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A B S T R A C T

Vector vortex light of topological order 𝑚 arises as a superposition of two twisted modes with phase
functions 𝑒±𝑖𝑚𝜙 (with 𝜙 the azimuthal variable) and circular polarizations (𝜎 = ∓1). We demonstrate that
when 𝑚 is sufficiently large these modes exhibit enhanced helicity densities when compared with the
equivalent circularly-polarized Gaussian modes. The enhancement stems from the presence of longitudinal
field components which become significant even for moderate beam widths. The super-chirality of light–
matter interactions enabled by such modes suggests a high degree of enantioselectivity, surpassing conventional
techniques for the chiral selection, so promising useful applications.

There is continued considerable interest in the physics and appli-
cations of vortex modes which are modes of light carrying orbital
angular momentum despite the fact that more than three decades have
now elapsed since the seminal work by Allen et al. [1] concerning
light carrying orbital angular momentum. The subject now spans a
number of inter-disciplinary areas, including physics, chemistry and life
sciences as well as other areas, but there is still room for developments
in the generation and characterization of this type of light, as in the
work by Kumar et al. [2] who reported a non-interferometric method
to generate various polarization singularity lattice fields. Light carrying
orbital angular momentum has also featured in molecular, atomic and
sub-atomic physics research and there is currently strong interest in the
utility of this type of light in exploring means of detecting the chirality
of matter, as demonstrated by Toyoda et al. [3] in the case of fabricated
metallic nano-needles and there are suggestions that orbital angular
momentum of light can affect chiral magnetic order as in metallic chiral
helimagnets [4].

Recent research has highlighted the fundamental significance and
the potential for applications of higher-order optical vector modes,
also called higher order Poincaré (HOP) modes [5–14]. The overall
polarization state of such modes is formally identified as character-
istically non-separable superpositions of solutions involving circular
polarization (�̂�±𝑖�̂�)∕

√
2 (or (�̂�±𝑖�̂�)𝑒±𝑖𝜙∕

√
2) and spatial phase functions

𝑒±𝑖𝑚𝜙 with integer 𝑚 the higher order and 𝜙 the azimuthal angular
variable.

The case for 𝑚 = 0 describes ordinary light with spatially uniform
polarization whose vector state can be represented by a point on
the well-known ordinary Poincaré sphere and covers the cases of
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elliptically-polarized light (including circularly- and linearly-polarized

vortex modes). The non-trivial 1st-order optical vortex modes for

which 𝑚 = 1, include radially and azimuthally polarized vector vortex

modes.

Although the higher order (𝑚 ≥ 1) vector modes have already

been realized experimentally [9–11,15,16], their properties have not

been explored for arbitrary order 𝑚. In particular, the question arises

as to whether and how the higher order modes can offer enhanced

beam properties such as higher order encoding schemes for enhanced

bandwidth optical communications [17]. Similarly, it would be inter-

esting to know whether they could lead to enhanced optical angular

momentum, spin and chirality which could influence optical interaction

with chiral matter [18], as optical helicity maybe enhanced through a

linear combination of light beams [19]. Increased optical chirality is

highly desirable for chiropical processes [3,20]. For example, could it

be the case that higher order modes would provide sufficiently strong

chirality to engage effectively with chiral molecules and be able to

achieve a high degree of enantioselectivity? For recent accounts on the

optical interaction with chiral matter the reader is referred to [21,22].

