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Abstract—The concept of cell free (CF) massive MIMO 

systems is a prospective fifth generation communication 

technology that effort with base stations for the privilege of 

user-centric coverage. Most studies on the CF massive 

MIMO system in the past imply that systems that use time 

division duplexing (TDD), even despite the systems using 

frequency division duplex (FDD) predominate in today’s 
wireless communications. When the number of antennas 

increases in FDD systems, channel state information (CSI) 

collection and feedback overhead become major issues. In 

order to mitigate these issues, we make use of the condition 

that the so-called uplink and downlink multipath components 

are comparable. Base station takes use of the angle 

reciprocity may immediately obtain information on channel 

parameters from the uplink training signal. In this paper, for 

CF massive MIMO system based on FDD, we provide 

compressive sensing (CS) of directions of arrival (DoAs) 

estimation approach of access point cooperation based on the 

channel parameters. The suggested estimation approach 

outperforms the established subspace-based technique, 

according to simulation findings. Additionally, we showed 

that the results of our compressive sensing estimator against 

the conventional estimation method. The former 

demonstrates way far better outcome and performance 

accordingly than the latter. 

 

Keywords—cell free massive MIMO systems, compressive 

sensing, DoA estimation, FDD systems  

I. INTRODUCTION   

    The 5G wireless systems have successfully shown the 

outstanding performance over the fourth communication 

generation such as 4G LTE systems. In many aspects, for 

instance, the capacity and spectrum enhancement besides 

the energy efficiency as well. The main reason for that 

improvement in the overall performance can be attributed 

to exploiting and utilizing the concept of massive MIMO 

architecture in its design [1, 2].  

 
Manuscript received April 15, 2023; revised June 27, 2023, accepted July 

12, 2023.  

More precisely and accurately the upgraded version which 

is CF massive MIMO system, which has drawn academic 

researchers as well as industries significant attentions 

recently due to their ability to overcome the phenomena of 

the inter cell interference (ICI) and a recurrent switching 

for rapid users movement, which both can be occurred due 

to the small size of the cells as well as many boundaries 

among them [3, 4]. In CF massive MIMO system, many 

base stations (BSs) are deployed in locations that are not 

necessarily determined by the local cells and cooperatively 

serve multiple users as shown below in Fig. 1, where Fig. 

1(a) represents a traditional cellular system in which each 

cell has one BS serve multiple users (UE) and (b) 

represents a CF system in which all BS are connected to a 

central processing unit (CPU) and serve all users. In other 

words, many BSs serve cooperatively less number of 

mobile station in the system concurrently, with the same 

band, they provide uniformly great quality of services and 

with no handovers. The BSs are connected to a centralized 

unit to be notified of numbers and locations of the users 

and more important the updated CSI [5, 6]. 

Cell-free massive MIMO systems are a new paradigm 

in wireless communication that have the potential to 

greatly improve network capacity, coverage, and energy 

efficiency. Unlike traditional cellular networks where each 

cell has a BS, in cell-free massive MIMO, a large number 

of distributed access points (APs) or antennas are placed 

throughout the coverage area. These APs can work 

cooperatively to transmit and receive signals to and from 

mobile users, which enables higher data rates and better 

coverage. By using many antennas distributed throughout 

coverage area, CF massive MIMO system can provide 

high spatial coverage and capacity. This is especially 

useful in areas with high user density or in environments 

with challenging propagation conditions [6, 7]. 

Cell-free massive MIMO systems can effectively 

mitigate interference by using the large number of 

antennas to steer the beamforming in a way that minimizes 

interference. By using distributed APs, cell-free massive 
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MIMO systems can significantly reduce energy 

consumption compared to traditional cellular networks. 

This is because distributed APs can use less transmit power 

to achieve the same level of coverage [7–9]. Cell-free 

massive MIMO systems are highly scalable, and can be 

easily expanded or modified to meet changing network 

demands. Some of the challenges associated with cell-free 

massive MIMO systems include channel estimation, signal 

processing, and backhaul requirements for the distributed 

APs. Nevertheless, recent research has shown that cell-free 

massive MIMO systems have the potential to significantly 

enhance the performance of wireless communication 

networks and are potential technologies for the upcoming 

wireless communications networks [4, 10]. Furthermore, 

that feature of using multiple antenna at each AP grants the 

key benefit, i.e., channel hardening properties as well as 

favorable propagation. As a results of that, the cell-free 

massive MIMO systems would be able to manage inter cell 

interference, resulting in substantial improvement in both 

energy and spectral performance [11].  

