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The Kubo formula is a cornerstone in our understanding of near-equilibrium transport phenomena. While

conceptually elegant, the application of Kubo’s linear-response theory to interesting problems is hindered by

the need for algorithms that are accurate and scalable to large lattice sizes beyond one spatial dimension.

Here, we propose a general framework to numerically study large systems, which combines the spectral

accuracy of Chebyshev expansions with the efficiency of divide-and-conquer methods. We use the hybrid

algorithm to calculate the two-terminal conductance and the bulk conductivity tensor of 2D lattice models

with over 107 sites. By efficiently sampling the microscopic information contained in billions of Chebyshev

moments, the algorithm is able to accurately resolve the linear-response properties of complex systems in the

presence of quenched disorder. Our results lay the groundwork for future studies of transport phenomena in

previously inaccessible regimes.

DOI: 10.1103/PhysRevLett.132.076302

Chebyshev polynomials are a cornerstone of spectral

approximation theory that have afforded unique numerical

toolboxes for investigations of condensed matter [1].

Originally applied to overcome the limitations of power

expansion methods in studies of atomic bonding in solids

[2] and to accurately propagate wave packets in scattering

problems [3], Chebyshev polynomial expansions of

one- and two-particle correlation functions are nowadays

routinely used to simulate equilibrium and dynamical

properties of highly complex systems. This includes,

among others, the simulation of localization in percolation

models [4], rare-event effects in disordered semimetals

[5,6], and excitations in strongly correlated matter [7–9].

A fundamental trait of spectral approximations is their

built-in separation of thermodynamic variables, such as

chemical potential and temperature, from the micro-

scopic information encoded in the wave functions. A pro-

totypical example is the density of states (DOS) at the Fermi

energy [10,11]. Its Chebyshev expansion can be cast as

νðεÞ ¼ ΦðεÞPn≥0 μnTnðεÞ, where TnðεÞ and ΦðεÞ ¼
½π

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ε2
p

�−1 are thermodynamic contributions standing

for the nth Chebyshev polynomial and weight function in

the dimensionless energy domain, respectively. Such an

expansion, which is valid for any quantum system with a

bounded spectrum, proves most efficient as the bulk of the

computational effort is focused on the evaluation of the

Chebyshev moments μn ¼ Tr½TnðĥÞ� (here, ĥ is a suitably

rescaled Hamiltonian with kĥk ≤ 1). These moments (host-

ing the microscopic information) are obtained via a stable

sequence of matrix-vector products—circumventing the

need for costly exact diagonalization procedures—and

stochastic trace estimators may be used to speed up the

computation [12].

The computational complexity of spectral expansions

of one-particle properties calculated for the general class

of lattice models with short-range interactions is bounded

favorably by OðDMÞ, where D is the Hilbert space di-

mension and M is the truncation order of the Chebyshev

expansion. For noninteracting systems described by the

tight-binding approximation, D is the total number of

orbitals and thus the computational effort scales only

linearly with the system size. This advantageous OðDMÞ
scaling has been leveraged to enable unprecedented fully

non-perturbative studies of one-particle properties in

disordered systems [13–21], but open questions remain

regarding the possibility to handle two-particle properties

(crucial for nonequilibrium studies) in an equally satis-

factory fashion. Perhaps the most familiar among these is

the electrical conductivity tensor, describing the charge

current response to an external electric field [22]. The

longitudinal dc response, σaa ≔ limω→0σaaðωÞ (with

a ¼ x, y, z), is only dependent on the electronic states

at the Fermi energy (in the T → 0 limit). Therefore, it turns

out that σaa at the Fermi energy can be computed via the
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Kubo-Greenwood formula with the same level of effi-

