̃λ♢λ∈Λ is a basis for the space of linear functionals
on the vector space of Hermitian operators. The Riesz
representation theorem [57] guarantees that every element
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D̃λ of the cobasis can be represented via the Hilbert-
Schmidt inner product with some Hermitian operator,
which we will denote as D̃∗

λ, such that for all ρ:

ρ

D̃λ′

= D̃λ◦ρ= tr(D̃∗
λρ). (93)

The condition in Eq. (86) becomes
∑

λD̃∗
λ =1, the condi-

tion in Eq. (88) becomes tr(F̃λ)=1, and the condition of
Eq. (90) becomes

tr(D̃∗
λ′ F̃λ)=δλλ′ . (94)

It is clear, therefore, that ¶F̃λ♢λ and ¶D̃∗
λ♢λ constitute

a minimal frame and its dual (in the language of, for
example, Refs. [3]). Hence, this representation is nothing
but an exact frame representation, that is, one which is not
overcomplete. That is, a transformation T̃ , represented
by a completely positive trace preserving map E

T̃
, will

be represented as a quasistochastic map defined by the
conditional quasiprobability distribution:

ξ̂(T̃ )(λ′♣λ)= tr(D̃∗
λ′E

T̃
(F̃λ)) (95)

It is easy to see that any set of spanning and linearly
independent vectors summing to identity will define a
suitable dual frame ¶D̃∗

λ♢, and then the frame ¶F̃λ♢ itself
is uniquely defined by Eq. (94). (Note in particular that
the elements of the frame need not be pairwise orthogonal,
nor must those of the dual frame.)

It has previously been shown that all quasiprobabilistic
models of quantum theory are frame representations [3].
What we learn here is that diagram-preserving quasiproba-
bilistic models are necessarily the simplest possible frame
representations, namely those that are not overcomplete.

4.2 Structure theorems for ontological models

In the case of ontological models of a GPT, we obtain:

Proposition 4.4. Any diagram-preserving ontological
model of a tomographically local GPT can be written as

T̃

ξ̃

R
ΛA

A

B

R
ΛB

= T̃

χB

χ−1
A

R
ΛA

A

B

R
ΛB

, (96)

where

χA = (97)

and where moreover every pair (χ−1
A ,χB) defines a positive

map from the cone of transformations from A to B in the
GPT Õp to the cone of substochastic maps from ΛA to ΛB

in SubStoch.

The proof is given in Appendix D. Apart from positivity,
the proof follows immediately from Proposition 4.3.

One can interpret this map from the GPT to the ontolog-
ical model as an explicit embedding into a simplicial GPT
as discussed in [4], but generalized to the case in which
both the GPT under consideration and the simplicial
GPT have arbitrary processes, not just states and effects.
This follows from the positivity conditions, empirical ad-
equacy, and the preservation of the deterministic effect.

As in the case of quasiprobabilistic models, we can
write out χA as:

χA =
∑

λ∈ΛA D̃A
λ

λ

, (98)

where ¶D̃A
λ ♢λ forms a basis for the vector space of the

GPT defined by the operational theory. The positivity
condition for χA discussed above immediately implies
that D̃A

λ is a linear functional which is positive on the
state cone, and the normalization condition immediately
implies that their sum over λ is the deterministic effect.
By a similar argument, each F̃ A

λ is a vector in the vector
space of states which is positive on all GPT effects.

In the case of a GPT which satisfies the no-restriction
hypothesis [32] (e.g., quantum theory and the classical

probabilistic theory), this means that the D̃A
λ are effects

(forming a measurement) and that the F̃ A
λ are states. In

the quantum case, the notion of positivity that we have
expressed here reduces to positivity of the eigenvalues
of the Hermitian operators. This provides another im-
mediate proof that quantum theory, as a GPT, does not
admit an ontological model—it would require an exact
frame and dual frame for the space of Hermitian opera-
tors which are all positive, but it is known that such a
basis and dual do not exist [3].

We have shown (Prop 3.2) that every noncontextual
ontological model of an operational theory is equivalent
to an ontological model of the GPT defined by the oper-
ational theory. Combining this with proposition 4.4, it
immediately follows that:

Corollary 4.5. For operational theories whose corre-
sponding GPT satisfies tomographic locality, any noncon-
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textual ontological model can be written as

T

ξnc

R
ΛB

R
ΛA

B

A

= T
∼

ξ̃

R
ΛB

R
ΛA

= T

χB

χ−1
A

∼

R
ΛB

R
ΛA

for

χA

R
ΛA

A

=
∑

λ∈ΛA D̃A
λ

λ

R
ΛA

A

,

where ¶D̃A
λ ♢λ forms a basis for the vector space of the

GPT defined by the operational theory.

Previously, the notion of a noncontextual ontological
representation seemed to be a highly flexible concept, but
this corollary demonstrates that it in fact has a very rigid
structure. Every noncontextual ontological model can be
constructed in two steps: i) quotient to the associated
GPT, ii) pick a basis for the GPT such that it is manifestly
an ontological model. Furthermore, the only freedom in
the representation is in representation of the states in the
theory (via this choice of basis); after specifying this, one
can uniquely extend to the representation of arbitrary
processes.

4.3 Consequences of the dimension bound

We can specialize Corollary 4.2 to the case of quasiproba-
bilistic representations or ontological representations of
GPTs. In this case, it states that the dimension of the
GPT vector space for a given system A, dim(A), is equal
to the dimension of the codomain of the map χA defining
the quasiprobabilistic or ontological representation of A,
that is, the dimension of RΛA . In the case of an ontologi-
cal model, this dimension is simply ♣ΛA♣, the cardinality
of the set ΛA of ontic states of A, so the number of ontic
states is equal to the dimension of the GPT space. More-
over, by considering Proposition 3.2, this immediately
implies that for any operational theory whose correspond-
ing GPT satisfies tomographic locality, if there exists a
noncontextual ontological model thereof, then it must also
have a number of ontic states equal to the dimension of
the GPT state space. In the language of Hardy [39], this
exactly means, for each system A, that the “ontological
excess baggage factor”,

γA :=
♣ΛA♣

dim(A)
, (99)

must be exactly 1. In other words, demanding noncontex-

tuality rules out ontological excess baggage. Since Hardy
showed that all ontological models of a qubit must in fact
have unbounded excess baggage, his result can immedi-
ately be combined with ours to give a new proof that the
full statistics of processes on a qubit do not admit a non-
contextual model.

In particular, our result implies that a diagram-
preserving noncontextual ontologicalmodel of a qubitmust
have exactly 4 ontic states. This result extends to any sub-
theory of a qubit whose corresponding GPT is tomograph-
ically local, e.g. the stabilizer subtheory. Hence, it consti-
tutes a stringent constraint on ontological models of the
qubit stabilizer subtheory qua operational theory. For in-
stance, it immediately guarantees that the 8-state model of
Ref. [56]—which, as the name suggests, has 8 ontic states—
must be contextual. Indeed, the 8-state model was pre-
viously shown to be contextual by a different argument
which focused on the representation of transformation
procedures in prepare-transform-measure scenarios [20].