 
(a)  cellular network 

 
(b) cell free network 

Figure 1. Demonstrating the difference (a) cellular network and (b) CF 

massive MIMO network. 

 

To decrease the training overhead of CSI acquisition for 

FDD massive MIMO systems, the authors in [12] 

developed a weighted 𝑙1 minimization algorithm to exploit 

partial channel support information due to sparsity 

structure of massive MIMO channel. The authors in [13], 

proposed a non-orthogonal pilot scheme to do channel 

estimation based on compressive sensing technique. They 

assumed two stage algorithm, one for channel estimation 

based CS technique and the other for feedback tracking. 

The authors in [14] developed an efficient algorithm to 

acquire CSI in FDD massive MIMO system. They used CS 

method to estimate the channel by exploiting the sparsity 

structure of massive MIMO channel in angular domain 

representation. In addition, they assumed the channel is 

spatially correlated.  

Kim and Shim [15] proposed an algorithm based on 

gradient descent method to obtain the CSI from the uplink 

signal in cell free massive MIMO systems. They assumed 

FDD system and exploit the angle reciprocity to acquire 

the channel in the downlink phase. Almosa et al. [16] 

proposed an algorithm to do transmit beamforming based 

on partial CSI by exploiting angle reciprocity in FDD 

massive MIMO systems. They used traditional subspace 

method to obtain the DoAs. We utilize the feature that the 

multipath coefficients in the uplink (UL) and downlink 

(DL) channels, i.e., the complex gain and angle, are similar. 

This property, subsequently called as angle reciprocity, 

which is being satisfied even for the FDD systems since 

the carrier frequencies of UL and DL are not far different 

from each other [17]. The following equation can be used 

to describe the dominant direction for the downlink using 

the uplink as follow [16]: 

 𝜃𝐷𝑜𝑤𝑛𝑙𝑖𝑛𝑘  =  𝜃 𝑈𝑝𝑙𝑖𝑛𝑘 + ∆𝜃,                  (1) 

 

where 𝜃𝑈𝑝𝑙𝑖𝑛𝑘 and 𝜃𝐷𝑜𝑤𝑛𝑙𝑖𝑛𝑘 are the azimuth or elevation 

direction of arrival in the uplink and downlink, ∆θ refers 
to the angular disturbance modelled as Laplace variable 

[16, 18]. In this paper, we present an efficient algorithm 

for DoAs estimation in CF massive MIMO system based 

on FDD. Specially inspired by priori knowledge of channel 

reciprocity in angular domain for uplink and downlink 

channels, we proposed a different way rather than relying 

upon the conventional methods which are used to estimate 

angles of arrival (DoAs) which are based on the two 

primary methods like MUltiple SIgnal Classification 

(MUSIC) algorithm and Estimation of Signal Parameters 

via Rational Invariance Techniques (ESPRIT) algorithm. 

Table I summarize the comparison of previous related 

work with our work. The subspace methods, such as 

ESPRIT and MUSIC, are popular techniques for DoA 

estimation in wireless communication systems. However, 

when the number of sources is large, these methods can 

face some disadvantages. The computational complexity 

of subspace methods grows rapidly with the number of 

sources, which can make these methods computationally 

expensive for large-scale antenna arrays [19–21]. Instead, 

we have used compressive sensing technique. In DoAs 

estimation based compressive sensing technique, it could 

take advantage of compressive sensing innovation to lower 

learning and feedback costs, as well as prior knowledge of 

the sparsity level, to further enhance prediction accuracy. 

CS-based DoA estimation can achieve the same level of 

accuracy with fewer sensors compared to traditional 

subspace DoA estimation techniques. This can lead to 

more cost-effective and compact sensing systems [22–24]. 

Traditional DoA estimation techniques require a uniform 

or linear array of sensors for accurate estimation. In 

contrast, CS-based DoA estimation is more robust to array 

geometry and can work with non-uniform or irregular 

arrays of sensors. CS-based DoA estimation can often 

achieve higher accuracy in low signal-to-noise ratio (SNR) 
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environments compared to traditional subspace DoA 

estimation techniques. This is because CS can recover a 

sparse signal even when the measurements are highly 

corrupted by noise. Overall, DoA estimation using 

compressive sensing can lead to more efficient and 

accurate signal processing for many practical applications, 

especially in low-SNR and resource- constrained scenarios 

[25, 26].  

