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In this paper we develop the Gerber-Shiu theory for the classic and dual discrete risk processes 
in a Markovian (regime switching) environment. In particular, by expressing the Gerber-Shiu 
function in terms of potential measures of an upward (downward) skip-free discrete-time and 
discrete-space Markov Additive Process (MAP), we derive closed form expressions for the Gerber-
Shiu function in terms of the so-called (discrete) 𝐖𝑣 and 𝐙𝑣 scale matrices, which were introduced 
in [27]. We show that the discrete scale matrices allow for a unified approach for identifying the 
Gerber-Shiu function as well as the value function of the associated constant dividend barrier 
problems.

1. Introduction

Gerber-Shiu theory lies at the heart of modern risk and ruin theory as a unifying method of analysis for a number of popular risk 
measures via the so-called expected discounted penalty or Gerber-Shiu (G-S) function. Shortly after its introduction in the seminal 
paper [15], the G-S function received a great deal of attention for a variety of risk models and has led to a huge library of literature, 
see [9], [16] and [24], to name only a select few. Following these initial developments, G-S theory attracted further attention with its 
versatility being explored within more exotic risk models, e.g. investment income ([28]) and dividend barriers ([32], [35]), to name 
a few. In fact, over the years the initial construction of the G-S function has been adapted to include further risk related quantities, 
e.g. the minima prior to ruin [5] and the number of claims until ruin [12], without altering the tractability of its results and G-S 
theory has now become an umbrella term for a number of other risk related quantities including the expected discounted dividends 
and accumulated capital injections until ruin, to name a few. For a general overview of the G-S literature, the readers are directed to 
[2], [21] and references therein.

One particular class of continuous-time risk models for which G-S theory has been developed in more recent years are Lévy 
insurance risk models, see for example [3], [13] and [21]. For this general class of processes, for which a number of classical risk 
models can be seen as special cases: the compound Poisson, diffusion and Poisson jump-diffusion models, the G-S function can be 
expressed in terms of the so-called 𝑊 (𝑞) and 𝑍(𝑞) scale functions, which provide an over-arching representation for many previously 
derived expressions. In fact, this unifying approach has been shown to hold in the even larger class of Markov additive risk processes 
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(MAPs), for which an external Markov process influencing the underlying distribution of the risk process is considered (also known 
as Markov-modulation), via the existence of so-called scale matrices, see [11].

The discrete-time analogue of the G-S theory (with and without dividend barriers) has also received some attention over the years 
but to a much lesser extent to that of the continuous-time setting and only for specific risk models. For example, ruin probabilities and 
other risk related quantities for the compound binomial risk model can be found in [7] and [33], whilst [34] derive a recursive ex-
pression for the G-S function itself in a discrete-time renewal risk model with arbitrary inter-arrival claim times. Markov-modulation 
has also been considered in the discrete-time setting through so-called semi-Markov models introduced in [29], [30] and [31], where 
special cases of the G-S function were considered and later generalised in [8] who derive recursive formulae for the survival prob-
abilities under weaker conditions. More recently, [7] derive a closed form expression for the expected discounted dividends for the 
semi-Markov risk model in terms of an auxiliary function satisfying a recursive expression, whilst [20] obtain a matrix expression 
for the G-S function for the dual semi-Markov risk model which is then used to determine Parisian type ruin probabilities. Although 
each of the papers mentioned above derive individual results for the G-S function and other related quantities, to the best of the 
authors’ knowledge, there does not exist an over-arching, unifying set of expressions for G-S theory in discrete-time like those of the 
scale functions/matrices for MAPs in the continuous-time setting.

The aim of this paper is to develop this general theory and derive such unifying expressions for the G-S function and the expected 
discounted dividends until ruin for a general discrete Markov additive-type risk model (Markov-modulated random walk) and its 
‘dual’ counterpart in terms of discrete scale matrices. It is worth highlighting here that some of the results in this paper have been 
considered by other authors using different methods and techniques, which will be discussed throughout the paper. However, the 
purpose of this paper is to demonstrate the broad application and power of the discrete scale matrices and show how this unifying 
approach can be used to derive known as well as other, hereto unsolved, results in risk theory. This is done by first deriving results 
from potential theory which provides a connection between the G-S function and the fluctuation theory results for a Markov additive 
chain derived in [27]. Finally, the reader will notice that the form of the results presented in this paper appears to match those in 
the continuous setting and will be highlighted throughout (see for example [11], [17], and reference therein). This is not surprising, 
however, the discrete setting requires different methods, providing some subtle but interesting differences and additional tools; most 
notably access to recursive type results and their computational benefits. As such, an additional contribution of this paper is to 
present these differences between the theories and discuss their nuances/benefits for computation of the risk quantities of interest.

The rest of this paper is organised as follows: In Section 2, we introduce a general Markov additive-type risk model, its dual 
counterpart and the corresponding G-S functions. In Section 3, we present an overview of the results from fluctuation theory of 
Markov additive chains that are utilised in the subsequent sections to derive expressions for the G-S function and expected discounted 
dividends until ruin. In Section 4, we derive results for the associated potential measure of the risk process, which allows us to find 
closed form expressions for the G-S functions. Finally, within Section 4, we introduce the value function for the expected discounted 
dividends until ruin and use the previous theory to derive closed form expressions for these quantities for, both, the regular and the 
dual Markov additive risk models.

2. Risk models and Gerber-Shiu function

2.1. Regular risk process

Let us define a discrete-time risk process, denoted {𝑈𝑛}𝑛∈ℕ, which models the reserve of an insurer at time 𝑛 ∈ ℕ, by

𝑈𝑛 = 𝑢+ 𝑛−

𝑛∑
𝑖=1

𝑍𝑖, (2.1)

where 𝑢 ∈ ℕ represents the insurers (integer) initial reserve, premium is received at a unit rate per period of time an {𝑍𝑘}𝑘∈ℕ+ is a 
sequence of integer claim sizes describing the claim size at period 𝑘 ∈ ℕ+. This simple model is known within the literature as the 
compound binomial risk model and was first introduced as a discrete counter part to the continuous-time Poisson risk model in [14].

Within a Markovian environment, the above risk process is further influenced by an underlying discrete-time homogeneous 
Markov chain, denoted by {𝐽𝑛}𝑛∈ℕ with finite state space 𝐸 = {1,2,… ,𝑁}, which describes the phase of the risk process at period 
𝑛 ∈ℕ having transition probability matrix 𝐏, with (𝑖, 𝑗)-th element

𝑝𝑖𝑗 ∶= ℙ
(
𝐽1 = 𝑗|𝐽0 = 𝑖

)
(2.2)

and influences the risk process, {𝑈𝑛}𝑛∈ℕ, through the claim size distributions. That is, we assume that the random non-negative claim 
amounts, namely {𝑍𝑘}𝑘∈ℕ+ , are conditionally independent and identically distributed (i.i.d.) random variables, given {𝐽𝑘−1 = 𝑖}, with 
distribution described by the probability mass matrix 𝚲(⋅), with (𝑖, 𝑗)-th element

𝜆𝑖𝑗 (𝑚) ∶= ℙ(𝑍1 =𝑚,𝐽1 = 𝑗|𝐽0 = 𝑖), for 𝑚 = 0,1,2,… , (2.3)

and finite means 𝔼(𝑍1𝕀(𝐽1=𝑗)
|𝐽0 = 𝑖) <∞ for all 𝑖, 𝑗 ∈𝐸. We point out, due to its importance in the following, that the claim amounts 

