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Abstract: The current geometric increase in the global deployment of solar photovoltaic (PV) mod-

ules, both at utility-scale and residential roof-top systems, is majorly attributed to its affordability,

scalability, long-term warranty and, most importantly, the continuous reduction in the levelized cost

of electricity (LCOE) of solar PV in numerous countries. In addition, PV deployment is expected to

continue this growth trend as energy portfolio globally shifts towards cleaner energy technologies.

However, irrespective of the PV module type/material and component technology, the modules

are exposed to a wide range of environmental conditions during outdoor deployment. Oftentimes,

these environmental conditions are extreme for the modules and subject them to harsh chemical,

photo-chemical and thermo-mechanical stress. Asides from manufacturing defects, these conditions

contribute immensely to PV module’s aging rate, defects and degradation. Therefore, in recent times,

there has been various investigations into PV reliability and degradation mechanisms. These studies

do not only provide insight on how PV module’s performance degrades over time, but more impor-

tantly, they serve as meaningful input information for future developments in PV technologies, as

well as performance prediction for better financial modelling. In view of this, prompt and efficient de-

tection and classification of degradation modes and mechanisms due to manufacturing imperfections

and field conditions are of great importance towards minimizing potential failure and associated risks.

In the literature, several methods, ranging from visual inspection, electrical parameter measurements

(EPM), imaging methods, and most recently data-driven techniques have been proposed and utilized

to measure or characterize PV module degradation signatures and mechanisms/pathways. In this

paper, we present a critical review of recent studies whereby solar PV systems performance reliability

and degradation were analyzed. The aim is to make cogent contributions to the state-of-the-art,

identify various critical issues and propose thoughtful ideas for future studies particularly in the area

of data-driven analytics. In contrast with statistical and visual inspection approaches that tend to be

time consuming and require huge human expertise, data-driven analytic methods including machine

learning (ML) and deep learning (DL) models have impressive computational capacities to process

voluminous data, with vast features, with reduced computation time. Thus, they can be deployed for

assessing module performance in laboratories, manufacturing, and field deployments. With the huge

size of PV modules’ installations especially in utility scale systems, coupled with the voluminous

datasets generated in terms of EPM and imaging data features, ML and DL can learn irregular

patterns and make conclusions in the prediction, diagnosis and classification of PV degradation

signatures, with reduced computation time. Analysis and comparison of different models proposed

for solar PV degradation are critically reviewed, in terms of the methodologies, characterization

techniques, datasets, feature extraction mechanisms, accelerated testing procedures and classification

procedures. Finally, we briefly highlight research gaps and summarize some recommendations for

the future studies.
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1. Introduction

Recognized as a cheap and sustainable option, renewables including solar and wind
energy technologies provide clean energy options that contribute heavily to the reduction
of ecological problems globally, particularly CO2 emission [1–5]. Solar as well as wind
technologies are projected to be the major energy source by the year 2025, with solar en-
ergy production contributing 60% of the capacity additions [6,7]. This projection is highly
feasible provided that the reliability, accessibility, and performance issues are continuously
monitored and resolved. In recent years, the installation of solar photovoltaic (PV) mod-
ules, both at utility-scale and residential roof-top systems, has increased geometrically
majorly due to factors which include their well-known affordability, scalability and long-
term warranty, and most importantly, the continuous reduction in the levelized cost of
electricity (LCOE) of solar PVs worldwide [8–11]. On the LCOE basis, nuclear technology,
coal, natural gas, etc. are more expensive compared to solar and wind systems. For the
calculation of LCOE, the fuel cost for solar and wind generation is zero, when compared
to other technologies. According to a LCOE estimate analysis for various energy genera-
tion technologies [12], the cost of solar and wind have consistently dropped compared to
other conventional technologies which include gas, nuclear, coal etc. While it took nearly
six decades to realize 100 GW of solar energy generation by 2012, National Renewable
Energy Laboratory (NREL) reported that 939 GW mark has been reached as at 2021 [13,14].
Thus, making PV energy generation the fastest growing energy source globally. Figure 1
presents the global cumulative PV installed capacity-GigaWatts peak (GWp) over the
past decade.
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Figure 1. Evolution of PV installations over the past decade [14–16].

As described in [17], one of the macrotrends that have increased the global ascendency
of the PV industry in recent times is that, improved designs boast of increased performance.
Newer PV modules are projected to operate effectively for 30 years [18–20]. However,
irrespective of the PV module type/material technology, the modules are exposed to
a wide range of environmental conditions during outdoor deployment [21–23]. Oftentimes,
these outdoor environmental conditions are extreme for the modules and subject them to
harsh chemical, photo-chemical and thermo-mechanical stress. Asides from manufacturing
defects, these conditions contribute immensely to PV module’s aging rate, defects and
degradation. Historically, when PV solar power was initially developed at the Flat-Plate
Solar Array Block Program in the 1970s, the goal was to provide a sustainable energy



Energies 2022, 15, 5964 3 of 28

alternative. While the developments paved the way for the development of some silicon PV
power plants in the early 1980s, there was little consideration of the potential degradation
and reliability challenges that come with aging of the PV modules [24]. In fact, some of
the power plants had an annual power degradation rate of approximately 10%/year, far
beyond currently designed modules with a rate of <1%/year. Advancement in technology
in recent times have revolutionized PV technology industry with the creation of newer
technologies in module designs, with lower cost materials and better degradation rates.
Newer module designs boast of other features which include half-cut cells to reduce series
resistance, bifacial modules that allows capturing light reflections from both sides, glass
to glass constructions, etc. Thus, modules warranties have advanced positively from the
5 years in the 80s, to an average of 10/20 years in the 90s, compared to the current possibility
of 80% optimal performance for an average 30 years [25].

However, despite the huge progress in PV technologies in recent years, the issue of PV
cell, module and system reliability and degradation mechanisms that affect their efficiency,
stability, and operating lifetime are major concerns globally [26–28]. The authors in [29]
explained that although, PV systems are becoming increasingly affordable, the extended
lifetime reliability of the systems is still a major concern as they are hugely vulnerable to
various forms of faults as well as degradations. Hence, various research and investigations
have shifted towards PV reliability and degradation mechanisms in recent times. These
studies provide insight on how PV module’s performance degrades over time, especially
under field conditions [18]. More importantly, the studies serve as meaningful input in-
formation for future developments in PV technologies, as well as performance prediction
for better financial modelling. Various governmental parastatals and research institutions
are working assiduously towards prolonging the 80% minimum performance warranty
on PV modules from 25 years to 50 years. A major way to achieve this is by investigating
the various degradation mechanisms. Generally, factors such as the material and technol-
ogy type, field environment deployed determine the PV systems’ aging and degradation
process/patterns. Module components such as the encapsulant, backsheet, glass, etc. are
susceptible to degradation and failures. Figure 2 presents the degradation analysis result
involving 1.9 million modules across 197 installations in different climes [30]. Due to ag-
ing from field exposure ranging from 0–25 years with an average age of 3.4 years for all
197 installations, the result showed that 43 out of the total installations have experienced
extensive degradation and defects which are classified as cell defects (corrosion, snail trails),
encapsulant defects (discoloration and delamination) and backsheet defects (front and
airside delamination, yellowing, cracking, peeling, and localized burning) [30].
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Figure 2. Degradation analysis result involving 1.9 million modules across 197 installations [30].
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With regards to degradation mechanisms, moisture ingress is adjudged as a major
concern that causes degradation. Moisture in EVA encapsulant can lead to metal grids
corrosion, delamination and discoloration of encapsulants, potential induced degradation,
etc. Figure 3 presents typical degradation modes and signatures that are usually associated
with moisture ingress degradation mechanism.

ments. With the huge size of PV modules’ ins

Figure 3. Typical degradation modes and signatures associated with moisture ingress [31].