ciency of a DOS calculation, courtesy of an exact Green’s

function Chebyshev polynomial expansion [13]. In other

words, the number of arithmetic operations is favorably

bounded by OðDMÞ. However, this strategy hinges upon

the separability of the Chebyshev expansions of the

retarded and advanced Green’s functions in the dc Kubo-

Greenwood conductivity due to containing only pure Fermi-

surface terms. This is not warranted in more general

scenarios, in which the Fermi sea of the electronic system

plays a significant role (i.e., whenever the spectral repre-

sentation of the response function contains off-Fermi sur-

face contributions arising from transitions between filled

and empty states). In fact, while the dc conductivity of time-

reversal (T ) invariant systems is a pure Fermi-surface

property, the breaking of the T symmetry changes this

picture entirely [23]. A well-known example is the quan-

tized anomalous Hall response of Chern insulators [24],

which is determined by the Berry curvature of all occupied

bands. Application of the spectral framework yields, in the

general case, σab ¼
P

n;m Λ
nmμab;nm. Here, Λ

nm is a known

function of the Fermi energy [13], μab;nm is the trace of the

special operator string TnðĥÞv̂aTmðĥÞv̂b [1], and v̂ is the

velocity operator. Evaluation of all the μnmab gives full-

spectral access to the conductivity tensor, with any desired

energy resolution provided M is large enough [13].

Unfortunately, such a task traditionally requires OðDM2Þ
operations [25], which severely hampers the classes of

problems that can be tackled.
In this Letter, we report linear-response transport sim-

ulations in graphene and bilayer graphene nanostructures
that carry the spectral information of billions of double-
Chebyshev expansion moments [i.e., M2¼Oð1010Þ]. This
large-scale computational experiment is carried out with a
new approach we present below, whose complexity scales

withDM logM [in contrast toOðDM2Þ] and hence entails a
computational effort similar to a standard DOS calculation.
This key improvement over the state of the art is shown to
enable full-spectral calculations of the conductivity tensor
with energy resolutions approaching themean-level spacing
of real systems.
Setting the stage.—We begin by briefly reviewing the

main ingredients in the Chebyshev approach to real-space

linear-response transport calculations. The dc conductivity

at finite temperature may be cast as

σabðμ; TÞ ¼
2e2ℏ

πΩ
ℜ

Z

dEfðE;μ; TÞTr½ÔabðEÞ�; ð1Þ

where fðE; μ; TÞ ¼ 1=½1þ eðE−μÞ=kBT �, μ is the chemical

potential, ÔabðEÞ ¼ iv̂a½∂EĜðEÞ�v̂bℑĜðEÞ is the conduc-

tivity kernel operator, ĜðEÞ ¼ ðE − Ĥ þ i0þÞ−1 is the

retarded Green’s function, Ĥ is the real-space lattice

Hamiltonian, v̂a is the ath component of the velocity

operator, and Ω is the d-dimensional volume [26]. ĜðEÞ
is approximated by a truncated Chebyshev expansion [13],

smoothed by convolution with a kernel [1]. Hereafter,

we focus the discussion on the diagonal dc conducti-

vity and relegate the more general derivation to

Ref. [27]. For efficiency, the trace in Eq. (1) is converted

into a stochastic average over random vectors fjrigr¼1;…;R

[12], according to

σaaðμ; TÞ ≃
4e2

hΩ

Z

1

−1

dε½−∂εfðε; μ̃; T̃Þ�⟪σ̃raðεÞ⟫R; ð2Þ

where ⟪ · ⟫R denotes the statistical average with respect to

the R random vectors and σ̃raðεÞ is the contribution of a

single random vector, formally given by

σ̃raðεÞ ¼
X

M−1

m;n¼0

gmnðεÞμra;mn; ð3Þ

where μra;mn ¼ hrjTmðĥÞṽaTnðĥÞṽajri, ṽa ¼ ℏv̂a=ΔE,

gnmðεÞ ¼ gmTmðεÞgnTnðεÞ=ð1 − ε2Þ, and ĥ and ε are

rescaled versions of Ĥ and E, which map the eigenvalues

of Ĥ and the energy onto the interval ½−1∶1� (similar

definitions apply to the rescaled temperature and chemical

potential variables, μ̃ and T̃). The error in the stochastic

trace evaluation is negligible provided that RD ≫ 1 [1],

which is easily satisfied for the large systems considered

here. As a rule of thumb, the relative root-mean-square

fluctuation scales as 1=
ffiffiffiffiffiffiffi

RD
p

, and thus can be as low as 1%

for just a single random vector realization of a system with

D ¼ 104 sites. Furthermore, ΔE is the energy bandwidth of

the Hamiltonian and gm ¼ 2Km=½πð1þ δm;0Þ� encodes the
kernel coefficients. In this work, the Jackson kernel [28] is

adopted (see Ref. [29] for the explicit form of Km). The

spectral resolution is determined by the Gaussian width and

satisfies δE ≤ πΔE=M [1].