{𝑍𝑘}𝑘∈ℕ+ have a mass point at zero with probability 𝜆𝑖𝑗 (0) > 0 for some, 𝑖, 𝑗 ∈𝐸.
Due to the models phase dependencies described above, it will be convenient in this paper to introduce a probability mea-

sure matrix ℙ 
(
⋅, 𝐽𝑛

)
and corresponding expectation operator matrix 𝔼 

(
⋅ ;𝐽𝑛

)
, having (𝑖, 𝑗)-th elements ℙ(⋅, 𝐽𝑛 = 𝑗|𝐽0 = 𝑖) and 

𝔼 
(
⋅𝕀(𝐽𝑛=𝑗)

|𝐽0 = 𝑖
)
, respectively, for 𝑖, 𝑗 ∈𝐸.
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Of principle interest within G-S theory are the distributional properties related to the time of ruin which are obtained via the 
so-called G-S function. For the discrete-time Markovian risk model given in Eq. (2.1), we define the time of ruin by

𝜏0 = inf{𝑛 ∈ ℕ ∶𝑈𝑛 ⩽ 0},

with 𝜏0 =∞ if 𝑈𝑛 > 0 for all 𝑛 ∈ ℕ and the G-S function, denoted 𝜙(𝑢), by

𝜙(𝑢) = 𝜶
⊤
𝚽(𝑢)𝒆, (2.4)

where 𝜶⊤ =
(
𝛼1,… , 𝛼𝑁

)
with 𝛼𝑖 = ℙ 

(
𝐽0 = 𝑖

)
, for 𝑖 ∈ 𝐸, denotes the initial distribution vector of {𝐽𝑛}𝑛∈ℕ, 𝒆 is the column vector of 

units and the 𝑁 -dimensional square matrix 𝚽(𝑢) has (𝑖, 𝑗)-th element

𝜙𝑖𝑗 (𝑢) ∶= 𝔼

[
𝑣𝜏0𝜔(𝑈 𝜏0−1

, |𝑈 𝜏0
|)𝕀(𝜏0<∞,𝐽𝜏=𝑗)

|𝐽0 = 𝑖,𝑈0 = 𝑢
]
, (2.5)

with 𝜙𝑖𝑗 (0) = 𝜔(0, 0) for 𝑖 = 𝑗 and 𝜙𝑖𝑗 (0) = 0 otherwise. The function 𝜔 ∶ ℕ+ × ℕ → ℝ+ (non-negative real line) denotes a penalty 
function and 𝑣 ∈ (0, 1] is a discounting factor. For the case where 𝑣 = 1 and 𝜔(⋅, ⋅) ≡ 1, the G-S functions, 𝜙𝑖𝑗 (𝑢), reduce to the 
conditional infinite-time ruin probabilities

𝜓𝑖𝑗 (𝑢) = ℙ

(
𝜏0 <∞, 𝐽𝜏0 = 𝑗|𝐽0 = 𝑖,𝑈0 = 𝑢

)
. (2.6)

Remark 1. The definition of the ruin time 𝜏0 given above is similar to [14], whilst other authors define the ruin time in discrete 
models as the first time the reserve takes strictly negative values (see for example [33]).

Remark 2. It is worth noting that the G-S function defined above could be further generalised by considering a Markov dependent 
penalty function, 𝜔𝑖𝑗 (⋅). As the aim of this paper is to present a unifying theory which can be used to obtain known results from 
the G-S literature, this generalisation is not included explicitly here to allow for the comparison to previous findings. However, the 
reader should keep in mind that the following results are implicitly more general than they may appear.

2.2. Dual risk process

In addition to the risk process given in Eq. (2.1), we are also interested in the distribution of the associated ‘dual’ risk process 
within a Markovian regime-switching environment. The dual risk process, denoted {𝑈𝑛}𝑛∈ℕ, represents a process with (deterministic) 
unit losses per period and random (integer) gains. As such, the dynamics (jumps) of the dual risk process are equivalent in distribution 
to those of the reflection of a ‘regular’ process as defined in Eq. (2.1), i.e.

{Δ𝑈𝑛}𝑛∈ℕ
𝑑
= {−Δ𝑈𝑛}𝑛∈ℕ, (2.7)

where Δ𝑈𝑛 =𝑈𝑛 −𝑈𝑛−1. Throughout this paper, the dual counterparts of risk processes and associated risk measures will be denoted 
with the hat symbol, ̂⋅. Note that, for the dual risk process, the ‘surplus’ experiences at most a unit decrease per unit of time and thus, 
it follows that 𝑈 𝜏0−1

= 1 and 𝑈 𝜏0
= 0 a.s. In this case, the conditional G-S functions for the dual risk process within initial reserve 

𝑢 ∈ ℕ are defined by

𝜙𝑖𝑗 (𝑢) = 𝔼

[
𝑣𝜏0 𝕀(𝜏0<∞,𝐽𝜏0

=𝑗)|𝐽0 = 𝑖,𝑈0 = 𝑢
]
, (2.8)

where

𝜏0 = inf{𝑛 ∈ ℕ ∶𝑈𝑛 ⩽ 0},

and the unconditional G-S function is given by

𝜙(𝑢) = 𝜶
⊤
𝚽̂(𝑢)𝒆, (2.9)

where 𝚽̂(𝑢) is a square matrix with elements 𝜙𝑖𝑗 (𝑢) for 𝑖, 𝑗 ∈𝐸, as defined in Eq. (2.8). The corresponding ruin probabilities, denoted 
𝜓̂𝑖𝑗 (𝑢), can be recovered by simply setting 𝑣 = 1 for all 𝑖, 𝑗 ∈𝐸.

The key observation in this paper is that the risk process {𝑈𝑛}𝑛∈ℕ defined in Eq. (2.1) and its dual counterpart, are in fact both of 
the form of a discrete-time and discrete space (lattice) MAP, also known as a Markov Additive Chain (MAC). As such, we can exploit 
the fluctuation theory developed in [27] for this general class of processes and express the G-S function(s) in terms of so-called scale 
matrices. Hence, in Section 3, we will introduce the theory for MACs, along with the key results and observation derived in [27], 
which will later be adapted to the insurance risk set-up as discussed above. In Section 4, we derive semi-explicit results for the G-S 
functions defined above as well as results for the associated constant dividend barrier strategies of both the classic and dual risk 
models.
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3. Preliminaries of Markov additive chains

Consider a bivariate discrete-time Markov chain (𝑋, 𝐽 ) = {(𝑋𝑛, 𝐽𝑛)}𝑛∈ℕ on the product space ℤ × 𝐸, where 𝑋𝑛 ∈ ℤ describes 
the level process, whilst 𝐽𝑛 ∈ 𝐸 is an underlying Markov chain as defined in Section 2, known as the phase process which affects the 
dynamics of {𝑋𝑛}𝑛∈ℕ. It is assumed throughout that the underlying Markov chain {𝐽𝑛}𝑛∈ℕ is irreducible and positive recurrent, such 
that its stationary distribution 𝝅⊤ =

(
𝜋1,… , 𝜋𝑁

)
exists and is unique. The process (𝑋, 𝐽 ) is known as a MAC if it satisfies the so-called 

Markov additive property. That is, given that {𝐽𝑇 = 𝑖}, for any 𝑇 ∈ℕ and phase 𝑖 ∈𝐸, the Markov chain {(𝑋𝑇+𝑛 −𝑋𝑇 , 𝐽𝑇+𝑛)}𝑛∈ℕ is 

independent of 𝑇 (the natural filtration to which the bivariate process (𝑋, 𝐽 ) is adapted) and {(𝑋𝑇+𝑛−𝑋𝑇 , 𝐽𝑇+𝑛)} 
𝑑
= {(𝑋𝑛−𝑋0, 𝐽𝑛)}, 

given {𝐽0 = 𝑖}. It is easy to see that any MAC is equivalent to a general Markov-modulated random walk where the level process 
{𝑋𝑛}𝑛∈ℕ has representation

𝑋𝑛 = 𝑥+ 𝑌1 + 𝑌2 +⋯+ 𝑌𝑛, (3.1)

where 𝑋0 = 𝑥, and {𝑌𝑘}𝑘∈ℕ+ is a sequence of conditionally i.i.d. random variables whose distributions depend on the phase process 
{𝐽𝑛}𝑛∈ℕ and described by the joint probability matrix 𝐀𝑚, for 𝑚 ∈ℤ, having (𝑖, 𝑗)-th element

𝑎𝑖𝑗 (𝑚) ∶= ℙ
(
𝑌1 =𝑚,𝐽1 = 𝑗|𝐽0 = 𝑖

)
. (3.2)

Although the above definition holds for a general MAC with jumps in either direction, in this paper we are primarily concerned 
with so-called upward skip-free or ‘spectrally negative’ MACs. That is, we consider MACs that can ‘drift’ upwards by a maximum of 
one per unit time and can experience negative jumps only, i.e. 𝐀𝑚 = 𝟎 (zero matrix), ∀𝑚 ⩾ 2. For MACs with downward ‘drift’ and 
positive jumps (dual model), we can simply employ a reflection argument (see Section 4.2).

