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Abstract: People learn to perform exercises with good pose (or form) via research or instruction from an experienced

individual such as a personal trainer, but 33.3% of injuries still occur due to incorrect form. It is known that

the presence of a personal trainer causes a significant reduction in the rate that injuries occur. There are many

possible reasons for this such as cost, scheduling limitations and desire to train alone. However, given that

91% of UK adults use a smartphone, a mobile APP could take on the role of a personal trainer. This paper

presents a solution using machine learning and a novel proposed method of form anomaly detection to offer

form corrections from live exercise video while only using the capabilities of a mobile device. Overall, the

work in this paper is capable detecting incorrect exercise pose and offer valid corrections based on the detected

anomalies. Experiments have been conducted on live video to judge the system performance in real-time.

1 INTRODUCTION

When exercising, your ‘form’ refers to the way your

body moves throughout the exercise. An example of a

form requirement could be keeping your back straight

during a dead-lift. Using correct form is critical for

two main reasons, to avoid injury and to activate the

intended muscles. According to a study done by Sum-

mitt et al. (Summitt et al., 2016) looking at shoulder

injuries in Cross-fit, the most frequent causes of injury

are the worsening/return of a previous injury (33.3%)

and incorrect form (33.3%). This is a major issue, and

a study by Weisenthal et al. (Weisenthal et al., 2014)

shows that the presence of a trainer significantly de-

creases the rate at which injuries occur. During an

exercise one would want activate (use) the intended

muscles. Using dead-lift as an example, often when

people do bend their spine during the lift, the back

muscles are actually doing most of the work, even

though the dead-lift should be a balance between the

legs and the back. This and similar cases can result in

muscle groups being under worked, and the individ-

ual not seeing the progress they expect. A study by

Kubo et al. (Kubo et al., 2019) that compared muscle

growth in a group performing the full squat (a squat

with good form) and a group performing half squats
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(a squat with poor form), it was apparent that the dif-

ference in growth for certain muscle groups was as

much as 4.5% on average. A simple remedy for this

would be to have a trainer correcting your form.

2 RELATED WORK

The area of exercise analysis as a whole (ranging from

exercise classification to exercise mistake detection)

has started to see more attention as deep learning and

other modern methods of pose estimation have gained

some traction. In (Chen and Yang, 2020) the authors

gauge correct form by using the angles between the

limb vectors. For example, in a front raise they (Chen

and Yang, 2020) measure the angle between the torso

and the upper arm as one of the measures of success.

The limb coordinates are acquired through deep learn-

ing with pose estimation (Chen and Yang, 2020). This

method of using the angle between limbs does have

some drawbacks. For example the method of mis-

take detection proposed in (Chen and Yang, 2020) is

highly dependant on camera position, meaning that if

the camera is not in the same plane as the angle be-

ing measured the angle will be inaccurate. Similar

to (Chen and Yang, 2020), the work in (Yang et al.,

2021) regularise the pose data using the average spine

length. This is because users will naturally vary in



joint length, for instance a child will almost certainly

have shorter limbs than an adult, this could impact the

results greatly. One interesting point raised in (Yang

et al., 2021) is the case of individuals with unusual

body characteristics, such as a missing forearm, be-

ing something that the model might struggle with.

The work presented in (Rangari et al., 2022) is

slightly different as it focuses on exercise recognition

rather than form correction. The impressive results

of 97.01% accuracy in (Rangari et al., 2022) demon-

strates that exercise recognition is certainly possible

and should be achievable with standard deep learning

given enough data. In (Zhao et al., 2022) Zhao et al.

apply 3D pose estimation, allowing for the user to be

a lot more free with where they angle their camera.

This is because the proposed model isn’t trying to use

angles, it’s actually using a completely different ap-

proach consisting of two main steps and reported an

average classification accuracy of 90.9%. The study

in (Luna et al., 2021) was done by splitting the par-

ticipants into two groups, one of which received su-

pervision from a human physical therapist while the

other received supervision from a mobile APP. The

tests were done specifically on the squat for 3 sets of

10 in the order 10 unassisted, 10 assisted, 10 unas-

sisted. The study concludes that there was no statisti-

cally significant difference between the group that re-

ceived the human supervision as opposed to the group

that received the AI supervision (Luna et al., 2021).

DeepPose (Toshev and Szegedy, 2013) is the first

paper that applied deep learning to pose estimation.