The rest of this paper is organized as follows:  Next 

section describes the system model. Following section 

introduces the proposed algorithm for DoA estimation 

based CS technique. Then, we presents the numerical 

results of the proposed algorithm. Finally, we discuss the 

results and conclude the paper. 

TABLE I. A BRIEF REVIEW OF PREVIOUS RELATED WORK WITH OUR 

WORK 

II. SYSTEM MODEL 

We adopt a CF massive MIMO network based on FDD 

with a centralized unit including 𝑀 base stations, which 

has a uniform array structure with 𝑁  antennas and 𝐾 

mobile station as shown in Fig. 1(b). The base stations and 

mobile stations have located in arbitrary manner within a 

coverage region. By transferring data system such as 

power control coefficients, precoding vectors and channel 

coefficients estimated, All base stations are linked with a 

centralized unit via backbone lines with unlimited 

resources and no errors.1 In this work, scattered pattern for 

the wireless channel is taken into account, where it 

supposed that each scattering group contributes just one 

link. Taking into account a limited variety of easily 

solvable routes connecting the base station and the mobile 

station, the channel vector between 𝑚𝑡ℎ AP and 𝑘𝑡ℎ user 

can be represented as 

    𝐠𝑚𝑘 = ∑𝐿ℓ=1 √𝛽𝑚𝑘ℓℎ𝑚𝑘ℓ𝐚(𝜃𝑚𝑘ℓ), (2) 

 

where 𝐿 represents all the paths between the transmitter 

and the user, 𝛽𝑚𝑘ℓ  models the fading coefficient, large-

scale(LS) for the ℓ -th link of the channel takes link 

 
1 However, in a realistic situation, the backbone lines linkages are subject 

to restrictions, and examining the impact of these limitations would be a 

significant area of research for the next generations. 

attenuation and shadow effects into consideration. LS 

coefficients in CF network varies in each couple of 

transmitter and receiver, in contrast to co-location network 

[7]. ℎ𝑚𝑘ℓ represents small-scale fading coefficient for the ℓ-th path of the channel which are modeled as independent 

and identically distributed (i.i.d.) complex Gaussian 

variables with zero mean and unit variance. Thus,   ℎ𝑚𝑘ℓ ∼𝒞𝒩(0,1) . Furthermore, 𝐚(𝜃𝑚𝑘ℓ) ∈ ℂ𝑁×1  represents the 

steering array vector for the ℓ-th link that lead from 𝑚𝑡ℎ 

AP to 𝑘𝑡ℎ  user. It is evident that the steering vectors are 

affected by the transmitted direction of departure (DoD) in 

the downlink phase and DoA of the received signal in the 

uplink phase. By exploiting the reciprocity property 

between uplink and downlink phases [17], we developed 

efficient algorithm for DoAs estimation based on CS 

technique. In addition, we consider that LS coefficients are 

same for both directions due to independency on frequency. 

However, small scale channel coefficients are different 

between uplink and downlink direction because they are 

function of frequency. For the AP equipped with a uniform 

array structure, the steering vector can be expressed using 

the Vandermonde structure: 𝐚(𝜃ℓ) =[1 𝑒𝑗𝜔ℓ … 𝑒𝑗(𝑁−1)𝜔ℓ]𝑇 , where 𝜔ℓ = (2𝜋𝑑/𝜆)cos𝜃ℓ, 𝑑 is the space that seperates the neighboring elements of 

antenna, 𝜆 is the carrier wavelength, and 𝜃ℓ is the DoA and 

DoD related to the ℓ-th link of the UL and DL channel, 

respectively. We also consider a coherence block model in 

which channel prediction and its feedback methods treat 

small scale coefficients as fixed across a limited number of 

time frames. In the same way, we suppose that LS 

coefficients remain fixed during LS coherence intervals. 

