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In the recent COVID-19 pandemic, a wide range of epidemiological modelling approaches have been used to

predict the effective reproduction number, R(t), and other COVID-19 related measures such as the daily rate of expo-

nential growth, r(t). These candidate models use different modelling approaches or differing assumptions about spatial

or age mixing, and some capture genuine uncertainty in scientific understanding of disease dynamics. Combining es-

timates using appropriate statistical methodology from multiple candidate models is important to better understand

the variation of these outcome measures to help inform decision making. In this paper, we combine these estimates

for specific UK nations and regions using random effects meta analyses techniques, utilising the restricted maximum

likelihood (REML) method to estimate the heterogeneity variance parameter, and two approaches to calculate the

confidence interval for the combined estimate: the standard Wald-type intervals; and the Knapp and Hartung (KNHA)

method. As estimates in this setting are derived using model predictions, each with varying degrees of uncertainty,

equal weighting is favoured over the more standard inverse-variance weighting in order avoid potential up-weighting

of models providing estimates with lower levels of uncertainty that are not fully accounting for inherent uncertain-

ties. Both equally weighted models using REML alone and REML+KNHA approaches were found to provide similar

variation for R(t) and r(t), with both approaches providing wider, and therefore more conservative, confidence in-

tervals around the combined estimate compared to the standard inverse-variance weighting approach. Utilising these

meta-analysis techniques has allowed for statistically robust combined estimates to be calculated for key COVID-19

outcome measures. This in turn allows timely and informed decision making based on all of the available information.

1 Introduction

Following the outbreak of COVID-19 and attempts to control the spread of the disease, focus in the UK has moved to

estimating the effective reproduction number, R(t), which reflects the infectious potential of a disease and is defined

as the average number of secondary cases per primary case at time t since the start of the epidemic [1]. The basic

reproduction number, R(0), is the number of secondary cases per primary case at the beginning of an epidemic, in

an entirely susceptible population [2]. As more individuals are infected or immunised, the population in which R(t)
is based consists of both naive/susceptible and exposed/immune individuals and therefore changes over time [2]. If

R(t) for the UK exceeds 1, the infection rate will grow exponentially. To bring the epidemic under control, the

corresponding R(t) needs to drop and remain as far below 1 as practicable [1]. There are a number of ways to estimate

R(t), for example using information on the number of cases, number of deaths, survey data, or a combination of

these. From incidence/cases data, the mean generation time and initial growth rates (defined as the per capita change

in number of new cases per unit of time) in the infected population can be used [1,3]. From death data, R(t) can be

determined by using the number of deaths that can be attributable to the infection, with key information including the

infection fatality rate, mean generation time and the time from onset of symptoms to death [4,5]. For example, R(t) can

be linked to the number of deaths using a renewal equation which incorporates the time between death of the infector
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and infectee [2]. R(t) can also be determined by surveying the population for infection and inferring likely case data; an

approach which commonly uses a contact function that identifies the susceptible individuals, how likely transmission

is to be (given that contact has occurred), and measures the contact between members of the population [6,7]. Detailed

methodology is not provided in this paper but available from the Royal Society [2].

Other key COVID-19 outcomes of interest include the daily rate of exponential growth, r(t), which represents an

approximation of the percentage change in the number of infections over time [8]. If r(t) is positive, the infection rate

will grow exponentially, whereas if r(t) is negative and remains negative, it will be possible for the epidemic to be

brought under control.

In the UK, epidemiological modelling is provided by a number of highly skilled academic groups based on a

number of different data streams, modelling techniques and assumptions (a summary of these models is provided in

the appendix and detailed descriptions are also available from the Royal Society [2]). Each of these groups provide key

understanding and insight into the current state of the epidemic, and these estimates must therefore be combined to

provide an overall assessment so that decision making is based on all available evidence. In this paper, we use meta-

analyses to combine estimates of R(t) and r(t) for specific nations/geographical regions of the UK, from multiple

candidate epidemiological models.

1.1 Existing Methods to Combine Estimates

The methodology used to combine modelling estimates is not limited to meta analyses. For example, Lindstrom

et al incorporate an ensemble modelling approach using a Bayesian framework and various weighting schemes [9].

Ensemble methods were also explored by Ray et al [10], which used model stacking [11], again, with exploration into

different weighting approaches to combine predictions from multiple models [10]. Methods used to aggregate expert-

generated predictions have also been explored by Genest and Zidek, O’Hagan et al, and McAndrew et al [12–14]. Genest

and Zidek provide a comprehensive annotated bibliography on various methods, including but not limited to: the use

of a supra Bayesian approach whereby in some cases, there is a decision maker for whom the panel of experts reports

to [15,16]; and the Vincentization method which averages the per cent quantiles of the experts’ distribution to construct a

consensus distribution [17]. McAndrew et al provide a more recent review on various methods to aggregate predictions

from experts, including Cooke’s method which incorporates a calibration score to assign weights to the experts [18],

stacking methods [11], and other pooling methods which transform the aggregated forecast distribution such as the

Spread-adjusted Linear Pool (SLP) method [19–21] and Beta Linear Pool (BLP) method [22,23]. In terms of combining

COVID-19 related outcomes, a number of combination approaches were explored to combine model projections by

Silk et al [24] and Funk at al [25], including stacking methods, and regression-based methods such as ensemble model

output statistics (EMOS) [26], and Quantile Regression Averaging (QRA) [27].

1.2 Application of the Meta Analysis Approach

Meta analysis, the process of synthesizing data from a series of separate studies [28], is a well-known and established

method, used ubiquitously in fields such as epidemiology, medicine, climate science, psychology, and education. It

provides a rapid and simple approach, and its results are easy to interpret. In this paper, we use this method to

provide an estimate of R(t) from multiple models and assumptions. Effectively R(t) is a physical quantity that could

potentially be measured if we had perfect knowledge of infection state and transmission risk of all individuals through

time. Clearly, in reality, this is impossible and therefore R(t) must be estimated from available data. However, there

are a number of entirely valid ways to estimate R(t) and each provides insight into the current value. We require

the best knowledge of R(t) that can be provided and each model estimate captures an aspect of the current R(t) value,

therefore meta-analysis will, by definition, provide an overall estimate, averaged over all of the modelling assumptions

and potential methodologies, providing a combined estimate that benefits from all available information. However,

the combination naturally assumes that the candidate models are valid and worth considering.