In view of the degradation menace, the prompt and efficient prediction, detection and
classification of degradation modes and mechanisms due to manufacturing imperfections
and prolonged outdoor conditions are of great importance towards minimizing potential
failure and associated risks. In the literature, several methods, ranging from visual in-
spection, electrical parameter measurements (EPM), imaging methods, and most recently
data-driven analytic models have been proposed and utilized for measuring or character-
izing PV module degradation mechanisms/pathways. In this work, we present a critical
review of recent research works whereby solar PV systems performance reliability and
degradation were analyzed. The paper aims to offer ideas for future studies particularly
in the area of data-driven analytics modelling for PV degradation analysis. Data-driven
analytic methods including machine learning (ML) and deep learning (DL) have better
computational capability with regards to the handling of voluminous data, with high
number of features, with reduced computation time. In addition, they provide a simple
option for easy automation of the laboratory-based techniques for real time analysis. Thus,
they can be applicable for the performance and degradation assessment of PV modules in
the laboratory, during the manufacturing process, and during outdoor deployments. With
the huge size of PV modules’ installations especially in utility scale systems, coupled with
the voluminous data generated in terms of EPM and imaging data features, it is paramount
to deploy advanced models such as ML and DL techniques that can learn and discover
irregular patterns and reach meaningful conclusions in the diagnosis and classifications
of PV degradations, with reduced computation time. PV performance forecasting and
degradation are currently receiving huge attention with regards to ML and DL applications.
Realistically, ML and DL models are not currently considered as definitive solutions to
PV degradation challenges. However, these models present powerful set of tools that
justify thoughtful considerations in the analysis of PV performance and degradation. Tra-
ditionally, based on the learning strategy, ML models can be categorized into supervised,
semi-supervised, unsupervised learning and reinforcement learning. Supervised learning
model learns the correlations between training set features, so as to create a prediction
model which has the capability of inferring annotations for another set of datasets with
unknown annotations [32,33]. Unsupervised learning models do not require labelled data.
Semi-supervised models use both labelled and unlabeled datasets for training [34]. For
reinforcement learning models, the learning agents observe and interact with the system
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environment, alter the state of the environment by taking some control actions. Afterwards,
they observe the effects of the actions in order to maximize the notion of cumulative re-
ward [35]. Supervised learning models are perhaps the most prominent learning approach
for PV performance and degradation analysis. As demonstrated in numerous works in the
literature, researchers use the EPM and imaging data features as training datasets, for infer-
ring models for predicting, diagnosing and classifying feature annotations in validation or
testing sets.

Several articles in the literature have surveyed PV performance and reliability degra-
dation from different viewpoints. Phinikarides et al. [36] reviewed the various methods for
measuring the degradation rates of various PV technologies. The authors in [37] reviewed
several statistical and analytical PV degradation models. In [38], the authors reviewed the
popular practice of using infrared (IR) and electroluminescence (EL) imaging techniques
for identifying degradation modes of PV modules, both from the perspective of environ-
mental and device requirements as well as the interpretation of sampled abnormal patterns.
Bouraioua et al. [39] surveyed the various detectable failures of monocrystalline as well
as polycrystalline silicon PV modules that are exposed to outdoor Saharan medium fields.
In the study, the authors focused on the inspection and assessment of PV module defects
in fielded modules in a desert location. Using several degradation modes as criteria, the
authors in [29] reviewed defects and degradations in traditional screen-printed metalliza-
tion and soldered interconnects. In the study, the authors investigated underlying defect
mechanisms attributed to electrical loss modes as well as their sensitivity to parameters
ranging from positioning to defects by electrical stimulation using various characterization
techniques. Similarly, the authors in [40] reviewed different characterization methods and
their application in PV degradation studies. Focusing on a key component of PV mod-
ules, the authors in [41] reviewed the degradation mechanisms of ethylene-vinyl-acetate
(EVA) encapsulant, due to exposures to climate-induced stress factors such as ultra violet
(UV) irradiance, humidity, etc. Similarly, Gupta [42] reviewed hailstorm impacts on PV
system performances in terms of output power and lifetime reductions. In another related
work, the authors in [43] reviewed PV performance degradation focusing on different
weather climates. In the work, the authors also did a comparative analysis on economic
and environmental impact of different PV technologies at different climes.

Contrary to other review studies in the literature, in this work, we comprehensively
review, analyze and compare different models for solar PV performance reliability and
degradation in terms of the methodologies, characterization techniques, datasets, feature
extraction (FE) mechanisms, accelerated testing procedures and classification procedures,
particularly in the area of data-driven analytics approaches. This study aims to contribute
to the state-of-the-art, identify critical issues as well as propose thoughtful ideas for future
research works especially with regards to ML and DL applications to PV degradation
analysis. The intention is to provide an extensive summary of recent research trends in the
area of PV performance degradation and reliability analysis. Finally, we highlight several
recommendations for future research studies.

The remainder of the paper is structured as follows. In Section 2, we briefly describe
technical defects and degradation issues in current PV technologies. In the section, five
prominent PV degradation modes and signatures that dominates recent PV reliability and
degradations investigations are briefly discussed. Section 3 presents an overview of PV
degradation mode measurement and characterization techniques that dominate recent PV
reliability and degradations analysis. In Section 4, we discuss several prominent data-driven
analytics methodologies for PV performance degradation and reliability. In the section, the
analysis and comparison of the processes involved in using ML and DL algorithms for PV
performance degradation and reliability assessment, especially in terms of characterization
techniques, dataset generation process, FE and other data preprocessing mechanisms and
classification procedures is given. Section 5 presents the summary of some suggestions and
recommendations for future studies. Lastly, Section 6 concludes the paper.
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2. Technical Defects and Degradation Issues in Current PV Technologies

The LCOE of solar energy can be reduced significantly by lessening the manufacturing
and installation costs, improving PV systems’ efficiencies and reliability [44,45]. Hence,
the ability to extend the lifetime and improve the performance reliability of PV modules is
crucial at both grid-connected and residential roof-top systems [46]. Ensuring that solar
PV systems operate effectively and efficiently without failure or reduced performance
below the specified warranty years especially after it has been exposed to a variety of
climatic stress factors such as intense UV irradiance, relative humidity, temperature, etc.,
during outdoor deployment is a major challenge to stakeholders such as residential owners,
utility operators, manufacturers, investors, research institutions and laboratories such
as NREL and Fort Hare Institute of Technology [19]. The authors in [25] explained that
PV manufacturers tend to provide assurance to buyers by providing warranties. Usually,
these warranties are of the range: 90–95% optimal performance for the first 5–10 years
and afterwards, 80–87% of optimal performance for as long as 25–30 years of operation.
Recent degradation studies have shown that the current PV technologies undergo various
degradation scenarios that play vital roles in their degradation rates. Various factors such
as cell chemistry and environmental factors (available solar irradiance, ambient temper-
ature, humidity, wind speed and direction, etc.) can contribute significantly to the PV
module aging and degradation rates [47]. As reported by NREL, module degradation
rates can be as extreme as 4%/year, while the median and average degradation rates are
estimated at 0.5%/year and 0.8%/year, respectively [48]. Typically, modules perform better
in Mediterranean climes when compared to temperate climes while the degradation rate
is higher for modules operated at hot climes as compared to other climes. The annual
average degradation rate for crystalline silicon modules is estimated at about 1.2% in hot
arid climes, 1.06% in hot humid climes, 0.72% in cold arid climes and 0.15% in temperate
climes [43]. In various PV performance reliability studies, degradation rate estimations
were calculated using various statistical and analytical models which include linear regres-
sion, classical seasonal decomposition, holt-winters exponential smoothing, seasonal and
trend decomposition using LOESS (locally weighted smoothing), and autoregressive inte-
grated moving average models [37,49–51]. Each of these statistical methods yield different
results with varying uncertainty depending on factors ranging from measuring equipment,
the data qualification, performance metrics, etc. This imposes the risk of overestimating
or underestimating the true degradation rates [36]. Furthermore, important parameters
such as the fill factor determines the efficiency of typical PV modules. Fill factor reduces as
PV module degradation increases [52]. Considering that short-circuit current (ISC) and the
open-circuit voltage (VOC) are the solar cell’s maximum current and voltage, respectively,
the fill factor in conjunction with ISC and VOC determines the maximum power (PMP). The
fill factor is defined in (1) [52] as:

Fill f actor =
PMP

VOC × ISC
(1)

In terms of the voltage and current at maximum power, VMP and IMP, respectively,
the fill factor is defined in (2) [52] as:

Fill f actor =
VMP × IMP

VOC × ISC
(2)

The solar cell efficiency (η) is described in terms of the energy input and energy output
from the cells, as defined in (3) [52];