In this communication we focus on the prospect of the existence of

super-chirality, which, we envisage, maybe one of the major properties

of the higher order modes. To this end, we have aimed to evaluate the

helicity density and its spatial integral for the most general paraxial

mode of arbitrary order 𝑚, which covers all the possible scenarios. The

helicity is proportional to the optical chirality in free space and is an

important pre-factor in the interaction with chiral matter [21].
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Fig. 1. 0th order, (a), and 1st-order, (b), Poincaré Sphere (PS) representation of the polarization state in which optical polarization is coupled with vortex phase (for 𝑚 ≠ 0),
characterized by a unit sphere with respect to the corresponding Stokes-parameter(-like) Cartesian coordinates (𝑆0

1
, 𝑆0

2
, 𝑆0

3
) and (𝑆1

1
, 𝑆1

2
, 𝑆1

3
) respectively. It is seen that the 0th

order PS is equivalent to the conventional PS where |𝐻0⟩ and |𝑉0⟩ are commonly used to denote the vertically and horizontally linearly polarized light, |𝐴0⟩ and |𝐷0⟩ for ±45◦

tilted linearly polarized light, |𝑅0⟩ and |𝐿0⟩ for right-hand and left-hand circularly-polarized light, respectively. The 1st order PS figure is related to the corresponding figure by
Milione et al. [5,6] with slightly different conventions for 𝑆1

1
and 𝑆1

2
. Six sets of special vector modes are drawn in different colours next to each sphere for illustration. Their

positions on the Poincaré sphere are indicated by filled dots of the same colour.

We start from the electromagnetic vector potential for the mono-
chromatic vector vortex modes:

𝐀 = �̂�𝑚̃𝑚,𝑝(𝜌)𝑒
𝑖𝑘𝑧𝑧−𝑖𝜔𝑡, (1)

where 𝑘𝑧 is the axial wavevector with the light travelling along the
+𝑧 axis and 𝜔 is the angular frequency of the light. Also ̃𝑚,𝑝(𝜌) is
the amplitude function with 𝑚 a positive integer and we have ignored
small terms due to the Gouy and curvature phases. The 𝜙-dependence
is already included in the space-dependent polarization vector �̂�𝑚 as
follows [6]:

�̂�𝑚 = 𝑒−𝑖𝑚𝜙(�̂� + 𝑖�̂�)𝑃 + 𝑒𝑖𝑚𝜙(�̂� − 𝑖�̂�)𝑃 , (2)

with

𝑃 =
1√
2
sin

(
𝛩𝑃

2

)
𝑒−𝑖𝛷𝑃 ∕2, (3)

and

𝑃 =
1√
2
cos

(
𝛩𝑃

2

)
𝑒𝑖𝛷𝑃 ∕2. (4)

Here, �̂�𝑚 is mapped to a point (characterized by Poincaré angles
𝛩𝑃 and 𝛷𝑃 ) on the order 𝑚 Poincaré sphere. This is schematically
represented in Fig. 1 for the zero order 𝑚 = 0 and the first order
𝑚 = 1. The Poincaré angle 𝛩𝑃 spans the range from 0 to 𝜋, so that we
have right-hand circular polarization at the north pole (𝛩𝑃 = 0) and
left-hand circular polarization at the south pole (𝛩𝑃 = 𝜋). In-between
the two pole points, we have elliptical polarizations whose degree of
ellipticity changes continuously with 𝛩𝑃 -values. At 𝛩𝑃 = 𝜋∕2 we have
linear polarization such as radial and azimuthal polarizations for 𝑚 = 1.

The meaning of the vector vortex modes so defined becomes clear
when we substitute Eq. (2) into Eq. (1). We then have

𝐀 = 𝑃𝐀𝟏 + 𝑃𝐀𝟐,

𝐀𝟏 = (�̂� + 𝑖�̂�)𝑒−𝑖𝑚𝜙̃𝑚,𝑝(𝜌)𝑒
𝑖𝑘𝑧𝑧−𝑖𝜔𝑡,

𝐀𝟐 = (�̂� − 𝑖�̂�)𝑒𝑖𝑚𝜙̃𝑚,𝑝(𝜌)𝑒
𝑖𝑘𝑧𝑧−𝑖𝜔𝑡. (5)

We recognize the phase functions as characteristic of optical vortex
modes 𝑒∓𝑖𝑚𝜙, as in the case of Laguerre-Gaussian (LG) optical vortex
modes [23]. So 𝐀𝟏 and 𝐀𝟐 describe two vortex modes: one of topo-
logical charge −𝑚 with a uniform left circular polarization (𝜎 = 1 for