Meta-analysis models can assume fixed or random effects; i.e. a shared common effect or distribution of effects.

As it is possible for each candidate model to use a different method to estimate these outcome measures, the modelling

approaches and/or underlying assumptions are assumed to vary. For example, different modelling approaches (e.g.

mechanistic or empirical) or differing assumptions about spatial or age mixing may be used [24]. Moreover, the random

effects model assumes a distribution of true effect sizes as opposed to a shared common (true) effect size assumed in
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the fixed effects model [28,29]. Subsequently, a meta-analysis using a random effects model is chosen over a fixed effects

model. Details and motivating examples on fixed and random effects models for analysis can be found in Borenstein

et al. [30]. The random effects model can be defined as:

θ̂i = θi + εi θi ∼ N(θ ,τ2) (1)

where θi is the true effect size in group i (for a set of i = 1, ...,k groups), θ̂i is the estimated effect size in group i, θ is

the average effect across all groups, and εi are the within-group errors [29]. θi is sampled from a distribution, typically

assumed to be normal, of mean θ and variance τ
2, the heterogeneity variance parameter. [29].

The combined estimate, θ̂ , with associated variance, Var(θ̂), can be calculated as follows [29]:

θ̂ =

k

∑
i=1

wiθ̂i

k

∑
i=1

wi

,

Var(θ̂) =




1

k

∑
i=1

wi




2

k

∑
i=1

wi
2(σ̂i

2 + τ̂
2)

(2)

where wi denotes the weighting applied to the estimate in group i, σ̂i
2

the estimated variance of the estimate in group

i, and τ̂
2 the estimated heterogeneity variance parameter; a measure of the heterogeneity (or variability) between

estimates.

The standard weighting applied in a meta analysis is by way of inverse-variance, whereby wi = 1/(σ̂i
2 + τ

2),

whereas an equally weighted model has weighting wi = 1/k. The corresponding combined estimate, θ̂ , and associated

variance, Var(θ̂), from Equation (2) become:

θ̂ =





k

∑
i=1

θ̂i(σ̂i
2+τ̂

2)−1

k

∑
i=1

(σ̂i
2+τ̂2)−1

for inverse-variance weighting

1
k

k

∑
i=1

θ̂i for equal weighting

Var(θ̂) =





1
k

∑
i=1

(σ̂i
2+τ̂2)−1

for inverse-variance weighting

1
k2

k

∑
i=1

(σ̂i
2 + τ̂

2) for equal weighting

(3)

For random effects meta analyses, several methods are available to estimate τ
2. In addition, multiple methods

can be used to calculate the confidence intervals (CIs) for the combined estimate. This paper focuses on the well-

established restricted maximum likelihood (REML) method recommended by Veroniki et al. [31] to estimate τ
2, with

the incorporation of two different approaches for the calculation of the CIs: the standard Wald-type method; and

the Knapp and Hartung (KNHA) method (also referred to as the Hartung-Knapp-Sidik-Jonkman method) [32,33]. The

Wald-type method is chosen as it is a well-established approach, whilst the KNHA method has been shown to provide

better coverage [29]. The standard Wald-type CI is calculated as [29]:

θ̂±z1− α

2

√
Var(θ̂) (4)

with σ̂i
2

the estimated variance for group i, and z-score calculated for the required confidence interval of the standard

normal distribution.
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The KNHA CI is calculated as [29]:

θ̂±tk−1,1− α

2

√
Q ·Var(θ̂)

where Q =
1

k−1

k

∑
i=1

(
1

σ̂i
2 + τ̂2

)
(θ̂i − θ̂)2

(5)

with t-score calculated from the t distribution with k−1 degrees of freedom.

The use of REML to estimate τ
2 has been shown to be robust to deviations from normality and to perform well,

particularly when utilising the KNHA method to calculate the CIs, when only a limited number of models are available

for comparison [29,34,35]. This papers refers to these two approaches as the REML alone and REML+KNHA approaches

respectively.

2 Methods

2.1 Data Preparation

This paper utilised data from 12 different candidate models, in which estimated quantiles from each model were

available for up to 12 UK nations/regions for a set cut-off date. These candidate models were drawn from many of the

leading academic institutions and epidemiologists in the UK whose models already support government response for

pandemics. In this paper, candidate models and UK nations/regions were anonymised, and estimates were combined

according to each of the anonymised UK nations/regions separately.

The aim of the data preparation step is to generate appropriate estimated means and standard errors for each

candidate model to be used in the combination. For a set of i = 1, ...,k candidate models, let yi denote the mean

estimate of the outcome measure of interest for the ith model (previously denoted θi), with associated standard error,

sei.

Each of the candidate models outputs jth percentiles, Qi( j), for the outcome measure of interest, as opposed to yi

and sei. In order for the estimates to be combined in a random effects model for an outcome measure of interest, initial

approximations of yi and sei, ŷi and ŝei are required. Using the jth percentiles from the ith candidate model, Qi( j), y∗i
and se∗i are initially calculated as follows:

y∗i = Qi(50) (6)

se∗i =
max(|Qi(95)−Qi(50)|, |Qi(50)−Qi(5)|)

z1− α

2

(7)

with z-score calculated using α = 0.10 for the 90% confidence interval of the standard normal distribution.

2.2 Skewness Exploration and Correction

As some of the model estimates maybe skewed, the use of Qi(50) for an approximation of yi may not be optimal and

an adjusted estimate required. First, the degree of skewness of the estimates, SKi, is calculated and assessed using

Bowley’s formula [36]:

SKi =
Qi(75)+Qi(25)−2Qi(50)

Qi(75)−Qi(25)
(8)

An absolute value of 0.5 is then used to indicate a moderate or higher level of skewness [37]. If |SKi| ≤ 0.5, then

skewness is deemed sufficiently small and a normal distribution can be fitted to the percentiles, i.e. ŷi = Qi(50) from

Equation (6) and ŝei = se∗i from Equation (7). However, if |SKi|> 0.5, then an adjustment to the estimates are required.