The most important point to note is involved with

why deep learning is so suitable for pose estimation.

In (Newell et al., 2016) propose the Stacked Hour-

glass Networks method, which is currently one of the

premier standards for pose estimation. The proposed

method in (Newell et al., 2016) gets it’s name from the

repeated cycles of pooling and up-sampling within the

architecture, making an hourglass shape in terms of

the layer dimensions. Crucially, the information from

the pooling stage is combined into the up-sampling

stage with the use of residual layers.

In (Zhang et al., 2018) Zhang et al. build upon the

stacked hourglass network (Newell et al., 2016) by

improving the speed at which the estimation happens

with their proposed Fast Pose Distillation method.

The work (Zhang et al., 2018) reports a mean accu-

racy of 91.1% on the MPII dataset across body parts,

with 3 million parameters. The work in (Koskimäki

and Siirtola, 2014) explores the idea of wearable sen-

sors. Specifically the authors wanted to use data gath-

ered by two accelerometers attached to the body in or-

der to classify the exercise currently being performed

by the wearer. In conclusion, the proposed method

(Koskimäki and Siirtola, 2014) worked well on some

exercises but struggled with others.

3 OUR APPROACH

In this work, the aim is to attempt to correct exercise

form using machine learning with minimal resources.

The method can be summarised as taking video of the

subject, detecting the pose, then overlapping a theo-

retically perfect pose with the detected subject pose

and giving feedback based on the differences. There

are three main components to look at: the machine

learning model, the method of detecting form anoma-

lies and the binding of those two together in a manner

that provides valid feedback.

3.1 Detecting Form Anomalies

To correct form, we naturally need a way of detect-

ing when the form is incorrect. We proposes a new

approach where a theoretically perfect pose is over-

lapped with the detected pose and feedback is gen-

erated based on the offset between set joints. For ex-

ample, the offset between the theoretically perfect left

shoulder location and the detected left shoulder loca-

tion.

3.1.1 Detecting with Machine Learning

There are two approaches to detecting pose anoma-

lies using machine learning. First a set of possible

mistakes must be defined. Once this set has been de-

fined, example images for each mistake need to be

accumulated, as well as a set of images that show

the exercise being performed correctly. The data is

used to train a classification model that should be able

to take input and detect which class the input falls

into. This method (Rangari et al., 2022) (Zhao et al.,

2022) also suffers from the common drawbacks of

machine learning, such as the requirement for large

amounts of training data and the complexity of intro-

ducing new classes (for new exercises) into an exist-

ing model without affecting the performance on the

existing classes.

3.1.2 Detecting with Angles Between Joints

This method has been applied in at least two previous

works (Chen and Yang, 2020),(Yang et al., 2021) but

seems to have some significant limitations. Across

the 8 classes (Chen and Yang, 2020) achieves on av-

erage a precision of 0.885, a recall of 0.860 and an

F1 score of 0.858. This method does have some posi-

tives, out of all the methods that have been considered



this one is the most flexible in terms of adding new

exercises, as well as being able to give the clearest

feedback. Unlike in (Rangari et al., 2022) and (Zhao

et al., 2022), in this work, we hypothesise that incor-

rect form is identified by overlapping a theoretically

perfect pose with the pose identified using machine

learning. To understand the plan for pose overlap-

ping, we must first consider how to set up the the-

oretically perfect skeleton. The skeleton will effec-

tively be a collection of points in 3D space, each of

these points will represent a joint in the human body.

These joints will be the same as the ones the machine

learning model detects. These points will be able to

undergo a set of 3D transformations that step them

through the perfect form for a specific exercise.

To overlap these points with the points detected by

the machine learning model, the 3D points will need

to be flattened into 2D points. In order to do this from

the right angle the skeleton will need to be rotated in

3D such that the average point-to-point displacement

between the detected points and the flattened skeleton

points is minimised. In order to centre the theoreti-

cally perfect pose on the subject pose a central joint

to match on will be chosen. The joints used will vary

depending on the exercise. The feedback will be pro-

vided based on the point-to-point displacement as the

video continues. To give an example, if the displace-

ment of the shoulder joint from the theoretically per-

fect shoulder joint has been above a given threshold,

a warning that the shoulder is in an incorrect position

could be returned.

