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Robust Design for IRS-assisted MISO-NOMA

Systems: A DRL-Based Approach
Abdulhamed Waraiet, Graduate Student Member, IEEE, Kanapathippillai Cumanan, Senior member, IEEE, Zhiguo

Ding, Fellow, IEEE, and Octavia A. Dobre, Fellow, IEEE

Abstract—In this paper, we propose a robust design for an
intelligent reflecting surface (IRS)-aided multiple-input single-
output (MISO) non-orthogonal multiple access (NOMA) system.
In particular, the ergodic sum-rate maximization problem is
formulated by taking into account the channel uncertainties of
both direct links and the reflected links through IRS elements.
The unbounded channel uncertainties with imperfect channel
estimation are mathematically modelled based on the statistical
channel state information (CSI) error model. However, the formu-
lated ergodic sum-rate maximization problem with the outage-
constraints is not jointly convex in terms of the beamforming
vectors and the phase shifts of IRS elements, and hence it
cannot be solved with the conventional optimization algorithms.
To address the non-convexity issues and develop a joint design,
the challenging robust design is reformulated as a reinforcement
learning (RL) environment. Two deep RL agents are developed
to jointly optimize the beamforming vectors and phase shifts of
the IRS elements with the channel uncertainties and quality of
service constraints. Simulation results are provided to validate the
performance of the proposed agents for both fixed and dynamic
channels.

Index Terms—DRL, MISO-NOMA, IRS, Imperfect CSI.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been consid-

ered as one of the promising multiple access techniques for

6G and beyond. By utilizing superposition coding (SC) at the

transmitter and successive interference cancellation (SIC) at

the receiver, NOMA enables encoding more than one user in

the same resource block. This leads to higher spectral and

energy efficiencies compared to its orthogonal counterparts

and also enables massive connectivity [1]. Numerous studies

in the literature demonstrate the superiority of NOMA over

conventional orthogonal multiple access (OMA) techniques

[2].

Recently, the intelligent reflecting surface (IRS) technology

has shown great potential in enhancing the quality of the

communication links. Therefore, IRS-aided multiple antenna

NOMA systems have also been subject to extensive studies, as

they offer enhanced link reliability with interference mitigation

[3]–[5]. However, the resource allocation problem becomes

more challenging with such advancements, and often requires

problem-specific hand-crafted algorithms with higher com-

putational complexities. To address these complexity issues,
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Engineering and Physical Sciences Research Council (EPSRC) under grant
number EP/X01309X/1. The work of O. A. Dobre was supported in part by
the Natural Sciences and Engineering research Council of Canada (NSERC)
through its Discovery program.

deep learning (DL)-based approaches have been considered

as a viable alternative for solving the resource allocation

problems, which is proved to be particularly useful for latency-

constrained applications, thanks to their low deployment com-

plexity. In [6], a DL framework for the beamforming design of

a MISO system was proposed. However, DL models require

labelled data. This is the main drawback of DL, which is

addressed by combining deep learning with reinforcement

learning (RL) into a single framework: deep reinforcement

learning (DRL).

DRL combines the function approximation capabilities of deep

neural networks with the sequential decision making frame-

work of RL. Different DRL techniques have been exploited

to solve a variety of resource allocation problems in IRS-

assisted and cognitive NOMA systems [7]–[10]. However, in

all aforementioned studies, perfect channel state information

knowledge at the transmitter (CSIT) and receiver (CSIR) is

assumed, which is not the case in practice. This often leads to

unrealistic results and, in some cases, inaccurate conclusions.

This work is motivated by the fact that the model-based

robust design algorithms often suffer from exponential com-

putational complexities, which render them impractical for

latency-sensitive applications. In addition, another motivation

is the lack of DRL-based robust designs in the literature.

Therefore, the aim of this work is to propose a joint robust

design framework which takes into account both the imperfect

CSI at the transmitter and SIC at the receiver with unbounded

channel uncertainties [11], [12]. In particular, we propose a

DRL framework to jointly optimize the beamforming vectors

and the IRS phase shifts. Unlike conventional optimization

methods, the proposed robust DRL model has much lower

computational complexity. This widens the applicability of the

proposed approach to communication systems with stringent

latency requirements. To the best of the authors’ knowledge,

this is the first work to address the joint robust design

problem for IRS-assisted MISO-NOMA systems with un-

bounded channel uncertainties using actor-critic DRL agents.