(�̂� + 𝑖�̂�)∕
√
2) and another vortex beam of topological charge 𝑚 but

with a uniform right circular polarization (𝜎 = −1 for (�̂� − 𝑖�̂�)∕
√
2),

respectively.
The electric and magnetic fields of the generally-polarized mode are

similarly written as the sums 𝐁 = 𝑃𝐁1 + 𝑃𝐁2 and 𝐄 = 𝑃𝐄1 +

𝑃𝐄2 where 𝐁𝑗 = 𝛁 × 𝐀𝑗 ; 𝑗 = 1, 2. The sequence of next steps
involves deriving first the two parts of the magnetic field and from
those use Maxwell’s curl B equation to derive the corresponding electric
field [24]. It is easy to see that the procedure we have followed amounts
to ensuring that the fields satisfy the wave equation 𝛁×𝛁×𝐄−𝜔2𝐄∕𝑐2 =

0. This leads to corrections of the zero-order up to the first order in the
paraxial approximation [25].

The 𝐄 and 𝐁 fields are needed for the evaluation of helicity which is
the conserved property due to the duality symmetry of the electromag-
netic field satisfying the Maxwell equation [26]. Displaying manifest
duality symmetry is an important requirement of the free-space paraxial
or nearly paraxial optical fields. We have found that this can be satisfied
if we limit the correction to the paraxial solution to the leading order,
i.e. by only including the longitudinal components of the field [25].
The dual-symmetry solutions for 𝐁1 and 𝐄1 are given by:

𝐁1 =
{
𝑘𝑧(�̂� + 𝑖�̂�) + 𝑖�̂�

(
𝜕𝑥 + 𝑖𝜕𝑦

)}
𝑒−𝑖𝑚𝜙̃ (𝜌)𝑒𝑖𝑘𝑧𝑧−𝑖𝜔𝑡,

𝐄1 = 𝑐
{
𝑖𝑘𝑧(�̂� + 𝑖�̂�) − 𝑖�̂�

(
𝜕𝑥 + 𝑖𝜕𝑦

)}
𝑒−𝑖𝑚𝜙̃ (𝜌)𝑒𝑖𝑘𝑧𝑧−𝑖𝜔𝑡, (6)

where we have dropped the subscript label 𝑚, 𝑝 in ̃ for convenience
and the exact notation can be restored when the need arises. For similar
reasons we also drop the exponential time factor 𝑒−𝑖𝜔𝑡 below.

To better explore the symmetry of the vortex beams, we can express
the formalism in cylindrical coordinates 𝐫 = (𝜌, 𝜙, 𝑧):

𝐀𝟏 = (�̂� + 𝑖�̂�)𝑒−𝑖(𝑚−1)𝜙̃𝑚,𝑝(𝜌)𝑒
𝑖𝑘𝑧𝑧, (7)

𝐀𝟐 = (�̂� − 𝑖�̂�)𝑒𝑖(𝑚−1)𝜙̃𝑚,𝑝(𝜌)𝑒
𝑖𝑘𝑧𝑧. (8)

Now, it is easy to see that the overall vector potential reduces to the
radially- and azimuthally-polarized vector modes respectively, in the
special case where 𝑃 = ±𝑃 and 𝑚 = 1. This can be shown explicitly
when 𝐀𝟏 and 𝐀𝟐 describe the corresponding LG modes. Note, however,
that our treatment is not restricted to the LG modes and is applicable
in general to other vortex modes.

