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We investigate the connection between the classical Larmor formula and the quantum Unruh effect by

computing the emitted power by a uniformly accelerated charged particle and its angular distribution in the

coaccelerated frame. We consider a classical particle accelerated with nonzero charge only for a finite

period and then take the infinite-time limit after removing the effects due to the initial charging and final

discharging processes. We show that the result found for the interaction rates agrees with previous studies

in which the period of acceleration with nonzero charge was taken to be infinite from the beginning. We

also show that the power and angular distribution of emission, which is attributed either to the emission or

absorption of a Rindler photon in the coaccelerated frame, is given by the Larmor formula, confirming that,

at tree level, it is necessary to take into account the Unruh effect in order to reproduce the classical Larmor

radiation formula in the coaccelerated frame.

DOI: 10.1103/PhysRevD.109.024044

I. INTRODUCTION

It is well established that spontaneous particle produc-

tion can occur in curved spacetime [1–3]. This effect has

played a significant role in our understanding of the early

Universe [4–6]. For example, gravitational particle pro-

duction can provide a generation mechanism for dark

matter (DM), especially during the inflationary period

because of the high Hubble rate and curvature of spacetime

(see Refs. [7–10] and references therein for recent studies

involving DM candidates of different spin). Depending

on the mass of the dark particle, this production channel

could account for all observed DM in the Universe.

Another well-recognized result of gravitationally induced

particle production is the thermal radiation occurring near

the event horizon of a black hole, known as Hawking

radiation [11,12]. Shortly after this discovery, it was shown

that a uniformly accelerated detector in flat spacetime

also sees a thermal bath with temperature proportional to

its own acceleration. This is known as the Fulling-Davies-

Unruh (FDU) effect, or simply referred to as Unruh

radiation [13–15]. Hawking and Unruh radiation are con-

nected through the equivalence principle.

So far, there has been no direct measurement of

gravitational particle production, including, in particular,

Hawking radiation. On the other hand, exploiting the

equivalence principle, it would appear that measuring

Unruh radiation from accelerating bodies is, by itself, a

test of gravitational particle production. An experiment has

been proposed to verify the existence of the FDU bath

which is encoded in Larmor radiation [16]. Getting the

required accelerations to produce an observable effect is

challenging [17,18]. In this endeavor, the electron is the

simplest “detector” to test the Unruh predictions. In fact,

large accelerations can already be realized in the laboratory

using high-intensity lasers [19–21] corresponding to a

thermal bath of temperature ≳1 eV [22]. Additionally,

the radiation reaction becomes important for 1 micron

lasers with intensities around 1021 W · cm−2 [23]. While, in

principle, this can be measured in the laboratory, the

detection of Unruh radiation has been a controversial

subject in the literature [24–26], especially concerning

how to distinguish it from other classical and quantum

radiation processes involving the acceleration of charged

particles.

In this paper, we aim at providing some clarification of

this issue, and we show, using a full quantum field theory

calculation, that the Unruh effect involving an accelerated

electron reduces, at tree level, to nothing other than the

classical Larmor radiation as seen in the laboratory frame.
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While this result would seem to diminish the importance of

the FDU effect, it has, on the contrary, a fundamental

implication. Hawking’s derivation of gravitational particle

production makes use of untested approximations in which

the appearance of trans-Planckian frequencies is unavoid-

able. The same problem is also present in Unruh’s

derivation. The fact that the FDU effect on an accelerated

electron reduces to the experimentally verified Larmor

radiation gives strong support to Hawking’s derivation of

gravitational particle production.

The presence of the FDU thermal bath is necessary

when comparing photon emission rates in the inertial and

coaccelerated frame. In this context, it is important to note

that the absorption of a photon in the FDU thermal bath

in the coaccelerated frame corresponds to the emission

of a photon in the inertial frame [27,28]. It was shown in

Refs. [29,30] that the rate of photon emission by an

accelerated charge in the inertial (or Minkowski) frame is

the same as the sum of the rates of emission and absorption

of photons in the coaccelerated or Rindler frame in the

presence of a FDU thermal bath. In Ref. [31], the same

equivalence was demonstrated for a more general case,

where the uniformly accelerated charge has an arbitrary

transverse motion. This connection suggests that the

classical Larmor radiation can be seen as a consequence

of the FDU thermal bath, though the link between the two

seems counterintuitive, since the former is a classical effect

while the latter is a purely quantum one. In Refs. [32,33], it

was shown that the classical radiation is built from zero-

energy Rindler modes, and the Larmor formula is recovered

in the Rindler frame by coupling a scalar field to the

accelerated particle. In Ref. [34], the Larmor formula was

recovered in the Minkowski frame for photons instead of

scalars.

To fully clarify how the Unruh effect on an accelerated

charged particle reduces to Larmor radiation, however,

what has been missing in the above work is a calculation of

the total photon power emitted by the accelerated electron

using the Unruh effect in the Rindler frame. This task is

carried out in this paper. The calculation will be done at tree

level in the Rindler frame. Next-to-leading-order Feynman

diagrams such as photon scattering by the electron (i.e.,

Compton scattering) are purely quantum, meaning that they

have no classical equivalent. These higher-order processes

are also linked to the Unruh effect [35], but they provide a

much smaller contribution to the total power [36,37]. In this

paper, we will neglect any subdominant terms and leave

them to a future study. In what follows, we use the metric

signature ðþ;−;−;−Þ and natural units ℏ ¼ c ¼ kB ¼ 1,

unless stated otherwise.