Furthermore, our bound improves an algorithm first
proposed in Ref. [4]. In particular, Ref. [4] gave an algo-
rithm for determining if a GPT admits of an ontological
model by testing whether or not the GPT embeds in a sim-
plicial GPT of arbitrary dimension. The lack of a bound on
this dimension means that there is no guarantee that the
algorithm will ever terminate. Ref. [58] solves this problem
by providing such a bound, namely, the square of the given
GPT’s dimension. Our result strengthens this bound, re-
ducing it to the given GPT’s dimension. In fact, ourbound
is tight, as there can never be an embedding of the GPT
into a lower dimensional space. These results simplify the
algorithm dramatically: rather than testing for embed-
ding in a sequence of simplicial GPTs of increasing dimen-
sion, one can simply perform a single test for embedding in
a simplicial GPT of the same dimension as the given GPT.

Yet another application of the dimension bound follows
from the results of Ref. [59]. Ref. [59] demonstrates that
the number of classical bits required to specify the ontic
state in any (necessarily contextual) ontological model
of the qubit stabilizer subtheory is quadratic in the num-
ber of qubits. This is contrasted to the case of the qutrit
stabilizer subtheory, wherein there exists a (noncontex-
tual) ontological model with linear scaling in the number
of qutrits. The quadratic scaling result for the stabilizer
qubit subtheory implies that, for a collection of qubits,
the number of ontic states is necessarily greater than the
dimension of the space of quantum density operators. To-
gether with our dimension bound, this fact is sufficient to
deduce the contextuality of the qubit stabilizer subthe-
ory. Moreover, the fact that there exists a noncontextual
ontological model for the qutrit stabilizer subtheory [60],
together with our dimension bound, is sufficient to de-
duce the linear scaling in this case.
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4.4 Diagram preservation implies ontic separabil-
ity and more

Returning to representations of a GPT by some

M : Õp→FVectR satisfying the conditions of Theo-
rem 4.1: if we make use of additional instances of diagram
preservation beyond the three instances which we used
in proving Theorem 4.1, then we can derive additional
constraints on the representation.

One important and immediate consequence of diagram
preservation for composite systems is that the composite
system AB is represented by the tensor product of the
representations of the components: VAB = VA ⊗VB. In
the special cases of quasiprobabilistic representations,
this means that R

ΛAB = R
ΛA ⊗R

ΛB = R
ΛA×ΛB , which

in turn means that ΛAB =ΛA×ΛB . That is, the sample
space of a composite system is the Cartesian product of
the sample spaces of the components.

This constraint has particular significance if we con-

sider the case of ontological models, ξ̃ : Õp→SubStoch ,
as this means that for an ontological model, the ontic state
space of a composite system is the Cartesian product of
the ontic state spaces of the components. We term the
latter condition ontic separability (See Refs. [61, 62]). It
is a species of reductionism, asserting, in effect, that com-
posite systems have no holistic properties. More precisely,
the property ascriptions to composite systems are all and
only the property ascriptions to their components. Yet
another way of expressing the condition is that the proper-
ties of the whole supervene on the properties of the parts.

The assumption of ontic separability for ontological
models has been discussed in many prior works [61, 62],
and has been a substantive assumption in certain argu-
ments. For instance, in Ref. [63], ontic separability was
used to demonstrate that in a noncontextual ontological
model, all and only projective measurements are repre-
sented outcome-deterministically.

It is also worth noting that the assumption of prepara-
tion independence in the PBR theorem [64] follows from
diagram preservation (e.g. Eq. (105)). This connection
between PBR and preservation of compositional structure
has been previously explored in Sec. 4 of [36], in which
they use this connection to derive a categorical version of
the PBR theorem.

Moreover, by considering parallel composition we can
also obtain the following:

Proposition 4.6. Via diagram preservation, parallel
composition implies an additional constraint on the linear
maps, χA, namely,

χAB

A B

VA VB

= χA χB

A B

VA VB

. (100)

Proof. To begin, let us define

χAB

A B

VA VB

(101)

via

χAB

P̃

=

M

P̃

. (102)

Next, applying this to a product state we have

χAB

P̃ P̃ ′

=

P̃ P̃ ′

M

. (103)

Since M is diagram-preserving, we have

P̃ P̃ ′

M

=

P̃ P̃ ′

MM

. (104)

Recalling the definition of χS again, we conclude that

χAB

P̃ P̃ ′

=

P̃

χA

P̃ ′

χB . (105)

In a tomographically local GPT, the product states span
the entire state space, and so this implies Eq. (100).

Now, if we consider the case of quasiprobabilistic repre-

sentations, ξ̂ : Õp→QuasiSubStoch , we obtain that:

χAB

A B

R
ΛA R

ΛB

= χA

R
ΛA

A

χB

R
ΛB

B

. (106)

Given Eq. (84), this is equivalent to

∑

λ∈ΛA,λ′∈ΛB

λ

R
ΛA

A

λ′

R
ΛB

D̃AB
(λ,λ′)

B

=
∑

λ′∈ΛA,λ′′∈ΛB D̃A
λ′

λ′

R
ΛA

A

D̃B
λ′′

λ′′

R
ΛB

B

.

(107)

That is, diagram preservation implies that the frame
representation must factorize across subsystems. In other
words, the vector basis defining the frame representation
must be a product basis.
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4.5 Converses to structure theorems

In the above section we showed how all diagram-preserving
quasiprobabilistic and ontological representations must
have a particularly simple form given by a collection of
invertible linear maps ¶χA♢ satisfying certain constraints.
We now prove what is essentially the converse to each of
these results.

Consider defining a map from Õp to FVectR by

T̃

A

B

7→ T̃

χB

χ−1
A

VA

A

B

VB

. (108)

Under what conditions on the set ¶χA♢ is this map a
quasiprobabilistic or ontological representation?

To ensure that Eq. (108) defines a diagram-preserving
map one must simply impose that:

χAB

A B

VA VB

= χA χB

A B

VA VB

. (109)

This condition, together with invertibility and linearity
of the χA, easily implies that diagram preservation and
indeed all the assumptions of Theorem 4.1 are satisfied.

To ensure that Eq. (108) defines a linear representation
that is moreover a quasiprobabilistic representation, as
in Def. 2.11, one must impose that VA =R

ΛA and that

χA

A

R
ΛA

=
A

, (110)

which implies that the conditions in Def. 2.11 are satisfied.
Finally, to ensure that Eq. (108) defines a quasiproba-

bilistic representation that is moreover an ontological rep-
resentation, as in Def. 2.10, one must introduce a positivity
constraint for this map. Specifically, one must have that

χB

χ−1
A

R
ΛA

A

B

R
ΛB

:: T̃

A

B

7→ T̃

χB

χ−1
A

R
ΛA

A

B

R
ΛB

(111)

defines a positive map from the cone of transformations

from A to B in Õp to the cone of stochastic maps from
ΛA to ΛB .