η =
VOC × ISC × FF

Pin
(3)

where Pin is the input power and FF is the fill factor.
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Over the years, the numerous innovations and advancements in the PV industry
have resulted in new solar cell technologies including the second-generation thin film PV
technologies—Amorphous silicon (a-Si), Cadmium telluride (CdTe), and Copper Indium
Gallium Diselenide Solar Cells (CIGS) and third generation standards—polymer based
cells, organic, nano-crystalline and dye-sensitized solar cells, etc., with various distinctive
characteristics [53]. While the first-generation crystalline cells are made from single and
multiple crystalline silicon, the non-crystalline amorphous silicon cells are synthesized by
depositing thin film on flexible substrate. Amorphous silicon thin film modules are gener-
ally known to be highly prone to light induced degradation (LID) owing to Staebler Wronski
effect [54,55]. The CdTe cells are well recognized for their relatively low manufacturing
cost and relatively high laboratory efficacy [56,57]. Despite the numerous PV innovations,
various reports and experimentations have revealed that all PV systems globally are facing
defects and degradation challenges [58]. For analysis, several authors subject PV modules
to various accelerated life testing procedure such as damp heat (DH), thermal cycling
(TC), UV irradiance, dynamic mechanical loading, etc., in an effort to study degradation
and failures. Gebhardt et al. [59] explained that accelerated tests which are defined in the
certification standards IEC 61730 and IEC 61215 are typically used for evaluating module
reliability. While the standard IEC 61730 focus is on electrical safety, the standard IEC 61215
focus is on performance and quality. Figure 4 presents typical PV module degradation
signatures. Encapsulant discoloration, corrosion, cracks and breakages, potential induced
degradation (PID) and LID/LeTID are five of the prominent PV degradations modes and
signatures that are heavily investigated and analyzed in the literature in recent years.



  
=

—
—

Figure 4. Typical PV module degradation signatures (a) cracked cell sample, (b) discolored encapsu-

lant sample, (c) corroded sample.

2.1. Encapsulant Discoloration

Encapsulant discoloration is among the most reported and investigated degradation
issues that affect PV modules performances as they reduce the sunlight approaching the
PV panels [60]. The encapsulant is an integral component of PV module, that protects the
cells from harsh external stresses [61]. Encapsulant parameters such as inadequate bond
between glass and module cells, soiling and moist ingress from edge seals, environmental
factors such as high operating temperature, high UV radiation intensity, and ambient hu-
midity, etc. are some of the factors that can contribute to encapsulant discoloration patterns
and rates [61,62]. Discolorations are easily noticeable by visual inspection only after the
color becomes darker. Discolorations are of two types: browning and yellowing of modules
surface and fingers discoloration. For the last few decades, EVA has consistently been used
as encapsulants for crystalline silicon modules owing to its relatively low cost, high trans-
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mittance, adhesion to glass and resistance to UV radiation and adverse weather [41,63]. The
authors in [60,64–66] explained that EVA discoloration occurs as the transparency of the
EVA changes from clear to yellow and then to brownish, due to extended exposure to
intense UV radiation and high temperature. Polyvinyl butyral, ionomer, thermoplastic
polyurethane silicone, and polyolefin elastomers are some of the popular substitute encap-
sulants to EVA [67]. Encapsulant discoloration has been widely analyzed in the literature
as it can cause pronounced decrease in ISC among other things [68,69]. While analyzing
defects and degradation on some aged outdoor deployed crystalline silicon PV modules,
the authors in [39,70] discovered that EVA discoloration is a major PV module degrada-
tion menace. In a degradation analysis study [65], involving 30-year-old PV modules in
Northern Califonia, USA, experimentation analysis showed that encapsulant discoloration
contributed significantly to power degradation rates. Similarly, the authors in [64] pre-
sented a detailed analysis on discoloration of encapsulants using various characterization
tools which include quantum efficiency (QE) measurement, energy dispersive spectroscopy
(EDS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scan-
ning electron microscopy (SEM) on some crystalline silicon PV modules. Owing to the
severity of the menace, especially on silicon PV modules, the mitigation of encapsulant
discoloration has continued to receive massive attention in solar PV degradation research.

2.2. Corrosion

Corrosive degradation is arguably the most frequent menace PV modules encountered
during outdoor deployment [71,72]. Corrosion detections are quite challenging. Corrosion
is initiated and the rate is accelerated by varieties of factors such as the deterioration of
the PV-module components such as backsheets, insufficient lamination, encapsulants and
environmental factors. Corrosion basically permits the infiltration of water molecules and
oxygen into the cells. Hamdi et al. [73] explained that the condensation of water in the air
on the solar cell wall causes a viscous surface that facilitates the capture of dust and dirt
particles. Electrolytes, oxidizing agents, metals (busbar, fingers, etc.), interconnects (tabs
and strings) play vital roles in the corrosion process. The authors in [72,74,75] explained
that EVA deteriorates when the delaminated EVA forms acetic acid (HAc) via hydrolysis
(chemical breakdown of a material usually from moisture and high-temperature expo-
sure [41]), which accelerates metal corrosion. The HAc generated in encapsulant increase
the series resistance. PV modules corrosion is a major threat particularly to PV modules
installed in humid climates. As a major PV system reliability and degradation challenge,
module corrosion has been widely analyzed in the literature. Various researchers in the
literature have deployed several material characterization techniques such as SEM, EDS,
and top-down high-resolution X-ray photoelectron spectroscopy (XPS) analytical processes
and imaging techniques on cored samples to analyze corrosion [40,76–79]. In [78,80], the
authors used EL imaging as characterization method to analyze degradation signatures
including corrosions in both multicrystalline and monocrystalline silicon cells. The authors
in [78] used ac impedance spectroscopy to analyze degradation in crystalline silicon mod-
ules that are exposed to HAc vapor. Kumar et al. [77] analyzed the effect of moist induced
degradation in modules that underwent DH test using SEM and EDS micro-structural
characterization and imaging techniques.

2.3. Cracks and Breakages

Similar to corrosion, cracks is among the commonly observed degradations espe-
cially in Silicon PV modules [21,81–83]. Thus, over the last decade, scientific research has
been focusing heavily on cracks in silicon cells and wafers. Cracks are usually initiated
as a result of mechanical and thermo-mechanical stresses at different stages of PV mod-
ule lifetime. During the manufacturing stage, cracks can occur whereby the soldering
induces high stresses into PV cells. During transportation and installation, cracks can
occur during the process of transporting modules from manufacturing/retailers’ site to
installation site, as well as during installation whereby insouciant handling can create
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cracks or equally expand them [83]. In addition, during extended outdoor deployment
whereby environmental stress due to strong winds and hailstorms, etc. can influence the
creation of cracks on module surfaces. Owing to the remarkable technological progress
at PV module material level, the size and dimension of the solar cells have been reduced
immensely over the last two decades. For example, cell thicknesses have been reduced
significantly from 300 µm to less than 150 µm on production lines. The various remarkable
changes in cell structure and architecture have rendered the solar cells to be significantly
brittle and vulnerable to fractures, cracks and breakages during the process of lamination,
transportation and installation of the module. The primary effect of cracks is that they
can cause the disconnection of cell parts and, therefore reduced maximum power output.
Cracks can also cause mismatch in electrical parameters, which can then create a situation
of non-uniform temperature distribution in PV modules [21]. In the literature, various
approaches have been deployed in the analysis of cracks. In several research works, cracks
are introduced by diverse methods which include the mechanical load test—IEC 61215
10.16 standard test [81]. In [84,85], the authors used imaging methods for the analysis of
cracks in crystalline silicon modules. Using a different approach, the authors in [81] used
T-Test as well as F-test statistical method for identifying significant impact of cracks on
PV power output. In the study, the authors used Labview to predict theoretical power
output performance based on the I-V, P-V curve analysis, while analyzing 45 polycrystalline
silicon PV modules. Similarly, the authors in [86] investigated degradation impacts due to
cracks and bubble formation using 12 PV systems that are made up of 4 different module
technologies, crystalline silicon, amorphous silicon, CIGS as well as organic perovskites.