The fast Fourier-Chebyshev algorithm (FastCheb).—

From the definition of μra;mn we easily see that the total

number of floating-point operations is OðDM2Þ for

sparse Hamiltonians, validating our earlier claim. In

what follows, we explore the powerful fast Fourier

transform (FFT) algorithm [30,31] to improve the

scalability.

First, we split the dimensionless energy interval −1 ≤

εk ≤ 1 into M energy points εk, with k ¼ 0;…;M − 1. At

each of these points, Eq. (3) for the kernel σ̃raðεkÞ can be

rearranged as a scalar product between two energy depen-

dent vectors [13]
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σ̃raðεkÞ ¼
1

1 − ε2k

"

X

M−1

m¼0

gmTmðεkÞhaL;rm j
#

·

"

X

M−1

n¼0

gnTnðεkÞjaR;rn i
#

¼ 1

1 − ε2k
hϕL;r

a;k jϕR;r
a;ki; ð4Þ

which we call left and right vectors. Moreover, we have

introduced the auxiliary vectors jaL;rm i ¼ TmðĥÞjri and

jaR;rn i ¼ ṽaTnðĥÞṽajri for compactness of notation. Next,

the energy points are carefully chosen in order to match the

nodes of the Chebyshev polynomials of the first kind,

i.e.,εk ¼ cos ðπðkþ 1=2Þ=MÞ. Exploiting the Chebyshev-

to-Fourier mapping, TnðxÞ ¼ cosðn arccos xÞ, the right and
left vectors at the εk points become

jϕR=L;r
a;k i ¼

X

M−1

m¼0

cos ðmπðkþ 1=2Þ=MÞ
1þ δm;0

2Km

π
jaR=L;rm i: ð5Þ

These are discrete cosine Fourier transforms of the vector

sequences Km=πjaR=L;rm i, which is the main result of this

Letter. We call these energy-space vectors.
Next, we employ a divide-and-conquer strategy to obtain

all of the energy-space vectors simultaneously in an efficient
manner. The key steps are as follows. First, we carry out the
vector recursions and construct the matrices aLðRÞ by lining

up all vectors of the left (right) sequences jaLðRÞn i along their
columns. Then, we run through the matrices aLðRÞ, row by

row, performing one-dimensional cosine FFTs. These FFTs

yield the ith rows of the energy-space matrices as ϕ
R=L;r
a;i;k ¼

FFT
m→k½Kma

R=L;r
i;m =π� (i ¼ 1;…; D). The partial result

pa;iðεkÞ of the dot product from Eq. (4) is updated every

time an energy-space row is obtained, i.e., pa;iðεkÞ ¼
pa;i−1ðεkÞ þ ϕ

L†
a;i;kϕ

R
a;i;k. Finally, once all D rows have been

visited, the random vector contribution is obtained as

σ̃raðεkÞ ¼ pa;DðεkÞ=½π2ð1 − ε2kÞ�. The explicit evaluation

of the M2 Chebyshev moments fμra;mng is bypassed. In

its place,D FFTs of lengthM are performed, yielding a total
of OðDM logMÞ operations.
Realizing the full extent of these advantages, however,

requires that the aLðRÞ are all stored in memory. That entails
a memory cost Oð2DMÞ, which is demanding for large
systems [13]. To overcome this challenge, we employ a
partitioning scheme which we discuss in detail in the
Supplemental Material [27].
Implementation and benchmark.—In order to assess its

baseline performance, FastCheb is implemented within
framework of the open-source KITE code [16]. KITE is a
high-performance code for spectral simulations of Green’s
functions and related quantities in real space [18,19], and