This provides a simple recipe for constructing linear

representations: one simply needs to choose a family of
invertible linear maps for each fundamental system (i.e.,
one that cannot be further decomposed into subsystems),
and then define the others as the tensor product of these
(so that general χA factorise over subsystems). Similarly,
it provides a simple recipe for constructing quasiproba-
bilistic representations, using the same construction but
where the χA preserve the deterministic effect. In the
case of noncontextual ontological models, however, the
recipe is less simple: one must not only choose invertible
linear maps which factorise over subsystems and preserve
the deterministic effect; one must also check the positiv-
ity condition (which is nontrivial, since for any particular
map χA, one must check the condition for every χB).

4.6 Categorical reformulation

There is an elegant categorical reframing of our structure
theorem, as suggested to us by one of the referees:

Theorem 4.7 (IV.1 categorical version). Any convex-
linear, empirically adequate and diagram-preserving map

(Eq. (8)), M : Õp→FVectR , where Õp is tomographi-
cally local, is naturally isomorphic to the canonical rep-
resentation R : Õp → FVectR defined in Theorem 2.8.
Moreover, this natural isomorphism M =⇒ R is unique.

Proof. The components of the natural isomorphism are
given by the χA, as these go from A → VA = M(A),
and where we are abusing notation by denoting R(A)
simply as A. Eq. (69) ensures that these do define a
natural transformation. To see this, first recall that we
are abusing notation by suppressing explicitly notating
the canonical representation R, so Eq. (69) really tells

us that M(T̃ ) = χB ◦R(T̃ )◦χ−1
A which is equivalent to

M(T̃ )◦χA = χB ◦R(T̃ ), which is what we need for this
to be a natural transformation. Clearly it is moreover a
natural isomorphism as every χA is invertible (Eqs. (73)
and (75)). Eq. (100) then ensures that this is a monoidal
natural isomorphism. To see this, note that the LHS of
this equation is not quite the component of the natural
isomorphism χA⊗B , instead we have χAB :=µ−1◦χA⊗B ◦
µ, and so Eq. (100) is equivalent to the condition that
χA⊗B ◦µ=µ◦(χA⊗χB), which is exactly what we need
for this to be a monoidal natural isomorphism. Uniqueness
of this natural isomorphism follows from the fact that
the components χA are uniquely determined, as noted in
Theorem 4.1.

This means that ontological models, should they ex-
ist, are essentially unique, in that they are unique up to
a unique natural isomorphism. There is, however, an
important subtlety going on here. This natural isomor-
phism is given by viewing ontological models as living in
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FVectR, and so the components of the natural isomor-
phism are just invertible real linear maps.

Alternatively, however, one could demand a stricter
notion of isomorphism between ontological models by
viewing them as living in SubStoch, in which case the
components of a natural isomorphism would be invertible
stochastic maps, i.e., permutations of the ontic states.
This is a much stricter notion of isomorphism, and it is
likely that in this sense there are many different ontological
models for a given GPT. In certain situations, however,
even this stricter notion can be proven, see, for example,
Ref. [19].

5 Revisiting our assumptions

We have derived surprisingly strong constraints on the
form of noncontextual ontological models of operational
theories, and so it is important to examine the assump-
tions that went into deriving these constraints. These
concerned both the types of operational theories under
consideration and the types of ontological representations
of these, and were summarized in Section 1.2. The major-
ity of these are ubiquitous and well-motivated. The only
notable restriction on the scope of operational theories
we consider is the one induced by our assumption of to-
mographic locality (as discussed further in Section 5.2).
Similarly, the only notable restriction on ontological (and
quasiprobabilistic) models that is warranting of further
discussion is that they are diagram-preserving.

5.1 Revisiting diagram preservation

In the case of ontological models, we will provide below
a motivation for the instances of diagram preservation
that we required for our proofs. Since we have defined
quasiprobabilistic models as representations of opera-
tional theories wherein the only difference from an onto-
logical model is that the probabilities are allowed to be-
come quasiprobabilities (i.e., drawn from the reals rather
than the interval [0,1]), it follows that these same motiva-
tions are also applicable to them. It is worth noting that
among the quasiprobabilistic representations for continu-
ous variable quantum systems that are most studied in
the literature, the Wigner representation satisfies our defi-
nition12 while the Q [65] and P representations [66, 67] do
not (as they are defined by overcomplete frames). There
are also examples of both types among quasiprobabilistic
representations of finite-dimensional systems in quantum
theory. In particular, Ref. [68] defines a family of discrete
Wigner representations, some of which satisfy the assump-
tion of diagram preservation, and some of which do not.

12Strictly speaking, one would need to generalize our definition
to the case of infinite-dimensional GPTs.

Of special note among those that satisfy the assumption
is Gross’ discrete Wigner representation [69], which is the
unique representation in this family that satisfies a natu-
ral covariance property. Ref. [19] further shows that this
is the unique noncontextual ontological model for stabi-
lizer subtheories in odd dimensions.

Although we endorse diagram preservation in its most
general form, it is worth noting that our main results
(given in Section 4) require only the following very specific
instances of that assumption:

(i) diagram preservation for prepare-measure scenarios,

ξ̃ ::
Ẽ

P̃

7→

Ẽ

P̃

ξ̃

ξ̃

. (112)

and diagram preservation for measure-and-reprepare
processes

ξ̃ ::

Ẽ

P̃

7→

ξ̃
Ẽ

P̃

ξ̃

, (113)

(ii) diagram preservation for the identity process

ξ̃ ::
A

7→
ΛA

. (114)

These are easily justified.

Eq. (112) captures the idea that the ontic state is the
complete causal mediary between the preparation and the
effect. This assumption is built into the very definition
of the standard ontological models framework (implicitly
in early work [1, 62] and explicitly in later work [70, 71]),
and is assumed in virtually every past work on ontological
models.

Eq. (113) is a similarly natural assumption. The natural
view of the process

Ẽ

P̃

(115)

is that one has observed effect Ẽ and then one has indepen-
dently implemented the preparation P̃ . There need not be
any system acting as a causal mediary between Ẽ and P̃ .
The natural ontological representation, therefore, is one
wherein there is no ontic state mediating the two processes,
as depicted in Eq. (113). Although we are not aware of
this assumption having been made in previous works, it
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is directly analogous to the preparation-independence as-
sumption made in Ref. [64] (which involved two indepen-
dent states, rather than an independent effect and state).

Eq. (114) can be justified by noting that within the
equivalence class of procedures associated to the identity
operation in the GPT, there is the one which corresponds
to waiting for a vanishing amount of time. In any reason-
able physical theory, no evolution is possible in vanishing
time, and hence the only valid ontological representation
of such an equivalence class of procedures is the identity
map on the ontic state space.

Because we consider the full assumption of diagram
preservation to be a natural generalization of all of these
specific assumptions, we have endorsed it in ourdefinitions.
See Appendix B of Ref. [35] for a more thorough defense
of this full assumption.

5.2 Necessity of tomographic locality

The assumption of tomographic locality is common in
the GPT literature, so we will not attempt a defense of
it here. Nevertheless, it is natural to ask if the assump-
tion is actually necessary to obtain our structure theo-
rems. Here we provide an example which shows that it
is. The operational theory we consider in our example is
the real-amplitude version of the qutrit stabilizer subthe-
ory of quantum theory13. In this subtheory, two systems
are described by 45 parameters, whereas only 62 =36 pa-
rameters are available from local measurements, which
immediately implies that the theory is not tomographi-
cally local (just as the real-amplitude version of the full
quantum theory fails to be tomographically local [52]).