II. MINKOWSKI AND UNRUH MODES

The goal of this section is to find the relation between the

Minkowski and Unruh modes, the latter being the eigen-

modes of the Rindler energy in each Rindler wedge, for the

electromagnetic (EM) field. One can then deduce how the

Unruh creation operators are expressed in terms of the

Minkowski ones. This result will be used in the next section

to calculate the emitted power in the Rindler frame. Here,

we focus on setting up the problem and presenting the

main relations. We leave all the technical details to the

Appendixes.

In Rindler coordinates, the Minkowski line element takes

the form [1]

ds2 ¼ e2aξðdτ2 − dξ2Þ − dx2 − dy2; ð1Þ

where the coordinates τ and ξ are defined by t ¼
a−1eaξ sinh aτ and z ¼ a−1eaξ cosh aτ with a > 0. The

part of Minkowski spacetime covered by the metric (1)

is restricted by z > jtj and is known as the right Rindler

wedge. The proper acceleration of the world lines with ξ, x,

and y constant is given by ae−aξ, and therefore uniformly

accelerated observers follow these world lines. Similarly,

the Rindler coordinates ðτ̄; ξ̄Þ which cover the part of

Minkowski spacetime with z < −jtj, known as the left

Rindler wedge, are defined by t ¼ a−1eaξ̄ sinh aτ̄ and

z ¼ −a−1eaξ̄ cosh aτ̄.
The Lagrangian describing the EM field in the Feynman

gauge is

L ¼ −
1

4

ffiffiffiffiffiffi

−g
p

FμνF
μν −

1

2

ffiffiffiffiffiffi

−g
p ð∇αA

αÞ2; ð2Þ

where Fμν ¼ ∇μAν −∇νAμ and the second term is a gauge-

fixing term. For the metric (1),
ffiffiffiffiffiffi

−g
p ¼ e2aξ. The equations

of motion of the Lagrangian (2) are given by

∇μð∇μAρÞ − Rρ
λAλ ¼ 0; ð3Þ

where Rμν is the Ricci tensor. Note that the Lagrangian (2)

does not include any mutual interaction between the

point particle and the quantum field. The backreaction

effects arising from such a term are important in deter-

mining radiation reaction contributions in the inertial

frame [23,34,38,39], but they are neglected in our analysis

as subdominant. We have Rμν ¼ 0 in Eq. (3), since

Minkowski spacetime is flat. Thus, the equations of motion

simplify to

∇μ∇μAρ ¼ 0: ð4Þ

Expanding the EM field operator in the right Rindler wedge

gives

ÂR
μ ðxνÞ ¼

Z

d2k⊥dω
X

4

λ¼1

h

aRðλ;ω;k⊥ÞA
Rðλ;ω;k⊥Þ
μ ðxνÞ þ H:c:

i

;

ð5Þ
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where k⊥ ¼ ðkx; kyÞ ≠ ð0; 0Þ, ω > 0, and where aRðλ;ω;k⊥Þ is

the annihilation operator in the right Rindler wedge, and

the index λ labels the different polarizations. The modes

A
Rðλ;ω;k⊥Þ
μ solve Eq. (4) and are given in Refs. [29,30], with

the notation Aμ ¼ ðAτ; Aξ; Ax; AyÞ, by

A
RðI;ω;k⊥Þ
μ ¼ k−1⊥

�

0; 0; kyv
R
ωk⊥

;−kxv
R
ωk⊥

�

;

A
RðII;ω;k⊥Þ
μ ¼ k−1⊥

�

∂ξv
R
ωk⊥

; ∂τv
R
ωk⊥

; 0; 0
�

;

A
RðG;ω;k⊥Þ
μ ¼ k−1⊥ ∇μv

R
ωk⊥

;

A
RðL;ω;k⊥Þ
μ ¼ k−1⊥

�

0; 0; kxv
R
ωk⊥

; kyv
R
ωk⊥

�

; ð6Þ

where k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q

is the transverse momentum and

vRωk⊥
is the solution to the scalar Klein-Gordon equation

□ϕ ¼ 0, given by

vRωk⊥
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðπω=aÞ
4π4a

r

Kiω=a

�

k⊥e
aξ

a

�

e−iωτþik⊥·x⊥ : ð7Þ

Here, the function KνðzÞ is the modified Bessel function

of the second kind. The vacuum annihilated by aRðλ;ω;k⊥Þ is

referred to as the Rindler, or Fulling, vacuum and is

denoted by j0Ri. It differs from the Minkowski vacuum

j0Mi, since the Rindler modes A
Rðλ;ω;k⊥Þ
μ are not a combi-

nation of purely positive-frequency Minkowski modes but

contain negative-frequency modes as well [1].