The contributions of this work are summarized as follows:

1) The non-convex long-term system sum-rate optimization

problem with outage constraints is reformulated as an RL

environment. 2) Then, two actor-critic DRL agents, namely

proximal policy optimization (PPO) and twin-delayed deep

deterministic policy gradient (TD3), are developed to solve

the robust design problem. 3) Through simulation results, we

show the convergence properties of the agents and the achieved

system sum-rates, as well as their robust performance, for both

fixed and dynamic channels.
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Fig. 1: IRS-assisted MISO-NOMA system model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single-cell, IRS-aided MISO-NOMA down-

link system as illustrated in Fig. 1, where a base station

(BS) equipped with N antennas, serves K single antenna

user equipment (UE). The M passive IRS elements provide a

reflected path to the signal in the downlink, in addition to the

direct channel between the BS and the UEs. The phase shifts of

the IRS elements are designed at the BS and transmitted to the

IRS hardware through a feedback link [13]. The BS transmits

the precoded signal as x =
∑N

i=1 wisi, where wi ∈ C
Nx1 is

the beamforming vector for UEi, si is the information bearing

symbol for UEi. The received signal at UEi is expressed as

yi = hH
i x+ gH

i ΥHx+ zi, ∀i ∈ {1, ...,K}, (1)

where hi ∈ C
Nx1 is the Rayleigh fading channel vector

modelled as hi = hi√
d
αb→u

id

, where αb→u and did are the

path-loss exponent and the distance between UEi and the BS,

respectively. gi ∈ C
Mx1 is the channel vector between the IRS

and UEi, modelled as Rician fading and expressed as gi =
1√

d
αirs→u

i

(

√

ξ
1+ξ

gLoS +
√

1
1+ξ

gnLoS

)

, with ξ = 1 as the

Rician factor. Υ ∈ C
MxM is the phase shifts matrix of the IRS

elements, H ∈ C
MxN is the channel matrix between the BS

and the IRS, which is also assumed to be Rician fading channel

expressed as H = 1√
d
αirs→u

i

(

√

ξ
1+ξ

HLoS +
√

1
1+ξ

HnLoS

)

.

The received signal at UEi can be written in a more compact

form as follows:

yi =
(

hH
i + vHQi)x+ zi, ∀i ∈ K, (2)

where v = vec(Υ) ∈ C
Mx1 and Qi = diag(gH

i )H ∈ C
MxN is

the reflected (cascaded) channel matrix for UEi.

For the channel uncertainty model, we consider two cases. One

considers a partial uncertainty case where the direct channel is

assumed to be perfectly known at the BS, while the reflected

channel is imperfectly estimated. This is motivated by the

fact that the reflected channel is more challenging to estimate

accurately than the direct channel due to the passive IRS

elements [14]. The other case is the full uncertainty model

where both direct and cascaded channels are imperfect. The

true channels can be expressed as

Qi = Q̂i +∆Qi, ∀i ∈ K,

hi = ĥi +∆hi, ∀i ∈ K,
(3)

where Q̂i, ĥi are the estimated channels available at the BS,

and ∆Qi, ∆hi are the unknown, unbounded errors for the

cascaded and direct channels, respectively. The considered

error model encompasses channel estimation errors due to

the white Gaussian noise and insufficient pilot sequences in

practical wireless communication systems. Therefore, the un-

known errors are drawn from a circularly symmetric complex

Gaussian distribution and expressed as ∆qi ∼ CN (0,Λr),
∆hi ∼ CN (0,Λd), where ∆qi = vec(∆Qi), Λr ∈ C

MNxMN

and Λd ∈ C
NxN are the positive semidefinite error covariance

matrices for the reflected and the direct channels, respectively

[12]. Furthermore, the variances of the unknown error terms

are functions of their corresponding estimated channels and

are expressed as β2
i,r = λ2

r||qi||22, qi = vec(Q̂i) ∈ C
MT x1

and β2
i,d = λ2

d||ĥi||22 for the reflected and direct channels,

respectively. λr and λd relate to the uncertainty of the CSI

measurement for the reflected and cascaded channels, respec-

tively, and both are in the range (0, 1].
Before proceeding to the signal-to-interference-plus-noise ratio