To begin with, consider the standard (complex-
amplitude) qutrit stabilizer subtheory. Gross’s discrete
Wigner function [69] provides a (diagram-preserving)
quasiprobability representation for qutrits for which the
stabilizer subtheory is positively represented. By Corol-
lary 3.5, this corresponds to a noncontextual ontological
model of the subtheory. Indeed, this ontological model
has been examined in Ref. [60], where it is shown that
it can be reconstructed from an “epistemic restriction”.
Since the standard qutrit stabilizer subtheory is tomo-
graphically local, these models obey our structure theo-
rems. In particular, the representation of n qutrits uses
9n ontic states, matching the dimension of the relevant
space of density matrices.

Now consider the subtheory consisting of only those
qutrit stabilizer procedures that can be represented using
real amplitudes. This does not introduce any new oper-
ational equivalences, and so the model discussed above

13Note that in order for this to be an operational theory according
to our definitions herein, we are here referring to the ‘convexified’
stabilizer subtheory in which all convex combinations of, for example,
the pure stabilizer states are permitted.

is still noncontextual when restricted to this subtheory.
But now our structure theorem does not hold, because
this model still uses 9n ontic states even though the den-
sity matrices now live in a 1

2
3n(3n+1)-dimensional space.

Moreover, we can show that this sort of example is
rather generic, that is, that there is no hope of obtaining
a structure theorem with our dimension bound for any
theory that is not tomographically local.

Suppose that we have any ontological representation
ξ̃ of some GPT wherein each GPT system of dimension
d is represented by an ontic state space of cardinality d.
Then the GPT is necessarily tomographically local.

To see this, consider the representation of GPT trans-
formations from this state space to itself. Then, the map
ξ̃ is a linear map from the space of transformations to
d×d substochastic matrices, which are d2 dimensional.
By empirical adequacy ξ is injective, and so the space of
GPT transformations is at most d2 dimensional. But the
effect-prepare channels already span d2 dimensions, so
there cannot be any channels outside this span. Hence,
by Corollary 2.7, the theory is tomographically local.

6 Outlook

These results can be directly applied to the study of con-
textuality in specific scenarios and theories. For instance,
we have already seen that our dimension bound is a use-
ful tool for obtaining novel proofs of contextuality (e.g.,
via Hardy’s ontological excess baggage theorem [39] or
for the 8-state model of Ref. [56]), and for providing novel
algorithms for deriving noise-robust noncontextuality in-
equalities (namely, the algorithm in Ref. [4] but informed
by our dimension bound). It remains to be seen whether
other algorithms for witnessing nonclassicality, such as
those in Ref. [71] or Ref [70], could be extended within
our framework to more general compositional scenarios.

Our formalism is also ideally suited to understanding
the information-theoretic advantages afforded by con-
textual operational theories, such as for computational
speedup, since it has the compositional flexibility to de-
scribe arbitrary scenarios, such as families of circuits
which arise in the gate-based model of computation. In
fact, our structure theorem is a major first step in sim-
plifying the proof that contextuality is a necessary re-
source for the state-injection model of quantum comput-
ing [19, 72]. Ref. [19] shows that such a proof can pro-
ceed by applying our structure theorem to show that the
only positive quasiprobabilistic models of the (classically-
simulable) stabilizer subtheory for odd dimensions are
given by Gross’s discrete Wigner function [69]; then, the
known fact that the injected resource states necessarily
have negative representation in this particular model es-
tablishes the result in a direct and elegant fashion.

Accepted in Quantum 2024-03-06, click title to verify. Published under CC-BY 4.0. 25



The key limitation of our results is the assumption that
the GPT associated to the operational theory under con-
sideration is tomographically local. There are two poten-
tial approaches to dealing with this limitation. On the
one hand, one could provide an argument that theories
which are not tomographically local are undesirable in
some principled sense. For example, it seems likely that
one can rule them out on the grounds that they violate
Leibniz’s methodological principle [10]. From a practical
perspective, wherein the goal is to experimentally ver-
ify nonclassicality in a theory-independent manner, one
would instead be motivated to seek experimental evidence
that nature truly satisfies tomographic locality, indepen-
dent of the validity of quantum theory. One possible ap-
proach to this end would be to extend the techniques in-
troduced in [73] to composite systems.
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A Context-dependence in representations of GPTs

In the main text, we stated that the notion of an ontological model of a GPT that we have defined cannot be said to be
either generalized-contextual or generalized-noncontextual (unlike our notion of an ontological model of an operational
theory). We will now elaborate on this point.

Consider the contexts that one may wish to associate to a GPT state. One of the examples which appears in the
literature corresponds to different decompositions of the GPT state into mixtures of other GPT states, for example:

∑

i

pisi =s=
∑

j

qjs′
j . (116)

Now consider any ontological representation map which has the GPT as its domain. In the GPT, all three terms in
Eq. (116) are strictly equal, and hence all three map to the same probability distribution over Λ. As such, there is no
possibility for the map to represent an s arising from the LHS mixture differently from how it represents an s arising
from the RHS mixture.

A natural question one might consider in light of this is how one should represent ensembles of states ontologically.
The ensembles of relevance in the example just given are ¶(pi,si)♢, ¶(qj ,s′

j)♢, and ¶(1,s)♢; all of these are operationally
equivalent:

¶(pi,si)♢∼¶(1,s)♢∼¶(qj ,s′
j)♢, (117)

but not strictly equal. If one defines a new kind of ontological representation map which acts on such objects, then it
could take these distinct ensembles to distinct probability distributions over Λ. One could then meaningfully talk about
whether such a representation depended on context or not.

However, the notion of ontological representation for a GPT that we have defined herein has as its domain processes
within the GPT (such as states), not ensembles of such processes. This is also true for the more general quasistochastic
representations of GPTs. As such, applying the notion of generalized contextuality to them is a category mistake, just
as it would be a category mistake to ask whether a variable X depends on another variable Y if Y cannot possibly
vary [4]. Because standard quasiprobability representations (such as Wigner’s or Gross’s) are instances of our definition
(and in particular, because they take the domain of the representation to be states and effects rather than ensembles of
states or ensembles of effects), it is equally meaningless to ask whether they are noncontextual or contextual.

Of course, one could define a map which has as its domain the set of ensembles of GPT processes. For such a map, it
would be appropriate to ask whether or not the map is noncontextual. This is similar to what is done in the causal-
inferential framework of Ref. [35], where the central objects of study are ensembles of processes corresponding to an
agent’s knowledge of what process occurred (although with the difference that in this case we consider ensembles of
unquotiented processes). In that context, we formalize the resulting notion of an ontological representation, as well as
the natural generalization of the notion of ‘noncontextuality’ that arises for it.

A similar story holds for the notion of context that is relevant for the study of Kochen-Specker contextuality. Consider
two measurements, M1 and M2, which we conceptualize as processes with a GPT input and a classical output. Suppose
that these each have a particular outcome, labeled a and b respectively, which correspond to the same GPT effect:

M1

a

= M2

b

. (118)

The fact that the effect associated to getting outcome a in measurement M1 is strictly equal to the effect associated
to getting outcome b in measurement M2 implies that any map which has the GPT effect space as its domain must
represent the two cases identically. Again, one finds that there is no possibility for a representation map with this
specific choice of domain to depend on whether or not the effect was realized using measurement M1 or M2.