2.4. Potential Induced Degradation (PID)

Potential-induced degradation (PID) is arguably the most severe degradation mecha-
nisms in modern modules as it has the potential to cause catastrophic module failures [87–89].
According to the authors in [90,91], PID is initiated as follows: when PV modules (especially
grid connected ones) are connected in series (to build up volt output), the module frames
are grounded for safety and support reasons. Depending on inverter type and operating
conditions such as moisture ingress and persistent shading, a huge potential difference
between the solar cells and the module frame may be induced in modules at either end of
long sets of modules connected in series (string). The electric potential difference causes
leakage currents to flow from the module frame to the solar cells (or vice versa, depending
on the module position in a module string), and this process results in PID. PID is known
to be prevailing as the module ages due to outdoor deployments. In addition, other PV
degradation modes, including cracks, failure in the bypass diodes, encapsulant and coating
challenges, shading, etc., have been identified as modes that accelerate PID. In order to
mitigate PID, operators typically install anti-PID box between the strings and the inverter.
PID has received considerable attention in recent years due to its detrimental impact on
both crystalline silicon (PID-shunting) and thin-film PV module performance under field
conditions [92]. The authors in [19] investigated the correlation between power losses and
the performance ratio of modules that are having PID challenges. In the study, the authors
experimented on 28 PID infested modules. Using IEC 61215 standard test on the PID
affected samples, experimentation showed that the average power loss is 25%, while 60% of
the experimented modules failed the reliability test. Lee et al. [91] investigated PID in CIGS
technological standards at cell level using various tests and analysis tools which include
PID and recovery tests, Light current–voltage (I-V), dark I-V, QE, etc. As the PV industry is
tending towards increasing the maximum system voltage output, as a cost saving means,
PID is envisaged to be more severe in the future [90].

2.5. Light-Induced Degradation (LID) and Light and Elevated Temperature Induced Degradation (LeTID)

Similar to corrosion, LID and LeTID have continued to receive special attention lately,
due to their frequency and contribution to global PV degradation rates [7]. LID is charac-
terized by a premature and significant loss of cell efficiency during the first hours of light
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exposure with an energy greater than the material bandgap [93,94]. The authors in [95–97]
explained that, considering the numerous advantages of the Boron-doped Czochralski Sili-
con (Cz-Si) solar cell technology which include low cost, huge efficacy, etc., the technology
suffer mostly from LID challenge that is due to Boron-Oxygen complexes formation and
it restricts their development. LID significantly reduce power generation. Furthermore,
the LID mechanisms vary according to the cell, material, and manufacturing process. On
the other hand, LeTID is relatively temperature dependent and it is most significant in
multicrystalline Silicon Passivated Emitter and Rear Contact (PERC) cells [98–100]. LeTID
is quite different from the conventional LID, as it is a degradation process that is triggered
by extended exposure to light and intense temperature. The hydrogen in bulk silicon is
recognized to be responsible for the LeTID defects in multicrystalline silicon cells [99].
De Guzman et al. [100] explained that LeTID typically takes months/years to produce a
degradation rate of about 2–5%. Considering the devastating consequences of LID and
LeTID, extensive studies are being carried out to discuss the general mechanisms and
mitigation of the menaces. Rabelo et al. [7] analyzed several PV modules degradation
and failure modes with special emphasis on corrosion, LID and LeTID. In the work, the
authors discussed some variants of LID and LeTID, as well as the mechanisms responsible
for recombination defects. Using PVsyst tool, Kumar et al. [101] analyzed the significant
implications of LID in terms of performance, power loss as well as degradation rates using
a 200-kW crystalline PV system installed in the Northern part of India. Modanese et al. [98]
analyzed how copper doping on Cz-Si PERC cells influence LID. In the study, the authors
doped Cz-substrates of varying quality with different quantities of copper and process
the substrates into complete industrial Cz-Si PERC cells. Experimentation results showed
that the copper contamination level as well as Cz crystal quality are prominent factors that
affect the level of Cu-LID. With regards to LeTID, research works are yet to be advanced
on the mechanisms surrounding LeTID, especially in terms of the correlation between
the amounts of impurities present in the silicon and the rate of LeTID. Fokuhl et al. [93]
investigated the effects of BO-LID and LETID defects on silicon PV modules. The analysis
was carried out using experimental data from 12 mono-crystalline and 2 poly-crystalline
PERC modules, that are exposed to a detailed experiment which include 5 indoor tests as
well as an outdoor test. Similarly, Repins et al. [18] analyzed the effects of BO-LID and
LeTID in silicon modules during standard IEC 61215 accelerated test conditions.

Other notable PV degradation modes and signatures include junction box failure,
soldier bond failure, snail trails, hotspots, etc.

3. PV Degradation Measurement and Characterization Methodologies

To enhance the marketability of solar PV systems as well as the proceeds on investment,
it is vital to improve the reliability of PV systems’ performances. As explained by Kumar [1],
reliability and degradation investigation are vital for the prediction of the generated power
over time. In addition, it plays a major role in minimizing potential failure risks for cell
and module technologies. PV module reliability can be analyzed by understanding the
degradation modes and mechanisms, especially during outdoor operations [67,102]. Some
degradation signatures if they are not spotted and isolated early and promptly, they can
cause devastating failures. Thus, the operation and maintenance encourage the condition
monitoring of solar modules, the early detection, replacement or repair of defective units
in order to ensure maximum efficiency up to the designed warranty years of solar power
plants [103–105]. There are varieties of ways to analyze, measure and characterize PV
degradation qualitatively and quantitatively. In the literature, popular methods include
visual inspection, EPM, imaging and data-driven analytics techniques.

3.1. Visual Inspection

Visual inspections present the swiftest and the first option of identifying PV modules
degradation modes and signatures that are visible to human eyes [78,79,106,107]. Visual
inspection of PV modules is typically performed before and after the modules have been
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subjected to environmental, electrical, or various laboratory stress tests. Visual inspection
easily allows the identification of damages inflicted on panels during installation, or ei-
ther by environmental influences, or due to aging. Visual inspection focuses majorly on
“symptoms” such as discoloration, haziness, texture changes, damage to backsheets, break-
ages, bubbles, etc., rather than “diagnoses” (e.g., hot-spots, PID, etc.). Bouraioua et al. [39]
analyzed the relationship between the use of visual inspection and electrical test result of
608 degraded modules operated at hot dry climes in Algeria. Similarly, the authors in [108]
used visual inspection method for the detection of several degradation signatures which
include generation of snail trails, cell browning and junction box failure on outdoor de-
ployed silicon PV modules. However, visual inspection results are typically observational
in nature, and they do not provide qualitative explanations into module’s degradation
causes as they can only reveal obvious damages [79]. Aside from obvious glass cracks,
discoloration and corrosion, many defects that reduce the efficiency of a PV module such
as microcracks (during manufacturing or installation) and other structural defects are not
visible. In addition, visual inspection method for degradation mode and signature detection
is labor intensive, time consuming and generally ineffective, especially with regards to
large scale PV plants.

3.2. Electrical Parameter Measurement

The current–voltage (I-V) characteristics and Suns-Voc (quasi-steady-state open-circuit
voltage) contain a lot of information about the health of the modules. Thus, EPM methods
provide quick and reliable in-depth details about the real time monitoring and performance
evaluation of PV modules and traditional string inverter systems in terms of their electrical
properties. EPM methods are mostly used alongside other techniques when fault localiza-
tion is required. I-V and P-V curve tracing method provides a detailed information on the
electrical properties including short circuit to open circuit condition [109,110]. The ideal
shape of a typical I-V and P-V curve of a solar cell, highlighting important parameters such
as ISC, VOC, PMP, IMP, PMP is presented in Figure 5. The authors in [109] explained that
Suns-Voc tracer assist in measuring the cell VOC at varying illumination levels [109,111–113].
The authors in [39] used MP-160-I-V tracer to measure the I-V characteristics of degraded
modules at standard test conditions. Bouaichi et al. [70] used PVPM1000X I-V tracer to
measure the drop in electrical performances of several outdoor deployed modules (due to
degradation) and compared the values with the initial parameters provided by manufactur-
ers. The authors in [65] used ESL Solar 500 tracer for measuring the I-V curves of degraded
modules in ambient conditions with different irradiance and temperature. In a similar
study in [114], Whitaker et al. used a Spire 4600 SLP Flash Tester as well as I-V curve tracer
at 1 sun illumination to measure I-V parameters in a degradation analysis of cell cracks.
Parameters measured include time-series maximum power, voltage, and current, etc. In
addition, in a degradation analysis study, the authors in [115] used MPPT3000 tracer to
measure the same set of parameters at every 5 min between February 2014 and July 2018.
Despite the vital information provided by EMP, the EPM are poor gauge of PV module’s
mechanistic behavior. Thus, PV module degradation classification using EPM tools have
limited capacity for identifying the various degradation mode causes. In addition, EPM
methods do not provide information regarding the precise defective regions of the mod-
ule such as the corroded regions, regions with cracks and glass breakages, delaminated
regions, etc. [105].
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EPM are poor gauge of PV module’s mechanistic behavior. Thus, PV module degradation 

–

Figure 5. Ideal shape of solar cell I-V and P-V characteristic curves [116].