It is well known that random walks can be fully characterised by their probability generating functions (p.g.f.) due to their 
uniqueness and play an important role in their distributional properties. Introducing the notation 𝔼𝑥(⋅) ∶= 𝔼(⋅|𝑋0 = 𝑥) with 𝔼(⋅) ≡
𝔼0(⋅), where similar notation is employed for the associated probability measures, for 𝑋0 = 0, the p.g.f. of the level process {𝑋𝑛}𝑛⩾0, 
is given by

𝔼
(
𝑧−𝑋𝑛 ;𝐽𝑛

)
=
(
𝐅(𝑧)

)𝑛
, with 𝐅(𝑧) ∶= 𝔼

(
𝑧−𝑋1 ;𝐽1

)
=

∞∑
𝑚=−1

𝑧𝑚𝐀−𝑚.

Moreover, it was shown in [1] that the Perron-Frobenius eigenvalue of the matrix 𝐅(𝑧), denoted 𝜅(𝑧), determines the asymptotic 
behaviour of 𝑋𝑛, i.e. 𝑋𝑛 → +(−)∞, if and only if 𝜅′(1) < (>) 0, where 𝜅′(1) = −𝔼𝝅

(
𝑋1

)
= 𝝅

⊤∑∞
𝑚=−1𝑚 𝐀−𝑚𝐞, with 𝔼

𝝅 (⋅) denoting 
the expectation operator under the assumption that 𝐽0 has stationary initial probability (see [1] and [27] for more details).

Remark 3. These conditions correspond to the so-called net-profit condition often implemented in the risk theory literature to ensure 
that ruin does not occur a.s., and will be implemented as and where necessary in Section 4.

For the remainder of this paper, it will be assumed that the matrix 𝐀1 is non-singular and thus, its inverse 𝐀
−1
1
exists. Although this is 

a common assumption, it is necessary to present the following results in a consistent way which align with the existing literature [see 
Theorem 2]. However, [18] and [27], show that the following general results still hold for arbitrary 𝐀1 but at the cost of familiar 
representation and comparability to existing results [see Theorem 2 of [27]].

3.1. Occupation times

Occupation times describe the number of periods (time) that the MAC (𝑋, 𝐽 ) spends in any given state and forms another 
fundamental quantity within its analysis.

Let 𝐋𝑣(𝑥, 𝑛) denote the occupation mass matrix describing the discounted time the process {(𝑋𝑛, 𝐽𝑛)}𝑛∈ℕ spends in state (𝑥, 𝑗) ∈
ℤ ×𝐸 - up to and including time 𝑛 ∈ ℕ - with (𝑖, 𝑗)-th element

(
𝐋𝑣(𝑥, 𝑛)

)
𝑖𝑗
= 𝔼

( 𝑛∑
𝑘=0

𝑣𝑘𝕀(𝑋𝑘=𝑥,𝐽𝑘=𝑗)
|||𝐽0 = 𝑖

)
. (3.3)

Then, as shown in [27, Theorem 1], the 𝑧-transform of the above occupation mass matrix can be expressed in terms of the funda-
mental p.g.f. 𝐅(𝑧) of the MAC by

∑
𝑥∈ℤ

𝑧−𝑥𝐋𝑣(𝑥,∞) = (𝐈− 𝑣𝐅(𝑧))−1 , for 𝑣, 𝑧 ∈ (0,1], (3.4)

such that 𝐈 − 𝑣𝐅(𝑧) is non-singular.
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3.2. Exit problems and scale matrices

Let us define 𝜏±𝑦 , to be the first time the level process {𝑋𝑛}𝑛∈ℕ up(down)-crosses the level 𝑦 ∈ℤ, such that

𝜏+𝑦 = inf{𝑛 ⩾ 0 ∶𝑋𝑛 ⩾ 𝑦} and 𝜏−𝑦 = inf{𝑛 ⩾ 0 ∶𝑋𝑛 ⩽ 𝑦}, (3.5)

and the so-called hitting times as

𝜏{𝑦} = inf{𝑛 ∈ℕ ∶𝑋𝑛 = 𝑦}. (3.6)

Moreover, let 𝐆𝑣 denote the transform of the first hitting time of the upper level 𝑦 = 1, given 𝑋0 = 0, such that

𝔼
(
𝑣𝜏

+
1 ;𝐽𝜏+

1

)
=𝐆𝑣, (3.7)

with 𝐆1 ≡ 𝐆. This is known as one of the fundamental matrices of MACs, each of which play a vital role in the fluctuation theory 
(see [19] for the corresponding matrices in the continuous setting). Recall that in this paper we are concerned only with ‘spectrally 
negative’ MACs for which the level process can increase at most one per unit time. A consequence of this is that the upward crossing 
time, 𝜏+𝑦 , for 𝑦 ⩾ 𝑥 = 𝑋0, is equivalent to the hitting time 𝜏

{𝑦} and we have 𝑋𝜏+𝑦
= 𝑋𝜏{𝑦} = 𝑦. Hence, the upward exit time can be 

expressed solely in terms of the matrix 𝐆𝑣 , as shown below.

Theorem 1 (One-sided upward). For 𝑋0 = 𝑥, 𝑣 ∈ (0, 1] and 𝑎 ⩾ 𝑥, the transform of the upward crossing/hitting time 𝜏+𝑎 satisfies

𝔼𝑥

(
𝑣𝜏

+
𝑎 ;𝐽𝜏+𝑎

)
=𝐆

𝑎−𝑥
𝑣 , (3.8)

where the matrix 𝐆𝑣 is the right solution of the matrix equation 𝐅(⋅) = 𝑣−1𝐈.

Remark 4. The matrix 𝐆𝑣, as the right solution of the above matrix equation, can only be found explicitly in a few special cases. 
However, there exists a number of numerical algorithms that can be employed to obtain approximations. For a detailed survey of 
such algorithms, see [6] and references therein. The left solution of this matrix equation is also of importance to the analysis of exit 
problems and is associated with the time-reversed counterpart of 𝐆𝑣 (see Section 3.3). Moreover, the matrix 𝐆𝑣 can be shown to be 
invertible as long as 𝐀1 is invertible (non-singular) (see Remark 5 of [27] for details).

Similarly the following theorems from [27, Theorem 2 and Corollary 3], the two-sided exit problems (upward and downward) can 
be expressed in terms of two other fundamental matrices, known as the 𝐖𝑣(⋅) and 𝐙𝑣(⋅) scale matrices.