Different coherence intervals for both small and large 

coefficients are taken to be unrelated. In this work, we 

consider frequency-division duplexing (FDD) operation 

mode, where the dominant channel direction is same 

between uplink and downlink transmission. The channel 

vector in Eq. (3) can be written in compact form as:  

    𝐠𝑚𝑘 = 𝐀𝑚𝑘𝐃𝑚𝑘𝐬𝑚𝑘   𝐀𝑚𝑘 = [𝐚(𝜃𝑚𝑘1) … 𝐚(𝜃𝑚𝑘ℓ) … 𝐚(𝜃𝑚𝑘𝐿)]   𝐃𝑚𝑘 = diag(√𝛽𝑚𝑘1 … √𝛽𝑚𝑘ℓ … √𝛽𝑚𝑘𝐿)   𝐬𝑚𝑘 = [ℎ𝑚𝑘1 … ℎ𝑚𝑘ℓ … ℎ𝑚𝑘𝐿]𝑇  (3) 

  

where 𝐀𝑚𝑘 ∈ ℂ𝑁×𝐿  is the array steering matrix, which 

contains information about the uplink directions (DoAs) 

for the all paths of 𝑘𝑡ℎ user, 𝐃𝑚𝑘 ∈ ℂ𝐿×𝐿 is the diagonal 

matrix contains the large-scale fading coefficients for the 

all paths of 𝑘𝑡ℎ  user’s channel, and 𝐬𝑚𝑘 ∈ ℂ𝐿×1  is the 

small-scale fading coefficients vector. 

III. PROPOSED ALGORITHM FOR DOA ESTIMATION BASED 

CS 

CS is a technique that can be used to estimate theDoA 

of signals in a cell-free massive MIMO systems. In a cell-

Ref. System 
Operation 

mode 
Techniques Objectives 

Shen et al. 

[12] 

Massive 

MIMO 
FDD Weighted 𝑙1 

Reduction in training 

overhead 

Gao et al. 

[13] 

Massive 

MIMO 
FDD CS 

Reduction in training 

overhead 

Almosa et 

al. [14] 

Massive 

MIMO 
FDD CS 

Reduction in training 

overhead 

Kim and 

Shim [15] 

Cell free 

Massive 

MIMO 

FDD 
Gradient 

descent 

Improved the 

accuracy of CSI 

estimated 

Almosa et 

al. [16] 

Massive 

MIMO 
FDD ESPRIT 

Improved the 

accuracy of CSI 

estimated 

Our work 

Cell free 

Massive 

MIMO 

FDD CS 

Reduction in training 

overhead and 

improved the CSI 

estimated 

660

Journal of Communications, vol. 18, no. 10, October 2023



 

free massive MIMO systems, a large number of APs are 

distributed over a wide area to provide coverage and 

capacity. The DoA estimation problem in this scenario is 

to determine the angles of arrival of signals from multiple 

users at each AP. CS can be used to solve this problem 

through utilizing the UL sparsity property related to the 

uplink channel matrix, where only a small number of paths 

are active at a time. In CS, a measurement matrix is 

designed to capture the sparse nature of the problem, and 

the DoA estimation are obtained by solving an 

optimization problem [27]. The proposed algorithm has 

been shown to have better performance in terms of 

accuracy. The estimation of DoAs for each user is done 

through uplink training phase as follow. First, all users 

simultaneously and synchronously send pilot sequences 𝝍1, … , 𝝍𝐾 ∈ ℂ1×𝜏 to all APs , where 𝜏 denotes the length 

of pilot sequence for each user. At the next step of this 

process, each AP estimates the channel directions along 

with the LS multipath components related to all users 

based on the received pilot signals and use these estimates 

to precode and beamform the message intended for each 

user. We assume low user mobility and hence the pilot 

contamination can be neglected. We consider all training 

signals with duration 𝜏 ≥ 𝐾  are mutually orthonormal, 𝝍𝑗𝐻𝝍𝑖 = 𝛿(𝑗 − 𝑖) , where 𝛿  is Dirac delta function. The 

received signal 𝐘𝑚 ∈ ℂ𝑁×𝜏  at the 𝑚𝑡ℎ AP during uplink 

training phase can be written as:  

 

 𝐘𝑚 = √𝜌𝑢 ∑𝐾𝑘=1 𝐠𝑚𝑘𝝍𝑘 + 𝐍𝑚, (4) 

 

 where 𝜌𝑢 is maximum uplink power transmitted by each 

user and 𝐍𝑚 ∼ 𝒞𝒩(0, 𝜎𝑛2𝐼𝑁) is additive Gaussian noise. 