3.3. Imaging

PV modules are susceptible to defects and degradation modes either during the
manufacturing process, installation process or due to aging during field deployment.
Several defects and degradation modes can be fixed if they are detected and classified in
time. In recent literatures, imaging techniques such as photoluminescence (PL), EL, and
UV fluorescence imaging techniques are popular imaging characterization techniques that
are used for PV module degradation analysis. These imaging characterization techniques
have the capability to identify various degradations modes that are undetectable by visual
inspections, that can cause a severe drop in PV modules performance and sometimes safety
issues [103,104].

3.3.1. EL Imaging

In the literature, EL imaging is arguably the most popular non-destructive analyzing
techniques for characterizing the health of PV cells in recent years [117–120]. EL imaging
for PV degradation characterization is a process whereby forward bias current is applied to
modules, and the radiative recombination result emits IR light (spectral range for silicon),
which are captured using a camera with silicon Charge-coupled Device (CCD) sensor
features [78]. Each individual pixel denotes a spatially resolvable datapoint of local photon
emission registered on the CCD sensor [121]. The grayscale images captured will present
thick darkened parts which reflects defective areas that contribute to module power loss
(i.e., the part of the cell that is defective will appear darker as disconnected parts will not
irradiate) [117]. Figure 6 presents typical EL images of solar wafers [122]. As shown in
Figure 6a, the emission of light from the cells is not limited by any error. Thus, the wafer
is degradation-free. However, the image presented in Figure 6b shows that the wafer has
been extensively degraded by microcracks as well as the degradation of cell interconnects.
The dark grey and black marks show the degraded parts where the cells are electrically
separated. Experimentally, the captured EL images can be analyzed to extract the features
that provide detailed information about specific degradation mechanisms and signatures as
well as overall module performance and specific degradation mechanisms. Islam et al. [123]
analyzed the degradation behavior due to PID, using EL imaging, light I-V and dark I-V
measurement methodologies. From the experimentation, the captured EL images of the
modules present details about signatures and modes which include localized shunting,
cracks, etc. Similarly, Kumar et al. [77] analyzed moisture induced degradation in crystalline
silicon modules that underwent DH test using EL and dark lock-in-thermography (DLIT)
imaging. In addition, the authors in [10] used EL imaging for characterizing defects which
include browning and encapsulant delamination on crystalline silicon modules caused
by aging from 15 years outdoor exposure in Brazil. In another related work, the authors
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in [124] used EL as part of the characterization techniques for analyzing brownish and
milky patterns as well as the oxidation of the metallization grid on aged modules that
underwent outdoor exposure of 22 years in Seville, Spain.

–

Figure 6. Typical grayscale EL images of a solar wafer. (a) degradation-free, (b) degraded [122].

3.3.2. PL Imaging

Similar to EL imaging, PL imaging is a popular contactless characterization technique,
for analyzing PV module statuses by providing information in terms of determining spa-
tially resolved quality, performance, and defects [125–129]. While explaining the difference
between PL and EL, Koester et al. [103] described both PL and EL imaging as techniques
that are based on the collection of a luminescence signal emitted by solar cell material,
and the difference between them is the way the signals are created. While EL can detect
various degradation modes which include cell cracks, PID, electrical mismatches etc., PL
can detect minority carrier lifetime and series resistance in addition to majority of the
modes that EL can detect. In addition, in contrast with EL, PL can be effectively carried
out without electrical connections to the solar cells/wafers, nor require any change in
the wiring [105]. PL can be described as the radiative signals that are emitted from cell
materials when charge carriers recombine from being excited by irradiation [117]. Similar
to EL images, bright areas from the images gives an indication of well-performing cells,
while darker regions of weak band-to-band light emission indicate defective regions. In
recent literature, various authors have deployed PL as a methodological tool for analyzing
numerous degradation modes and signatures. The authors in [104,128] used PL imaging
technique for analyzing PV modules performance. Vaqueiro-Contreras et al. [94] utilized PL
and deep level transient spectroscopy for the analysis of LID in Silicon PV modules. Using
the sun as the excitation source, Bhoopathy et al. [105] used PL imaging to analyze modules
with series resistance as well as open circuit bypass diode failures. Considering that PL
is relatively less sensitive to shunting as well as high series resistance when compared to
EL, the authors in [129] used PL imaging to characterize degradation as well as identifying
degraded regions in an analysis involving CdTe modules. In the study, the authors used
time-of-flight secondary ion mass spectrometry for measuring copper depth profiles in
relation to the degradation rates using PL imaging. Germain et al. [130] used PL imaging
for studying heat stress impacts on CIGS modules. Results achieved from the PL images
provided insight on the degradation causes.

3.3.3. UV Fluorescence Imaging

In recent years, UV fluorescence imaging have continued to offer a promising, fast
and nondestructive option for the analysis and characterization of PV defects and degrada-
tion especially with regards to encapsulant discoloration [68]. UV fluorescence imaging
technique can be used as an alternative or as a complement to EL, PL imaging. The tool
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which is based on UV fluorescence measurements have received a lot of interest lately.
The method involves UV fluorescence spectrum analysis using spectrometers as well as
the UV fluorescence imaging tools. The UV fluorescence imaging methods bank on the
excitation of fluorophores that are present in module encapsulants. Typically, a bandwidth-
limited light emitting diodes are deployed as UV radiation sources due to their easiness
of adaptation and affordability when compared with other sources such as lasers [131].
The fluorophores are formed in the encapsulant material over time, depending on the rate
of exposure of the module to light and temperature. The emission can then be detected
typically using complementary metal-oxide-semiconductor (CMOS) or CCD sensors, which
are available in typical modern day digital cameras, equipped with filters that eliminate
the reflected excitation UV light. Figure 7a,b presents typical UV fluorescence images of
PV module using CMOS and CCD camera, respectively. In recent literatures, various
authors have deployed UV Fluorescence imaging especially for the assessment of EVA
discoloration and cracks in PV modules. Even though UV fluorescence imaging technique
can be deployed for identifying cracks, it is mostly effective when there is limited time
exposure in the field. The authors in [132] investigated the various defects and degradation
modes that were observed in some PV modules that have been installed for 5 years at
United Arab Emirates using UV Fluorescence, EL, microscopic visual inspection (MVI)
and illuminated I-V analysis. Using UV fluorescence imaging, MVI and QE, the authors
in [133] investigated the optical defect degradations in encapsulant and glass layer. For
the characterization of the degradation behavior of EVA samples that have been exposed
to varieties of accelerated aging tests as well as aged outdoor modules, Kim et al. [63]
used a Zeiss LSM510 Meta laser scanning confocal microscope for performing morphologi-
cal and fluorescence imaging. Lyu et al. [134] investigated degradation depth-profiles of
the glass/EVA/backsheet laminates using UV Flourescence imaging and micro-UV/VIS
spectroscopy, atomic force microscopy-based quantitative nanomechanical mapping after
exposing PV cell samples to accelerated test. The authors also used Zeiss LSM510 Meta
laser scanning confocal microscope for conducting morphology and fluorescence imaging.
Li et al. [68] investigated the discoloration patterns of 10 modules deployed in two different
climes of varying field years using UV fluorescence imaging characterization tool. The
author used 2 UV flashlight LED arrays with wavelength spectrum of the range 350 and
450 nm (dominant wavelength of 395 nm) for the UV Fluorescence image capturing. In
addition, they used other cameras that are equipped with long-pass filter (Schott RG850)
to reduce the reflective excitation UV lights. The authors performed the experiment in
a dark room at room temperature. Similarly, the authors in [135] used UV Fluorescence
imaging technique for characterizing material yellowing in three 3 EVA materials from
two different manufacturers. In the study, the authors captured the fluorescence images
using devices consisting of a digital camera as well as 2 UV LED arrays with a spectral
wavelength signal between 450 nm and 750 nm for the UV Fluorescence image acquisition.
Dolia et al. [61] used UV fluorescence imaging, yellowness index (YI), and I-V measure-
ments for the detection of EVA discoloration in an experiment involving indoor accelerated
testing of eight laboratory fabricated mini-modules. Gopalakrishna et al. [69] deployed
UV fluorescence imaging, YI, cell-level short circuit current measurements and reflectance
measurements for evaluating EVA encapsulant browning and delamination menace in an
experiment involving six mini-modules that were exposed to an accelerated UV testing at
different temperatures.