The normalization of the physical modes A
RðI;ω;k⊥Þ
μ and

A
RðII;ω;k⊥Þ
μ , which satisfy the Lorenz condition ∇μA

μ ¼ 0

and are not pure gauge, is determined with respect to

the Klein-Gordon inner product (see Appendix A). As a

result [29,30], the creation and annihilation operators for

the physical modes satisfy the following commutation

relations:

h

aRðλ;ω;k⊥Þ; a
R†
ðλ0;ω0;k0

⊥
Þ

i

¼ δλλ0δðω − ω0Þδð2Þðk⊥ − k
0
⊥Þ: ð8Þ

As we shall see later, the only nonzero components of the

current jμ representing a charge uniformly accelerated in

the z direction are jτ and jξ [see Eq. (15)]. This implies

that the only modes that couple to this current are the

second physical modes, A
RðII;ω;k⊥Þ
μ : the τ and ξ components

of the modes A
RðI;ω;k⊥Þ
μ and A

RðL;ω;k⊥Þ
μ are zero, and the

coupling of jμ to the modes A
RðG;ω;k⊥Þ
μ vanishes because

of the conservation equation ∇μj
μ ¼ 0. Thus, we need to

consider only the modes A
RðII;ω;k⊥Þ
μ . They can be written as

A
RðII;ω;k⊥Þ
μ ¼ k−1⊥ ϵμν∂

νvRωk⊥
, where ϵμν is the antisymmetric

tensor on the plane in Minkowski spacetime with x and y
fixed, which has the following metric:

ds2ð2Þ ¼ dt2 − dz2 ¼ e2aξðdτ2 − dξ2Þ; ð9Þ

with ϵzt ¼ 1. Therefore, in Minkowski coordinates, these

modes take the following form:

A
RðII;ω;k⊥Þ
μ ¼ k−1⊥

�

∂zv
R
ωk⊥

; ∂tv
R
ωk⊥

; 0; 0
�

ð10Þ

in the notation Aμ ¼ ðAt; Az; Ax; AyÞ. Using a similar

approach on the left Rindler wedge (see Appendix B),

the left EM modes A
Lðλ;ω;k⊥Þ
μ can be obtained from the right

ones with the substitution vRωk⊥
→ vLωk⊥

, where vLωk⊥
are the

corresponding solutions to the scalar Klein-Gordon equa-

tion in the left Rindler wedge. The purely positive-

frequency EM modes, or Unruh modes, are then [40]

W
ðλ;−;ω;k⊥Þ
μ ¼ A

Rðλ;ω;k⊥Þ
μ þ e−πω=aA

Lðλ;ω;−k⊥Þ�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ;

W
ðλ;þ;ω;k⊥Þ
μ ¼ A

Lðλ;ω;k⊥Þ
μ þ e−πω=aA

Rðλ;ω;−k⊥Þ�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p : ð11Þ

The full EM field can be expanded in terms of these modes,

as they form a complete set:

Âμ ¼
Z

d2k⊥

Z þ∞

0

dω
X

λ

h

W
ðλ;−;ω;k⊥Þ�
μ a†ðλ;−;ω;k⊥Þ

þW
ðλ;þ;ω;k⊥Þ�
μ a†ðλ;þ;ω;k⊥Þ þ H:c:

i

; ð12Þ

where a†ðλ;�;ω;k⊥Þ are the Unruh creation operators. The

creation operators for the second physical modes can be

expanded in terms of the Minkowski ones, b†
k
, with the

momentum k and the polarization vector εμðkÞ ¼
k−1⊥ ðkz; k0; 0; 0Þ that satisfy ½bk; b†k0 � ¼ δð3Þðk − k0Þ as

(see Appendix B)

a†ðII;�;ω;k⊥Þ ¼ i

Z þ∞

−∞

dkz
ffiffiffiffiffiffiffiffiffiffiffiffi

2πak0
p e�iϑðkzÞωb†

k
; ð13Þ

where ϑðkzÞ ¼ ð2aÞ−1 lnfðk0 þ kzÞ=ðk0 − kzÞg is the nor-

malized rapidity and k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þ k2z
p

is the total energy of

the photon.

III. PHOTON EMISSION IN THE

RINDLER FRAME

The interaction between a photon and the charged

particle (an electron, for example) in the right Rindler

wedge with the associated classical current jμ is described
by the action

SI ¼ −

Z

d4x
ffiffiffiffiffiffi

−g
p

jμÂR
μ : ð14Þ
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We consider a point charge q located in the right Rindler

wedge at ξ ¼ x ¼ y ¼ 0. This charge is uniformly accel-

erated with proper acceleration a. It would be ideal to

consider a charge uniformly accelerated only for a finite

time. However, such a charge would enter the right Rindler

wedge at τ ¼ −∞ and leave it at τ ¼ þ∞. This behavior

for the charge would make the analysis rather involved.

Instead, we consider a point charge which is charged and

uncharged through a wire at x ¼ y ¼ 0 extending from

ξ ¼ 0 to þ∞ (see Refs. [29,30] for a similar model). The

associated current jμ is

jτ ¼ qFðτÞδðξÞδðxÞδðyÞ;
jξ ¼ −qF0ðτÞe−2aξθðξÞδðxÞδðyÞ;
jx ¼ jy ¼ 0; ð15Þ

where FðτÞ is a smooth function. A charge uniformly

accelerated forever corresponds to the choice FðτÞ ¼ 1 for

all τ. This choice would lead to inconsistencies even for

classical Larmor radiation [41,42]. Considering a finite

period of acceleration with nonzero charge avoids these

inconsistencies. Thus, the function FðτÞ is chosen in such

a way as to ensure that the period where the particle

has nonzero charge is finite. We let FðτÞ ¼ 1 for jτj < T,
where 2T ≫ 1=a is the period of constant charge. For

jτj > T þ b, where 1=a ≪ b ≪ T, we let the particle have
no charge—i.e., FðτÞ ¼ 0. The period T < jτj < T þ b is a

period of smooth transition between the two. In the end, we

let T → þ∞ but keep b finite [see Eq. (31)], thus removing

contributions to the transition rate (with fixed transverse

momentum) coming from transition effects. Note that the

current (15) satisfies current conservation ∇μj
μ ¼ 0, which

ensures gauge invariance.