First, appropriate transformations to the percentiles are made: if the estimates are negatively skewed the quantiles are

inverted i.e. Qi(5), Qi(50), Qi(95) → -Qi(95), -Qi(50), -Qi(5); and a positive constant is added, where applicable,

to ensure the adjusted quantiles are positive. A gamma distribution is fit to the adjusted percentiles by minimizing
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the sum of squared distance between the percentiles of the gamma distribution and those of the model estimates

using a Particle Swarm Optimisation (PSO) algorithm [38]. The PSO is performed using the psoptim optimisation

call from the pso package [39] in R [40]. This optimizes the non-linear function via an algorithm using a series of

learning parameters [38]. Further details on the process are provided by Kennedy [38], Yang [41], and Bendtsen [39]. The

square-root of the variance from the optimisation process can then be used as a conservative estimate of ŝei, and the

corresponding mean from the optimisation process, after a suitable back-transformation applied, can be used for ŷi.

Although the adjusted estimates remain skewed, the use of REML for a meta-analysis is robust even in the case of

extreme non-normal distributions [34,35].

2.3 Equal Weighting

The standard weighting applied in meta analyses is by way of inverse-variance weighting, whereby estimates which

provide the highest precision are weighted highest. However, estimates in this setting are derived using model pre-

dictions, each with varying degrees of uncertainty, i.e. estimates provided with smaller levels of uncertainty are not

necessarily more representative of the situation over another model. For example, a model with wider 90% inter-

vals could in fact be more representative over another model with narrower 90% intervals as the modelling approach

takes into account more information in the derivation of its estimates. The standard inverse-variance weighting could

therefore unjustifiably change estimates as models with smaller uncertainty will be up-weighted. As each modelling

approach differs in how uncertainty is accounted for and conservative estimates in the context are preferable, the com-

parison of uncertainty levels alone would not be appropriate in this particular setting. To counter this, user-defined

equal weighting is applied to the candidate models using 1
k
, where k is the number of candidate models that are

included in the random effects model [42].

2.4 Fitting the Random Effects Model

Having estimated the distributions of each model to be included in the combination, we now calculate the combined

estimate using the random effects model. The custom weights, together with ŷi and ŝei from the fitted distributions of

each candidate model, are passed to the metafor package in R using the rma call [43], using the REML method to

estimate τ
2 with incorporation of either the Wald-type CIs (REML alone), or KNHA method for the calculation of the

CIs (REML+KNHA).

3 Worked Example

To illustrate the method in practice, a step by step guide is given here for how the estimated quantiles from a group of

anonymised models for a selected anonymised UK nation/region can be used to provide a combined estimate for this

selected nation/region. A full set of results for all UK nations/regions can be found in Section 5 and the Appendix,

and a csv file and example R script provided as supplementary material for the worked example. Table 1 shows

the R(t) estimated quantiles from 12 anonymised models for anonymised UK nation/region 10, together with the

calculated se∗i and SKi using Equations (7) and (8) respectively, and corresponding ŷi and ŝei calculated values. No

estimated quantiles were available from candidate model 8 for this particular nation/region but estimated quantiles are

available for other nation/regions for this model (see Appendix Table 2 for the full list of R(t) estimates by model and

nation/region).

Moderate to high skewness was identified for candidate model 5, although this was only marginal (8.6× 10−14

over the threshold). The corresponding adjusted estimate, ŷi, following input into the psoptim optimisation call

resulted in an identical estimate to Qi(50) in this case (to four decimal places), but with modified ŝei of 0.0028.

To illustrate the performance of the equal weighting random effects model approach, an initial random effects

model using the REML method to estimate τ
2 but with the standard inverse-variance weighting was applied to provide

a combined estimate. The equally weighted random effects models using REML and Wald-type CIs (REML alone) or

KNHA CIs (REML+KNHA) were then applied to the same estimates. The R(t) estimates from the candidate models,

together with the combined estimates using these methods are shown in Figure 1.
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Model Qi(5) Qi(25) Qi(50) Qi(75) Qi(95) SKi se∗i ŷi ŝei

1 0.6300 0.6800 0.7400 0.8100 0.8700 0.0769 0.0790 0.7400 0.0790

2 0.6228 0.6775 0.7045 0.7413 0.8265 0.1540 0.0742 0.7045 0.0742

3 0.6400 0.7000 0.7400 0.7900 0.8700 0.1111 0.0790 0.7400 0.0790

4 0.4400 0.6300 0.7500 0.8700 1.1400 0.0000 0.2371 0.7500 0.2371

5 0.7898 0.7930 0.7954 0.7963 0.7995 -0.5000 0.0034 0.7954 0.0028

6 0.8076 0.8199 0.8329 0.8494 0.8749 0.1189 0.0256 0.8329 0.0256

7 0.6232 0.7111 0.7862 0.8647 0.9890 0.0222 0.1233 0.7862 0.1233

8 - - - - - - - - -

9 0.7509 0.8626 0.9382 1.0159 1.1604 0.0148 0.1351 0.9382 0.1351

10 0.8175 0.8250 0.8302 0.8353 0.8427 -0.0041 0.0077 0.8302 0.0077

11 0.8412 0.8956 0.9293 0.9657 1.0340 0.0398 0.0637 0.9293 0.0637

12 0.6600 0.7100 0.7600 0.8000 0.8600 -0.1111 0.0608 0.7600 0.0608

Table 1: R(t) estimates and corresponding SKi, se∗i , ŷi and ŝei calculated values for anonymised models 1 to 12 for anonymised

UK nation/region 10. All numbers displayed to four decimal places. †No estimated quantiles were available from candidate model

8 for this particular nation/region.

Figure 1: R(t) estimates from the candidate models for anonymised nation/region 10, together with calculated combined estimates

using: an inverse-variance weighted approach with Wald-type CIs; an equally weighted approach with Wald-type CIs (REML

alone); and an equally weighted approach with KNHA CIs (REML+KNHA). The error bars illustrate the 90% CIs.