Another notable imaging technique is the thermal IR imaging which is also a contact-
less and non-destructive method whose technology is based on measuring the module’s
electrical and thermal failures under steady state conditions. The thermal IR imaging
methods use typical IR cameras that are sensitive to black body emission in the range of
3.6–5 µm range. By exposing PV panels to thermal or IR imaging, shunted or defective cells
will appear as bright hotspots when compared to other cell parts due to heat dissipation.
Furthermore, it should be noted that several research works are focusing on relatively
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newer characterization methods which include signal transmission methods, impedance
spectroscopy, etc. [136–138].
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Figure 7. Typical UV fluorescence images of a PV module (a) unexposed using CMOS camera, (b) Grayscaled

image using CCD camera [40].

4. Data-Driven Analytics Models for PV Performance and Reliability Analysis

As it is becoming increasingly challenging to analyze and classify the various degra-
dation and defect modes and signatures via conventional methods of visual inspection
methods by skilled personnel, proper and accurate PV degradation and failure diagnosis
and classification models are required to promptly and accurately identify and classify
degradation and defects modes and signatures, in order to considerably improve the PV
system performances such as the power capacity and lifespan of the modules, reliability as
well as the safe operation of the overall systems. Apart from the requirement of human
expertise for computation and analysis, the other draw-back of conventional methods
includes non-linearity and computational complexity, high error rates, non–feasibility in
large PV installations as well as excessive manpower requirements [139–141]. Hence, there
is a huge need for advanced and effective PV degradation diagnosis models. The main
objective of effective diagnostic models is to identify and categorize the degradation modes
such that the proper preemptive measures can be promptly arranged [142]. Data-driven
analytic methods such as ML and DL models are continuously proving to be feasible
options based on their performance and efficiency (high computing capacity with reduced
computation time compared with other methods). In addition, ML and DL models can be
helpful for the prediction of the future state of events that occurs in systems. Thus, in recent
years, ML and DL methods have drawn the attention of many PV degradation and reliabil-
ity analysis stakeholders, as they can be applicable for the performance and degradation
assessment of PV modules in the laboratory, during the manufacturing process, and during
outdoor deployments. Hence, the models are widely being proposed in recent literatures
for monitoring, predicting, detecting and classifying various PV degradation menaces.
With the huge size of PV modules’ installations especially in utility scale systems, coupled
with the voluminous datasets, ML and DL models can learn and discover irregular patterns
and make meaningful inferences in the prediction, detection and classification of PV degra-
dations features, with reduced computation time. Conventionally, DL and ML models for
PV degradation analysis studies in recent literature are generally a three-phase process:
dataset generation, preprocessing (feature engineering) and evaluation/classification. Sev-
eral research works deployed various feature optimization models and multiple ML and
DL models to boost the classification performances.
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4.1. Dataset Generation Phase

Owing to the advancements in technology, authors in recent literature deploy non-
destructive imaging techniques such as I-V, EL, PL, UV fluorescence imaging tools as well
as/or EPM tools to generate datasets for analysis. The images and/or electrical parameter
measurements (containing features such as ISC, VOC, IMP, PMP, VMP) are typically used
as classifier input to predict, detect and classify PV degradation menaces [143]. Generally,
compromised/defective PV module components such as the encapsulants, the cell and
interconnects etc. typically have footprint (no matter how marginal), that the various
imaging techniques can pick up or result in electrical parameter measurements’ variations
from the measurements indicated in the PV module manufacturers’ datasheets. Conven-
tional PV reliability and degradation analysis using ML and DL involves the use of these
dataset(s) that contains both normal and defective data, as they contain adequate features
and information that can be extracted, to build a training and testing datasets.

In a PV fault diagnosis analysis, the authors in [143] generated I-V curve datasets
from a field operated 960 W PV systems located at RELab Jijel university Algeria. Similarly,
Chen et al. [144] used I-V curve datasets measured at different operating conditions for
analysis. Garoudja et al. [145] used meteorological data and maximum power point current
and voltage datasets generated from a grid-connected PV systems installed in Algiers, as
input data for the classification algorithm. As alternatives to the use of ordinary EPM,
which is generally believed to only offer in-depth assessments of PV modules in terms
of their electrical properties without providing analytical details of individual module
components, several authors in recent literature opted for the use of imaging tools for
the generation of input datasets for their classification model. In a PID and LeTID degra-
dation study, Bordihn et al. [141] deployed EL images captured from field modules, as
input dataset for classification and analysis. In another PV degradation analysis that focus
mainly on cracking and corrosion, Karimi et al. [110] generated datasets using EL images
captured from three different 60 cell modules that overwent DH accelerated test. Using
another form of imaging technique different from EL, Kurukuru et al. [146] used Fluke
TiS45 thermal imager to capture thermal images of one normal and seven faulty module
panels at different solar irradiance as well as temperature conditions, located at India.
For experimentation, each thermal image captured were split into subwindows during
preprocessing. Similarly, Ali et al. [147] used a dataset that was generated using infrared
thermography technique in a PV degradation analysis involving the detection and clas-
sification of hotspots. For the dataset generation, FLIR VUE-Pro 640 camera was used to
capture 315 thermal images of PV panels of 3 classes (i.e., healthy, non-faulty hotspot as
well as faulty), at solar irradiance above 700 W/M2 and temperature condition between
32 and 40 degrees, in Pakistan. In another related study involving different modes and
signatures which include delamination, glass breakage and discoloration, etc., the authors
in [142] used an unmanned aerial vehicle to capture RGB images which are used as input
dataset for PV degradation mode classification.

In addition, various authors in recent studies used both imaging and EPM as input
datasets for classification, in order to qualitatively and quantitively analyze various PV
degradation signatures. Karimi et al. [148] generated both I-V curve and EL image datasets
from PV modules that underwent several accelerated tests such as DH, TC, UV exposure,
and dynamic mechanical loading tests. In the study, the authors analyzed various degra-
dation modes which include busbar corrosion, cracks, etc. In a related study, the authors
in [121] generated I-V curve and EL image datasets from experimentation involving the
study of busbar corrosion in 30 monocrystalline silicon and multicrystalline silicon PV
modules that underwent DH and TC accelerated tests. With regards to the generated image
dataset from the study, approximately 200 pairs of EL images as well as I-V curve were
generated and analyzed, resulting in a total of almost 12,000 cell images. As alternative
to real case scenarios involving experimentation with real PV systems, several authors
make use of publicly accessible dataset which include CWRU SDLE EL dataset [149] and
SDLE SunFarm I-V Curve Data [150]. Furthermore, several authors in recent literature have



Energies 2022, 15, 5964 17 of 28

modelled PV systems using various simulation tools for the generation of experimental
datasets. Da Costa et al. [151] used MATLAB Simulink and PSIM as simulation tools for
generating analysis datasets for classification. Similarly, the authors in [139] designed a PV
system using MATLAB Simulink and real time irradiance and temperature dataset which
are captured from grid-connected PV System of National Institute of Technology Agartala
for PV degradation analysis.

4.2. Feature Engineering/Optimization Phase

Ideally, the large dimension feature datasets (captured imaging and EPM) generated
are not suitable to be used as input for the classifier(s), as they contain redundant features
that will significantly increase classifier’s computational time and reduce classification
results [79]. Hence, for efficient classification and prediction, there is usually a need to
preprocess the datasets. To enhance the PV degradation modes prediction and classification
performances, various authors in recent literatures proposed several feature engineering
techniques for the dataset(s) preprocessing phase. Some of these feature engineering
techniques ranges from feature selection/reduction to optimization techniques, with the
aims of reducing feature vector dimensions, cleaning and eliminating irrelevant features
and for optimizing the classifiers’ performance. Furthermore, some of these preprocessing
techniques can assist in organizing the datasets into suitable formats, for effective training as
well as testing. Kurukuru et al. [146] used the popular 2nd-order statistical texture analysis
model, Grey Level Co-occurrence Matrixes (GLCM) to extract relevant texture features
of the thermal images captured for classification. In a related work, Karimi et al. [148]
used median filter and Principal Component Analysis (PCA) to filter relevant EL image
features. Similarly, for the reduction of noise as well as the removal of barrel distortion and
redundant background data, the authors in [121] used filtering and thresholding methods
for the preprocessing of captured EL images. Considering the effect of irrelevant features
and the effect of local information in the captured EL images, Bordihn et al. [141] used PCA
and Gaussian blurring process as data preprocessing tools to remove redundant features.
In [79], Pierce et al. used ORB, Daisy, KAZE, and FAST algorithms for extracting dominant
features in the captured EL images. For the processing of raw EL images to planar indexed
module and single cell images, the authors in [110] preprocessed the captured images
using lens distortion correction, filtering, thresholding, convex hull, regression fitting, and
perspective transformation.