At tree level, the amplitude of emission of a photon in the

Rindler vacuum state by the charged particle is given by

Ae
ðω;k⊥Þ ¼ ihII;ω;k⊥jSIj0Ri; ð16Þ

where jII;ω;k⊥i ¼ aR†ðII;ω;k⊥Þj0Ri. The emission amplitude

can be computed explicitly by combining Eqs. (6), (7),

and (15):

Ae
ðω;k⊥Þ ¼ −iqF̃ðωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðπω=aÞ
4π4a

r

�

K0
iω=a

�

k⊥

a

�

−
ω2

k⊥

Z þ∞

0

dξKiω=a

�

k⊥e
aξ

a

��

; ð17Þ

where F̃, the Fourier transform of F, is defined by

F̃ðωÞ ¼
Z þ∞

−∞

dτFðτÞeiωτ: ð18Þ

The amplitude for the absorption of a photon with trans-

verse momentum −k⊥ is

Aa
ðω;−k⊥Þ ¼ ih0RjSIjII;ω;−k⊥i: ð19Þ

The total one-photon interaction probability is found by

taking into account the Unruh effect—i.e., the fact that, in

the Rindler wedge, the Minkowski vacuum state is equiv-

alent to a thermal bath of temperature a=2π with the Bose-

Einstein distribution function ðe2πω=a − 1Þ−1 with respect to
the Rindler energy. The result is

Ptot¼
Z þ∞

0

dω

Z

d2k⊥

"

jAe
ðω;k⊥Þj

2

1−e−2πω=a
þ
jAa

ðω;−k⊥Þj
2

e2πω=a−1

#

: ð20Þ

Note that

1

1 − e−2πω=a
¼ 1þ 1

e2πω=a − 1
: ð21Þ

Thus, the first term in the integrand gives the (spontaneous

and induced) photon emission probability, while the second

term gives the photon absorption probability in the pres-

ence of the FDU thermal bath of temperature a=2π.
To understand the Larmor formula in the context of the

Unruh effect, we first note that one can interpret Eq. (20)

as the norm squared of a one-photon final state expressed

as a linear combination of Unruh states a†ðII;�;ω;k⊥Þj0Mi, as
shown in Appendix C:

jf1-photoni ¼
Z

d2k⊥

Z þ∞

0

dω

"

Ae
ðω;k⊥Þa

†

ðII;−;ω;k⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p

þ
Aa

ðω;−k⊥Þa
†

ðII;þ;ω;k⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2πω=a − 1

p
#

j0Mi: ð22Þ

This state can be expressed as a linear combination

of states b†
k
j0Mi with (Minkowski) momentum k, using

Eq. (13) as

jf1-photoni ¼ i

Z

d2k⊥

Z þ∞

−∞

dkz
ffiffiffiffiffiffiffiffiffiffiffiffi

2πak0
p

×

Z þ∞

−∞

dω
e−iϑðkzÞωAe

ðω;k⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p b†

k
j0Mi; ð23Þ

where we have used the relation

Aa
ðω;−k⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2πω=a − 1

p ¼
Ae

ð−ω;k⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2πω=a
p : ð24Þ
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Then, one can write Eq. (20) as

Ptot ¼ hf1-photonjf1-photoni

¼
Z

d2k⊥

Z þ∞

−∞

dkz

2πak0

	

	

	

	

Z þ∞

−∞

dω
e−iϑðkzÞωAe

ðω;k⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p

	

	

	

	

2

:

ð25Þ

Notice that there are interference terms between the

emission and absorption in the coaccelerated frame.

Substituting Eq. (17) into this equation, we find

Ptot ¼
a

16π3

Z

d2k⊥

Z þ∞

−∞

dϑjAðkÞj2; ð26Þ

where we use dϑ ¼ dkz=ak0 and where

AðkÞ ¼ −
q

πa

Z þ∞

−∞

dωF̃ðωÞe−iωϑeπω=2a

×

�

K0
iω=a

�

k⊥

a

�

−
ω2

k⊥

Z þ∞

0

dξKiω=a

�

k⊥e
aξ

a

��

:

ð27Þ

To identify the contribution to the amplitudeAðkÞ from the

period of uniform acceleration, separating out the contri-

bution from the transition period, we need to express this

amplitude in terms of FðτÞ rather than F̃ðωÞ. The result is
(see Appendix D)

AðkÞ ¼ qa

k⊥

Z þ∞

−∞

dτ




FðτÞe−iðk⊥=aÞ sinh aðϑ−τÞ
cosh2aðϑ − τÞ

−
i

a3
d

dτ

�

1

cosh aðϑ − τÞ
d

dτ

�

F0ðτÞ
cosh2aðϑ − τÞ

��

×

Z þ∞

k⊥=a

dz

z2
e−iz sinh aðϑ−τÞ

�

: ð28Þ

Due to our choice of the function FðτÞ stated before, and

by further letting ð−c1;−c2Þ ∪ ðc1; c2Þ ¼ fτ∈R∶0 <
FðτÞ < 1g be such that c1 − T; T þ b − c2 ≫ 1=a, we

can conclude that

AðkÞ ≈ qa

k⊥

Z þ∞

−∞

dτ
FðτÞ

cosh2aðϑ − τÞ e
−iðk⊥=aÞ sinh aðϑ−τÞ

if jϑj < T; ð29Þ

and AðkÞ ≈ 0 if jϑj > T þ b, for each k with k⊥ > 0,

because of the exponential decay of each term in Eq. (28).