3.2 Pose Estimation Model

The Pose Estimation model chosen to be used in this

project is the Fast Human Pose Estimation model

proposed in (Zhang et al., 2018), this model builds

upon the Stacked Hourglass architecture described in

(Newell et al., 2016) by implementing the teacher-

student approach to reduce the network size. This has

the effect of making the model much faster while only

slightly reducing the model accuracy. To implement

the teacher-student approach you first train a larger,

slower teacher model, then use the teacher model in

the training process of a smaller, faster student model.

The trained student model will be better than models

trained from scratch at the same size.

In terms of up-sampling method, both (Newell

et al., 2016) and (Zhang et al., 2018) use standard

nearest neighbour up-sampling and achieve excellent

results, and this work use the same concept. The

loss function used in the teacher model is a Mean

Squared Error (MSE) loss that gives the loss as the

mean squared error between each value in the pre-

dicted heat-maps and each value in the ground truth

heat-maps. It is worth noting that since the model

prediction is a heat-map and the ground truth is a sin-

gle point a fake ground truth heat map must also be

generated. According to (Zhang et al., 2018) the best

method here is using a 2D Gaussian with σ = 1pixel

The student model as proposed in (Zhang et al.,

2018) is just a smaller (and therefore faster) ver-

sion of the model proposed in (Newell et al., 2016).

The teaching process happens in the loss function, in

(Zhang et al., 2018) they define their loss function as:

L f pd = αLpd +(1−α)Lmse (1)

where Lmse is the normal loss as described in (Newell

et al., 2016) but Lpd is the pose distillation function

defined in (Zhang et al., 2018) as:

Lpd =
1

K

K

∑
k=1

∥m8
k −mt

k∥
2
2 (2)

where:

• k is a single joint in the set of joints with length K

• mk
8 is the confidence map for the k-th joint as pre-

dicted by the teacher

• mt
k is the confidence map for the k-th joint as pre-

dicted by the student

For training data, the model will be trained us-

ing the MPII Human Pose dataset (Andriluka et al.,

2014). This is a commonly used dataset for human

pose estimation also used in (Newell et al., 2016), so it

is known that it produces good results in combination

with the chosen method. An idea brought up in (Yang

et al., 2021) also suggests inputting data at different

rotations to prepare for situations where the user is in

an unusual orientation (such as during a handstand),

as there is potential for this to come up in many ex-

ercises, rotation augmentation will be applied to the

training data. Examples from the training data where

multiple people are present will be filtered out. This is

because in this work, we only expect a single subject,

as that’s all that will be needed for the use case. How-

ever, examples where certain joints are fully occluded

will remain in the data, as this is a situation that the

model will need to be prepared for.

3.2.1 Evaluation

There are multiple options for evaluating the perfor-

mance of human pose estimation models as clearly

outlined in (Barla, ). Having considered the options,

’percentage of correct points’ (PCK) has been cho-

sen for this work as it is the most commonly used

method that provides metrics for each joint individ-

ually. There are two types of PCK, PCKh@0.5 and



PCK@0.2, in this work PCKh@0.5 will be used, as

it is the most widely used. PCKh@0.5 is a met-

ric that defines a joint as ’found’ if the distance be-

tween the detected joint and the true joint is less

than 0.5 × head bone link length. The PCKh@0.5

score across a set of data is defined for each joint as

joint f ound count/total joint count.

3.3 Theoretical Perfect Pose

In order to implement a theoretically perfect pose a

skeleton that could be transformed in 3D space was

required. This skeleton could be transformed such

that it steps through the exercise and then flattened

into 2D for overlapping. To create the skeleton, a

Joint class is needed to represent each joint in the

skeleton where instances of this class correspond with

joints in the training data. Every instance of the Joint

class can have child instances, where transformations

applied to the parent instance will also apply to the

child instances. This is so the body moves logically,

for instance if the elbow rotates the hand must also

rotate. The main components of each instance of the

Joint class are therefore the position in 3D space (x, y

and z coordinates) as well as a list of children (other

instances of the Joint class).

When the entire skeleton is rotated, unit vectors

axes are rotated along with it. Thus if a skeleton in-

stance is rotated 90◦ around the y axis, the relative

axes are also rotated. So if a new rotation is applied

to the arm of the skeleton, instead of rotating around

the ’true’ x axis, the rotation occurs around the rela-

tive x axis. This also necessitated a new function in

the Joint class that can rotate around any unit vector

in 3D space, rather than around the true axis.