The important characteristics of the amplitudes of the longitudinal
components of the field included here are their dependence on the
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gradient of the transverse components of the light field. For vortex
beams, this dependence can be either a radial or an azimuthal gradient,
since we can write:

𝑎𝜕𝑥 + 𝑏𝜕𝑦 = (𝑎 cos𝜙 + 𝑏 sin𝜙)𝜕𝜌 +
𝑏 cos𝜙 − 𝑎 sin𝜙

𝜌
𝜕𝜙, (9)

where 𝑎 and 𝑏 are arbitrary constants. The key to understanding our
results below is that the magnitude of the azimuthal gradient of a vortex
mode is proportional to the absolute value of its topological charge
|𝑚|. So the contribution to the longitudinal components can come not
just from radial gradients such as due to the focusing of conventional
optical modes, but also due to a higher azimuthal topological charge or
a higher radial order (𝑝 > 0) of the structured light. In the latter case,
the small beam width is not an essential requirement. These aspects
should now become clear by looking at the corresponding forms for 𝐁1

and 𝐄1 in purely cylindrical-coordinates. We have:

𝐁1 =

{
𝑘𝑧(�̂� + 𝑖�̂�) − 𝑖�̂�

(
𝜕𝜌 −

𝑚

𝜌

)}
𝑒−𝑖(𝑚−1)𝜙̃ (𝜌)𝑒𝑖𝑘𝑧𝑧, (10)

𝐄1 = 𝑐

{
𝑖𝑘𝑧(�̂� + 𝑖�̂�) − �̂�

(
𝜕𝜌 +

𝑚

𝜌

)}
𝑒−𝑖(𝑚−1)𝜙̃ (𝜌)𝑒𝑖𝑘𝑧𝑧, (11)

where 𝑐 is the speed of light. We see that the z-component of both the
magnetic and electric fields have the 𝑒−𝑖(𝑚−1) phase factor, consistent
with the spin–orbit conversion first found for Bessel beams [27].

Similarly, the fields 𝐁2 and 𝐄2 emerge following exactly the same
procedure as followed for 𝐁1 and 𝐄1. We obtain:

𝐁2 =

[
𝑘𝑧(�̂� − 𝑖�̂�) + 𝑖�̂�

(
𝜕𝜌 −

𝑚

𝜌

)]
𝑒𝑖(𝑚−1)𝜙̃ (𝜌)𝑒𝑖𝑘𝑧𝑧, (12)

𝐄2 = 𝑐

[
𝑖𝑘𝑧(�̂� − 𝑖�̂�) − �̂�

(
𝜕𝜌 −

𝑚

𝜌

)]
𝑒𝑖(𝑚−1)𝜙̃ (𝜌)𝑒𝑖𝑘𝑧𝑧. (13)

Having obtained expressions for the fields, we are now ready to
evaluate the cycle-averaged optical densities of the helicity �̄� and
chirality �̄� which are defined by

�̄�(𝐫) = −
𝜖0𝑐

4𝜔
ℑ[𝐄∗

⋅ 𝐁] =
𝑐

𝜔2
�̄� , (14)

where 𝜖0 is the permittivity constant in free space. 𝐄∗
⋅ 𝐁 can be

expanded into four terms involving 𝐄𝑗 and 𝐁𝑗 , with 𝑗 = 1, 2 are as
given above. The symbol ℑ[...] in Eq. (14) stands for the imaginary part
of [...] and the superscript * in 𝐄∗ stands for the complex conjugate
of 𝐄. In what follows, we focus on the helicity density from which
the corresponding optical chirality density �̄� can be determined using
Eq. (14). We find after some algebra

�̄�(𝐫) =
𝜖0𝑐

2

4𝜔
cos (𝛩𝑃 )

{
2𝑘2

𝑧
|̃𝑚,𝑝|

2
+ |̃ ′

𝑚,𝑝
|2 + 𝑚2

|̃𝑚,𝑝|
2

𝜌2
+ 2𝑚

̃ ′
𝑚,𝑝

̃𝑚,𝑝

𝜌

}
,

(15)

where we have set ̃ ′ = 𝑑̃∕𝑑𝜌. This is the most general result for
the helicity density of a vector vortex mode of any order 𝑚. Note that
it shows no dependence on 𝛷𝑃 , i.e. all points on a given latitude for
which 0 ≤ 𝛷𝑃 ≤ 2𝜋 have the same helicity density.