Theorem 2 (Two-sided upward). For 𝑋0 = 𝑥 ∈ [0, 𝑎] and 𝑣 ∈ (0, 1], there exists a matrix 𝐖𝑣 ∶ℕ →ℝ𝑁×𝑁 with 𝐖𝑣(0) = 𝟎 and 𝐖1(⋅) =∶
𝐖(⋅), which is invertible such that

𝔼𝑥

(
𝑣𝜏

+
𝑎 ; 𝜏+𝑎 < 𝜏−

0
, 𝐽𝜏+𝑎

)
=𝐖𝑣(𝑥)𝐖𝑣(𝑎)

−1, (3.9)

where 𝐖𝑣(⋅) satisfies

∞∑
𝑛=0

𝑧𝑛𝐖𝑣(𝑛) =
(
𝑣𝐅(𝑧) − 𝐈

)−1

, (3.10)

for 𝑧 ∈ (0, 1] and 𝑧 ∉ Γ(𝐆𝑣) with Γ(𝐌) being the set of all eigenvalues for the matrix 𝐌. Additionally, we have the alternative representation

𝐖𝑣(𝑛) =𝐆
−𝑛
𝑣 𝐋

+
𝑣 (𝑛), (3.11)

where 𝐋+
𝑣 (𝑛) ∶= 𝐋𝑣(0, 𝜏

+
𝑛 − 1) denotes the occupation time at level 0 before hitting the upper level 𝑛 ∈ ℕ+ for a general, unrestricted MAC.

Theorem 3 (Two-sided downward). For 𝑋0 = 𝑥 ∈ [0, 𝑎], 𝑣 ∈ [0, 1] and at least 𝑧 ∈ [0, 1] such that 𝑧 ∉ Γ 
(
𝐆𝑣

)
, we have

𝔼𝑥

(
𝑣
𝜏−
0 𝑧

−𝑋𝜏−
0 ; 𝜏−

0
< 𝜏+𝑎 , 𝐽𝜏−0

)
= 𝑧−1

[
𝐙𝑣(𝑧,𝑥− 1) −𝐖𝑣(𝑥)𝐖𝑣(𝑎)

−1
𝐙𝑣(𝑧, 𝑎− 1)

]
, (3.12)

where

𝐙𝑣(𝑧, 𝑛) = 𝑧−𝑛
[
𝐈+

𝑛∑
𝑘=0

𝑧𝑘𝐖𝑣(𝑘)
(
𝐈− 𝑣𝐅(𝑧)

)]
, (3.13)

with 𝐙𝑣(𝑧, 𝑛) = 𝑧−𝑛𝐈 for 𝑛 ⩽ 0 and 𝐙1(𝑧, 𝑛) =∶ 𝐙(𝑧, 𝑛), for all 𝑧.

Note that a joint transform of this kind was not given in Theorem 2 since, by the upward skip-free property of the MAC, it follows 
that 𝑋𝜏+𝑎

= 𝑎 a.s.
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Finally, we have a corollary for the discounted deficit below zero for the two-sided exit problem, which will play a vital role in 
the derivation of the dual dividend problem in Section 4.

Corollary 1. For 𝑥 ∈ (0, 𝑎], 𝑣 ∈ [0, 1] and at least 𝑧 ∈ [0, 1] such that 𝑧 ∉ Γ 
(
𝐆𝑣

)
, we have

𝔼𝑥

(
𝑣
𝜏−
0 𝑋𝜏−

0
;𝐽𝜏−

0
, 𝜏−

0
< 𝜏+𝑎

)
=
[
𝐙𝑣(1, 𝑥− 1) −𝐖𝑣(𝑥)𝐖𝑣(𝑎)

−1
𝐙𝑣(1, 𝑎− 1)

]

−
[
𝐙
′
𝑣(1, 𝑥− 1) −𝐖𝑣(𝑥)𝐖𝑣(𝑎)

−1
𝐙
′
𝑣(1, 𝑎− 1)

]

=𝐘𝑣(𝑥− 1) −𝐖𝑣(𝑥)𝐖𝑣(𝑎)
−1
𝐘𝑣(𝑎− 1),

where 𝐙′
𝑣(1, 𝑥) =

𝑑

𝑑𝑧
𝐙𝑣(𝑧, 𝑥)

|||𝑧=1 and

𝐘𝑣(𝑥) = 𝐙𝑣(1, 𝑥) −𝐙
′
𝑣(1, 𝑥), (3.14)

with 𝐘𝑣(0) = 𝐙𝑣(1, 0) = 𝐈.

Proof. To prove this result, we first note that

𝔼𝑥

(
𝑣
𝜏−
0 𝑋𝜏−

0
;𝐽𝜏−

0
, 𝜏−

0
< 𝜏+𝑎

)
= −

𝑑

𝑑𝑧
𝔼𝑥

(
𝑣
𝜏−
0 𝑧

−𝑋𝜏−
0 ;𝐽𝜏−

0
, 𝜏−

0
< 𝜏+𝑎

)|||𝑧=1.
Hence, the result follows by differentiating the right hand side of Eq. (3.12) of Theorem 3, setting 𝑧 = 1 and taking the negative of 
the resulting expression. □

Remark 5. The above results rely on the identification of the 𝐖𝑣 scale matrix, which can be obtained by inverting the transform 
given in Eq. (3.10), using standard inversion techniques. However, a benefit of the discrete setting is that the 𝑧-transform can also 
be ‘inverted’ via coefficient matching or, as is shown in [27], as the solution of recursive equation.

3.3. Time reversal

It is well known within the literature of random walks that time-reversal and the corresponding ‘duality lemma’ (see [10] for 
details) give rise to a number of interesting distributional results. This idea can be easily extended to MACs, although extra care has 
to be taken regarding the phase transitions of {𝐽𝑛}𝑛∈ℕ in reversed time.

Let us define the so-called time-reversed process by (𝑋, 𝐽 ) ∶= {(𝑋𝑛, 𝐽𝑛)}𝑛∈ℕ such that for a fixed 𝑇 ∈ℕ, we have

𝑋𝑛 ∶=𝑋𝑇 −𝑋𝑇−𝑛 and 𝐽𝑛 ∶= 𝐽𝑇−𝑛. (3.15)

Then, if we assume that {𝐽𝑛}𝑛∈ℕ has stationary initial distribution, i.e. 𝐽0
𝑑
= 𝝅, it follows that {𝐽𝑛}𝑛∈ℕ is again a homogeneous

Markov chain with transition probability matrix, denoted 𝐏̃, given by

𝐏̃ = diag(𝝅)−1𝐏⊤diag(𝝅), (3.16)

and the time-reversed process (𝑋, 𝐽 ) is itself a MAC with probability generating matrix 𝐅̃(𝑧), given by

𝐅̃(𝑧) =

∞∑
𝑚=−1

𝑧𝑚𝐀̃−𝑚 = diag(𝝅)−1𝐅(𝑧)⊤diag(𝝅).

Now, if we define 𝐆̃𝑣 to be the time-reversed counterpart of 𝐆𝑣, such that

𝐆̃𝑣 = 𝔼

(
𝑣𝜏

+
1 ;𝐽𝜏+

1

)
,

where 𝜏+
1
= inf{𝑛 ∈ ℕ ∶𝑋𝑛 ⩾ 1}, then it can be shown that

𝐑𝑣 ∶= diag(𝝅)
−1
𝐆̃

⊤
𝑣 diag(𝝅). (3.17)

is the left solution of 𝐅(⋅) = 𝑣−1𝐈. The matrix 𝐑𝑣 is considered another of the fundamental matrices of a MAC, along with 𝐆𝑣 and 𝐋𝑣. 
In a similar way to 𝐆𝑣, this matrix can only be obtained explicitly in some special cases but can be approximated using the numerical 
methods discussed in Remark 4.

Remark 6. When reduced to the scalar case, the fundamental matrices 𝐆 and 𝐑 coincide and correspond to the smallest (positive) 
root of the (discrete) Lundberg equation, known in the literature as Lundberg’s coefficient and studied in great detail (see [4] and 
references therein).
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4. Main results

In this section, we present the main results for the G-S function and expected accumulated discounted dividends until ruin for the 
regular and dual risk processes defined in Eqs. (2.1) and (2.7), respectively.