(SINR) expressions, deciding a decoding order is crucial for

NOMA systems. In this paper, we adopt a channel-strength

based decoding order, i.e., ||ˆ̃h1||22 ≥ ||ˆ̃h2||22 ≥ ... ≥ ||ˆ̃hK ||22,

where
ˆ̃
hi = (ĥH

i +vHQ̂i) is the estimated version of the final

combined channel h̃i at the BS. Then, the decoding order set

is ζ = {1, 2, ...,K}, where UE1 is the strongest UE that will

perform SIC to decode and eliminate UE2, ...,UEK signals

before decoding its own. Therefore, the SINR expression of

the UEi’s signal at UEl, under the full channel uncertainty

model can be expressed as

γi
l =

|h̃lwi|2
∑K

j=i+1 |(∆hH
l + vH∆Ql)wj |2 +

∑i−1
j=1 |h̃lwj |2 + σ2

l

,

(4)

where
∑K

j=i+1 |(∆hH
l + vH∆Ql)wj |2 is the sum of the

SIC residuals due to imperfect channel estimation at UEl,

and
∑i−1

j=1 |h̃lwj |2 is the sum of the interference caused by

stronger UEs. When only the partial uncertainty model is

considered, ∆h is removed from (4). Therefore, the achievable

rate for UEi is expressed as

Ri = log2
(

1 + min
l∈{i,i+1,..,K}

(γi
l )
)

. (5)

Since the considered uncertainty model is unbounded, it is

challenging to design a set of beamformers that achieve the

required rates regardless of the channel uncertainties. There-

fore, the aim of this work is to maximize the long-term system

sum-rate under the outage constraints as follows:

maximize
wi,v

E

{

∞
∑

t=1

K
∑

i=1

δt−1Rt
i

}

(6a)

subject to pi ≜ Pr{γi
l ≥ 2R

min

i − 1} ≥ Γ, ∀i ∈ K, (6b)

N
∑

i=1

||wi||22 ≤ Pmax, ∀i ∈ K, (6c)

|vm|2 = 1, 0 ≤ θm ≤ 2π, ∀m ∈ M, (6d)

where (6a) is the expected value of the discounted cumulative

system sum-rate, Γ ∈ (0, 1] is the non-outage probability,

Pmax is the maximum transmit power budget at the BS, and

vm and θm correspond to the amplitude and the phase shift for
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the m-th IRS element, respectively. This optimization problem

is not jointly convex in terms of the beamforming vectors and

the IRS phase shifts. This is due to the coupled nature of

the optimization variables in (6a) and (6b). Such optimization

problem is generally NP-hard, which makes it more chal-

lenging to solve using conventional optimization techniques.

Furthermore, since RL agents aim to maximize their long-

term reward, they can be utilized to solve this challenging

problem. In this paper, we propose a DRL-based approach to

solve the robust design problem. This approach is motivated by

the low deployment complexity and the generalized solutions

generated by the DRL agents.

III. PROPOSED DRL BASED ALGORITHM

In order to develop DRL agents to solve the original

optimization problem, we need to reformulate it into an RL

environment. There are three features that define any RL

environment, namely the state vector st, the actions vector at,

and the reward function rt. A DRL agent aims to maximize

its reward through interactions with the environment. At a

current system state st, the agent takes an action at, and the

environment provides a new state st+1 and a reward rt based

on the utility of the action taken by the agent. Therefore,

the agent tries to maximize its reward by taking actions

that yield higher rewards. Hence, the design of an accurate

reward function in RL is crucial, being the only performance

indicator the agent understands.

In this paper, we use the variables of the optimization

problem (6a) as the actions vector of the agent, i.e.,

at =
[

wt
1, ..,w

t
K , vt1, .., v

t
M

]T
. The state vector is defined

as the power of each beamforming vector of the previous

time-step, the normalized variances of the channel uncertainty

terms, the achieved rates for the previous time-step, and

the actions vector of the previous time-step. Hence, st =
[

||wt−1
1 ||22, .., ||wt−1

K ||22, β2,t
1 , .., β

2,t
K , R

1,t−1
1 , .., R

K,t−1
K ,at−1

]T
.

Finally, there are two reward functions depending upon the

action taken by the agent. In case the action satisfies the

quality of service (QoS) for all UEs, then, the agent is

rewarded by the system sum-rate at that time-step, expressed

as rt =
∑K

i=1 R
t
i; otherwise, the agent is punished with the

following negative reward, rt =
∑K

i=1 min(0, Rt
i − Rmin

i ),
which is the sum of the rate deficit across all UEs. This

reward function deters the agent from taking actions that

result in a negative reward, and provides incentive for the

agent to increase the system sum-rate to maximize its reward.