By multiplying Eq. (4) by 𝝍𝑘𝐻, we get the received signal 

for 𝑘𝑡ℎ user as follow:  

 𝐘𝑚𝝍𝑘𝐻 = √𝜌𝑢𝐠𝑚𝑘 + 𝐍𝑚𝝍𝑘𝐻, (5) 

let 𝐲𝑚𝑘 = 𝐘𝑚𝝍𝑘𝐻 ∈ ℂ𝑁×1  and 𝐧𝑚𝑘 = 𝐍𝑚𝝍𝑘𝐻 ∈ ℂ𝑁×1 , 

then the received signal for 𝑘𝑡ℎ user can be written as:  

 

 𝐲𝑚𝑘 = √𝜌𝑢𝐠𝑚𝑘 + 𝐧𝑚𝑘, (6) 

 

 By substituting Eq. (3−6), we get:  

 

 𝐲𝑚𝑘 = √𝜌𝑢𝐀𝑚𝑘𝐃𝑚𝑘𝐬𝑚𝑘 + 𝐧𝑚𝑘 , (7) 

 

 let 𝐱𝑚𝑘 = 𝐃𝑚𝑘𝐬𝑚𝑘 ∈ ℂ𝐿×1 , then Eq. (7) can be 

rewritten as:  

 𝐲𝑚𝑘 = √𝜌𝑢𝐀𝑚𝑘𝐱𝑚𝑘 + 𝐧𝑚𝑘, (8) 

 

 a sparse signal can be recovered using the signal 

processing method known as CS from a sparse set of 

observations [23]. DoAs estimation is one of the 

applications where CS can be used to lower the amount of 

observations needed to estimate the DoAs of multiple 

signals. In DoAs estimation using CS, the goal is to 

estimate the directions of arrival of signals using a small 

number of measurements from a sparse array of sensors. 

The sparse array has fewer sensors than the number of 

sources and the sources are assumed to be sparse or 

concentrated in a small number of directions. The 

measurement model can be represented as:  

 𝐲 = √𝜌𝑢𝐀𝐱 + 𝐧, (9) 

where the subscript is omitted for simplicity, 𝐲 ∈ ℂ𝑁×1is 

the measurement vector, 𝐀 ∈ ℂ𝑁×𝑃 is the sensing matrix, 

where 𝑃 is the angle grid. Fig. 2 shows the block diagram 

of DoA estimation based CS. The sensing matrix is a key 

component of the measurement process that maps a high-

dimensional signal to a low-dimensional measurement 

space. The sensing matrix is typically designed to enable 

the recovery of the original signal from a small number of 

measurements. The entries of the sensing matrix are 

typically random, but can also be carefully designed to 

have certain properties that enable efficient and accurate 

signal recovery [22]. One common approach for designing 

the measurement matrix is to use a Gaussian or Bernoulli 

random matrix, where the entries are chosen from 

Bernoulli or Gaussian distribution, respectively. These 

types of random matrices have been shown to work well 

for many types of signals and can enable efficient signal 

recovery using algorithms such as basis pursuit, 

orthogonal matching pursuit, and others. Other types of 

sensing matrices that can be used in compressive sensing 

include structured matrices as in our case such as Fourier 

and wavelet matrices, which are often useful for signals 

with sparse or compressible representations in those 

domains [22, 25]. In general, the choice of sensing matrix 

can have a significant impact on the accuracy and 

efficiency of the signal recovery process in compressive 

sensing. The measurement matrix 𝐀  is typically 

constructed so that it is incoherent with the sparsity signal 

represented by the vector 𝐱 , which means that the 

projection of 𝐱 onto 𝐀 is random and non-redundant. 𝐱 ∈ℂ𝑃  is the sparse signal vector. The strongest column’s 
index related to the measurement matrix must be chosen in 

order for the traditional CS method to function properly. 

The CS literature states that for some random matrices, 

there is a substantial likelihood that the traditional method 

will not choose the right column during the initial iteration 

[23]. In order to solve this problem, a proposed algorithm 

to acquire the estimated DoAs is developed in this study. 

As we are interested in DoAs estimation in our scenario 

and the proposed algorithm relies on the objective 

functions, we select linear model as optimization problem. 

The proposed algorithm refreshes the feature set after each 

iteration by picking the top features related to the sensing 

matrix depending on the cost function. The algorithm 

iteratively adds the index of the column of 𝑨  with the 

largest inner product with the current residual to the 

support set 𝑆. It then solves a least squares problem over 

the columns of 𝑨 indexed by 𝑆 to obtain the coefficients 

for the sparse solution. The residual is updated and the 

process is repeated until 𝐿 iterations have been completed. 