The crucial observation leading to the results of this section is that discrete-time risk process, {𝑈𝑛}𝑛∈ℕ, paired with the influencing 
external Markov chain {𝐽𝑛}𝑛∈ℕ, forms an upward skip-free MAC, with initial value 𝑈0 = 𝑢 ∈ ℕ. To see this, note that the surplus 
process can alternatively be expressed as

𝑈𝑛 = 𝑢+ 𝑌1 +⋯+ 𝑌𝑛,

where the variables 𝑌𝑘 ∶= 1 −𝑍𝑘 for 𝑘 ∈ ℕ+, form a sequence of conditionally i.i.d. variables with distribution depending on {𝐽𝑛}𝑛∈ℕ. 
This is identical to the form of a MAC as described in Eq. (3.1), with 𝑈0 = 𝑢 ∈ ℕ and 𝐀𝑚 =𝚲(1 −𝑚) for 𝑚 ⩽ 1. As such, it follows that 
the ruin times 𝜏0 and 𝜏0 for the regular and dual risk processes can be described in terms of downward and upward (by reflection 
arguments) crossing times of a MAC, respectively.

We will now use these facts, along with the results given in Section 3, to derive semi-explicit expressions for the G-S function 
and expected accumulated discounted dividends until ruin for both risk process. In the following, it will be assumed that the natural 
net profit conditions are in force. That is, for the regular risk process we assume that 𝜅′(1) < 0 such that 𝑈𝑛 → +∞ and, based on a 
reflection argument, for the dual risk model we assume 𝜅′(1) > 0, such that 𝑈𝑛 → +∞.

4.1. Gerber-Shiu function - regular risk process

It is well known that for spectrally-negative Lévy processes, the G-S function can be obtained in terms of so-called q-potential 
(resolvent) measures and their corresponding densities, which describe the expected (discounted) time the Lévy process spends at 
a given level (see [21] and references therein). Moreover, it has been shown in [17], that the potential measures also exist in the 
more general MAP framework and can be expressed in terms of the continuous-time occupation densities and scale matrices. In this 
section, we will show that the G-S function for a discrete-time MAC can be written in terms of so-called v-potential functions and 
derive expressions for these in terms of scale matrices and other fundamental matrices of the MAC.

For 𝑖, 𝑗 ∈𝐸, let us denote by 𝐻 (𝑣)
𝑖𝑗

(𝑥, 𝜏0; 𝑢), the v-potential function of the MAC {(𝑈𝑛, 𝐽𝑛)}𝑛∈ℕ, with initial level 𝑈0 = 𝑢 ∈ℕ+, killed 
on exiting from the set of positive integers, which is defined by

𝐻
(𝑣)
𝑖𝑗

(𝑥, 𝜏0;𝑢) = 𝔼𝑢

[
∞∑
𝑛=0

𝑣𝑛𝕀{𝑈𝑛=𝑥,𝐽𝑛=𝑗,𝑛<𝜏0}

||||𝐽0 = 𝑖

]

=

∞∑
𝑛=0

𝔼𝑢

[
𝑣𝑛𝕀(𝑈𝑛=𝑥,𝐽𝑛=𝑗,𝑛<𝜏0)

|𝐽0 = 𝑖
]

=

∞∑
𝑛=0

𝑣𝑛ℙ𝑢

(
𝑈𝑛 = 𝑥,𝐽𝑛 = 𝑗, 𝑛 < 𝜏0|𝐽0 = 𝑖

)
. (4.1)

Then, by employing the law of total probability, the G-S function defined in Eq. (2.5), can be expressed in terms of 𝐻 (𝑣)
𝑖𝑗

(⋅, 𝜏0; 𝑢) as 
shown in the following proposition.

Proposition 1. For 𝑢 ∈ ℕ+ and 𝑖, 𝑗 ∈𝐸, the G-S functions 𝜙𝑖𝑗 (𝑢), can be expressed as

𝜙𝑖𝑗 (𝑢) = 𝑣

∞∑
𝑘=1

∞∑
𝑚=𝑘

𝑁∑
𝑙=1

𝑤(𝑘,𝑘−𝑚)𝐻
(𝑣)

𝑖𝑙
(𝑘, 𝜏0;𝑢)𝜆𝑙𝑗 (𝑚+ 1) (4.2)

where 𝑤(⋅, ⋅) is the penalty function and 𝜆𝑖𝑗 (⋅) is the phase-dependent claim size distribution.

Proof. Recalling the definition of the G-S functions 𝜙𝑖𝑗 (𝑢) from Eq. (2.5), the law of total probability gives

𝜙𝑖𝑗 (𝑢) =

∞∑
𝑛=1

∞∑
𝑘=1

∞∑
𝑚=𝑘

𝑁∑
𝑙=1

𝑣𝑛𝑤(𝑘,𝑚− 𝑘)

×ℙ𝑢

(
𝜏0 = 𝑛,𝑈𝑛−1 = 𝑘,𝑈𝑛 = 𝑘−𝑚,𝐽𝑛 = 𝑗, 𝐽𝑛−1 = 𝑙|𝐽0 = 𝑖

)

=

∞∑
𝑛=1

∞∑
𝑘=1

∞∑
𝑚=𝑘

𝑁∑
𝑙=1

𝑣𝑛𝑤(𝑘,𝑚− 𝑘)

×ℙ𝑢

(
𝑈

𝑛−1
> 0,𝑈𝑛−1 = 𝑘,𝐽𝑛−1 = 𝑙|𝐽0 = 𝑖

)
ℙ
(
𝑍𝑛 =𝑚+ 1, 𝐽𝑛 = 𝑗|𝐽𝑛−1 = 𝑙

)

=

∞∑
𝑛=1

∞∑
𝑘=1

∞∑
𝑚=𝑘

𝑁∑
𝑙=1

𝑣𝑛𝑤(𝑘,𝑚− 𝑘)
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×ℙ𝑢

(
𝑈

𝑛−1
> 0,𝑈𝑛−1 = 𝑘,𝐽𝑛−1 = 𝑙|𝐽0 = 𝑖

)
𝜆𝑙𝑗 (𝑚+ 1)

where 𝑈
𝑛
∶= inf0⩽𝑘⩽𝑛{𝑈𝑘} and the second equality follows from the Markov property of {𝐽𝑛}𝑛∈ℕ along with the conditional i.i.d. 

property of the claim sizes. Then, after some re-arranging we obtain

𝜙𝑖𝑗 (𝑢) = 𝑣

∞∑
𝑘=1

∞∑
𝑚=𝑘

𝑁∑
𝑙=1

𝑤(𝑘,𝑚− 𝑘)

×

∞∑
𝑛=1

𝑣(𝑛−1)ℙ𝑢

(
𝑈

𝑛−1
> 0,𝑈𝑛−1 = 𝑘,𝐽𝑛−1 = 𝑙|𝐽0 = 𝑖

)
𝜆𝑙𝑗 (𝑚+ 1),

from which the result follows by noting that the summation in the last line is equivalent to the 𝑣-potential function 𝐻 (𝑣)

𝑖𝑙
(𝑘, 𝜏0; 𝑢)

defined in Eq. (4.1). □

The result of Proposition 1 provides a representation for the G-S function as long as we can identify the 𝑣-potential measures 
𝐻

(𝑣)
𝑖𝑗

(⋅, 𝜏0; 𝑢), for all 𝑖, 𝑗 ∈ 𝐸. Using a similar methodology to [17] (see also [11]) in the continuous setting, in the next theorem we 
show that the 𝑣-potential functions can actually be expressed in terms of the scale matrix 𝐖𝑣(⋅) and fundamental matrices associated 
to the MAC {(𝑈𝑛, 𝐽𝑛)}𝑛∈ℕ.

Theorem 4. Assume {𝐽𝑛}𝑛∈ℕ has stationary initial distribution 𝝅 and let 𝐇
(𝑣)(𝑥, 𝜏0; 𝑢) denote the 𝑁 -dimensional square matrix with (𝑖, 𝑗)-th 

element given by the 𝑣-potential function 𝐻 (𝑣)
𝑖𝑗

(𝑥, 𝜏0; 𝑢) for 𝑖, 𝑗 ∈𝐸. Then, for 𝑢 ∈ℕ+, we have

𝐇
(𝑣)(𝑥, 𝜏0;𝑢) =𝐖𝑣(𝑢)𝐑

𝑥
𝑣 −𝐖𝑣(𝑢− 𝑥),

where 𝐑𝑣 is the left solution of 𝐅(⋅) = 𝑣−1𝐈.