It turns out that the interference terms 𝐄∗
1
⋅ 𝐁2 and 𝐄

∗
2
⋅ 𝐁1 did not

contribute to the helicity density of the vector vortex beams displayed
in Eq. (15) and only the two direct terms 𝐄∗

1
⋅𝐁1 and 𝐄

∗
2
⋅𝐁2 contribute.

This is understandable as the constituent 1 and 2 are orthogonal
eigenmodes.

We can re-express the helicity density displayed in Eq. (15) for an
arbitrary optical vector vortex mode in terms of the helicity density
�̄�1 or �̄�2 associated with the two special points on the higher order
Poincaré sphere, namely the vortex modes of the same order but with a
uniform circular polarization, corresponding to 𝛩𝑃 = 0, 𝜋. The helicity
density for this type of vortex mode with uniform circular polarization
has already been studied in [28].

The physical meaning of the four terms within the curly brackets
in the helicity density expression shown in Eq. (15) can now be un-
derstood with reference to the expression for the corresponding 𝐄 and
𝐁-fields.

The first term in Eq. (15) can be identified with the helicity density
for a zero-order mode with a general elliptical polarization, correspond-
ing to 𝑚 = 0. The second term is associated with the part of the
longitudinal component of the mode and we note that it depends on
the field radial gradient. The rest of the terms are the 𝑚-dependent
and are characteristic of vector vortex modes. The term proportional to
̃2 can be seen to arise from the azimuthal phase gradient, while the
term proportional to ̃ ′̃ is the hybrid term involving contributions
from cross terms involving the radial and azimuthal gradients, hence
the 𝑚-dependence.

The cycle-averaged helicity density �̄� is a key parameter determin-
ing the strength of the interaction of the light mode with a chiral object,
for example the optical dichroic response in a homogeneous chiral
medium arises via 𝜅�̄� where 𝜅 is the optical chirality parameter of a
linear response matter [21]. Superhelicity is normally defined as the
excess helicity with respect to circularly-polarized plane waves, which
can be approximated in our case by that of a non-vortex (𝑚 = 0) mode
of very large beam width. This shows trivially that the helicity, hence
chirality, is enhanced at the position of the peak intensity of a mode
with a narrower beam width. To show superhelicity, hence the pos-
sibility of superchiral interaction, we look for the excess contribution
arising from the last three terms in Eq. (15). The first term is well
known and can be induced by tight focusing of the beam [28]. The
more interesting terms are the last two 𝑚−-dependent terms as the
topological charge of the vortex mode can be made very large, with
the potential for a superchiral interaction compared with the case of
a non-vortex mode. This can be achieved even for moderately focused
beams because its contribution to the longitudinal terms is independent
of the contribution from tight focusing.

We may now demonstrate the super-chirality properties of higher
order modes for the special case of Laguerre-Gaussian modes of waist
𝑤0, which has an amplitude function given as follows

̃𝑚,𝑝(𝜌) = 0

√
𝑝!

(𝑝 + |𝑚|)! 𝑒
−

𝜌2

𝑤2
0

(√
2𝜌

𝑤0

)|𝑚|

𝐿|𝑚|
𝑝

(
2𝜌2

𝑤2
0

)
(16)

where 𝐿𝑚
𝑝 is the associated Laguerre polynomial of indices 𝑚 and 𝑝.