The combined estimate obtained is 0.81 for inverse-variance weighted approach, and 0.80 for each of the equally

weighted approaches, with 90% CIs ranging from 0.79 to 0.86 indicating that we can be reasonably sure the true R(t)
for this particular region at time t is below 1. As mentioned above, estimates in this setting are derived using model

predictions, and a model with wider 90% intervals could in fact be more representative of the situation when there

is inherent uncertainty throughout multiple data collection and modelling streams than a model with narrower 90%

intervals using fewer data streams. The results shown in Figure 1 show that the inverse-variance weighted approach

produced narrower 90% CIs compared to either of the equally weighted approaches. As τ
2 is very small, the standard

error of the estimate dominates the inverse variance weighting, and so this narrow 90% interval is primarily driven

6
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by the estimates from candidate models 5 and 10, which had narrower 90% intervals compared to the other candidate

models. Conversely, candidate model 4 contributed little information to the combined inverse-variance weighted

estimate due to the wider 90% intervals provided. This example highlights a key advantage of the equally weighted

approach in this particular setting; the ability to avoid potential up-weighting of models providing estimates with lower

levels of uncertainty that are not fully accounting for inherent uncertainties. Both the REML alone and REML+KNHA

equally weighted approaches provided similar results in this worked example. However, a more in-depth look at the

differences between the results obtained from these two methods is explored in the Results section, below.

4 Results

A full set of results for R(t) and r(t) for the 12 anonymised candidate models is provided across 12 anonymised UK

nations/regions below. The estimate for τ
2 for each outcome measure and region is provided in the Appendix.

4.1 Combined R(t) Estimates

The R(t) estimates by region for the candidate models are shown in Figure 2. The upper 90% CIs were lower than 1

for all individual regions indicating that that we can be reasonably sure that R(t) for all individuals regions at time t

was below 1. On visual inspection, the difference in 90% CI for R(t) between equally weighted models using REML

alone versus REML+KNHA approaches was minimal. On closer inspection of the combined estimates to additional

decimal places (data not shown), in seven of the 12 regions the REML+KNHA approach provided a wider and more

conservative 90% CI than the REML alone approach, compared to five instances where the REML alone approach

provided a wider 90% CI than the REML+KNHA approach. Looking at models across different regions, candidate

model 4 consistently had wider 90% intervals compared to the other candidate models, whilst candidate models 5 and

10 consistently had narrower 90% intervals. The τ
2 estimates for all regions were again very small (see Table 2 in the

Appendix), indicating that the standard error of the estimate dominates the inverse variance weighting, which, coupled

with the large disparity in uncertainty for estimates in each region, highlights the appropriateness of applying equal

weighting to the models in this setting. Moreover, the equal weighted approaches provided wider 90% CIs compared

to the inverse-variance weighting approach for all regions (Table 2).
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Figure 2: R(t) estimates from the candidate models by anonymised nation/regions, together with calculated combined estimates

using equally weighted models, with REML alone or REML+KNHA approaches for the 90% CIs. The error bars illustrate the 90%

CIs.

4.2 Combined r Estimates

In terms of r(t) (Figure 3), initial visual inspection yielded a similar conclusion to the combined estimates for R(t).
The 90% CIs were equal to or lower than zero for all individual regions indicating that that we can be reasonably sure

that r(t) for all individuals regions was not increasing. Only slight differences were found in the 90% CI estimates

between the two approaches. However, in this case, closer inspection of the estimates indicated that in eight of the

12 regions the REML alone approach provided a wider 90% CI than the REML+KNHA approach, compared to four

instances where the REML+KNHA approach provided a wider 90% CI than the REML alone approach. Looking at

models across regions, it is first important to note that there were only half of the candidate models for which estimates

were available for r(t) compared to estimates for R(t), particularly evident for region 12, in which only three candidate

models were included. In terms of variability, candidate models 5 and 10 once again consistently had narrower 90%

intervals across regions, whilst candidate model 9 consistently had wider 90% intervals. Although the τ
2 estimates for

all regions were again small for r(t), showing low inter-model variability, the equally weighted approaches provided

moderately wider 90% CIs compared to the inverse-variance weighting approach for all regions (see Table 3 in the

Appendix), which is preferable where there is the potential that uncertainty is arising outside of the scope of some

modelling approaches.
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Figure 3: r(t) estimates from the candidate models by anonymised nation/regions, together with calculated combined estimates

using equally weighted models, with REML alone or REML+KNHA approaches for the 90% CIs. The error bars illustrate the 90%

CIs.

5 Discussion

When comparing the results of the REML alone and REML+KNHA approaches, both provided almost identical results

for R(t), and very similar results for r(t). In addition, both approaches provided more conservative CIs around the

combined estimate compared to the standard inverse-variance weighting approach.

There are a number of possible extensions to the methodology presented. For example, yi are assumed to be unbi-

ased and normally-distributed estimates of the corresponding true effect [43], and alternative approaches to approximate

yi and sei may be used. However, as noted in the Cochrane Handbook for Systematic Reviews of Interventions, a me-

dian will be very similar to the mean when the distribution of the data is symmetrical [44]. Moreover, the use of

the square-root of the variance from the optimisation process to approximate sei enables a larger estimate to be pro-

vided, and thus a more conservative degree of uncertainty. Alternative methods to calculate the standard deviation

(to be used for an approximation of sei) such as those outlined by Bland [45] and Wan et al [46] are not possible due

to the lack of availability of the sample size, minimum and maximum in this setting. Wan et al [46] notes the use

of Qi(75)−Qi(25)/1.35 taken from the Cochrane Handbook [44], however as noted in the Cochrane Handbook, this

approximation is for instances with large sample sizes. In addition, Figure 4 shows the normal distributions generated

using mean of y∗i and standard deviation of se∗i from Equations (6) and (7) for R(t) estimates from the candidate mod-

els for anonymised nation/region 10. This provides a visual confirmation of the fit of the candidate model percentiles

against the drawn distributions (with the exception of Model 5 which is marked as skewed as per the result obtained

using the skewness calculation in Equation (8)). Finally, and of key importance, it has been shown that the perfor-

mance of statistical methods, such as REML for a meta-analysis, are robust, even in the case of extreme non-normal
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distributions [34,35].