Proof. To begin, recall the definition of 𝐋+
𝑣 (𝑛) defined in Theorem 2 and let 𝐋𝑣 ∶= 𝐋𝑣(0, ∞) denote the occupation time at the level 

0 for an unrestricted MAC (with initial level 𝑥 = 0) over an infinite-time horizon. Then, by application of the strong Markov property 
and Markov additive property, it follows that

𝐋𝑣 = 𝐋
+
𝑣 (𝑛) + 𝔼

(
𝑣𝜏

+
𝑛 ;𝐽𝜏+𝑛

)
𝔼

(
𝑣𝜏

{−𝑛}
;𝐽𝜏{−𝑛}

)
𝐋𝑣

= 𝐋
+
𝑣 (𝑛) +𝐆

𝑛
𝑣 𝔼

(
𝑣𝜏

{−𝑛}
;𝐽𝜏{−𝑛}

)
𝐋𝑣, (4.3)

where 𝜏{𝑘} denotes the hitting time defined in Eq. (3.6). Re-arranging the above expression gives

𝔼

(
𝑣𝜏

{−𝑛}
;𝐽𝜏{−𝑛}

)
=𝐆

−𝑛
𝑣

[
𝐋𝑣 −𝐋

+
𝑣 (𝑛))

]
𝐋
−1
𝑣

=𝐆
−𝑛
𝑣 −𝐆

−𝑛
𝑣 𝐋

+
𝑣 (𝑛)𝐋

−1
𝑣

=𝐆
−𝑛
𝑣 −𝐖𝑣(𝑛)𝐋

−1
𝑣 ,

where, in the last equality, we have used the form of the scale matrix given in Eq. (3.11) of Theorem 2 and that fact that 𝐋−1
𝑣 exists 

since we assume that 𝐀1 is invertible (see Remark 5 of [27]). The above identity, along with Eq. (3.8), shows that for any 𝑛 ∈ℤ, we 
have

𝔼

(
𝑣𝜏

{𝑛}
)
=𝐆

𝑛
𝑣 −𝐖𝑣(−𝑛)𝐋

−1
𝑣 , (4.4)

where we have used the fact that 𝐖𝑣(−𝑛) = 𝟎 for 𝑛 ∈ ℕ.
Now, by recalling the definition of the 𝑣-potential function defined in Eq. (4.1), we can apply a similar idea to that of Eq. (4.3), 

to show that for 𝑘, 𝑢 ∈ ℕ+

𝐇
(𝑣)(𝑘, 𝜏0;𝑢) = 𝔼

(
𝑣𝜏

{𝑘−𝑢}
;𝐽𝜏{𝑘−𝑢}

)
𝐋𝑣 − 𝔼

(
𝑣𝜏

{−𝑢}
;𝐽𝜏{−𝑢}

)
𝔼

(
𝑣𝜏

{𝑘}
;𝐽𝜏{𝑘}

)
𝐋𝑣

=
[
𝔼

(
𝑣𝜏

{𝑘−𝑢}
;𝐽𝜏{𝑘−𝑢}

)
− 𝔼

(
𝑣𝜏

{−𝑢}
;𝐽𝜏{−𝑢}

)
𝐆

𝑘
𝑣

]
𝐋𝑣. (4.5)

Finally, by substituting the identity in Eq. (4.4) into the right hand side of the above expression, we have

𝐇
(𝑣)(𝑘, 𝜏0;𝑢) =𝐖𝑣(𝑢)𝐋

−1
𝑣 𝐆𝑣𝐋𝑣 −𝐖𝑣(𝑢− 𝑘),

and the proof is complete once we show that

𝐋
−1
𝑣 𝐆𝑣𝐋𝑣 =𝐑𝑣. (4.6)

To do this, first observe that by the strong Markov property, it follows that 𝐋𝑣(1, ∞) =𝐆𝑣𝐋𝑣 and thus



Applied Mathematics and Computation 467 (2024) 128491

9

Z. Palmowski, L. Ramsden and A.D. Papaioannou

𝐋
−1
𝑣 𝐆𝑣𝐋𝑣 = 𝐋

−1
𝑣 𝐋𝑣 (1,∞) . (4.7)

Now, if we define ̃𝐋𝑣 (𝑥,∞) to be the time-reversed counterpart of 𝐋𝑣 (𝑥,∞), then from Eq. (3.4) it is easy to see that

𝐋𝑣(𝑥,∞) = diag(𝝅)−1𝐋̃𝑣 (𝑥,∞)⊤ diag(𝝅)

for all 𝑥 ∈ℤ and thus

𝐋𝑣 (1,∞) = diag(𝝅)−1𝐋̃𝑣 (1,∞)⊤ diag(𝝅)

= diag(𝝅)−1
(
𝐆̃𝑣𝐋̃𝑣

)⊤

diag(𝝅)

= diag(𝝅)−1𝐋̃⊤
𝑣 𝐆̃

⊤
𝑣 diag(𝝅). (4.8)

Similarly, it follows that 𝐋𝑣 = diag(𝝅)
−1𝐋̃⊤

𝑣 diag(𝝅), such that

𝐋
−1
𝑣 = diag(𝝅)−1

(
𝐋̃
⊤
𝑣

)−1

diag(𝝅). (4.9)

Finally, combining Eqs. (4.7), (4.8) and (4.9), yields

𝐋
−1
𝑣 𝐆𝑣𝐋𝑣 = diag(𝝅)

−1
𝐆̃

⊤
𝑣 diag(𝝅) =𝐑𝑣,

which, by definition, is the left solution to the equation 𝐅(⋅) = 𝑣−1𝐈, as required. □

Combining the results from Proposition 1 and Theorem 4 above, leads to an expression for the G-S function in terms of the scale 
matrices and is presented in the following theorem.

Theorem 5. For 𝑢 = 0, the G-S function 𝜙(0) =𝑤(0, 0), whilst for 𝑢 ∈ℕ+, 𝜙(𝑢) is given by

𝜙(𝑢) = 𝝅
⊤
𝚽(𝑢)𝒆, (4.10)

where

𝚽(𝑢) = 𝑣

∞∑
𝑘=1

∞∑
𝑚=𝑘

𝑤(𝑘,𝑚− 𝑘)
(
𝐖𝑣(𝑢)𝐑

𝑘
𝑣 −𝐖𝑣(𝑢− 𝑘)

)
𝚲(𝑚+ 1). (4.11)

The above result is a fully discrete analogue of the those derived in [11] and [21] for the G-S function in the continuous setting. 
Analogously to the continuous case, the above result expresses the G-S function in terms of infinite summations. However, as was 
pointed out earlier on in this paper, an additional benefit of the discrete model is that a recursive expression can also be derived.