4.3. Classification/Detection/Prediction Phase

The ability of data-driven analytic models to autonomously learn, adapt to variations
and act without being pre-programmed/re-programmed have continued to enhance their
status as feasible methodologies for effective PV degradation and defect detection and
classification tools in recent times. In recent literature, numerous ML and DL models
such as Support Vector Machine (SVM) [147,148,152], Decision Tree (DT) [143,151,153],
K-nearest neighbors (KNN) [141,142,151–153], Random Forest (RF) [143,152], Naïve Bayes
(NB) [152], Neural Networks [110,121,145,146,148,151], have been employed in PV degra-
dation and defect detection and classification analysis. Prominent supervised learning
algorithms: SVM, DT and NB are simple and memory efficient models that are widely
used for classification tasks. However, with regards to image classification tasks, SVM
typically performs better, compared to DT. Another popular supervised learning algorithm
that is typically considered for image classification is the RF. RF is an ensemble algorithm
that is made up of multiple iterations of DTs. Nevertheless, in spite of the many varieties
of classifiers proposed for PV degradation and defect detection and classification, KNN,
shallow and deep neural networks are the most widely deployed, due to some specific
attributes that makes them suitable for the tasks. Generally, neural networks are series of
computer algorithms that are based on a collection of connected nodes in arbitrary number
of layers, whereby the nodes endeavor to recognize patterns and underlying relationships
in dataset through a process that is similar to the way the human brain works. Learnable
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parameters: weights and biases are important factors that determines the performance of
neural networks. In addition, activation functions play major roles in how neural networks
learn complex patterns in datasets. Typical activation functions which are used in studies
include the sigmoid, rectified linear unit and hyperbolic tangent function (tanh) functions
which are defined in (4)–(6), respectively [154].

f(x) =
1

1 + e−x
(4)

f(x) =

{

0 f or x ≺ 0
x f or x ≥ 0

(5)

f(x) =
ex − e−x

ex + e−x
(6)

Garoudja et al. [145] explained that Probabilistic neural networks (PNN) are efficient,
computing algorithms for pattern recognition that have the advantage of training process
simplicity as they do not require weights adaptation and also, they can classify new
data without extensively repeating the entire training procedure. In addition, KNN is a
simple, easy-to-implement supervised ML algorithm that operates on the assumption that
similar things exist in close proximity. Thus, they perform classification tasks by analyzing
the distances between datapoints. In contrast with the various shallow neural networks
(PNN, back propagation neural network, etc.) with only one hidden layer, deep neural
networks have multiple hidden layers, which makes them better suited for classification
tasks, especially when deployed on voluminous datasets. Convolutional Neural Networks
(CNN) is one of the most widely deployed deep neural networks algorithms for image
classification assignments as they utilize the local spatial coherence in the input (images),
which allow them to have fewer weights, as several important parameters are shared in
form of convolution, which makes them highly suitable to the task of extracting relevant
information at much lower computation cost. Various authors in the literature have
used CNN in several PV degradation tasks, most especially for analyzing captured PV
module images. The authors in [142] used CNN to extract the captured images features,
before feature selection using J48 DT and lastly, they used KNN, locally weighted learning
and K-star algorithm for classification. Similarly, Bordihn et al. [141] used KNN for the
classification of PID and LeTID in captured EL images. Kurukuru et al. [146] successfully
used Neural Network for training extracted features from captured thermal images in the
classification of PV module faults. In a comparative study [153], the authors compared the
results of DT, SVM, KNN discriminant classifier (DC) for the diagnosis of early-stage PV
hotspots. Experimental results showed that DC presented the best accuracy from the four
algorithms, while DT presented the least detection accuracy. Similarly, the authors in [151]
experimented using KNN, DT, SVM and Neural network algorithms for classifying various
defects and faults in PV systems. The authors achieved the best result from neural network
algorithm, although the issue of neural network training time was raised by the authors. To
improve the speed, minimize training error and overall performance of classification, the
authors in [144] exploited the admirable regression capability of extreme learning machine
for the analysis and classification of I-V measurement datasets. In another related work,
the authors in [110] compared the result of SVM, RF, and CNN for classifying EL images.
Using key performance metrics, the result from the experiment demonstrated that CNN
presented the best results in terms of classifying EL images into good, corroded as well as
cracked classes.

In Table 1, we summarized and compared some recent works that focused on the
use of data-driven analytic models for the detection and classification of PV module
degradations and defects. The dataset generation method, the preprocessing methods in
terms of feature engineering method and ML/DL model(s) adopted are presented. As
depicted in Table 1, the ideas of ML and DL approaches to PV module degradations analysis
have been immensely successful. In addition, from Table 1, the various forms of NN have
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been the most adopted models as they guarantee effectiveness and high accuracy especially
with images classifications. It can be observed that data preprocessing has good effect on
model performances.

Table 1. Comparison of recently proposed data-driven analytics-based models for the analysis,

detection and classification of PV module degradations and defects.

Ref. Data Generation Process
Preprocessing

Techniques
PV Degradation and

Defects Analyzed
ML/DL Used and

Performance Rating
Brief Description

[146]

Thermal images of
normal as well as
potentially faulty

modules were acquired
from a grid connected

rooftop PV system using
Fluke TiS45 imager.

Texture FE using GLCM.
Scaled conjugate gradient

back propagation for
adjusting weight and bias
during training process

Faulty PV panels
ANN 93.4% Training
efficiency and 91.7%

testing efficiency

Thermal images of 8 PV
panels are classified using

ANN. The thermal images are
split into subwindows to

improve classification
efficiency and the

subwindows are subjected to
GLCM for texture FE before
the classification using ANN

[151]
MATLAB Simulink and
PSIM for simulating PV

module system
-

Short circuit (SC),
MPPT, open circuit

(OC) faults,
partial shading,

disconnected string

KNN, DT, SVM,
ANN. Best accuracy
result achieved from

ANN. SVM
presented the fastest
computational result

Comparison of different ML
algorithms for detecting

various simulated PV module
faults. Metrics used for

assessing the performance of
the ML is the accuracy and
computational complexity.

[153]
I-V curve data retrieved

from PV modules
focusing on hotspots

Min-max normalization Hotspots

Comparison of DT,
SVM, KNN and DC.

DC presented the
best result while DT
presented the worst

detection result

Classification using 4 ML
models for diagnosis of
early-stage hotspots in

PV modules

[145]

PV design simulation
using PSIM and

MATLAB. Agilent
34,970 datalogger for
acquiring data from

9.54 kWp Algerian grid
connected PV system

Canonical Artificial Bee
Colony algorithm for

extracting the one diode
model parameters

PV faults

PNN, Feed forward
back propagation

NN. PNN with
82.34% detection

efficiency and 98.19%
diagnosis efficiency

PNN model developed for
fault detection and diagnosis
in the direct current side of

PV system.

[143]

I-V curve data retrieved
using Prova 210 IV tracer,
on 960 W PV array from

RELab JiJel
university, Algeria.

FE of ISC , VOC , PMP, IMP,
PMP, FF. dimensionality

reduction using PCA
and normalization

Partial shading, line
to line degradation,
dust accumulation

NB, KNN, SVM, LR,
DT, RF, NN.

Hist gradient
Boosting, Extra

Trees, AdaBoost,
Gradient Boosting

Modelling of several single
and ensemble ML algorithms

for detection and
classification of varieties of

PV faults

[144]

I-V curve data retrieved
from different operating

conditions of 6 PV
modules from NREL

V-I grid based method for
resampling and feature
reduction. Slope change

to exclude abnormal data
features. Irradiance

temperature grid-based
method to

downsample data.

-

Extreme learning
machine optimizing
single hidden layer

feedforward NN
(SLFN). Result
compared with

SVM, etc.

Modelling of SLFN trained by
extreme learning machine for

characterizing I-V data
multicrystalline PV modules

at different operating
conditions from NREL.