It should be noted that some models rely on similar data streams for their primary information, and there is likely

a spatial relationship between regional estimates from the same group. In terms of similar data streams, the model

structures are all different, and a large amount of variation is observed in the estimates. Consequently, the impact on

the results is extremely limited. To illustrate this degree of impact, a sensitivity analyses on the R(t) estimates was

performed using the rma.mv call from the metafor package [43], which enables a model to be fitted for dependent

effect sizes. An equally weighted model, using REML and Wald-type CIs, was formulated with model number fitted

as the inner-most random effect, and data type fitted as the outer-most random effect in the model. The results were

almost identical to the univariate equally weighted model (using REML and Wald-type CIs), with no differences

observed larger than 0.01. It should be noted that at the time of writing, the rma.mv call does not have the ability

to incorporate the REML+KNHA approach and so this comparison was not possible. In terms of any dependence

between regional estimates from the same group, any correlation assumptions are not consistent between models and

as a result, this is outside of the scope of this paper. However, the authors acknowledge that future work in this area

might be worth exploring. A final remark in terms of possible correlations between the metrics of interest should also

be made here. However, although R(t) and r(t) are probably correlated, not all groups provide both sets of estimates

for these, and more importantly, not all candidate models are modelled in the same way between groups and the degree

in which R(t) and r(t) are correlated will vary i.e., they may have differing correlation structures, etc. As a result,

it is not possible to accurately carry this out without making further untestable assumptions regarding the different

correlation structures.

The assumption that all candidate models are valid/plausible is important to note, however each model uses differ-

ent ways to estimate R(t), which are all equally valid and each provides insight into the current value. Inclusion of a

variety of approaches is crucially important as any subgroup of models could lead to potential up-weighting of models

providing estimates with lower levels of uncertainty that are not fully accounting for inherent uncertainties. For these

reasons, the incorporation of equal weighting has been chosen. The use of equal weighting in meta analyses is not

novel and as noted by Borenstein et al [28], its application has actually been recommended in some papers [42,47,48]. The

purpose of this paper is not to advocate the use of the approach in general meta analyses settings, but for this particular

setting. It is also important to note that R(t) is in effect impossible to measure as it would require perfect knowledge

of all individuals through time, and there are therefore no ’gold-standards’ to compare the individual (and combined)

estimates to. There are, however, real world assessments of these data which align, but have potential natural sam-

pling bias (and are therefore not a gold standard), for example: the Office for National Statistics (ONS) survey which

covers estimates for England, Wales, Scotland and Northern Ireland [49]; the CoMix study which consists of a survey

of UK adults [50]; and the REACT (REal-time Assessment of Community Transmission) study which incorporates a

series of studies using home testing on people across England [51]. When the model estimates are combined therefore,

and despite potential natural sampling bias, informal comparisons can be made against these survey estimates to help

provide approximate feasibility checks on the results.

The authors also acknowledge that, whilst meta analyses in this setting was chosen as it is well established and

able to provide rapid results which are easy to interpret, there are other methods that could be applied to combine

estimates, such as various ensemble modelling approaches [9–11], expert elicitation [13], the use of a supra Bayesian

approach [15,16].

Another possible extension is in regards to the use of combining estimates for an entire region, i.e. not splitting the

regions into urban versus rural areas, or not taking into account the number of care homes, etc. Indeed, by definition

R(t) is an average over a population. However, if the population in question is very heterogeneous in space or the

models used to estimate R(t) become unreliable due to very low case numbers (in this situation case numbers are

stochastic and not well approximated by exponential models) then R(t) may not be an appropriate measure. However,

in order to address this and ensure that any combination is representative, a basic reliability score is also calculated

for use when interpreting these results for a specific region. The reliability score uses estimated case numbers in the

modelled region and the heterogeneity in space of the numbers of cases (e.g. a dense urban outbreak compared to rural

areas with no cases) [52]. It should also be noted that each model provides estimates for each region individually, i.e.

estimates for all English regions were not combined to get an overall estimate for England. The use of a reliability score

for each region when presenting the results enables for a more measured conclusion to be drawn from the combined

estimates for each region. Further investigation into the reliability score and combining estimates for smaller spatial
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regions is likely to form part of future work in this area.

Finally, many of the candidate models provide estimates of R(t) over specific time periods, thus providing estimates

of R(t) at a specific date. We would therefore like to explore predicting R(t) as a time series, as opposed to at a specific

time point, which is particularly important if R(t) changes rapidly over time. Further to this, we would like to explore

predicting the probably that R(t) is changing and how rapidly it is changing, using historical combined estimates of

R(t) as a prior.

6 Summary

This paper describes appropriate statistical methodology to provide a combined estimate of effective reproduction

number, R(t), and the daily rate of exponential growth, r(t), of COVID-19 in the UK from an agreed set of expert

academic models. The methods proposed use an equally weighted random effects model, with the REML approach to

estimate τ
2, and incorporating either the Wald-type or KNHA approaches for estimating the CIs, to combine estimates

from a series of candidate models.

A meta-analysis using a random effects model as opposed to a fixed effects model is chosen to account for the vary-

ing modelling approaches and/or underlying assumptions between candidate models. Moreover, an equally weighted

method is adopted in preference to an inverse-variance method, as we are combining individual model predictions

where additional uncertainty does not necessarily imply imprecision, but is just a reflection of the data being mod-

elled.

The choice of using the well-established REML to estimate τ
2 is recommended as it has been shown to be robust

against deviations from normality - many epidemiological models can, at times, produce skewed output distributions

for the parameters of interest. Both the Wald and KNHA approaches for calculating the CIs perform well, particularly

in the case of KNHA, when only a limited number of models are available for comparison [29,34,35].