But, also as above, one could choose to consider a different kind of ontological representation map in which the
domain is no longer the set of GPT processes per se, but something else, which includes, for instance, measurement-
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outcome pairs. In this particular case, we are interested in pairs (M1,a) and (M2,b) which are operationally equivalent,

 M1 ,

a


∼


 M2 ,

b


, (119)

but not strictly equal. If one defines a new kind of ontological representation map which acts on such objects, then
it could take distinct such objects to distinct response functions. One could then meaningfully talk about whether
such a representation depended on context or not. This is what is typically done (if only implicitly) in the study of
Kochen-Specker noncontextuality.

B Proof of the structure theorem (Theorem 4.1)

We now complete the proof of Theorem 4.1, as sketched in the main text.

Proof. Since we are assuming tomographic locality of the GPT, Corollary 2.7 immediately gives

T̃

M

VA

A

B

VB

=

M

∑

ij

rij

Ẽj

P̃i

VB

VA

. (120)

Since M is convex-linear and preserves the zero processes14, and since the effect-state channels span the vector space,
M can be uniquely extended to a linear map M̂ . Hence,

M

∑

ij

rij

Ẽj

P̃i

VB

VA

=

M̂

∑

ij

rij

Ẽj

P̃i

. (121)

Now, using the linearity of M̂ , we have

M̂

∑

ij

rij

Ẽj

P̃i

=
∑

ij

rij

M̂

Ẽj

P̃i

. (122)

Noting that in this diagram, M̂ is only applied to objects in the domain of M , on which the two maps act identically
(by the fact that the former is the linear extension of the latter), one has

∑

ij

rij

M̂

Ẽj

P̃i

=
∑

ij

rij

M

Ẽj

P̃i

=
∑

ij

rij

M

Ẽj

P̃i

M

VB

VA

. (123)

14This follows from the fact that one can construct the zero process by composing a state and an effect with the zero scalar as 0B
A

= P̃ ◦0◦Ẽ.

Then, by empirical adequacy of M , one has M(0) = 0, and so diagram-preservation of M then gives M(0B
A

) = M(P̃ )◦M(0)◦M(Ẽ) =

M(P̃ )◦0◦M(Ẽ)=0
VB
VA

.
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where the last step follows from the fact that M is diagram-preserving. In summary, we have shown that

T̃

M

VA

A

B

VB

=
∑

ij

rij

M

Ẽj

P̃i

M

VB

VA

, (124)

as claimed in Eq. (70).

Next, we analyse M in the specific case of a state P̃i:

P̃i
M

VB

. (125)

Since the DP map M has a unique linear extension which takes the vector space of GPT states B to the vector space VB ,
and since both of these are in FVectR, one can uniquely re-interpret the action of M as a process χ within FVectR:

P̃i
M

VB

=

P̃i

χB . (126)

In particular, we are using the fact that a linear map L :L(R,V )→L(R,V ′) can always be uniquely represented by a
linear map l : V → V ′ by exploiting the fact that L(R,V ) ∼= V . The fact that χB is the unique linear map satisfying
Eq. (126), means that there is no possibility for making other choices for the χA appearing in Eq. (69).

Similarly, M on effects Ẽj has a unique linear extension and takes functionals on GPT states to functionals on VA; in
other words, M is the adjoint of a process ϕ within FVectR:

Ẽj

M

VA

A =

Ẽj

φA

VA

, (127)

In particular, we are using the fact that a linear map L :L(V,R)→L(V ′,R) can always be uniquely represented by a
linear map l :V ′ →V by exploiting the fact that L(V,R)∼=V ∗ and that L(V ∗,V ′∗)∼=L(V ′,V ). Combining this with
Eq. (124), we have

T̃
M

=

χB

φA

∑

ij

rij

Ẽj

P̃i

= T̃

χB

φA

. (128)

All that remains is to show that χA and ϕA are inverses. Consider the special case that T̃ is the identity, then
Eq. (128) becomes

M

=
χA

φA

. (129)
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Since M is diagram-preserving, it maps identity to identity, and so this becomes

=
χA

φA

. (130)

Now consider a state P̃ followed by an effect Ẽ. This gives a probability, and since M is empirically adequate it must
preserve this probability:

Ẽ

P̃

=
Ẽ

P̃
M

, (131)

and since M is diagram-preserving,

Ẽ

P̃
M

=

Ẽ

P̃

M

M

. (132)

Combining this with Eqs. (126) and (127) gives

Ẽ

P̃

=

Ẽ

P̃

χA

φA

. (133)

Since this holds for all Ẽ and P̃ , tomographic locality implies that the Ẽ span A∗ and the P̃ span A, and we have that

A

=

χA

φA

A

VA

A

. (134)

Combining this with Eq. (130) gives that χ and ϕ are inverses of each other. Hence, we can write that ϕA =χ−1
A and so

rewrite Eq. (128) as

T̃
M

= T̃

χB

φA

= T̃

χB

χ−1
A

VA

A

B

VB

, (135)

which completes the proof.

C Completing the proof of Proposition 3.2

The key argument required to establish Prop 3.2 was given just after the proposition itself, but we now complete the proof.

We now prove that ξnc := ξ̃◦∼ is indeed a valid ontological model of an operational theory if ξ̃ is a valid ontological
model of a GPT. To do so, we show that each of the three properties (enumerated in Definition 2.9) that ξnc should

satisfy is implied by the corresponding property (enumerated in Definition 2.10) that ξ̃ is assumed to satisfy by virtue
of being an ontological model of a GPT.
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First, recall that we assumed that all deterministic effects in the operational theory are operationally equivalent.
Hence, the map ∼ will take any such deterministic effect to the unique deterministic effect in the GPT, which (by
property 1 of Definition 2.10) must be represented by the unit vector 1. Hence, ξnc represents all deterministic effects in
the operational theory appropriately, namely as the unit vector 1.

Second, recall that ∼ preserves the operational predictions of the operational theory; hence, the fact that (by property

2 of Definition 2.10) ξ̃ preserves the operational predictions of the GPT implies that ξnc := ξ̃◦∼ preserves the operational
predictions of the operational theory.

Third, recall that if, in the operational theory, P1 is a procedure that is a mixture of P2 and P3 with weights ω and
1−ω, then it follows that under ∼, one has

P̃1 =ωP̃2+(1−ω)P̃3. (136)

Hence, the fact that (by property 3 of Definition 2.10) the representations of these three processes under ξ̃ satisfy

P̃1

ξ̃

=ω P̃2

ξ̃

+(1−ω) P̃3

ξ̃

(137)

implies that the representations of P1, P2, and P3 satisfy

P1

ξnc

=ω P2

ξnc

+(1−ω) P3

ξnc

. (138)

Hence ξnc satisfies all the properties of an ontological model of an operational theory.
Conversely, we prove that ξ̃ :=ξnc◦C is a valid ontological model of a GPT if ξnc is a valid noncontextual ontological

model of an operational theory. To do so, we show that each of the three properties (enumerated in Definition 2.10)

that ξ̃ should satisfy is implied by the corresponding property (enumerated in Definition 2.9) that ξnc is assumed to
satisfy by virtue of being an ontological model of a GPT.