3.4 Pose Estimation Model

A DataHandler class was defined to load the MPII

Human Pose (Andriluka et al., 2014) annotations and

store them. Some data filtering also occurred at this

step, namely the removal of images with multiple

people. This was with the intention of speeding up

training by making the problem simpler. Further-

more, since the user can move the camera, it is ex-

pected that there should only be one person centered

in the foreground. The DataHandler class is also

where the image loading and preprocessing occurs,

this uses a python library called imgaug (Jung, 2020)

in order to augment the input data while keeping track

of the key-points (in this case joints) on the image.

The preprocessing for training consists of:

• Cropping around the person

• Padding the image to square (padding with black

pixels)

• Resizing to model input dimensions

• Random rotation between -30◦ and 30◦

Input batches consist of the input images as well

as the 16 joint heat-maps. Therefore, the PoseEs-

timationDataset class also owns an instance of the

HeatmapGenerator class. This class generates the

joint heat-maps according to (Zhang et al., 2018).

In order to test the model a ModelEvaluator class

was defined, this class could be expanded to evalu-

ate the model in many ways but the one implemented

in this work is testing to get the PCKh@0.5 (Yang

and Ramanan, 2013) score for each joint. To get the

PCKh@0.5 score for each joint the class is given a

set of images featuring a single person, the set of true

joint locations and a trained model. The output from

the model on the images is evaluated against the true

joint locations to get the PCKh@0.5 score for each

joint. To overlap the skeleton onto the detected joints,

they are first matched at a single joint. This joint de-

pends on the exercise, for example the pelvis joint is

used when overlapping a squat. Once this single joint

is matched the skeleton undergoes a series of trans-

formations with the aim of minimising the average

distance between skeleton joints and detected joints.

Once the perfect pose is overlapped with the detected

pose, feedback can be generated.

4 EVALUATION - SUCCESS

CRITERIA

To accurately identify mistakes in exercise form from

an input image, we have the following criteria:

• Achieve an average PCKh@0.5 score of > 0.9
on visible joints in MPII Human Pose (Andriluka

et al., 2014) test data.

• Achieve an average PCKh@0.5 score of > 0.9 on

visible joints in example input data.

• Skeleton overlaps onto detected pose as expected.

• Skeleton-overlap reports joints in incorrect posi-

tion correctly with a false correct rate of 0.0.

• Skeleton-overlap report joints with a false incor-

rect rate of < 0.1.

To generate valid corrections based on detected mis-

takes, the following are the required criteria:

• When a mistake is detected the reported correc-

tions contain a fix to the mistake.

• None of the reported potential corrections should

cause further mistakes.



• None of the reported corrections should be irrele-

vant to the current exercise.

The following criteria is used to identify mistakes in

an exercise and generate valid corrections in real-time

using live video stream:

• The required memory to process the input video

stream should not exceed 4GB, to guarantee a suc-

cessful implementation on a mobile device.

• Ability to accept live video stream and output cor-

rection instantaneously as mistakes occur.

4.1 Performance on Testing Data

To start the evaluation both the large model and the

small model were ran on a set of testing data from

MPII Human Pose (Andriluka et al., 2014) to get

the PCKh@0.5 scores for each joint. There are two

output rows in tables 1 and 2; the ”Visible Only”

row where joints that are not visible in the image are

considered found by default and the ”Including Non-

Visible” row where joints that are not visible are ex-

pected to be output as a blank heat-map.

We can see from tables 1 and 2 that while the large

model achieves an average visible-only PCKh@0.5

score of 0.696 the smaller model actually achieves a

slightly better average of 0.697. This indicates that for

this training data, the additional model size is not nec-

essarily beneficial. Both models perform poorly when

detecting non-visible joints compared to only visible

joints, they do not understand that the joint cannot be

found and instead choose the most likely location.

4.2 Testing on Example Input Video

The small model was adopted for these video based

tests. Three exercises were selected at varying levels

of complexity to gauge performance across a range of

scenarios, these exercises were:

• Bicep half-curls: a variant of the bicep curl where

the forearm pauses when parallel to the ground.

• Lateral raise: an exercise where a dumbbell is

held in each hand and lifted outwards through the

scapular plane to just below parallel.

• Barbell squat: where a barbell is placed across the

shoulders while the individual squats down.