[139]

I-V data. PV system
design using MATLAB

Simulink. Real time
irradiance and

temperature data from
grid connected PV
system at Agartala

Array capture loss was
used for training

ML algorithm

Common faults
including Line to

Ground, Line to line,
OC, arc,

shading faults,
and degradation

CatBoost, Light
gradient boosting
machine (LGBM),
XGBoost. LGBM
performed best,

followed by CatBoost

PV system was modelled
using Simulink and real time
data to analyze and diagnose

common faults. 3 ML
algorithms were compared in

terms of accuracy and
computational time.

[147]

IR thermal images
captured using FLIP

VUE-Pro 640.8 PV strings’
modules at

Lahore Pakistan

Data fusion approach for
FE of RGB texture,

histogram of oriented
gradient and local binary
pattern, Noise filtering.

Hotspots
SVM. 96.8% training

accuracy and 92%
testing accuracy

SVM model to classify PV
panels thermal images into
healthy, non-faulty hotspot
and faulty hotspots. 5-fold
cross validation method for

algorithm training and testing
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Table 1. Cont.

Ref. Data Generation Process
Preprocessing

Techniques
PV Degradation and

Defects Analyzed
ML/DL Used and

Performance Rating
Brief Description

[148]

I-V curve and EL images
captured during
accelerated tests

including DH, TC, PID
+1000 V, PID −1000 V, UV

irradiance and dynamic
mechanical load test

Image correction,
coplanar indexing to

align images. PCA for FE

Busbar corrosion,
cracking, wafer edge
darkening, between

busbar darkspots

CNN, SVM.
Accuracy of 98.95%

and 98.24% from
SVM and

CNN, respectively

CNN and SVM models were
developed for PV

degradation analysis. Several
accelerated tests were

conducted on PV modules to
generate I-V curve and EL

images. 5-fold
cross-validation approach to
verify algorithm robustness.

[152]

I-V data. PV system
design using MATLAB

Simulink. PV array
model of 6 Wittec

62391-50W Sc-Si modules

Data were corrected and
resampled. Fault FE

using Gramian angular
field. PCA for

feature reduction

Several faults
including partial

shading, SC fault, OC
fault, Rs degradation
and Rsh degradation

SVM, DT, NN, RF,
KNN, NB. ANN

presented the
best result.

Several ML models were
developed for PV

degradation analysis. I-V
curve data from simulations

and real l = time datasets
were used for

experimentation.

[141]
EL images captured from

outdoor deployed
PV modules

Gaussian blurring for
image processing

PID and LeTID
PCA and KNN. 89%
accuracy using KNN

Modelling PCA-KNN
algorithm for predicting PID

and LeTID. Field-installed
modules were used for

acquiring the EL images.
5-fold cross-validation was

used for algorithm
robustness validation.

[121]

EL images (using
Sensovation coolSamBa
camera) and I-V curve

data (using Spire
4600SLPflash), captured

from modules that
underwent DH and

TC tests

Filtering and
thresholding to remove
barrel distortion, noise

and redundant data.
Convex hull algorithm to

preprocess image into
binary array. Perspective
transformation applied to
uniformly orientate and

planarize images

Busbar corrosion CNN. 95% Accuracy

Modelling CNN for
classification of corrosion.
Preprocessed EL and I-V

curve data captured from 5
brands of PV modules

(including 3 silicon modules)
that underwent DH and

TC tests.

5. Research Gaps and Suggestions for Future Research Works

Despite the astonishing accomplishments that are being achieved from PV degrada-
tion and reliability analysis studies, especially in terms of data-driven analytic modelling
approaches, there are still several pending challenges as well as suggestions and recommen-
dations for future works. The performance of ML/DL classification, detection or prediction
models depend heavily on the qualitative and quantitative characteristics of the datasets/
the dataset generation processes. The acquisition of sufficient and adequate datasets has
continued to be an issue as evidently, most of the recent research works used small quantity
of data while others turned to the use of open-source datasets, data augmentation as well
as simulated datasets in order to have adequate datasets for classifications. The use of
simulated datasets by scholars and researchers typically shows inconsistency in prediction
and classification [35]. In addition, as field deployed PV modules’ performance depends
majorly on the geographical clime at which they are being used, the use of open-source
datasets (some of which were acquired from fielded modules in a different clime), will not
provide a contextual evaluation of the specific PV modules’ performance. Future research
works should focus on implementation and verification of these models for real-time ap-
plications using real time datasets of PV module experiencing degradations. In addition,
for the imaging techniques, factors such as the type of camera used for the dataset acqui-
sition, the image capturing process (orientation of the camera, proper capturing of the
modules), the image processing such as the texture feature extraction, etc. are important
factors that determine the quality of the acquired datasets. More importantly, these factors
have significant impact on the classification performances of the ML and DL algorithms
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as well as the degradation analysis process. Furthermore, as the performances in terms
of accuracy, precision, sensitivity, etc. of the classification models depend heavily on the
dataset preprocessing steps (they assist in improving the quality of the input features
for the classifiers), the parameter tuning such as the weight and bias tuning, and feature
engineering technique (image processing, image segmentation, feature extraction such as
Gaussian blurring), etc. that are currently being proposed in recent works are cumbersome
and require some expertise, and they are deemed to be computationally expensive. Thus,
future works should focus on faster and better preprocessing and parameter tuning models
for PV image segmentation and feature extraction.

6. Conclusions

Degradation and defects due to aging and exposure to wide range of environmental
conditions during field deployment is a major issue system for PV module manufacturers,
owners, installers, researchers, etc. Irrespective of the PV module type/material and com-
ponent technology, the harsh chemical, photo-chemical and thermo-mechanical stress that
the modules are exposed to contribute massively to the degradation and effectiveness of
PV modules. Thus, in recent times, there has been various investigations into PV reliability
and degradation mechanisms. These studies provide insight on PV module’s performance
degrades over time, especially under field conditions. In this paper, we present a critical
review of recent research works whereby solar PV systems performance reliability and
degradation were analyzed, particularly in the area of data-driven analytics. Majority of
the research works in recent literature focused on monocrystalline and poly-crystalline
silicon PV panels as they currently dominate the global market. Thus, this research work
concentrates majorly on crystalline silicon modules. Various technical defects and degra-
dation issues, characterization techniques that are being deployed in recent literature are
extensively reviewed. I-V curve and Sun-Voc tracing methods, imaging techniques which
include EL, PL, UV fluorescence techniques are current degradation measurements and
characterization techniques that are popularly used for the analysis of key degradation
modes in recent literatures. These techniques were broadly discussed and compared in
the paper. While the EPM methods provide details about the electrical properties with
less information on the defective components, the visual inspection and especially the
imaging techniques provide qualitative details on the classification of degradation modes
and signatures. Compared to the other imaging types that are popularly used, the image
quality of EL images is usually acknowledged to considerably higher. In contrast with con-
ventional methods that require huge computational needs in analyzing and categorizing the
various degradation mechanisms and modes, ML and DL models are proving to be feasible
autonomous options based on their high efficiency and computational capacity, especially
with regards to large scale installations. Through extensive research and analysis, the paper
addressed and compared the methodologies applied in using ML and DL models for PV
systems performance reliability and degradation analysis, in terms of the methodologies,
characterization techniques, datasets, feature extraction mechanisms, accelerated testing
procedures and classification procedures. Using acquired imaging and/or EPM datasets
from modules that were degraded due to being subjected to accelerated test(s) or due to
their exposed to wide range of environmental conditions during outdoor deployment, find-
ings showed that KNN, shallow and deep neural networks are the most widely deployed
algorithms for classifying the various degradation modes and signatures, in recent studies.
In addition, findings showed that ML and DL models. Furthermore, research gaps and
recommendations for future research works were presented.
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Abbreviations

LCOE Levelized cost of electricity

EPM Electrical parameter measurements

EL Electroluminescence

FE Feature Extraction

PL Photoluminescence

EVA Ethylene-vinyl-acetate

PID Potential-induced degradation

PERC Passivated emitter and rear contact

CCD Charge-coupled device

YI Yellowness index

DH damp heat

ISC short-circuit current

VOC open-circuit voltage

PMP maximum power

FF Fill factor

TC thermal cycling

SDLE Solar Durability and Lifetime Extension Center

LOESS locally weighted smoothing

LID Light-induced degradation

LeTID Light and elevated temperature induced degradation
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