First, consider the unique deterministic effect in the GPT. Applying C to this process yields one of the many
deterministic effects in the operational theory. Because (by property 1 of Definition 2.9) ξnc maps every one of these to

the unit vector 1, it follows that ξ̃ :=ξnc◦C maps the unique deterministic effect to the unit vector 1.
Second, recall that the context of a process is irrelevant for the operational predictions it makes, and that consequently,

the map C preserves the operational predictions. Given that (by property 2 of Definition 2.9) ξnc preserves the

operational predictions, ξ̃ :=ξnc◦C also preserves the operational predictions.
Third, consider three processes P̃1, P̃2, and P̃3 such that P̃1 =ωP̃2+(1−ω)P̃3 in the GPT. Under C, one has processes

C(P̃1)=(P̃1,c1), C(P̃2)=(P̃1,c2), and C(P̃3)=(P̃1,c3) in the operational theory, where ci are arbitrary contexts specified

by the map C. The fact that P̃1 =ωP̃2+(1−ω)P̃3 implies that C(P̃1) is operationally equivalent to the effective procedure

Pmix defined as the mixture of C(P̃2) and C(P̃3) with weights ω and 1−ω, respectively. (C(P̃1) may not actually be this
mixture, depending on its context ci, which depends on one’s choice of C.) By property 3 of Definition 2.9, ξnc must satisfy

Pmix

ξnc

=ω C(P̃2)

ξnc

+(1−ω) C(P̃3)

ξnc

. (139)

But since ξnc is a noncontextual model and since C(P̃1) is operationally equivalent to Pmix, it follows that

C(P̃1)

ξnc

=ω C(P̃2)

ξnc

+(1−ω) C(P̃3)

ξnc

. (140)

Hence we see that ξ̃ :=ξnc◦C satisfies property 3 of Definition 2.10, as required.
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D Proof of Proposition 4.4

Proof. Since the ontological model ξ̃ satisfies the requirements of Proposition 4.3 we immediately obtain Eqs. (96) and
(97).

We however also obtain additional constraints arising from the fact that the codomain of ξ̃ is SubStoch rather than
QuasiSubStoch. This additional constraint can be viewed as a set of positivity conditions as we will now explain.

The notion of positivity we require is defined for linear maps between ordered vector spaces. A positive cone V + for
a real vector space V defines an ordering:

v ≤v′ ⇐⇒ ∃w∈V + s.t. v+w=v′. (141)

Given two such ordered vector spaces, (V,V +) and (W,W +), maps between these ordered vector spaces are linear maps
on the underlying vector spaces L :V →W and are said to be positive if and only if:

L(V +)⊆W +. (142)

Now, the question is: what are the relevant ordered vector spaces which we want to consider here?

In the GPT Õp, we can define an ordered vector space for each pair of systems (A,B) as the vector space spanned by

the transformations from A to B, which we denote by Span[Õp
B

A ]. The positive cone is defined by the vectors in this

space which can be expressed as a positive linear combination of vectors in Õp
B

A :

Cone[Õp
B

A ] :=

{
∑

i

rif̃i

∣∣∣∣∣ri ∈R
+, f̃i ∈ Õp

B

A

}
. (143)

Then it is clear that, (Span[Õp
B

A ],Cone[Õp
B

A ]) defines an ordered vector space.
Similarly, in SubStoch we can define an ordered vector space for each pair of systems (RΛ,RΛ

′

) as the vector space

spanned by the substochastic maps from R
Λ to R

Λ
′

, which we denote by Span[SubStochΛ
′

Λ ] which is a subspace of the
real vector space of linear maps from R

Λ to R
Λ

′

. The positive cone is defined by the vectors in this space which can be

expressed as a positive linear combination of vectors in SubStochΛ
′

Λ :

Cone[SubStochΛ
′

Λ ] :=

{
∑

i

risi

∣∣∣∣∣ri ∈R
+, si ∈SubStochΛ

′

Λ

}
. (144)

Then it is clear that, (Span[SubStochΛ
′

Λ ],Cone[SubStochΛ
′

Λ ) defines an ordered vector space.

Then, for a pair of GPT systems (A,B) the action of the map ξ̃ from Õp
B

A to SubStochΛB

ΛA
can be extended to a linear

map from Span[Õp
B

A ] to Span[SubStochΛB

ΛA
]. Moreover, it is clear that this will be a positive linear map—in the sense

that we defined above—as it maps the positive cone Cone[Õp
B

A ] into the positive cone Cone[SubStochΛB

ΛA
], that is:

ξ̃
(

Cone[Õp
B

A ]


= ξ̃

({
∑

i

rif̃i

∣∣∣∣∣ri ∈R
+, f̃i ∈ Õp

B

A

}
(145)

=

{
∑

i

riξ̃(f̃i)

∣∣∣∣∣ri ∈R
+, f̃i ∈ Õp

B

A

}
(146)

=

{
∑

i

risi

∣∣∣∣∣ri ∈R
+, si ∈ ξ̃(Õp

B

A)

}
(147)

⊆

{
∑

i

risi

∣∣∣∣∣ri ∈R
+, si ∈SubStochΛB

ΛA

}
(148)

=Cone[SubStochΛB

ΛA
]. (149)

In summary, for each pair (A,B), the representation map ξ̃ defines a positive linear map from (Span[Õp
B

A ],Cone[Õp
B

A ])

to (Span[SubStochΛ
′

Λ ],Cone[SubStochΛ
′

Λ ).

This positivity condition is all fairly abstract so let us consider some more concrete consequences of this result.
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If, rather than considering transformations from one GPT system to another, we consider just the states of a single
system A then everything simplifies considerably. The vector space we consider in the domain is simply the vector
space spanned by the GPT state space, and the positive cone is then just the standard cone of GPT states. The vector
space we consider in the codomain is simply the vector space RΛA with positive cone given by the cone of unnormalised
probability distributions. Moreover, the linearly extended action of ξ̃ is nothing but the linear map χA so we find that
χA must be a positive map in the sense defined above.

Similarly, if we consider the contravariant action of χ−1
A on the space of GPT effects (that is, by composing the effect

onto the outgoing wire of χ−1
A ) then we arrive at a similar result. Here we find that the contravariant action of χ−1

A is a
positive linear map from the dual of the GPT vector space ordered by the effect cone to the dual of RΛA ordered by the
cone of response functions.