Since we work with neural networks that do not support

complex numbers, the actions and state vectors can only

contain real numbers. One of the proposed solutions

to this problem is to represent each complex vector by

two real vectors, which will be adopted in this work

[6]. As a result, each beamforming vector wi ∈ C
Nx1,

will be mapped to two real vectors, and therefore, will

be wi ∈ R
2Nx1. This is also true for the complex

phase shift values. Therefore, at ∈ R
2(NK+M)x1, while

st ∈ R
2N+

N(N+1)
2 +2(NK+M), N ≥ 2, where the expression

N(N+1)
2 calculates the number of all possible rates in the

MISO-NOMA system. Another issue we need to address

when using DRL agents is to ensure that the actions vector

values fall within the feasible region. Therefore, normalization

and scaling by the maximum power is necessary to ensure

optimal agent performance. Hence, P t
total =

∑K

i=1 ||wt
i ||22 is

the unconstrained total power at time-step t; then, the feasible

scaling factor can be written as κt =
√

Pmax

P t

total

, which is used

to scale the beamforming vectors. Furthermore, to ensure

that the IRS phase shifts satisfy the amplitude constraint in

(6d), they are normalized as
vt

m

|vt
m
| , while θm can be directly

mapped to a feasible angle.

The proximal policy optimization (PPO) is an on-policy,

actor-critic, DRL agent which optimizes a stochastic policy

[15]. The PPO agent was proposed mainly to address the slow

training and low sample efficiency issues of the trust region

policy optimization agent. It utilizes the action-advantage

function to improve its policy. Therefore, the objective of the

actor network can be expressed as [15]

L(Φ) = E

[

min(RAt(Φ)Ât, clip(RAt(Φ), 1− ϵ, 1 + ϵ)Ât)
]

,

(7)

where Φ is the parameterized policy of the actor network,

RAt(Φ) =
πΦ(at|st)

πΦold
(at|st) is the ratio between the new and the

old policies, and Ât is the advantage function at time step

t. This clipped objective keeps the new policy from deviating

too far from the old policy to prevent policy breaking issues

during training. On the other hand, the twin-delayed deep

deterministic policy gradient (TD-DDPG) or (TD3) for short,

is an off-policy, actor-critic, DRL agent which optimizes a

deterministic policy [16]. The TD3 agent was proposed to

address the overestimation problems in the baseline DDPG

agent by utilizing two critic networks instead of one, among

other enhancements. The actor network of the TD3 agent

optimizes the following objective [16]:

∇ΦJ =
1

B

B
∑

i=1

GaiGπa, (8)

where B is the mini-batch size, Gai is the gradient of the

critic with the minimum value with respect to the action taken

by the actor, and Gπa is the gradient of the actor output with

respect to its network parameters.

Algorithm 1 summarizes the steps of obtaining DRL-based

robust beamforming and IRS solutions. Note that Algorithm 1

highlights the essential steps taken by each agent to solve the

problem. Agent-specific steps are omitted from the Algorithm

for simplicity.

TABLE I: System parameters summary.

System parameter Value

Cell radius 200 m

Transmit power 30 dbm

Noise power −90 dbm

λr 0.02

λd 0.03

αb→irs, αirs→u 2

αb→u 2.5

Target rate Rmin

i
(fixed channels) 1 bit/s/Hz

Target rate Rmin

i
(dynamic channels) 0.3 bit/s/Hz
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Another important aspect of the proposed framework is

mapping the non-outage probability Γ to the number of

training episodes and time-steps. It is up to the agent designer

to select adequate values so that the agent has formed a

policy that is robust against channel uncertainties. This is

determined by the number of error observations considered

during training, given a proper selection of hyperparameters. In

this work, we introduce a new set of error values for each new

episode during training for both fixed and dynamic channels.

Therefore, the more episodes the agent is trained for, the more

robust its policy becomes.

In terms of computational complexity, we assume that the

offline training can be afforded and focus on the deploy-

ment (online) complexity. Therefore, the complexity can be

described as a feed-forward pass through the agent’s actor

network. Hence, there are L+1 matrix-vector multiplications,

where L represents the number of hidden layers in the actor

network. Also, there are L+1 activation operations, including

output activation. Since layer activation is an element-wise

operation, it has a complexity of O(n), where n is the number

of neurons in the layer. Assuming that all hidden layers have

the same number of neurons n, then, the model complexity

can be expressed as O(In+Ln2+nO+Ln), where I and O

represent the size of the input and output vectors, respectively.

Therefore, the final worst run-time complexity expression can

be reduced to O
(

max(In, n2, nO)
)

. Since the previous action

is part of the state vector, multiple steps might be required to

achieve satisfactory results.

Algorithm 1 DRL-based Robust Design

1: Initialise: agent’s actor, critic and their target networks

2: while Episode ≤ TotalEpisodes do

3: Reset environment and obtain an initial state

4: while Step ≤ TotalSteps do

5: Take action at

6: Recover complex-valued beamforming vectors wi, ∀i
and IRS phase shifts vector v

7: Evaluate UE SINRs according to (4)

8: Calculate the corresponding reward

9: Set st+1 = st

10: Step = Step+ 1
11: end while

12: if Time to update policy then

13: Copy main network parameters to target networks

14: end if

15: Episode = Episode+ 1
16: end while

17: Output: w∗
1, ..,w

∗
K , v∗1 , .., v

∗
M .