Finally, in order to further protect against skew in the input distributions, an appropriate assessment of the skewed

parameters is obtained via optimisation and passed to the rma call from the metafor package [43], together with

the estimates from the fitted distributions of each candidate model. The REML method is applied to estimate the

heterogeneity variance parameter, and using either the standard Wald-type or KNHA approach for the calculation of

the CIs thus enables for an appropriate combined estimates to be formulated.
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8 Appendix

8.1 List of SPI-M Modellers/Modelling Groups

• Dr Paul Birrell (National Infection Service, Public Health England, London, UK)

• Dr Jonathan Carruthers (National Infection Service, Public Health England, London, UK)

• Dr André Charlett (Centre for Infectious Disease Surveillance and Control, Public Health England, UK)

• Prof Daniela DeAngelis (Medical Research Council Biostatistics Unit, School of Clinical Medicine, University

of Cambridge, UK)

• Joshua Blake (Medical Research Council Biostatistics Unit, School of Clinical Medicine, University of Cam-

bridge, UK)

• Prof Matt Keeling (Department of Biological Sciences and Mathematics Institute, University of Warwick, UK)

• Dr Louise Dyson (School of Life Sciences and Mathematics Institute, University of Warwick, UK)

• Dr Sebastian Funk (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene

and Tropical Medicine, UK)

• Dr Sam Abbott (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and

Tropical Medicine, UK)

• Nikos Bosse (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and

Tropical Medicine, UK)

• Joel Hellewell (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and

Tropical Medicine, UK)

• Sophie Meakin (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and

Tropical Medicine, UK)

• James Munday (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and

Tropical Medicine, UK)

• Katharine Sherratt (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene

and Tropical Medicine, UK)

• Dr Robin Thompson (Mathematical Institute, University of Oxford, UK)

• Prof John Edmunds (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene

and Tropical Medicine, UK)

• Dr Nicholas Davies (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene

and Tropical Medicine, UK)

• Dr Christopher Jarvis (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hy-

giene and Tropical Medicine, UK)

• Amy Gimma (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and

Tropical Medicine, UK)

• Kevin Van Zandvoort (Centre for the Mathematical Modelling of Infectious Diseases, London School of Hy-

giene and Tropical Medicine, UK)
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• Prof Neil Ferguson (Medical Research Council Centre for Outbreak Analysis and Modelling, Imperial College

London, UK)

• Dr Marc Baguelin (Medical Research Council Centre for Outbreak Analysis and Modelling, Imperial College

London, UK)

• Dr Lorenzo Pellis (Department of Mathematics, University of Manchester, UK)

• Dr Thomas House (Department of Mathematics, University of Manchester, UK)

• Dr Christopher Overton (Department of Mathematics, University of Manchester, UK)

• Joshua Burton (Department of Mathematics, University of Manchester, UK)

• Filippo Pagani (Department of Mathematics, University of Manchester, UK)

• Prof Katrina Lythgoe (Big Data Institute, University of Oxford, UK)

• Dr Francesca Scarabel (LIAM, Department of Mathematics and Statistics, York University, Canada)

• Dr Jonathon Read (Centre for Health Informatics, Computing, and Statistics, Lancaster University, UK)

• Dr Chris Jewell (Lancaster Medical School, Lancaster University, UK)

• Dr Leon Danon (College of Engineering and Mathematical Sciences, University of Exeter, UK)

• Dr Robert Challen (College of Engineering and Mathematical Sciences, University of Exeter, UK)

• Dr Ellen Brooks-Pollock (Population Health Sciences, University of Bristol, Bristol, UK)

• Dr Nabeil Salama (Marine Scotland Science, Aberdeen, UK)

18



Content includes material subject to © Crown copyright (2021), Dstl. This material is licensed under the terms of the Open Government Licence

except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to

the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gov.uk.

8.2 Model Descriptions

Detailed information on the models are available from the Royal Society pre-print [2]. However, the following provides

a brief summary of the models obtained from the Department of Health and Social Care [52]:

• The University of Cambridge MRC Biostatistics Unit and Public Health England (PHE) use a deterministic age-

structured compartmental model, incorporating data from the number of daily deaths and serology data (primary

inputs), combined with school attendance and mobility data.

• The University of Warwick use a deterministic age-structured compartmental model, with model parameters

fitted to epidemiological data including hospital admissions and bed occupancy, intensive care unit admissions,

number of daily deaths, serological data and, for some model configurations, the proportion of Pillar 2 tests that

are positive.

• The London School of Hygiene and Tropical Medicine (LSHTM) jointly estimates the trajectory of infections

and reproduction number using a renewal equation model and observed delays, with the model fitted to different

data streams (in particular: cases and hospitalisations) separately.

• The MRC Centre for Global Infectious Disease Analysis at Imperial College London uses a stochastic age-

structured compartmental model, which includes transmission in care homes. Model parameters are fitted to

epidemiological data, including hospital admissions and bed occupancy, intensive care unit admissions, number

of daily deaths, Pillar 2 testing, together with REACT community survey and blood donor serological data.

• The University of Manchester uses a deterministic compartmental model, incorporating data from hospital ad-

missions, hospital and intensive care unit bed occupancy, and hospital deaths.

• The Scottish Government uses a hierarchical Bayesian mechanistic model developed by Imperial College Lon-

don, including the bespoke package Epidemia, to estimate the reproduction number. The model incorporates

data including the number of daily deaths and contact patterns.

• Lancaster University uses two approaches to estimate reproduction numbers; the first is an application of the

renewal equation method using the EpiEstim library and using data on cases (England, Scotland) and hospital

admissions (Northern Ireland, Wales); and the second approach is a meta-population transmission model of

infection within and between local authorities incorporating movement data and fitted to case data.

• The University of Exeter and University of Bristol use a renewal equation model produced using the EpiEstim

library. The model uses data on cases and hospital admissions.
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8.3 Combined Estimates of R(t)

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 Region 10 Region 11 Region 12

Model 1 0.83 (0.71, 0.96) 0.49 (0.31, 0.72) 0.77 (0.71, 0.82) 0.78 (0.56, 1.04) 0.70 (0.54, 0.86) 0.76 (0.57, 1.00) 0.73 (0.60, 0.87) 0.86 (0.74, 0.99) 0.77 (0.72, 0.82) 0.74 (0.63, 0.87) 0.83 (0.63, 1.05) 0.94 (0.52, 1.56)

Model 2 0.84 (0.76, 0.92) 0.67 (0.58, 0.74) 0.78 (0.70, 0.85) 0.76 (0.59, 0.92) 0.69 (0.62, 0.81) 0.64 (0.52, 0.82) 0.69 (0.59, 0.75) 0.85 (0.75, 0.97) 0.79 (0.68, 0.88) 0.70 (0.62, 0.83) 0.87 (0.79, 1.04) 0.64 (0.51, 0.80)