Proposition 2. For 𝑢 ∈ ℕ+, 𝚽(𝑢) satisfies the following recursive equation

𝚽(𝑢) =𝚲(0)𝚽(𝑢+ 1) +

𝑢−1∑
𝑘=0

𝚲(𝑘+ 1)𝚽(𝑢− 𝑘) +

∞∑
𝑘=𝑢

𝚲(𝑘+ 1)𝑤(𝑢, 𝑘− 𝑢)𝐈, (4.12)

where the initial value, 𝚽(1) is given by

𝚽(1) =

∞∑
𝑥=1

∞∑
𝑦=0

𝑤(𝑥, 𝑦)𝚲(0)−1𝐑𝑥
𝑣𝚲(𝑥+ 𝑦+ 1), . (4.13)

Proof. The recursive equation follows directly by conditioning on the first period of time, i.e. 𝑛 = 1. The initial value, 𝚽(1), can be 
found by setting 𝑢 = 1 in Theorem 5, yielding

𝚽(1) = 𝑣

∞∑
𝑘=1

∞∑
𝑚=𝑘

𝑤(𝑘,𝑘−𝑚)
(
𝐖𝑣(1)𝐑

𝑘
𝑣

)
𝚲(𝑚+ 1)

=

∞∑
𝑘=1

∞∑
𝑚=𝑘

𝑤(𝑘,𝑘−𝑚)𝚲(0)−1𝐑𝑘
𝑣𝚲(𝑚+ 1) (4.14)

and the result follows after a change of variable. □

Remark 7. Note that the initial condition in Eq. (4.13) remains in a form of infinite summations. However, for computational 
purposes we underline that a choice of 𝚲(⋅) with finite support, reduces the above expression to one with finite summation. Finally, 
we note that this initial value generalises that of the scalar case derived in [23].
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Fig. 1. Equivalence of exit times between the dual and regular process.

4.2. Gerber-Shiu - dual risk process

Recall that the dual risk process {𝑈𝑛}𝑛∈ℕ with initial value 𝑢 ∈ℕ, has dynamics (jumps) which are equivalent in distribution to a 

reflection of the regular process in the time axis, i.e., {Δ𝑈𝑛}𝑛∈ℕ
𝑑
= {−Δ𝑈𝑛}𝑛∈ℕ, whilst the phase process {𝐽𝑛}𝑛∈ℕ remains unchanged. 

In other words, the dual risk process is equivalent to a ‘spectrally positive’ (downward-skip free) MAC. As such, it follows that exit 
times for the dual process coincide with corresponding exit times for the regular risk process. In particular, the ruin time for the 
dual risk process with initial capital 𝑢 ∈ ℕ, denoted 𝜏0, is equivalent (by reflection) to the hitting time of the level 0 for a spectrally 
negative MAC with initial value −𝑢. Moreover, due to the translation invariance property of MACs, by shifting the level process this 
is also equivalent to the hitting time of the level 𝑢 ∈ ℕ of a spectrally negative MAC with initial level 0, i.e., 𝜏0 ≡ 𝜏+𝑢 (see Fig. 1).

The above observation results directly in the following theorem.

Theorem 6. For 𝑢 ∈ℕ, the G-S function for the dual risk process, namely 𝜙(𝑢), is given by

𝜙(𝑢) = 𝜶
⊤
𝐆

𝑢
𝑣𝒆, (4.15)

where 𝜶⊤ is the initial distribution of the phase process {𝐽𝑛}𝑛∈ℕ and the matrix 𝐆𝑣 is defined in Eq. (3.7).

Proof. From Figure: 1 and the preceding discussion, it is clear that the ruin time of the dual risk process is equivalent to the upward 
hitting time of the level 𝑢 ∈ ℕ for a spectrally negative MAC with initial value 𝑋0 = 0, i.e., 𝜏0 ≡ 𝜏+𝑢 . Hence, it follows that

𝜙𝑖𝑗 (𝑢) = 𝔼𝑢

(
𝑣𝜏0 𝕀(𝜏0<∞, 𝐽𝜏0

=𝑗)

||||𝐽0 = 𝑖

)

= 𝔼

(
𝑣𝜏

+
𝑢 𝕀(𝜏+𝑢 <∞, 𝐽

𝜏+𝑢
=𝑗)

||||𝐽0 = 𝑖

)

=
(
𝐆

𝑢
𝑣

)
𝑖,𝑗∈𝐸

,

which, along with the definition of the unconditional G-S function given in Eq. (2.9), gives the result. □

Remark 8. Setting 𝑣 = 1 in the above yields the result for the corresponding ruin probability which has recently been derived in 
[20] (Theorem 1), using similar conditioning arguments as those presented in earlier in this paper. For similar results in continuous 
setting, see [22] and [26], among others.

4.3. Constant dividend barrier problem

As discussed above, G-S theory covers a range of ruin and risk related measures in addition to those implicitly contained with 
the G-S function itself. One such quantity of interest is the expected accumulated discounted dividends until ruin under a (constant) 
dividend barrier strategy, where any surplus above the so-called dividend barrier 𝑏 ∈ℕ, is paid out as dividends to the shareholders.
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With this in mind, let us introduce the amended risk process {𝑉𝑛}𝑛∈ℕ, defined by

𝑉𝑛 =𝑈𝑛 −𝐷𝑛 (4.16)

where {𝑈𝑛}𝑛∈ℕ denotes the regular risk process defined in Eq. (2.1) and the ‘regulator’ process

𝐷𝑛 =
(
𝑈̄𝑛 ∨ 𝑏

)
− 𝑏, (4.17)

with 𝑈̄𝑛 ∶= sup𝑘⩽𝑛𝑈𝑘, denotes the accumulated dividend payments up to period 𝑛 ∈ ℕ under a constant dividend barrier strategy 
with fixed dividend barrier 𝑏 ⩾ 𝑢. In a similar way, we can define the dividend regulated version of the dual risk process by {𝑉𝑛}𝑛∈ℕ, 
such that

𝑉𝑛 =𝑈𝑛 − 𝐷̂𝑛 (4.18)

where {𝐷̂𝑛}𝑛∈ℕ denotes the accumulated dividends paid up to period 𝑛 ∈ℕ under a dual risk model. Note that due to the upward-skip 
free property of the MAC, for the regular risk process dividends can only be paid at a unit rate per period whereas in the dual process, 
due to the presence of upward jumps, the dividend payments can take arbitrary size. Then, the expected accumulated discounted 
dividends until ruin, denoted by 𝑣(𝑢) and 𝑣(𝑢), for the regular and dual risk processes, are given by

𝑣(𝑢) = 𝜶
⊤
𝐕𝑣(𝑢)𝒆 and 𝑣(𝑢) = 𝜶

⊤
𝐕̂𝑣(𝑢)𝒆,

respectively, where

(
𝐕𝑣(𝑢)

)
𝑖,𝑗∈𝐸

= 𝔼𝑢

⎡⎢⎢⎣

𝜏𝑏
0∑

𝑘=1

𝑣𝑘Δ𝐷𝑘 𝕀(𝜏𝑏
0
<∞,𝐽

𝜏𝑏
0

=𝑗)

||||𝐽0 = 𝑖

⎤⎥⎥⎦
, (4.19)

and

(
𝐕̂𝑣(𝑢)

)
𝑖,𝑗∈𝐸

= 𝔼𝑢

⎡
⎢⎢⎣

𝜏 𝑏
0∑

𝑘=1

𝑣𝑘Δ𝐷̂𝑘 𝕀(𝜏 𝑏
0
<∞,𝐽

𝜏 𝑏
0

=𝑗)

||||𝐽0 = 𝑖

⎤
⎥⎥⎦
, (4.20)

with

𝜏𝑏
0
= inf{𝑛 ∈ℕ ∶ 𝑉𝑛 ⩽ 0}, 𝜏 𝑏

0
= inf{𝑛 ∈ℕ ∶ 𝑉𝑛 ⩽ 0}. (4.21)

Theorem 7 (Regular risk process). For 𝑣 ∈ (0, 1], it follows that 𝐕𝑣(𝑏 + 𝑥) = 𝑥 +𝐕𝑣(𝑏) for 𝑥 ∈ℕ, whilst for 𝑢 ∈ (0, 𝑏], we have

𝐕𝑣(𝑢) =𝐖𝑣(𝑢)
[
𝐖𝑣(𝑏+ 1) −𝐖𝑣(𝑏)

]−1
. (4.22)

Proof. The first result follows directly from the fact that any initial capital above the level 𝑏 will be paid out immediately (at time 
0) as dividends. For the second result, based on the definition of the discounted dividends 𝐕𝑣(𝑢) given in Eq. (4.19), conditioning on 
the event {𝜏+