The amplitude AðkÞ is a continuous function of ϑ. Hence,

the ϑ integral of jAðkÞj2 for T < jϑj < T þ b is finite.

Furthermore, if we let T → þ∞ while keeping the shape

of the function FðτÞ in the transition period unchanged,

then the ϑ integral of jAðkÞj2 over this period will remain

constant.

We define the emission probability with k⊥ fixed by

Pðk⊥Þ ¼
a

16π3

Z þ∞

−∞

dϑjAðkÞj2: ð30Þ

Then, the emission rate with k⊥ð≠ 0Þ fixed is [43]

Rðk⊥Þ ¼ lim
T→þ∞

Pðk⊥Þ
2T

¼ lim
T→þ∞

1

2T
×

q2a3

16π3k2⊥

Z þ∞

−∞

dϑ

×

	

	

	

	

Z þ∞

−∞

dτ
FðτÞe−iðk⊥=aÞ sinh aðϑ−τÞ

cosh2aðϑ − τÞ

	

	

	

	

2

: ð31Þ

We note in passing that Eq. (29) with FðτÞ ¼ 1 agrees with

the amplitude for the general motion, which can be

straightforwardly derived from Eq. (2.33) of Ref. [44]

and is given by

AμðkÞ ¼ −q

Z þ∞

−∞

dτ

k · v

�

aμ −
k · a

k · v
vμ
�

eik·x; ð32Þ

where xμðτÞ, vμðτÞ, and aμðτÞ are the world lines of the

charge, its 4-velocity and 4-acceleration, respectively, with

the identificationAμðkÞ ¼ −AðkÞεμðkÞ. The emission rate

is given, in the large-T limit, (see Appendix E) by

Rðk⊥Þ ¼
q2a3

16π3k2⊥

Z þ∞

−∞

dϑ̄

Z þ∞

−∞

dσ

×
e2iðk⊥=aÞ cosh aϑ̄ sinhaσ=2

½cosh2aϑ̄þ sinh2aσ=2�2 ; ð33Þ

where ϑ̄ is the rapidity in the rest frame of the charge. First,

we verify that Eq. (33) agrees with the result of Ref. [29,30]

by the change of integration variables s� ¼ ϑ̄� σ=2, which
essentially restores the original expression (31). Thus,

we find

Rðk⊥Þ ¼
q2a3

16π3k2⊥

	

	

	

	

Z þ∞

−∞

eiðk⊥=aÞ sinh as

cosh2as
ds

	

	

	

	

2

¼ q2

4π3a

	

	

	

	

K1

�

k⊥

a

�	

	

	

	

2

; ð34Þ

as expected. The second equality can be established using

Eq. (8.432.5) of Ref. [45].

The power radiated in the rest frame of the charge is

given by multiplying the integrand of Eq. (33) by k̄0 ¼
k⊥ coshaϑ̄ and integrating the result over k⊥. Thus,

defining the energy and longitudinal momentum in the
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rest frame by k̄0 ¼ k⊥ cosh aϑ̄ and k̄z ¼ k⊥ sinh aϑ̄, respec-
tively, we find

Srest ¼
q2a2

16π3

Z

d2k⊥dk̄zk
2

⊥

Z þ∞

−∞

dσ

×
cos½2ðk̄0=aÞ sinhðaσ=2Þ�
½k̄2

0
þ k2⊥sinh

2ðaσ=2Þ�2 : ð35Þ

Then, by writing d2k⊥dk̄z ¼ dk̄0k̄
2

0
dΩ, where dΩ is the

solid angle element in the instantaneous rest frame of the

accelerated particle, and where k⊥ ¼ k̄0 sin θ, we find

dSrest

dΩ
¼ q2a2

32π3
sin2 θ

Z þ∞

−∞

dσ

Z þ∞

−∞

dk̄0

×
e2iðk̄0=aÞ sinhðaσ=2Þ

½1þ sin2 θ sinh2ðaσ=2Þ�2

¼ q2a2

16π2
sin2 θ: ð36Þ

This is the well-known Larmor formula, with

Srest ¼
q2a2

6π
: ð37Þ

IV. CONCLUSIONS

In this paper, we studied the electromagnetic radiation

from a uniformly accelerated charge, the Larmor radiation,

in the context of the Unruh effect—i.e., the fact that the

Minkowski vacuum state appears to be a thermal bath to a

uniformly accelerate observer. A formal derivation of the

power radiated from a charge uniformly accelerated forever

does not lead to the correct Larmor formula. For this

reason, we studied a model where a nonzero charge is

accelerated only for a finite time and identified the part of

the radiation due to the period in which the nonzero charge

has a uniform acceleration, removing the transition effects

at the start and the end. Then, we took the infinite-time limit

to recover the Larmor formula.

We used the observation of Unruh and Wald [27] that

both the emission and the absorption of a photon in the

Rindler frame correspond to the emission of a photon in the

inertial frame. Thus, a uniformly accelerated charge emits a

photon in the Unruh modes, which can be decomposed into

the usual Minkowski modes with definite momenta. In this

manner, we were able to reproduce the Larmor radiation

formula for the power emitted from a uniformly accelerated

charged particle.