hence is an ideal testbed for this study. The efficiency of
our algorithm can be best appreciated in a direct com-
parison with the standard recursive method. To this end,
we simulate the diagonal conductivity of graphene using a
minimal nearest-neighbor tight-binding (TB) model on a
honeycomb lattice. The results of this benchmark are
summarized in Fig. 1(a), where the computational effort
is seen to follow closely the behavior expected from the
earlier considerations. In this example, the calculation with
5000 Chebyshev moments using FastCheb is 50 times
faster compared to the standard approach, while for M ¼
25 000 it has already become 232 times faster. This
M-scaling law for the CPU time is robust and represen-
tative of a wide class of problems. By the way of two main
case studies, we show below that FastCheb has pivotal
advantages in linear-response studies of bulk electrical
conductivity and conductance in nanostructures.
Ballistic conductance and twisting effects.—We start by

simulating a two-terminal quantum-transport device made
from a large graphene nanoribbon. The linear conductance
at the Fermi energy, GðEFÞ, is obtained from the T → 0

limit of Eq. (2) [σaaðEFÞ ≃ ð4e2=hΩÞ⟪σ̃raðεFÞ⟫R] using the
framework for two-terminal devices recently developed in

FIG. 1. (a) Scaling of CPU time with Chebyshev orderM in the
FastCheb and standard approaches. This benchmark is for a
single random vector evaluation of σxx in a small system with
256 × 128 orbitals. (b) Fermi-energy dependence of the linear
conductance of a large graphene nanoribbon with side lengths
Lx ¼ Ly ¼ 100 nm, to which absorbing contacts of the same

dimension are attached. The full TB model contains 107 orbitals.
(c) and (d) Panoramic and detailed views of linear conductance

curves for a TBG device with a total of 2.5 × 106 orbitals. Values
of M corresponding to each curve in (b)–(d) are indicated on the
plots. See Ref. [27] for more details.
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Ref. [32]. Note that in the zero-temperature limit, this
quantity is a pure Fermi surface property and the conduc-
tivity kernel directly yields the dc response. The linear
conductance is known to exhibit well-defined quantization
steps due the transverse subbands formed in confined
nanostructures. The changes in the conductance occur in

discrete steps of e2=h (per spin) each time a new transport
channel opens up at the Fermi level [33,34]. Figure 1(b)
shows that this behavior is fully captured by the spectral
algorithm, with the Chebyshev truncation order playing a
central role. Because the plateau width is so small (around
1 meV), tens of thousands of iterations are required to
accurately reproduce sharp step changes in the conductance.
This can be traced back to the slow algebraic convergence
generated by steplike discontinuities, one of the hardest
singularities to resolve with polynomial expansions [35].
Thanks to the efficiency of FastCheb, such fine features can
be captured with modest computational effort.
Next, we demonstrate the power of our algorithm by

resolving the linear-response conductance of large twisted
bilayer graphene (TBG) devices. We focus on commensu-
rate structures with small twist angle θ, modelled via a
Slater-Koster tight-binding scheme [36,37]. To faithfully
capture interlayer interactions in TBG, it is imperative to go
beyond a nearest-neighbor approximation [38]. Here, we
include full hopping integrals up to a distance of 0.58 nm
(approximately four times the bond length). In practice this
entails around 60 neighbors for each carbon atom, which
makes a transport study prohibitively demanding for exact
diagonalization. The conductance of a TBG device with
θ ¼ 1.24° obtained with FastCheb is shown in Figs. 1(c)

and 1(d). Owing to the full-spectral capability of the
algorithm, it is possible to zoom in on small features, such
as the conductance peak at the charge neutrality point
caused by residual dispersion of the conduction bands. The
absence of ballistic conductance steps is due to the channel
mixing caused by elastic scattering between the layers, and
is thus a direct result of moiré supercell effects [32]. Based
on our extensive tests, we estimate that the largest TBG
simulation (i.e., M ¼ 56 000, corresponding to a spectral
resolution of 0.5 meV, and taking 40 core hours with
FastCheb), would require around 2400 core hours using the
standard kernel polynomial approach.
Kubo-Bastin formulation: Hall conductivity.—The key