E Proofs for preliminaries

E.1 Proof that quotienting is diagram-preserving

In order to see that the quotienting map is diagram-preserving, we must first define what it means for processes in the
quotiented theory to be composed. That is, given a suitable pair of equivalence class T̃ and R̃, we must define R̃◦T̃

(assuming that the relevant type matching constraint is satisfied) and R̃⊗T̃ . We define these via composition of some

choice of representative elements, r∈R̃ and t∈ T̃ , for each equivalence class, as

T̃

R̃

:= r̃◦t and R̃ T̃ := r̃⊗t . (150)

For this to be well defined, it must be independent of the choices of representatives, i.e. for any t1,t2 ∈ T̃ and r1,r2 ∈R̃,
one has

r̃1◦t1
= r̃2◦t2

and r̃1⊗t1
= r̃2⊗t2

(151)

or equivalently

t1

r1

∼
t2

r2

and r1 t1 ∼ r2 t2 . (152)

If this is the case, then the quotienting map is a structure-preserving equivalence relation, or congruence relation, for
the process theory.

It is straightforward to show that the first equality in Eq. (152) is equivalent to the conditions

∀ r
t1

r

∼
t2

r

and ∀ t
t

r1

∼
t

r2

. (153)

To verify the nontrivial direction of this equivalence, consider the special case of these where r=r1 (in the first) and
where t= t2 (in the second); then, one has

t1

r1

∼
t2

r1

=
t2

r1

∼
t2

r2

(154)
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Similarly, the second equality in Eq. (152) is equivalent to the conditions

∀ r r t1 ∼ r t2 and ∀ t r1 t ∼ r1 t . (155)

We now prove that the first of these four conditions (namely, the first equivalence in Eq. (153)) holds:

t1 ∼ t2 ⇐⇒ ∀τ t1 τ

p

= t2 τ

p

(156)

=⇒ ∀τ ′

t1

τ ′

p

r

=
t2

τ ′

p

r

(157)

⇐⇒
t1

r

∼
t2

r

(158)

where in the second step we are noting that

τ ′

r

(159)

is an example of a tester τ for any τ ′ and r. The argument for the other three conditions is analogous.

This establishes that the notion of composition that we have defined is independent of the choice of representative
elements, and so we can simply write

T̃

R̃

= r̃◦t = R̃◦T and R̃ T̃ = r̃⊗t = R̃⊗T (160)

Now, recalling that

T
∼

:= T̃ (161)
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it follows that the quotienting map is diagram-preserving:

T

R

∼

= R◦T
∼

= R̃◦T =

T̃

R̃

=

T

R
∼

∼

, (162)

R T
∼

= R⊗T
∼

= R̃⊗T = R̃ T̃ = R T
∼ ∼

. (163)

E.2 Proof of Lemma 2.5

We now prove Lemma 2.5, restated here:

Lemma E.1. The operation □ can be uniquely extended to a bilinear map

□ :
(
R

mB→C

,RmA→B


→R
mA→C

, (164)

and the operation ⊠ can be uniquely extended to a bilinear map

⊠ :
(
R

mA→B

,RmC→D


→R
mAC→BD

. (165)

Proof. Here we show the proof for □. The proof for ⊠ follows similarly.

To begin, note that the vectors R
T̃

with T̃ :A→B span the vector space R
mA→B

, as we have taken FA→B to be a

minimal fiducial set of testers. Consequently, we can always (nonuniquely) write an arbitrary U∈R
mB→C

as
∑

iuiRT̃i
for

some transformations T̃i :B →C, ui ∈R, and can write an arbitrary V∈R
mA→B

as
∑

jvjR
T̃ ′

j

for some transformations

T̃ ′
j :A→B, vj ∈R. Hence, we propose the linear extension be defined by U□V :=

∑
ijuivj(R

T̃i
□R

T̃ ′
j
)=
∑

ijuivjR
T̃i◦T̃ ′

j
.

For this to be a valid definition, however, it must be the case that this is independent of the chosen decomposition of U
and V. We now show that this is indeed the case.

To begin, let us consider two distinct decompositions in the second argument of □. That is, given
∑

i

uiRT̃i
=U=

∑

j

u′
jR

T̃ ′
j
, (166)

we want to show that ∑

i

ui(RT̃
□R

T̃i
)=
∑

j

u′
j(R

T̃
□R

T̃ ′
j
) (167)

for all T̃ .

To begin, we use linearity of EA→B (as defined in Section 2.2.1) to give us that
∑

i

uiKT̃i
=
∑

j

u′
jK

T̃ ′
j
. (168)

Unpacking the definition of K gives us that for all testers τ̃ ,

T̃ ′
j τ̃=

∑
ju′

jT̃i τ̃
∑

iui . (169)
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Now, define

τ̃ ′ :=
T̃

τ̃
(170)

for some arbitrary τ̃ and transformation T̃ . Substituting tester τ̃ ′ into Eq. (169), we find that

∑

i

ui

T̃

T̃i

τ̃
=
∑

j

vj

T̃

T̃ ′
j

τ̃
. (171)

As this holds for all τ̃ , and so, in particular, for our fiducial testers, we therefore have that
∑

i

uiRT̃ ◦T̃i
=
∑

j

u′
jR

T̃ ◦T̃ ′
j
. (172)

Finally, using the fact that R
T̃ ◦T̃i

=R
T̃

□R
T̃i

and similarly that R
T̃ ◦T̃ ′

j
=R

T̃
□R

T̃ ′
j

we find

∑

i

ui(RT̃
□R

T̃i
)=
∑

j

u′
j(R

T̃
□R

T̃ ′
j
), (173)

which is our desired result.

One can similarly show linearity in the first argument, namely,
∑

k

vk(R
T̃ ′′

k

□R
T̃

)=
∑

l

v′
l(RT̃ ′′′

l

□R
T̃

). (174)

Putting these together, we obtain full bilinearity of □, namely

U□V=
∑

ij

uivj(R
T̃i

□R
T̃ ′

j
)=
∑

kl

u′
kv′

l(RT̃ ′′

k

□R
T̃ ′′′

l

), (175)

as required.

E.3 Proof of Lemma 2.6

We now prove Lemma 2.6, restated here:

Lemma E.2. A GPT is tomographically local if and only if one can decompose the identity process for every system A,
denoted 1̃A, as

A

=
∑

ij

[M
1̃A

]ji

ẼA
i

A

A

P̃ A
j

, (176)

where M
1̃A

is the matrix inverse of the transition matrix N
1̃A

of the identity process, that is,

M
1̃A

:=N−1

1̃A

. (177)

Proof. First, we prove that if a GPT satisfies tomographic locality, then the identity has a decomposition of the form in
Eq. (176). We do this by defining a particular process f as a linear expansion into states and effects with the carefully
chosen set of coefficients [M

1̃A
]ji , and then we prove that f = 1̃A.
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Take any minimal spanning set ¶P̃ A
i ♢i of GPT states and spanning set ¶ẼA

j ♢j of GPT effects, and consider the
transition matrix N

1̃A
with entries given by

[N
1̃A

]ji :=
P̃ A

i

ẼA
j

. (178)

Next, define M−1

1̃A

:=N
1̃A

, that is the inverse N
1̃A

with matrix elements [M
1̃A

]ji satisfying

∑

j

[M
1̃A

]ji [N
1̃A

]kj =δik, (179)

The matrix inverse of N
1̃A

exists, since the rows of N
1̃A

are linearly independent. That is, we show that
∑

iai[N
1̃A

]ji =0
if and only if ai =0 for all i. First, note that we have

0=
∑

i

ai[N
1̃A

]ji =
∑

i

ai

P̃ A
i

ẼA
j

,

but as the ẼA
j span the space of effects and composition is bilinear (see Lemma 2.5), this means that

∑
iaiP̃

A
i =0; then,

since the P̃ A
i are linearly independent, we have ai =0 for all i, as desired.