Model 3 0.81 (0.72, 0.92) 0.68 (0.53, 0.85) 0.83 (0.76, 0.91) 0.85 (0.67, 1.06) 0.74 (0.61, 0.89) 0.57 (0.41, 0.79) 0.76 (0.65, 0.89) 0.87 (0.77, 0.98) 0.84 (0.77, 0.91) 0.74 (0.64, 0.87) 0.79 (0.66, 0.93) 0.46 (0.21, 0.88)

Model 4 0.76 (0.44, 1.12) 0.64 (0.37, 0.93) 0.71 (0.43, 1.01) 0.68 (0.35, 1.22) 0.69 (0.38, 1.13) 0.52 (0.29, 0.79) 0.80 (0.45, 1.23) 0.82 (0.43, 1.51) 0.74 (0.43, 1.07) 0.75 (0.44, 1.14) 0.56 (0.31, 0.86) 0.60 (0.33, 0.95)

Model 5 0.91 (0.90, 0.92) 0.75 (0.73, 0.77) 0.82 (0.81, 0.83) 0.77 (0.76, 0.78) 0.74 (0.73, 0.75) 0.60 (0.58, 0.63) 0.72 (0.71, 0.74) 0.78 (0.77, 0.80) 0.80 (0.80, 0.81) 0.80 (0.79, 0.80)† 0.82 (0.80, 0.84) 0.69 (0.67, 0.71)

Model 6 0.85 (0.82, 0.88) 0.84 (0.81, 0.90) 0.84 (0.83, 0.86) 0.86 (0.82, 0.95) 0.82 (0.80, 0.86) 0.76 (0.71, 0.85) 0.82 (0.81, 0.86) 0.83 (0.81, 0.87) 0.84 (0.83, 0.86) 0.83 (0.81, 0.87) 0.88 (0.81, 0.94) 0.86 (0.79, 1.01)

Model 7 0.87 (0.68, 1.07) 0.98 (0.75, 1.25) NA NA 0.80 (0.61, 1.03) NA 0.84 (0.66, 1.04) 1.00 (0.78, 1.23) 0.98 (0.86, 1.13) 0.79 (0.62, 0.99) 0.91 (0.68, 1.15) NA

Model 8 NA NA NA NA NA 0.69 (0.65, 0.72) NA NA NA NA NA NA

Model 9 0.96 (0.76, 1.20) 1.03 (0.63, 1.50) 0.91 (0.82, 1.01) 1.06 (0.66, 1.60) 0.95 (0.70, 1.26) 0.90 (0.56, 1.37) 0.98 (0.74, 1.26) 0.98 (0.77, 1.22) 0.92 (0.82, 1.02) 0.94 (0.75, 1.16) 0.99 (0.67, 1.39) NA

Model 10 0.86 (0.84, 0.88) 0.78 (0.77, 0.80) 0.76 (0.75, 0.77) 0.75 (0.73, 0.77) 0.74 (0.73, 0.76) 0.64 (0.62, 0.66) 0.79 (0.77, 0.80) 0.80 (0.79, 0.82) 0.82 (0.79, 0.84) 0.83 (0.82, 0.84) 0.77 (0.75, 0.79) 0.78 (0.76, 0.79)

Model 11 0.97 (0.87, 1.06) 0.79 (0.59, 0.95) NA NA 0.92 (0.79, 1.06) NA 0.89 (0.75, 0.99) 0.92 (0.82, 1.01) 0.92 (0.86, 0.97) 0.93 (0.84, 1.03) 1.01 (0.84, 1.24) NA

Model 12 0.77 (0.68, 0.88) 0.60 (0.48, 0.75) 0.77 (0.68, 0.87) 0.76 (0.65, 0.89) 0.75 (0.64, 0.88) 0.63 (0.51, 0.76) 0.79 (0.70, 0.89) 0.75 (0.65, 0.86) 0.79 (0.71, 0.88) 0.76 (0.66, 0.86) 0.90 (0.78, 1.02) 0.95 (0.76, 1.16)

Inverse-variance

Weighted

REML alone

θ̂ (95%CI) 0.87 (0.84, 0.89) 0.75 (0.70, 0.79) 0.81 (0.78, 0.83) 0.77 (0.75, 0.78) 0.76 (0.73, 0.79) 0.65 (0.62, 0.69) 0.78 (0.74, 0.81) 0.82 (0.79, 0.84) 0.83 (0.81, 0.85) 0.81 (0.79, 0.83) 0.83 (0.79, 0.86) 0.74 (0.69, 0.80)

Equally Weighted

REML alone

θ̂ (95%CI) 0.86 (0.80, 0.91) 0.75 (0.68, 0.82) 0.80 (0.76, 0.84) 0.81 (0.71, 0.90) 0.78 (0.71, 0.84) 0.67 (0.60, 0.74) 0.80 (0.74, 0.86) 0.86 (0.79, 0.94) 0.84 (0.80, 0.88) 0.80 (0.75, 0.85) 0.85 (0.78, 0.91) 0.74 (0.62, 0.85)

Equally Weighted

REML+KNHA

θ̂ (95%CI) 0.86 (0.81, 0.91) 0.75 (0.66, 0.84) 0.80 (0.75, 0.85) 0.81 (0.72, 0.90) 0.78 (0.72, 0.84) 0.67 (0.60, 0.74) 0.80 (0.74, 0.86) 0.86 (0.78, 0.94) 0.84 (0.79, 0.89) 0.80 (0.74, 0.86) 0.85 (0.78, 0.92) 0.74 (0.61, 0.87)

τ
2 0.000915 0.002856 0.001222 0.000004 0.001020 0.001391 0.001677 0.000598 0.000984 0.000427 0.001534 0.003216

(SE) (0.000982) (0.002833) (0.001078) (0.000177) (0.001180) (0.001574) (0.001643) (0.000765) (0.000893) (0.000555) (0.001861) (0.004129)

Table 2: R(t) estimates (90% CIs) for anonymised models 1 to 12 for all anonymised UK nation/regions, together with calculated

combined estimates using: an inverse-variance weighted approach with Wald-type CIs; an equally weighted approach with Wald-

type CIs (REML alone); and an equally weighted approach with KNHA CIs (REML+KNHA). All numbers displayed to two decimal

places except τ
2(SE), displayed to six decimal places. Missing values indicate instances where estimates were not available for

models for the specific nation/region. † Estimates found to be moderately to highly skewed.