The overall factor 0 is a normalization constant which is determined
in terms of the applied power 𝑇 , evaluated as the integral of the z-
component of the Poynting vector over the beam cross-section. We have

𝑇 =
1

2𝜇0 ∫
2𝜋

0

𝑑𝜙∫
∞

0

|(𝐄∗ × 𝐁)𝑧|𝜌𝑑𝜌 =

(
𝜋𝜔2𝜖0𝑐𝑤

2
0

4

)
2

0
(17)

Fig. 2 displays the helicity density for the cases 𝑚 = 0, 1, 12, 36 and
150 for 𝛩𝑃 = 0. It is clear that for 𝑚 = 0 and 𝑚 = 1 the helicity density is
maximum on axis (𝜌 = 0) and that the case 𝑚 = 1 is larger than that for
𝑚 = 0, which makes the case 𝑚 = 1 super-chiral. For 𝑚 > 1 the density
is concentrated off-axis (𝜌 > 0). The peak value initially decreases with
increasing 𝑚, but it then increases and becomes larger than the case
𝑚 = 0 again.

The super-chirality feature at the core 𝜌 = 0 for 𝑚 = 1 can be
explained as follows. This density is proportional to dot product of 𝐄∗

and 𝐁. It is thus the sum of two dot products: (1) the product of the
transverse components 𝐄∗

𝑇
⋅𝐁𝑇 and (2) the product of longitudinal parts

𝐸∗
𝑧𝐵𝑧. The product of the transverse components has a vortex structure,

hence it is zero at the core, but the longitudinal parts have a non-zero-
value at the core. That this occurs for 𝑚 = 1 is consistent with the
requirement that 𝑚+𝜎 = 0 and is due to the inclusion of the longitudinal
field components.

This can also be explained analytically by inspecting the terms
which appear in Eq. (15). When applied to the Laguerre-Gaussian ̃ (𝜌)
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Fig. 2. Variations with 𝜌∕𝑤0 of the helicity density, �̄�, Eq. (15) (arbitrary units), due to
modes of orders 𝑚 = 0, 1, 12, 36 and 150. The plots concern circularly-polarized Laguerre-
Gaussians for which cos (𝛩𝑃 ) = +1. A mode is said to be super-chiral when its helicity
density at maximum value exceeds that for 𝑚 = 0 (shaded brown, maximum on axis).
Clearly the large value in the case 𝑚 = 150 (shaded black) is highly super-chiral.

for 𝑚 = 1, we have from Eq. (16) |̃𝑚=1|
2

∝ 𝜌2 and also we have
[̃ ′̃ ]𝑚=1 ∝ 𝜌. Once substituted in the relevant terms in the helicity
density we see that the factor 1∕𝜌2 in the first term cancels the factor
𝜌2 in the numerator and the 1∕𝜌 in the second term cancels with the
factor 𝜌 in the numerator. The overall variation amounts to a non-zero
value of the helicity at 𝜌 = 0 for 𝑚 = 1. This variation contrasts with
the case 𝑚 ≥ 2 in which the numerators in the two terms have higher
powers of 𝜌, guaranteeing that the helicity density vanishes at 𝜌 = 0.

We can evaluate the total integral of the helicity density in Eq. (15))
over the transverse plane. First we note that the radial integral of all
terms in the form ̃ ′̃

𝜌
are identically zero for all mode functions which

satisfy ̃𝑚,𝑝(0) = 0 = ̃𝑚,𝑝(∞). The contribution of the term proportional
to 𝑚2 requires the evaluation of the following integral

𝑚 = ∫
∞

0

𝜌𝑑𝜌

[
1

𝜌2
|̃𝑚,𝑝|

2
]
=

1

2𝑚
(18)

We find, after some algebra, that the total helicity per unit length
of order 𝑚 vector vortex mode is given by

̄𝑚 = 0 cos (𝛩𝑃 )

(
1 +

(𝑚 + 1)�̄�2

𝑤2
0

)
(19)

where �̄� = 𝜆∕(2𝜋), 0 = 𝑇 ∕(𝑘𝑧𝑐
2) is a constant for a fixed power 𝑇

and we have substituted for 0 using Eq. (17). It is easy to check that
the ̄𝑚 has the dimensions of angular momentum per unit length. Note
that although the factor �̄�2∕𝑤2

0
in Eq. (19) is typically small for 𝑤0 ≫ �̄�,

the higher order helicity for which 𝑚 ≫ 1 would ensure super-chirality
for relatively large 𝑤0.