Next we use this inverse to define a process f as

f :=
∑

ij

[M
1̃A

]ji

ẼA
i

P̃ A
j

. (180)

A priori, there is no reason why this process must be a physical GPT process; however, it turns out to be the identity
process, as we will now show. Consider the expression

P̃ A
k

f

ẼA
l

(181)

for some P̃ A
k and some ẼA

l from the minimal spanning sets above. Substituting the expansion of f followed by applying
the definition of M

1̃A
and N

1̃A
, one has

P̃ A
k

f

ẼA
l

=
∑

ij

[M
1̃A

]ji

P̃ A
k

ẼA
i

P̃ A
j

ẼA
l

=
∑

ij

[M
1̃A

]ji [N
1̃A

]lj [N
1̃A

]ik. (182)

But now it follows from Eq. (179) that

∑

ij

[M
1̃A

]ji [N
1̃A

]lj [N
1̃A

]ik =
∑

i

δil[N
1̃A

]ik =[N
1̃A

]lk =
P̃ A

k

ẼA
l

. (183)
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Hence, it holds that

P̃ A
k

f

ẼA
l

=

P̃ A
k

ẼA
l

(184)

for all P̃ A
k and ẼA

l in the minimal spanning sets above. By the fact that these sets span the state and effect spaces
respectively, it follows that

P̃

f

Ẽ

=

P̃

Ẽ

(185)

for all P̃ and Ẽ. Now, in any GPT which satisfies tomographic locality, namely Eq. (49), two channels which give the
same statistics on all local inputs and outputs are equal, and hence f is in fact the identity transformation. Hence, the
identity transformation has a linear expansion, of the form given by Eq. (176), namely

f = =
∑

ij

[M
1̃A

]ji

ẼA
i

P̃ A
j

. (186)

Next, we prove the converse: if the identity has a linear expansion as in Eq. (176) in a given GPT, then that GPT

satisfies tomographic locality. To see this, consider two bipartite processes T̃ and T̃ ′ which give rise to the same
statistics on all local inputs, so that

∀P1,P2,E1,E2 T̃

Ẽ1 Ẽ2

P̃1 P̃2

A

B

C

D

= T̃ ′

Ẽ1 Ẽ2

P̃1 P̃2

A

B

C

D

. (187)

For any tester τ̃ of the appropriate type, one can write the probability generated by composing with T̃ as

T̃τ̃

A

B

C

D

=
∑

ijkli′j′k′l′

[M
1̃A

]i
′

i [M
1̃C

]j
′

j [M
1̃B

]k
′

k [M
1̃D

]l
′

l T̃

ẼB
k ẼD

l

P̃ A
i′ P̃ C

j′

ẼA
i

ẼC
j

P̃ B
k′ P̃ D

l′

τ̃ (188)
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simply by inserting the linear expansion of the identity on each system. Similarly, one can write

T̃ ′τ̃

A

B

C

D

=
∑

ijkli′j′k′l′

[M
1̃A

]i
′

i [M
1̃C

]j
′

j [M
1̃B

]k
′

k [M
1̃D

]l
′

l T̃ ′

ẼB
k ẼD

l

P̃ A
i′ P̃ C

j′

ẼA
i

ẼC
j

P̃ B
k′ P̃ D

l′

τ̃ . (189)

Noting that the RHS of Eq. (188) splits into two disconnected diagrams, and the same holds for the RHS of Eq. (189),
it follows from Eq. (187) that

T̃τ̃ = T̃ ′τ̃ . (190)

Since this is true for any two processes satisfying Eq. (187), the principle of tomographic locality (Eq. (49)) is satisfied.

E.4 Proof of Eqs. (57) and (58)

To prove Eq. (57), one can decompose the four identities in the diagram and perform some simple manipulations of the
resulting expression.

T̃

B

A

T̃ ′

D

C

=

ẼB
k

T̃

P̃ A
j∑

ij

[M
1̃A

]ji

∑

kl

[M
1̃B

]lk

P̃ B
l

ẼA
i

ẼD
k′

T̃ ′

P̃ C
j′∑

i′j′

[M
1̃C

]j
′

i′

∑

k′l′

[M
1̃D

]l
′

k′

P̃ D
l′

ẼC
i′

=

∑

ij

[M
1̃A

]ji

∑

kl

[M
1̃B

]lk

P̃ B
l

ẼA
i

[N
T̃

]kj

∑

i′j′

[M
1̃C

]j
′

i′

∑

k′l′

[M
1̃D

]l
′

k′

P̃ D
l′

ẼC
i′

[N
T̃ ′

]k
′

j′ (191)

=
∑

ii′ll′


 ∑

jj′kk′

[M
1̃B

]lk[N
T̃

]kj [M
1̃A

]ji [M
1̃D

]l
′

k′ [N
T̃ ′

]k
′

j′ [M
1̃C

]j
′

i′




P̃ B
l

ẼA
i

P̃ D
l′

ẼC
i′

(192)

=
∑

ii′ll′

(
[M

1̃B
◦N

T̃
◦M

1̃A
]li[M1̃D

◦N
T̃ ′

◦M
1̃C

]l
′

i′

 P̃ B
l

ẼA
i

P̃ D
l′

ẼC
i′

(193)
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=
∑

ii′ll′

(
[(M

1̃B
◦N

T̃
◦M

1̃A
)⊗(M

1̃D
◦N

T̃ ′
◦M

1̃C
)]ll

′

ii′

 P̃ B
l

ẼA
i

P̃ D
l′

ẼC
i′

(194)

=
∑

ii′ll′

(
[M

T̃
⊗M

T̃ ′
]ll

′

ii′

 P̃ B
l

ẼA
i

P̃ D
l′

ẼC
i′

. (195)

To prove Eq. (58), one can insert four decompositions of the identity into the following diagram:

T̃

T̃ ′

A

B

C

=

P̃ B
n

T̃ ′

ẼC
o

T̃

ẼB
k

P̃ A
j

P̃ B
l

ẼB
m

ẼA
i

P̃ C
p

∑

ij

[M
1̃A

]ji

∑

kl

[M
1̃B

]lk

∑

mn

[M
1̃B

]nm

∑

op

[M
1̃C

]po

=

ẼA
i

P̃ C
p

∑

ij

[M
1̃A

]ji

∑

kl

[M
1̃B

]lk

∑

mn

[M
1̃B

]nm

∑

op

[M
1̃C

]po

[N
1̃
]ml

[N
T̃ ′

]on

[N
T̃

]kj

(196)

=
∑

ip

[M
1̃C

◦N
T̃ ′

◦M
1̃B

◦N
1̃B

◦M
1̃B

◦N
T̃

◦M
1̃A

]oi

ẼA
i

P̃ C
p

(197)

=
∑

ip

[M
T̃ ′

◦N
1̃B

◦M
T̃

]oi

ẼA
i

P̃ C
p

. (198)
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