8.4 Combined Estimates of r(t)

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 Region 10 Region 11 Region 12

Model 1 NA NA NA NA NA NA NA NA NA NA NA NA

Model 2 NA NA NA NA NA NA NA NA NA NA NA NA

Model 3 NA NA NA NA NA NA NA NA NA NA NA NA

Model 4 NA NA NA NA NA NA NA NA NA NA NA NA

Model 5 -0.01 (-0.01, -0.01) -0.04 (-0.04, -0.04) -0.03 (-0.03, -0.02) -0.04 (-0.04, -0.03) -0.04 (-0.04, -0.04) -0.06 (-0.07, -0.06) -0.04 (-0.05, -0.04) -0.03 (-0.03, -0.03) -0.03 (-0.03, -0.03) -0.03 (-0.03, -0.03) -0.03 (-0.03, -0.02) -0.05 (-0.05, -0.05)

Model 6 -0.03 (-0.04, -0.02) -0.03 (-0.04, -0.02) -0.03 (-0.03, -0.03) -0.03 (-0.04, -0.01) -0.04 (-0.04, -0.03) -0.05 (-0.06, -0.03) -0.03 (-0.04, -0.03) -0.03 (-0.04, -0.03) -0.03 (-0.03, -0.03) -0.03 (-0.04, -0.02) -0.02 (-0.04, -0.01) -0.03 (-0.04, 0.00)

Model 7 -0.03 (-0.07, 0.02) -0.01 (-0.06, 0.05) NA NA -0.05 (-0.10, 0.00) NA -0.04 (-0.09, 0.01) 0.00 (-0.05, 0.04) NA -0.05 (-0.10, -0.01) -0.02 (-0.08, 0.03) NA

Model 8 NA NA NA NA NA NA NA NA NA NA NA NA

Model 9 -0.01 (-0.07, 0.06) 0.01 (-0.11, 0.14) -0.02 (-0.06, 0.00) 0.02 (-0.10, 0.17) -0.01 (-0.09, 0.08) -0.03 (-0.14, 0.11) -0.01 (-0.08, 0.07) -0.01 (-0.07, 0.06) -0.02 (-0.06, 0.01) -0.02 (-0.07, 0.04) 0.00 (-0.10, 0.11) NA

Model 10 -0.03 (-0.03, -0.02) -0.03 (-0.04, -0.03) -0.04 (-0.04, -0.04) -0.04 (-0.04, -0.04) -0.04 (-0.04, -0.04) -0.06 (-0.06, -0.05) -0.03 (-0.04, -0.03) -0.03 (-0.04, -0.03) -0.03 (-0.04, -0.03) -0.03 (-0.04, -0.03) -0.04 (-0.04, -0.04) -0.03 (-0.04, -0.03)

Model 11 -0.01 (-0.04, 0.02) -0.06 (-0.13, -0.01) NA NA -0.02 (-0.06, 0.02) NA -0.03 (-0.07, 0.00) -0.02 (-0.06, 0.00) -0.02 (-0.04, -0.01) -0.02 (-0.05, 0.01) 0.00 (-0.05, 0.07) NA

Model 12 NA NA NA NA NA NA NA NA NA NA NA NA

Inverse-variance

Weighted

REML alone

θ̂ (95%CI) -0.02 (-0.03, -0.01) -0.04 (-0.04, -0.03) -0.03 (-0.04, -0.03) -0.04 (-0.04, -0.03) -0.04 (-0.04, -0.04) -0.06 (-0.07, -0.05) -0.04 (-0.04, -0.03) -0.03 (-0.03, -0.03) -0.03 (-0.03, -0.03) -0.03 (-0.03, -0.03) -0.03 (-0.04, -0.02) -0.04 (-0.05, -0.03)

Equally Weighted

REML alone

θ̂ (95%CI) -0.02 (-0.04, 0.00) -0.03 (-0.05, 0.00) -0.03 (-0.04, -0.02) -0.02 (-0.06, 0.02) -0.03 (-0.05, -0.01) -0.05 (-0.08, -0.01) -0.03 (-0.05, -0.01) -0.02 (-0.04, -0.01) -0.03 (-0.04, -0.02) -0.03 (-0.04, -0.02) -0.02 (-0.04, 0.01) -0.04 (-0.05, -0.02)

Equally Weighted

REML+KNHA

θ̂ (95%CI) -0.02 (-0.03, 0.00) -0.03 (-0.05, 0.00) -0.03 (-0.04, -0.02) -0.02 (-0.07, 0.03) -0.03 (-0.05, -0.02) -0.05 (-0.09, -0.01) -0.03 (-0.05, -0.02) -0.02 (-0.03, -0.01) -0.03 (-0.03, -0.02) -0.03 (-0.04, -0.02) -0.02 (-0.04, 0.00) -0.04 (-0.06, -0.02)

τ
2 0.000062 0.000009 0.000034 0.000004 0.000000 0.000019 0.000023 0.000000 0.000000 0.000004 0.000076 0.000084

(SE) (0.000067) (0.000016) (0.000036) (0.000009) (0.000003) (0.000037) (0.000029) (0.000004) (0.000003) (0.000007) (0.000093) (0.000120)

Table 3: r(t) estimates (90% CIs) for anonymised models 1 to 12 for all anonymised UK nation/regions, together with calculated

combined estimates using: an inverse-variance weighted approach with Wald-type CIs; an equally weighted approach with Wald-

type CIs (REML alone); and an equally weighted approach with KNHA CIs (REML+KNHA). All numbers displayed to two decimal

places except τ
2(SE), displayed to six decimal places. Missing values indicate instances where estimates were not available for

models for the specific nation/region.
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Figure 4: Normal distributions generated using mean of y∗i and standard deviation of se∗i from Equations (6) and (7) for R(t)
estimates from the candidate models for anonymised nation/region 10. Black vertical lines represent the 25th and 75th percentiles

drawn from the generated normal distributions whilst the red vertical lines illustrate the 25th and 75th percentiles obtained directly

from the candidate models. The plot for Model 5 is marked as skewed as per the result obtained using the skewness calculation in

Equation (8).
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