motivation for developing FastCheb is to extend the range
of transport phenomena that can be studied by means of
microscopic lattice models. It is well known that many
facets of disordered systems and quantum criticality are
notoriously challenging to address numerically even at the
level of one-particle properties (such as the inverse locali-
zation length [39,40]). An example is the scaling behavior
of integer quantum Hall transitions that remains a long-
standing problem, with most recent progress making use of
transfer-matrix calculations in quasi-1D geometry [41–44].
The possibility to perform large-scale lattice calculations of
the full conductivity tensor in 2D geometry makes
FastCheb a promising tool in quantum transport. Here, a
start is made towards the application of such a tool to
quantum Hall systems. The Kubo-Bastin formalism is
employed for this purpose because it provides a unified
treatment of all components of the conductivity tensor [26]
and is amenable to spectral expansions [16,25,27,45].
We choose the integer quantum Hall effect in graphene to

demonstrate the capacity of FastCheb to probe topological
transport in large 2D systems. The Hall conductivity in
graphene obeys an unconventional quantization condition,

σnxy ¼∓ 2e2=hð2nþ 1Þwith n∈Zþ
0 (here, the� signs hold

for electrons or holes), due the Berry phase of the electron
wave functions [46–48]. The numerical implementation of
the Kubo-Bastin formula revolves around the same concepts
as before, however this time 6 energy-space vectors are
required (as opposed to two for pure Fermi surface
quantities like the T ¼ 0 longitudinal conductivity). The
perpendicular magnetic field is included in the Hamiltonian
through Peierls’s phases in the hopping terms, generating a
magnetic flux Φ per unit cell. To emulate the effect of
disorder, we supplement the TB Hamiltonian with an
uncorrelated on-site potential [16].
The longitudinal (xx) and Hall (xy) conductivity of a

large system with side lengths Lx ¼ 1600 and Ly ¼ 3200

(in units of the lattice spacing) is shown in Fig. 2. Both
quantities are seen to follow the expected behavior for the
insulating quantum Hall regime of graphene [46], thus
validating the robustness of the new approach. We empha-
size again that the large values of M—required to resolve
sharp features satisfactorily—are out of reach for previous

FIG. 2. Longitudinal and transverse conductivity as function of
the Fermi energy in a disordered graphene system tuned to the
quantum Hall regime. The lattice has a total of 107 sites. The
parameters are set to W ¼ 0.1t (disorder strength), with t ¼
2.7 eV (nearest-neighbor hopping energy), and magnetic flux

Φ ≃ 3 × 10−4h=e. Data are averaged over 10 random-vector
and 4 disorder realizations. Periodic boundary conditions are

employed.
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methods due to their inherent OðDM2Þ scaling [16,21,25].
FastCheb offers the possibility of evaluating σxyðEÞ with

high precision and energy resolution, as demonstrated here,
being an order-DM logM approach. In fact, its full-spectral
capability is essential to capture the intrinsic Hall conduc-
tivity due to being a bulk Fermi sea property. This contrasts
with the case of the longitudinal conductivity (a bulk Fermi
surface property) where studies for a small grid of Fermi
energies can be carried out efficiently with the single-shot
algorithm [13]. Here, the unique advantage of FastCheb lies
in the ability to efficiently reconstruct σaaðEÞ over the full
spectrum. In our studies, speed-ups of up to 100 over the
standard method are achieved [27].
Final remarks.—Applying the fast Fourier-Chebyshev

algorithm to the study of quantum-critical phenomena can
be a starting point for future research. Specifically, the
investigation of the scaling behavior of Anderson transi-
tions (such as metal-to-insulator and integer quantum Hall
transitions [49]) could benefit enormously from the spectral
machinery developed in this work. In fact, the size of the
lattice in our 2D conductance study [see Figs. 1(b)–1(d)] is
already larger than recent calculations for semiclassical
network models [50], which is promising. FastCheb could
also facilitate finite-size scaling analysis of the Hall
conductivity, far less studied numerically than the diagonal
response but equally important.
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