Larmor’s formula was found previously in Refs. [34,40]

for photons in the laboratory frame and in Refs. [32,46]

for scalar fields in the context of the Unruh effect. Our

derivation makes the link between the Unruh effect and the

Larmor radiation from a uniformly accelerated charged

particle clearer and will help in resolving some of the

controversies that have surrounded the Unruh effect since

its discovery.
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APPENDIX A: NORMALIZATION OF THE

RIGHT RINDLER MODES

The normalization of the physical modes A
RðI;ω;k⊥Þ
μ and

A
RðII;ω;k⊥Þ
μ , which satisfy the Lorenz condition ∇μA

μ ¼ 0

and are not pure gauge, is determined with respect to the

Klein-Gordon inner product:

ðARðiÞ; ARðjÞÞ ¼
Z

Σ

dΣμΞ
μ
�

ARðiÞ; ARðjÞ
; ðA1Þ

where the labels i, j represent ðλ;ω;k⊥Þ, and Σ is a Cauchy

hypersurface (τ ¼ constant). The vector Ξμ½ARðiÞ; ARðjÞ� is
given by

Ξ
μ
�

ARðiÞ; ARðjÞ
 ¼ i
ffiffiffiffiffiffi

−g
p

�

A
RðiÞ�
ν πRðjÞμν − A

RðjÞ
ν πRðiÞ�μν

�

;

ðA2Þ

where πRðiÞμν ¼ ∂L=∂μAνjARðiÞ
μ
, and the asterisk indicates

complex conjugation. This vector satisfies the conservation

equation ∇μΞ
μ½ARðiÞ; ARðjÞ� ¼ 0, and hence, the Klein-

Gordon inner product (A1) is τ-independent. The normali-

zation of the physical modes A
RðI;ω;k⊥Þ
μ and A

RðII;ω;k⊥Þ
μ is

chosen such that

�

ARðλ;ω;k⊥Þ; ARðλ0;ω0;k0
⊥
Þ� ¼ δλλ0δðω − ω0Þδð2Þðk⊥ − k

0
⊥Þ:
ðA3Þ

APPENDIX B: UNRUH AND MINKOWSKI

CREATION OPERATORS

In this appendix, we derive the relation between the

Unruh and Minkowksi creation operators. Recall that the

right second physical modes λ ¼ II can be written as

A
RðII;ω;k⊥Þ
μ ¼ k−1⊥

�

∂zv
R
ωk⊥

; ∂tv
R
ωk⊥

; 0; 0
�

: ðB1Þ

The left scalar modes vLωk⊥
, which are nonzero in the left

Rindler wedge and vanish in the right one, are obtained
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from vRωk⊥
by letting z → −z. (The right Rindler modes

vRωk⊥
vanish in the left Rindler wedge by definition.) They

can be found by replacing τ with τ̄ and ξ with ξ̄ in the

expression of vRωk⊥
, where τ̄ and ξ̄ are the left Rindler

coordinates. Then, the left Rindler EM modes can be

obtained from the right ones by simply replacing vRωk⊥
with

vLωk⊥
. In particular, the second physical left Rindler modes

are given by

A
LðII;ω;k⊥Þ
μ ¼ k−1⊥

�

∂zv
L
ωk⊥

; ∂tv
L
ωk⊥

; 0; 0
�

: ðB2Þ

Similarly to the right Rindler modes, the left Rindler modes

are not purely positive frequency with respect to the inertial

time t. However, in the scalar case, the purely positive-

frequency modes, or Unruh modes, are linear combinations

of left and right Rindler modes and are given by

w−ωk⊥
¼

vRωk⊥
þ e−πω=avL�ω−k⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ;

wþωk⊥
¼

vLωk⊥
þ e−πω=avR�ω−k⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p : ðB3Þ

They form a complete set of orthonormal solutions to

the scalar Klein-Gordon equation. The second physical

EM Unruh mode, λ ¼ II, can be found by combining

Eqs. (B1)–(B3). It is given in terms of the scalar Unruh

modes as

W
ðII;�;ω;k⊥Þ
μ ¼ k−1⊥

�

∂zw�ωk⊥
; ∂tw�ωk⊥

; 0; 0
�

: ðB4Þ

To find the relation between the Unruh and the

Minkowski creation operators, we need to find the relation

between the Unruh and the Minkowski modes. For this

purpose, we make use of the expansion of the scalar

positive-frequency modes [17]:

w�ωk⊥
¼

Z þ∞

−∞

dkz
ffiffiffiffiffiffiffiffiffiffiffiffi

2πak0
p e�iϑðkzÞωϕk; ðB5Þ

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þ k2z
p

is the energy of the photon, and

where we define the rapidity ϑðkzÞ as

ϑðkzÞ ¼
1

2a
ln
k0 þ kz

k0 − kz
; ðB6Þ

and the othornormal Minkowski scalar modes are

ϕk ¼ e−ik·x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ32k0
p : ðB7Þ

[Here, we are using the notation kμ ¼ ðk0; kz; kx; kyÞ.]
Thus, we find

W
ðII;�;ω;k⊥Þ
μ ¼ i

Z þ∞

−∞

dkz
ffiffiffiffiffiffiffiffiffiffiffiffi

2πak0
p e�iϑðkzÞωεμðkÞϕk; ðB8Þ

where the polarization vector is given by

εμðkÞ ¼
�

kz

k⊥
;
k0

k⊥
; 0; 0

�

; ðB9Þ

which satisfies k · εðkÞ ¼ 0 and εðkÞ · εðkÞ ¼ −1. This

polarization vector is gauge-equivalent to

ε̃μðkÞ ¼ εμðkÞ −
kz

k⊥k0
kμ; ðB10Þ

which satisfies ε̃tðkÞ ¼ 0 in addition. The relation (B8)