Video for each of these exercises was acquired in

a real gym to allow for testing with realistic back-

ground imagery. To visualise the results on video

the results on 5 key-frames throughout the exercise

will be shown. The detected joint locations will be

marked with coloured circles. The green circle indi-

cates the detected pelvis joint location while the blue

circles represent all other joints. These frames have

been hand-annotated to get a PCKh@0.5 score.

4.2.1 Bicep Half-Curl Video

Figure 1: Predicted joint locations on two videos of half-
curls.

From figure 1 and table 3 we can see that model per-

formance on the half-curl data is very good, achieving

an average PCKh@0.5 score of 0.981 on the 10 test

frames. The difference between this average and the

average on the MPII Human Pose (Andriluka et al.,

2014) test data is likely due to the location of the in-

dividual being in the centre of the image. The MPII

(Andriluka et al., 2014) data does not necessarily have

the individual in the centre of the image, but the train-

ing data was preprocessed to make this the case, thus

the model performs significantly better on centred in-

dividuals.

4.2.2 Lateral Raise Video

The results for lateral raise as shown in table 4 are

good, achieving an average PCKh@0.5 score of 0.963

on visible-only joints and a slightly lower average

PCKh@0.5 score of 0.838 when non-visible joints are

included. Looking at figure 2 we can see that the an-

kles of the individual performing the exercise are not

visible in any of the frames, this is likely the cause of

the difference. Another point to note is that the model

seems to struggle slightly with the wrist detections in

this instance. This could be due to the presence of a

dumbbell in the hands of the individual that is slightly

obscuring the wrist. Another potential reason could

be that the wrist is not very central to the image, which

would typically be the case in the training data.

Figure 2: Predicted joint locations on a video of a lateral
raise.

4.2.3 Squat Video

From table 3 alone it seems that model’s perfor-

mance on the squat data is acceptable, the average



Table 1: Large (8 hourglass) model PCKh@0.5 scores for each joint.

r ankle r knee r hip l hip l knee l ankle pelvis thorax neck head r wrist r elbow r shoulder l shoulder l elbow l wrist average

Visible Only 0.753 0.679 0.669 0.67 0.68 0.75 0.783 0.827 0.627 0.564 0.678 0.667 0.716 0.721 0.673 0.679 0.696

Including Non-Visible 0.213 0.273 0.336 0.34 0.284 0.219 0.27 0.383 0.625 0.562 0.448 0.46 0.481 0.472 0.447 0.447 0.391

Table 2: Small (2 hourglass) model PCKh@0.5 scores for each joint.

r ankle r knee r hip l hip l knee l ankle pelvis thorax neck head r wrist r elbow r shoulder l shoulder l elbow l wrist average

Visible Only 0.752 0.681 0.66 0.653 0.67 0.751 0.781 0.841 0.658 0.603 0.677 0.653 0.721 0.725 0.666 0.667 0.697

Including Non-Visible 0.213 0.276 0.327 0.323 0.274 0.223 0.268 0.397 0.655 0.6 0.447 0.445 0.486 0.477 0.44 0.436 0.393

Table 3: PCKh@0.5 scores for the bicep half-curl predictions.

r ankle r knee r hip l hip l knee l ankle pelvis thorax neck head r wrist r elbow r shoulder l shoulder l elbow l wrist average

0.9 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.981

Table 4: PCKh@0.5 scores for the lateral raise predictions.

r ankle r knee r hip l hip l knee l ankle pelvis thorax neck head r wrist r elbow r shoulder l shoulder l elbow l wrist average

Visible Only 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0 0.6 0.963

Including Non-Visible 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0 0.6 0.838

PCKh@0.5 scores of 0.838 on the visible-only data

and 0.712 on the including non-visible data are good,

but looking at figure 3 we can see that in the two right-

most images joints have been detected hovering in the

air above the individual. The reason for the increase

in issues as we move through the squat is likely due

both to the individual leaving the centre of the im-

age (as they lower through the squat) and the unusual

body shape of the squat which isn’t likely to be fea-

tured in the training data.

Figure 3: Predicted joint locations on a video of a squat.