The final output is the DoAs corresponding to the index of 

nonzero elements in the sparse solution 𝒙̂𝑆. Algorithm 1 

provides a summary of the suggested approach. The 

covariance matrix of 𝐱 in Eq. (9) can be written as:  
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  𝐗 = 𝔼[𝐱𝐱𝐻] = 𝔼[𝐃𝐬𝐬𝐻𝐃𝐻] = 𝐃𝐃𝐻 = diag[𝛽1 … 𝛽𝐿], 
                                                         (10) 

 After estimated the array steering matrix from previous 

step, the estimated of covariance matrix can be computed 

as follow:  

 𝐗̂ = 𝐱̂𝐱̂𝐻, (11) 

 

 where 𝐱̂ = 1√𝜌𝑢 (𝐀̂𝐇𝐀̂)−1𝐀̂𝐇𝐲  and the estimated of LS 

coefficients is given by:  

 

 𝛃̂ = diag[𝐗̂] = [𝛽1 … 𝛽𝐿] (12) 

 

Algorithm 1. Proposed algorithm for DoAs estimation 

based on CS technique 

1: Input: 𝒚, 𝑨, 𝑃, 𝑎𝑛𝑑 𝐿 

2: Start:  𝒓 =  𝒚 , 𝑆 =  [ ] 
3: While 𝑗 ≤  𝐿 

4: Calculate the inner products between the   

residual and columns of A:   abs(𝑨𝑻𝐫) 

5:       Find the index of the largest inner product:        𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥 |abs(𝑨𝑻𝐫)| 
6: 

7: 

8: 

9: 

      Add the index to the support set: 𝑆 = [𝑆, 𝑘] 
      Solve the least squares problem: 𝒙̂𝑆 = 𝑨𝑆†𝒚 

      Update the residual: 𝒓 =  𝒚 – 𝑨𝑆𝒙̂𝑆 

End 

10: 𝐎𝐮𝐭𝐩𝐮𝐭: DoAs corresponding to L paths 

 

 
 

     Figure 2. Block diagram of DoA estimation based CS. 

IV. RESULT AND DISCUSSION 

The effectiveness of the proposed algorithm is evaluated 

in this section. We examine a square area with a side length 

of 1 km, where 𝐾 single antenna users and 𝑀 APs, each 

with 𝑁  antennas are distributed randomly. The antenna 

spacing for transmit antennas is considered as 0.5𝜆. It is 

believed that the edges are wrapped around in order to 

prevent edge effect. The COST Hata concept is utilized for 

LS coefficients , which can provide important information 

about the system’s performance in terms of coverage, 
capacity, and data rate. The COST Hata model is a widely 

used empirical model for the prediction of radio wave 

propagation in urban, suburban, and rural environments. 

By considering the large-scale fading coefficients, we can 

gain insight into how the radio wave propagation affects 

the overall system performance. Table II contains all of the 

system parameters. The COST Hata model can be written 

as [7]   

  log𝟏𝟎(𝛽𝑚𝑘) = −13.6 − 3.5 log𝟏𝟎(𝑑𝑚𝑘) + 𝑍𝑚𝑘10                                 

(13) 

where 𝑍𝑚𝑘 ∼ 𝒩(0, 𝜎shadowing2 )  and 𝑑𝑚𝑘  is the distance 

between user, 𝑘  and access point, 𝑚  in kilometres. We 

consider normalized transmitted SNR in all calculations, 

where transmit SNR can be calculated by dividing transmit 

power by the noise variance, which is given by [7] 

     noise variance at receiver = 𝑁𝐹 × 𝜅 × 𝐵 × 𝑇      (14) 

                                                         

where 𝜅  is the Boltzmann constant, 𝑇  is temperature in 

Kelvin, 𝐵  is the bandwidth in Hz, and 𝑁𝐹  is the noise 

figure in Watt. Numerical results are presented in this part 

to assess the performance of CF system based FDD with 

the proposed algorithm. For comparison with traditional 

DoAs estimation method, We examine two different 

situations. The first scenario assumed that the number of 

the propagation paths for the channel between user 𝑘 and 

AP 𝑚 to be two. The number of paths for channel in the 

second case is considered as three. As evaluation criteria, 

we considered Root Mean Square Error (RMSE) to 

investigate the quality of the proposed DoAs estimation 

method based CS discussued in previous section with the 

traditional DoAs estimation subspace method, ESPRIT. 