between the Unruh and Minkowski modes translates to that

between the Unruh and Minkowski creation operators as

a†ðII;�;ω;k⊥Þ ¼ i

Z þ∞

−∞

dkz
ffiffiffiffiffiffiffiffiffiffiffiffi

2πak0
p e�iϑðkzÞωb†

k
: ðB11Þ

APPENDIX C: ONE-PHOTON INTERACTION

PROBABILITY

In this appendix, we find the total one-photon emission

probability as an integral over the Minkowski momenta k.

We start from the one-particle part of the final state. It is

given by

jf1-photoni ¼
Z þ∞

0

dω

Z

d2k⊥

h

Ae
ðω;k⊥Þa

R†
ðω;k⊥Þ

þAa
ðω;−k⊥Þa

R
ðω;−k⊥Þ

i

j0Mi; ðC1Þ

where the operators aRðII;ω;k⊥Þ are written as aRðω;k⊥Þ for

simplicity.

By denoting the annihilation operators for the left

Rindler modes A
LðII;ω;k⊥Þ
μ by aLðω;k⊥Þ, we can translate the

relations between the Rindler and Unruh modes, Eq. (11),

into those among the creation and annihilation operators as

follows:

aRðω;k⊥Þ ¼
að−;ω;k⊥Þ þ e−πω=aa†ðþ;ω;−k⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ;

aLðω;k⊥Þ ¼
aðþ;ω;k⊥Þ þ e−πω=aa†ð−;ω;−k⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ; ðC2Þ

where the operators aðII;�;ω;k⊥Þ are written as að�;ω;k⊥Þ for
simplicity. Using Eqs. (C1) and (C2) and the fact that the

annihilation operators að�;ω;k⊥Þ annihilate the Minkowski

vacuum state j0Mi, we find
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jf1-photoni ¼
Z

d2k⊥

Z þ∞

0

dω

�

Ae
ðω;k⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p a†ð−;ω;k⊥Þ

þ
Aa

ðω;−k⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2πω=a − 1

p a†ðþ;ω;k⊥Þ

�

j0Mi: ðC3Þ

Hence, the total one-photon interaction probability is

Ptot¼hf1-photonjf1-photoni

¼
Z þ∞

0

dω

Z

d2k⊥

� jAe
ðω;k⊥Þj

2

1−e−2πω=a
þ
jAa

ðω;−k⊥Þj
2

e2πω=a−1

�

; ðC4Þ

as expected. In order to recover the Larmor formula in the

Rindler frame, our goal is to write this probability as a sum

over all the momenta. Using Eq. (B11), Eq. (C1) can be

written as

jf1-photoni ¼ i

Z

d2k⊥

Z þ∞

0

dω

Z þ∞

−∞

dkz
ffiffiffiffiffiffiffiffiffiffiffiffi

2πak0
p

×

�

e−iϑðkzÞωAe
ðω;k⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− e−2πω=a
p þ

eiϑðkzÞωAa
ðω;−k⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2πω=a − 1

p
�

b†
k
j0Mi:

ðC5Þ

Then, the total probability takes the form

Ptot ¼
Z

d2k⊥

Z þ∞

−∞

dkz
2πak0

	

	

	

	

Z þ∞

−∞

dω
e−iϑðkzÞωAe

ðω;k⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p

	

	

	

	

2

;

ðC6Þ

where we use

Aa
ðω;−k⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2πω=a − 1

p ¼
Ae

ð−ω;k⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2πω=a
p : ðC7Þ

We note that Eq. (C6) can directly be shown to be

equivalent to Eq. (C4) by noting dkz=ak0 ¼ dϑðkzÞ:

Ptot¼
Z

d3k

2πak0

	

	

	

	

Z þ∞

−∞

dω
e−iϑðkzÞωAe

ðω;k⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e−2πω=a
p

	

	

	

	

2

¼ 1

2π

Z

d2k⊥dωdω
0
Z þ∞

−∞

dϑe−iϑðω−ω
0Þ

×
Ae

ðω;k⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e−2πω=a
p

Ae�
ðω0;k⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e−2πω
0=a

p

¼
Z þ∞

−∞

dω

Z

d2k⊥

jAe
ðω;k⊥Þj

2

1−e−2πω=a

¼
Z þ∞

0

dω

Z

d2k⊥

� jAe
ðω;k⊥Þj

2

1−e−2πω=a
þ
jAa

ðω;−k⊥Þj
2

e2πω=a−1

�

: ðC8Þ

APPENDIX D: DERIVATION OF EQ. (28)

In this appendix, we write the amplitude AðkÞ in terms

of FðτÞ instead of its Fourier transform. For this purpose,

we make use of the following formula [from Eq. (6.796)

of Ref. [45]]:

Z þ∞

−∞

e−iωyeπω=2aKiω=aðzÞdω ¼ πae−iz sinhay: ðD1Þ

Using the definition of F̃ðωÞ, the amplitude is

AðkÞ ¼ q

Z þ∞

−∞

dτ

�

iFðτÞ sinh aðϑ − τÞe−iðk⊥=aÞ sinh aðϑ−τÞ

−
F00ðτÞ
ak⊥

Z þ∞

k⊥=a

dz

z
e−iz sinh aðϑ−τÞ

�

: ðD2Þ

As it stands, this expression is not convenient for identify-

ing the contribution from the period of uniform acceler-

ation, because the first term grows exponentially as a

function of τ. We integrate the first term by parts after

writing

iFðτÞ sinh aðϑ − τÞe−iðk⊥=aÞ sinh aðϑ−τÞ

¼ 1

k⊥
FðτÞ tanh aðϑ − τÞ d

dτ
e−iðk⊥=aÞ sinh aðϑ−τÞ; ðD3Þ

and we find

AðkÞ ¼ qa

k⊥

Z þ∞

−∞

dτ

��

FðτÞ
cosh2aðϑ − τÞ

−
F0ðτÞ
a

tanhaðϑ − τÞ
�

e−iðk⊥=aÞ sinh aðϑ−τÞ

−
F00ðτÞ
a2

Z þ∞

k⊥=a

dz

z
e−iz sinh aðϑ−τÞ

�

: ðD4Þ

For the term involving F0ðτÞ in Eq. (D4), we write

e−iðk⊥=aÞ sinh aðϑ−τÞ ¼ i sinh aðϑ − τÞ
Z þ∞

k⊥=a

dze−iz sinh aðϑ−τÞ;

ðD5Þ

where we assume a convergence term in the exponent

sinhaðϑ− τÞ→ sinhaðϑ− τÞ− iϵ;ϵ→ 0
þ. Then, by using

the identity,

Z þ∞

−∞

dτgðτÞ
Z þ∞

k⊥=a

dz

zn
e−iz sinh aðϑ−τÞ

¼ i

a

Z þ∞

−∞

dτ
d

dτ

�

gðτÞ
cosh aðϑ − τÞ

�

×

Z þ∞

k⊥=a

dz

znþ1
e−iz sinh aðϑ−τÞ; ðD6Þ
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where gðτÞ is a smooth and compactly supported function and n is a natural number, we find

AðkÞ ¼ qa

k⊥

Z þ∞

−∞

dτ

�

FðτÞe−iðk⊥=aÞ sinh aðϑ−τÞ
cosh2aðϑ − τÞ −

1

a2
d

dτ
fF0ðτÞ½1 − tanh2aðϑ − τÞ�g

Z þ∞

k⊥=a

dz

z
e−iz sinh aðϑ−τÞ

�

¼ qa

k⊥

Z þ∞

−∞

dτ

�

FðτÞe−iðk⊥=aÞ sinh aðϑ−τÞ
cosh2aðϑ − τÞ −

i

a3
d

dτ




1

cosh aðϑ − τÞ
d

dτ

�

F0ðτÞ
cosh2aðϑ − τÞ

��
Z þ∞

k⊥=a

dz

z2
e−iz sinh aðϑ−τÞ

�

: ðD7Þ

The integral of the second term is bounded as

	

	

	

	

Z þ∞

k⊥=a

dz

z2
e−iz sinh aðϑ−τÞ

	

	

	

	

≤

Z þ∞

k⊥=a

dz

z2
¼ a

k⊥
: ðD8Þ

Then, because the second term in Eq. (D7) is exponentially

decaying as jϑ − τj → ∞, it is subdominant if jϑj < T.

APPENDIX E: TECHNICAL DETAILS FOR THE

DERIVATION OF EQ. (33)

In this appendix, we provide some details omitted in

the derivation of Eq. (33). The square of the amplitude,

jAðkÞj2, without the terms coming from the transient

effects, is proportional to

Iðk⊥;ϑÞ≡
	

	

	

	

Z þ∞

−∞

dτ
FðτÞe−iðk⊥=aÞsinhaðϑ−τÞ

cosh2aðϑ−τÞ

	

	

	

	

2

¼
Z þ∞

−∞

dτ0
Z þ∞

−∞

dτ00

×
Fðτ0ÞFðτ00Þe−iðk⊥=aÞ½sinhaðϑ−τ0Þ−sinhaðϑ−τ00Þ�

cosh2aðϑ−τ0Þcosh2aðϑ−τ00Þ : ðE1Þ

We change the integration variables to τ ¼ ðτ0 þ τ00Þ=2
(the average proper time) and σ ¼ τ0 − τ00. Then, we

find

Iðk⊥; ϑÞ ¼
Z þ∞

−∞

dτ

Z þ∞

−∞

dσFðτ þ σ=2ÞFðτ − σ=2Þ

×
e2iðk⊥=aÞ coshaðϑ−τÞ sinh aσ=2

½cosh2 aðϑ − τÞ þ sinh2 aσ=2�2 : ðE2Þ

For large T, the integral Iðk⊥;ϑÞ is approximately equal

to the expression obtained by limiting the integration range

for τ by jτj < T and letting Fðτ þ σ=2ÞFðτ − σ=2Þ ¼ 1 as

long as jϑj < T with jjϑj − Tj ≫ 1=a. Using this approxi-

mation in Eq. (E2), we find that the integrand becomes

τ-independent after changing the integration variable from

ϑ to ϑ̄ ¼ ϑ − τ, the rapidity in the rest frame of the charge.

Then, the τ integration results in a factor of 2T, and we

obtain Eq. (33) in the main text.
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