IV. SIMULATION AND NUMERICAL RESULTS

We consider the system model mentioned in Section II, in

which a BS equipped with N = 4 antennas serves K = 4
single antenna UEs. The numerical values for the system

parameters are summarized in Table I. As for the agents, we

train a TD3 agent with a single actor network and two critic

networks. Furthermore, we train a PPO agent with one actor

TABLE II: Summary of the agents hyperparameters.

Hyperparameter Value

Critics learning rate 0.001

Actor learning rate 0.0007

Policy update frequency (TD3) 2

Discount factor 0.99

Smoothness factor (TD3) 0.0002

Replay buffer size (TD3) 1e05

Minibatch size 128

Clip factor (PPO) 0.07− 0.12

Entropy loss weight (PPO) 0.005− 0.007

Number of Episodes, Time-steps (fixed channels) 700, 500

Number of Episodes, Time-steps (dynamic channels) 1500, 500

and one critic. The number of neurons, n = 128, is set for the

actor networks, while n = 300 is set for the critic networks,

for both agents. Table II summarizes the hyperparameters and

training parameters used to train the two agents. Both partial

and full channel uncertainty models are considered for the

fixed channel case, while only the full channel uncertainty

model is considered for dynamic channels. A benchmark

scheme based on the semidefinite programming and the zero-

forcing beamforming is used as a baseline.

Fig. 2 shows the convergence of the agents throughout the

training period for both fixed and dynamic channels. It can be

observed that both agents have similar convergence properties

with different variances. In the dynamic channels case, the

agents are trained on a set of 10 channels, sampled to reflect

the distance between the BS and the maximum cell radius. As

expected, the convergence curves for both agents show higher

variance, due to the fact that the channels used for training

are inherently different, and therefore, the rewards obtained by

the agents vary accordingly. The TD3 agent achieves higher

average reward than PPO in both cases, while the PPO agent

shows more stable convergence to a lower average reward

level.

To assess the performance of both agents in terms of robust-

ness, each agent is tested for 1000 episodes, with 10 steps per

episode. The average robustness performance for both agents

for fixed and dynamic channels is illustrated in Fig. 3. The top

figure shows the robustness performance against the reflected-

channel estimation quality λr. TD3 marginally outperforms

PPO for both channel scenarios in the case M = 32, achieving

a 99% robustness score at λr = 0.02, compared to PPO’s

93% for the fixed-channel full uncertainty model. On the

other hand, PPO performs better than TD3 for fixed-channels

scenario with a 10% margin for the case M = 128 under full

uncertainty model. The bottom figure shows the robustness

against channel uncertainties for higher and lower target rates

than those used for training. TD3 yields a higher robustness

score for the dynamic-channels case, achieving an average

non-outage performance of 90% at 0.4 bit/s/Hz compared

to PPO’s 45%, for both IRS elements cases. However, for

the fixed-channels scenario with a higher training target rate,

PPO scores better than TD3 across all categories where the

target rate is greater than 1 bit/s/Hz. PPO is able to maintain

a robustness score over 70% when the requested target rate

is 20% higher than that used for training. Overall, the PPO

agent’s performance is more consistent, which suggests that it
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Fig. 2: PPO and TD3 convergence for fixed (top) and dynamic

(bottom) channels.

is more suitable for fixed-channel scenarios with a wider range

of IRS elements. On the other hand, the TD3 agent performs

better in the dynamic-channels case, especially with a smaller

number of IRS elements. Furthermore, PPO is much faster to

train and requires less hyperparameter tuning than TD3.

V. CONCLUSION

In this paper, we proposed a DRL-based robust beamform-

ing design for a downlink, IRS-assisted MISO-NOMA system.

In particular, an outage-constrained robust design problem

with unbounded channel uncertainties was considered. The

non-convex optimization problem was reformulated into an RL

environment. The PPO and TD3 agents were then developed to

efficiently solve the robust design problem jointly in terms of

the beamforming vectors and phase shifts of IRS elements.

Both agents were able to achieve robust performance for

both fixed and dynamic channels. The agents were capable of

generalizing their robust policies to any set of channels within

the cell radius in the case of dynamic channels. Furthermore,

the computational complexity of the trained actor network

for both agents is considered very low for the robust design

problem, which makes DRL methods more attractive for

latency-sensitive applications.
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