4.2.4 Overall Performance on Input Video

Across the three exercises that were tested sections

4.2.1, 4.2.2 and 4.2.3, the model achieved an average

PCKh@0.5 score of 0.927 on visible-only data and

0.844 when non-visible joints were included. This in-

dicates that the model performs at a good level on vis-

ible joints, but will struggle to infer a reasonable joint

location when the joint is not visible. Considering

how the model fits into the application, this indicates

that the overall application will likely perform well

when the joints relevant to the exercise are visible,

but will struggle if relevant joints are hidden.

4.3 Test for Skeleton Overlap

We investigate if the implementation is capable of

overlapping the skeleton onto the poses detected and

then visually evaluated as ’expected’ or ’incorrect’.

To clarify, figure 4 shows on the left an input

image with the detected joint locations highlighted.

Figure 4: Example of a set of pose detections and the corre-
sponding skeleton overlap.

Those joint positions are then moved onto the plot on

the right where the skeleton is overlapped onto them

using the overlapping algorithm explained in the im-

plementation. In this example because the exercise is

a lateral raise, the only relevant joints are the shoul-

ders, elbows and hands. By comparing the input im-

age and the skeleton overlap we can see that in this

case the overlap has worked, so this would be labelled

visually as ’expected’.

4.3.1 Skeleton Overlap on Bicep Half-Curl

Figure 5: Comparison showing the detected joint locations
on the input half-curl frames and the skeleton overlapped
onto the detected pose.

Looking at figure 5 we can see that for each image, the

skeleton is overlapped correctly. All the images tested

in this scenario resulted in an ’expected’ output.



Table 5: PCKh@0.5 scores for the squat predictions.

r ankle r knee r hip l hip l knee l ankle pelvis thorax neck head r wrist r elbow r shoulder l shoulder l elbow l wrist average

Visible Only 1.0 0.8 0.8 0.4 0.4 0.8 0.8 1.0 1.0 1.0 1.0 0.6 0.8 1.0 1.0 1.0 0.838

Including Non-Visible 1.0 0.8 0.8 0.4 0.4 0.8 0.8 1.0 1.0 1.0 1.0 0.6 0.8 0.4 0.4 0.2 0.712

4.3.2 Skeleton Overlap on Lateral Raise

Figure 6: Comparison showing the detected joint locations
on the input lateral raise frames and the skeleton overlapped
onto the detected pose.

Looking at figure 6 we can see that the skeleton over-

laps are as expected for every image, the skeleton lat-

eral raise progress successfully mirrors the progress

of the individual performing the exercise. The legs do

not line up in this case because as this is a lateral raise,

the leg joints have no relevance to correct form.

4.3.3 Skeleton Overlap on Squat

Figure 7: Comparison showing the detected joint locations
on the input squat frames and the skeleton overlapped onto
the detected pose.

Looking at figure 7 we can see that some of the skele-

tons have not been overlapped correctly. Namely

(moving from left to right) the second, fourth and fifth

images. All of these overlaps failed due to incorrectly

detected joints. The second is hard to spot but it failed

because the right wrist was not correctly detected, the

fourth and fifth are easier to see as we can see detected

joints floating above the individual. To clarify what

has happened in the skeleton overlap for the fifth im-

age, the detected optimal rotation for the individual

has rotated them so that we are viewing them from

the side. As the skeleton is flat, this side view has

appeared as a line when flattened from 3D to 2D.

4.4 Testing Joint Incorrect/Correct

Reporting

In order to evaluate whether joints in incorrect po-

sitions are reported as incorrect and joints in correct

positions are reported as correct, a small test set was

accumulated consisting of both images of exercises

being performed correctly and of exercises being per-

formed incorrectly. The images were ran through the

implementation and either detected as having an in-

correct joint or not, and the performance evaluated.

Table 6: Confusion matrix showing exercise report results.

Ground Truth

Correct Incorrect Total

Correct 14 2 16

Incorrect 6 9 15

Total 20 11 31

From the confusion matrix (table 6) we can calcu-

late the false correct rate (FCR) and the false incorrect

rate (FIR).

FCR =
FalseCorrect

FalseCorrect +TrueIncorrect
= 0.182 (3)

FIR =
FalseIncorrect

FalseIncorrect +TrueCorrect
= 0.300 (4)

4.5 Test on Memory Usage

In order to test if the implementation will fit on a

memory constraint mobile device, five minutes of

video data was ran through the full system’s pipeline.

During this the RAM allocated to the Python process

and the GPU memory allocated to PyTorch (Paszke

and et. al, 2019) was measured at each frame. Figure

8 shows the graph of memory usage over the frames.