We consider ESPRIT algorithm for comparison because 

the ESPRIT algorithm provides high accuracy in the 

estimation of the DoAs, even in the presence of noise and 

interference. In addition, the ESPRIT algorithm is robust 

to uncertainties in the signal model, such as the presence 

of multipath signals or spatial correlations between the 

signals.   

Fig. 3 shows the average RMSE of the proposed 

algorithm versus SNR with two paths for the channel 

between AP 𝑚 and user 𝑘. It is obivious that our proposed 

algorithm outperforms the traditional method, which is 

subspace method based on the rotational invariance 

property of the eigenvectors of a covariance matrix derived 

from the received signals. It is clear that as the SNR 

increased, the performance of the proposed algorithm    

becomes more accurate compared with the traditional 
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method because our algorithm exploits the sparse nature of 

the DoA estimation problem, where only a small number 

of paths are active at a time. In CS, a measurement matrix 

is designed to capture the sparse nature of the problem, and 

the DoA estimates are obtained by solving an optimization 

problem. 

Fig. 4 shows the average RMSE of the suggested 

algorithm against SNR for N = 32, K = 8 with three paths 

for the channel between AP 𝒎 and user 𝒌. We observe 

that ESPRIT algorithm still has poor performane 

compared with the proposed algorithm due to large 

number of antennas at AP. However, the suggested method 

outperforms the conventional DoAs estimation method 

since it takes use of the uplink channel matrix’s sparse 
topology and as the sparsity level increase, the 

performance of the algorithm will decrease, which is a 

common feature of the greedy CS algorithm.  

Fig. 5 shows the average RMSE of the suggested 

algorithm against training length for N = 32, K = 8 with 

three paths for the channel between AP 𝒎 and user 𝒌. It is 

clear that our proposed algorithm based CS can achieve an 

accurate estimation of DoAs with much lower training 

overhead compared with traditional subspace method. In 

Fig. 5, we observe that ESPRIT method can achieve 𝟏𝟎−𝟐 

with training length around 70. However, our proposed 

algorithm can achieve 𝟓 × 𝟏𝟎−𝟑  with training length 

around 10. Thus, our algorithm achieve an efficient 

reduction in training overhead. 

TABLE II. SIMULATION SYSTEM PARAMETERS 

Parameter Value 

 M   64 

 N   32 

 K   8 

 d   0.5𝜆 

 𝑇∘   290 Kelvin 

 𝐵   10 MHz 

 𝑁𝐹   9 dB 

 𝜎shadowing   8 dB 

 uplink power 𝜌𝑢𝑙   200 mW 

 carrier frequency for uplink 

channel  

 49.8 GHz 

 carrier frequency for downlink 

channel  

 50 GHz 

 coherence bandwidth   200 KHz 

 coherence time   1 ms 

 length of pilot training 𝜏   K 

 angle spread   15° 
 

 
  Figure 3. Average RMSE of the proposed algorithm against SNR for     

K= 8, N = 32, and two paths for the channel. 

 
       Figure 4. Average RMSE of the proposed algorithm versus SNR for 

N = 32, K = 8, and three paths for the channel. 

 

 
    Figure 5. Average RMSE of the proposed algorithm versus training     

length for N = 32, K = 8, and three paths for the channel. 

V. CONCLUSION 

In this paper, the used approach has been demonstrated 

to have better performance in terms of accuracy. The 

estimation of DoAs for each user is done through uplink 

training side as shown. Each AP estimates the channel 

directions along with the LS coefficients to all users based 

on the received pilot signals and use these estimates to 

precode and beamform the message intended for each user. 

We assume low user mobility and hence the pilot 

contamination is negligible. The benefit of DoA estimation 

in FDD system for cell-free massive MIMO systems is to 

improve the performance of the wireless communication 

system by providing more accurate information on the 

direction from which signals are arriving at the receiver. 

The performance evaluation of FDD cell free massive 

MIMO systems with the proposed algorithm has been done 

in respect to the comparison with traditional DoAs 

estimation method, our estimation is based upon two 

assumptions, firstly the propagation paths of the channel 

between a user and an AP are only two. The number of 

paths for the channel in the second case is considered as 

three. We used RMSE as a benchmark to assess how well 

the suggested DoAs estimation approach based on 

compressive sensing performed. In both cases, the results 
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demonstrated that the suggested algorithm performed 

significantly better in terms of accuracy in real-world 

environments than the conventional DoA subspace 

methods. 
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