The constitutive relations for a homogeneous chiral medium char-
acterized by a linear optical response are as follows [21]:

𝐃 = 𝜖𝑟𝜖0𝐄 +
𝑖𝜅

𝑐
𝐇, (20)

𝐁 = −
𝑖𝜅

𝑐
𝐄 + 𝜇𝑟𝜇0𝐇, (21)

where 𝜖𝑟 is the relative permittivity, 𝜇𝑟 the relative permeability, 𝐃 the
electrical displacement, 𝐇 the magnetic field intensity and, crucially,
𝜅 the optical chirality parameter of the medium which is related
to the magnetoelectric dipolar polarizability. Tang and Cohen [18]
demonstrated (for circularly-polarized lights, corresponding to 𝑚 = 0,
𝛩𝑃 = 0 and 𝜋), that the helicity (and chirality) density of light is
a useful local measure of the asymmetry in the optical excitation of
a chiral molecule and its chiral counterpart. For example, absorption
in the dipole approximation is given by 𝑎𝐸 |𝐄|2 + 𝑎𝐻 |𝐇|2 + 𝑏�̄�, where
𝑎𝐸 , 𝑎𝐻 and 𝑏 are proportionality constants and �̄� ∝ 𝑐𝑜𝑠𝛩𝑃 = ±1

for circularly-polarized light of opposite handedness. Using a similar

argument, Canaguier-Durand et al. [29] and Cameron et al. [19] have
shown that the corresponding optical force exerted upon a small chiral
molecule has the form 𝐹 = 𝑎′∇𝑤 + 𝑏′∇�̄�, where 𝑤 is the local energy
density associated with the achiral dipole force and 𝑎′ and 𝑏′ are
proportionality constants. In both cases, the chirality density of light
described here only applies to chiral materials with electrical dipole
and magnetic dipole interactions [18,19]. This means that it only ap-
plies to chiral objects whose size is much smaller than the wavelength
of the light and is such that multipolar effects are not important.
Our treatment also applies to chiral metamaterials (see Ref. [30] for
example) as long as the constituent feature size is much smaller than
the wavelength of the light used. Our treatment is also limited to weak
fields such that non-linear interactions can be ignored.

As the same physical description that applies to the chiroptical
response of matter that is illuminated by circularly polarized light also
applies to the HOP modes described in this paper, we envisage that
the experiments involving a dichroic response of homogeneous media,
such as a solution containing chiral molecules, with circularly-polarized
light, may be readily modified by replacing the ordinary circularly-
polarized light with the light at the opposite polar regions of the HOP
spheres, in order to achieve an enhanced chiral response. Similarly, an
enantiomer-selective dipole force can be used in the spatial separation
of molecules according to their chirality. Such experiments are now
realistic in view of the availability of HOP mode lasers [10] or other
similar HOP mode light sources.

In conclusion, we have evaluated the helicity (and the chirality)
density for general paraxial vector vortex modes in which the state of
polarization is specified by a general point (𝛩𝑃 , 𝛷𝑃 ) on the surface of
the order 𝑚 Poincaré unit sphere, where 𝑚 is a positive integer. The
general results obtained encompass a wide range of scenarios governed
by their dependence on the Poincare sphere angles, the mode amplitude
function and the higher order 𝑚. In particular, the helicity (and the
chirality) density is found to be proportional to terms involving 𝑚 and
𝑚2, which means that the higher order modes exhibit super-chirality
when compared that of an ordinary (order 𝑚 = 0) elliptically polarized
mode. Specifically, we have also shown that the first order 𝑚 = 1

mode is a markedly superchiral vortex mode which is dominated by the
vortex core at 𝜌 = 0. We have also found that other higher modes for
which 𝑚 > 1 have off-axis maximum helicity which is also superchiral.
These results strongly indicate the existence of a highly desirable super-
chirality property of the vector vortex modes which, we suggest, is now
ripe for direct experimental investigation.
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