On figure 8 we can see that the 4GB limit spec-

ified as the threshold for a mobile device was never

exceeded. Throughout the entire process the memory

usage remains comfortably below that mark.

5 CONCLUSION

The overall goal of this work was to develop an al-

ternative to the traditional personal trainer using ma-

chine learning as well as a novel new method of de-

tecting exercise form mistakes. After evaluating the



Figure 8: Stacked plot of the RAM usage and GPU memory
usage of the application while running on video input

performance of the implemented solution, we have

demonstrated that detecting exercise form on a mo-

bile device can be achieved. The first aim of this work

was to accurately identify mistakes in exercise form

from video input. To recap, the proposed method

was to overlap a ’perfect pose’ skeleton onto the de-

tected pose of the individual performing the exercise.

From the evaluation we can see that when even a sin-

gle joint was detected incorrectly, because of the cho-

sen method to overlap the ’perfect pose’, the over-

lap would be misaligned and report multiple incor-

rect joints. Even if all the joints are detected correctly

the alignment could still go wrong due to issues with

overlapping a 3D object onto 2D points, mainly not

being able to try every combination of rotations due

to processing limitations.

The second aim of this work was to generate valid

corrections based on detected mistakes. The third aim

of this work was to use live video as input to perform

the form correction on a mobile device. The issue

with running on live data was that the proposed solu-

tion took too long to run a single frame due in part to

the machine learning model delay but mostly due to

the delay caused by the overlapping algorithm. From

this summary, we can see that the main issues with

this work is centred on the overlapping algorithm.

This process had issues both in terms of accuracy and

duration. Potential avenues for future research could

include alternatives to this algorithm while still retain-

ing the concept of overlapping the ’perfect pose’.
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Koskimäki, H. and Siirtola, P. (2014). Recognizing gym ex-
ercises using acceleration data from wearable sensors.
2014 IEEE Symposium on Computational Intelligence
and Data Mining (CIDM), pages 321–328.

Kubo, K., Ikebukuro, T., and Yata, H. (2019). Effects
of squat training with different depths on lower limb
muscle volumes. European Journal of Applied Physi-
ology, 119:1933–1942.

Luna, A., Casertano, L., Timmerberg, J., O’Neil, M., Ma-
chowsky, J., Leu, C.-S., Lin, J., Fang, Z., Douglas, W.,
and Agrawal, S. (2021). Artificial intelligence appli-
cation versus physical therapist for squat evaluation: a
randomized controlled trial. Scientific Reports, 11.

Newell, A., Yang, K., and Deng, J. (2016). Stacked hour-
glass networks for human pose estimation. CoRR,
abs/1603.06937.

Paszke, A. and et. al (2019). Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc.

Rangari, T., Kumar, S., Roy, P. P., Dogra, D. P., and Kim,
B.-G. (2022). Video based exercise recognition and
correct pose detection. Multimedia Tools and Appli-
cations, 81:30267–30282.

Summitt, R. J., Cotton, R. A., Kays, A. C., and Slaven, E. J.
(2016). Shoulder injuries in individuals who partici-
pate in crossfit training. Sports Health, 8:541–546.

Toshev, A. and Szegedy, C. (2013). Deeppose: Human
pose estimation via deep neural networks. CoRR,
abs/1312.4659.

Weisenthal, B. M., Beck, C. A., Maloney, M. D., DeHaven,
K. E., and Giordano, B. D. (2014). Injury rate and
patterns among crossfit athletes. Orthopaedic Journal
of Sports Medicine, 2.

Yang, L., Li, Y., Zeng, D., and Wang, D. (2021). Hu-
man exercise posture analysis based on pose estima-
tion. 2021 IEEE 5th Advanced Information Technol-
ogy, Electronic and Automation Control Conference,
pages 1715–1719.

Yang, Y. and Ramanan, D. (2013). Articulated human de-
tection with flexible mixtures of parts. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
35(12):2878 – 2890.

Zhang, F., Zhu, X., and Ye, M. (2018). Fast human pose
estimation. CoRR, abs/1811.05419.

Zhao, Z., Kiciroglu, S., Vinzant, H., Cheng, Y., Katircioglu,
I., Salzmann, M., and Fua, P. (2022). 3d pose based
feedback for physical exercises.