𝑏
< 𝜏−

0
} and employing the strong Markov and Markov additive properties give

𝐕𝑣(𝑢) = 𝔼𝑢

(
𝑣𝜏

+
𝑏 ; 𝜏+

𝑏
< 𝜏−

0
, 𝐽𝜏+

𝑏

)
𝐕𝑣(𝑏)

=𝐖𝑣(𝑢)𝐖𝑣(𝑏)
−1
𝐕𝑣(𝑏), (4.23)

where the second equality follows from the result of Theorem 2. As such, it remains only to determine the boundary condition 𝐕𝑣(𝑏).
Conditioning on the events in the first period of time, recalling that the matrix 𝐀𝑚 denotes the probability transition matrix for 

the surplus process increasing by 𝑚 levels and noting that if the surplus increases from level 𝑏 to 𝑏 +1 via ‘drift’, then a unit dividend 
is paid out immediately and the surplus returns to the level 𝑏, it follows that

𝐕𝑣(𝑏) = 𝑣

[
𝐀1

(
𝐈+𝐕𝑣(𝑏)

)
+

𝑏−1∑
𝑘=0

𝐀−𝑘𝐕𝑣(𝑏− 𝑘)

]

= 𝑣

[
𝐀1

(
𝐈+𝐕𝑣(𝑏)

)
+

𝑏−1∑
𝑘=0

𝐀−𝑘𝐖𝑣(𝑏− 𝑘)𝐖𝑣(𝑏)
−1
𝐕𝑣(𝑏)

]
,

where we have used Eq. (4.23) in the second equality. Re-arranging the above gives an equivalent expression of the form
[(

𝐖𝑣(𝑏) − 𝑣

𝑏−1∑
𝑘=0

𝐀−𝑘𝐖𝑣(𝑏− 𝑘)

)
𝐖𝑣(𝑏)

−1 − 𝑣𝐀1

]
𝐕𝑣(𝑏) = 𝑣𝐀1, (4.24)

which can be reduced further due to the recursive relationship between the 𝐖𝑣 scale matrices stated in the following Lemma with 
proof given in the Appendix.
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Lemma 1. Assume that 𝐀1 is invertible. Then, for 𝑣 ∈ (0, 1] and 𝑏 ∈ ℕ+ the scale matrices 𝐖𝑣(𝑥) satisfy the recursive relationship

𝑣𝐀1𝐖𝑣(𝑏+ 1) =𝐖𝑣(𝑏) − 𝑣

𝑏−1∑
𝑘=0

𝐀−𝑘𝐖𝑣(𝑏− 𝑘),

with 𝐖𝑣(1) = (𝑣𝐀1)
−1.

From Lemma 1, Eq. (4.24), reduces to

[
𝑣𝐀1𝐖𝑣(𝑏+ 1)𝐖𝑣(𝑏)

−1 − 𝑣𝐀1

]
𝐕𝑣(𝑏) = 𝑣𝐀1,

or equivalently

[
𝐖𝑣(𝑏+ 1)𝐖𝑣(𝑏)

−1 − 𝐈
]
𝐕𝑣(𝑏) = 𝐈,

since it is assumed that 𝐀1 is invertible. Hence, the matrix 
[
𝐖𝑣(𝑏+ 1)𝐖𝑣(𝑏)

−1 − 𝐈
]
is invertible and it follows that

𝐕(𝑏) =
[
𝐖𝑣(𝑏+ 1)𝐖𝑣(𝑏)

−1 − 𝐈
]−1

.

Finally, substituting this form for 𝐕(𝑏) back into Eq. (4.23), we obtain

𝐕(𝑢) =𝐖𝑣(𝑢)𝐖𝑣(𝑏)
−1

[
𝐖𝑣(𝑏+ 1)𝐖𝑣(𝑏)

−1 − 𝐈
]−1

=𝐖𝑣(𝑢)
[
𝐖𝑣(𝑏+ 1) −𝐖𝑣(𝑏)

]−1
. □

Remark 9. A vectorised version of the result of Theorem 7 was first derived in [7] where only the initial phase of the external 
Markov chain was considered. Although it is not explicitly named in the paper, the proof of this result in [7] relies on an ‘auxiliary 
function’ 𝑊 (⋅) which is equivalent to the 𝐖𝑣 scale matrix presented here. The continuous analogue of this result was derived in [25]
where, due to the continuous nature of the model, the difference within the inverse matrix is replaced with a derivative.

Theorem 8 (Dual risk process). For 𝑣 ∈ (0, 1], it follows that 𝐕̂𝑣(𝑏 + 𝑥) = 𝑥 + 𝐕̂𝑣(𝑏) for 𝑥 ∈ℕ, whilst for 𝑢 ∈ (0, 𝑏], we have

𝐕̂𝑣(𝑢) =𝐘𝑣(𝑏− 𝑢− 1) −𝐖𝑣(𝑏− 𝑢)𝐖𝑣(𝑏)
−1
𝐘𝑣(𝑏− 1)

+
[
𝐙𝑣(1, 𝑏− 𝑢− 1) −𝐖𝑣(𝑏− 𝑢)𝐖𝑣(𝑏)

−1
𝐙𝑣(1, 𝑏− 1)

]
𝐕̂𝑣(𝑏), (4.25)

where

𝐕̂𝑣(𝑏) =

[
𝐈− 𝑣

{
𝐀1

(
𝐈−𝐖𝑣(1)𝐖𝑣(𝑏)

−1
𝐙𝑣(1, 𝑏− 1)

)
+

∞∑
𝑘=0

𝐀−𝑘

}]−1

× 𝑣

{
𝐀1

(
𝐈−𝐖𝑣(1)𝐖𝑣(𝑏)

−1
𝐘𝑣(𝑏− 1)

)
+

∞∑
𝑘=0

𝑘𝐀−𝑘

}
.

Proof. The first part of the result is similar to that of Theorem 7 and follows from the fact that any initial capital above the dividend 
level 𝑏 is paid out immediately as dividends.

For the second part of the result, recall that the dynamics of the dual model are equivalent in distribution to the reflection of the 
classic upward skip-free process. As such, by reflecting the dual process in the 𝑥-axis, shifting the resulting process upwards by 𝑏 and 
employing the strong Markov property, it follows that

𝐕̂𝑣(𝑢) = 𝔼𝑏−𝑢

(
𝑣
𝜏−
0 𝑋𝜏−

0
;𝐽𝜏−

0
, 𝜏−

0
< 𝜏+

𝑏

)
+ 𝔼𝑏−𝑢

(
𝑣
𝜏−
0 ;𝐽𝜏−

0
, 𝜏−

0
< 𝜏+

𝑏

)
𝐕̂𝑣(𝑏). (4.26)

The result of Eq. (4.25) follows directly by employing the results of Theorem 3 and Corollary 1 of Section 3.2.
For 𝐕̂𝑣(𝑏), by conditioning on the events in the next period of time and applying the Markov additive property, we obtain

𝐕̂𝑣(𝑏) = 𝑣𝐀̂−1𝐕̂𝑣(𝑏− 1) + 𝑣

∞∑
𝑘=0

𝐀̂𝑘

(
𝑘+ 𝐕̂𝑣(𝑏)

)

= 𝑣𝐀1𝐕̂𝑣(𝑏− 1) + 𝑣

∞∑
𝑘=0

𝑘𝐀−𝑘 + 𝑣

∞∑
𝑘=0

𝐀−𝑘𝐕̂𝑣(𝑏).

Substituting the form of Eq. (4.25) into the first term of the above expression and recalling that 𝐘𝑣(1) = 𝐙𝑣(1, 0) = 𝐈, after some 
re-arranging we obtain
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[
𝐈− 𝑣

{
𝐀1

(
𝐈−𝐖𝑣(1)𝐖𝑣(𝑏)

−1
𝐙𝑣(1, 𝑏− 1)

)
+

∞∑
𝑘=0

𝐀−𝑘

}]
𝐕̂𝑣(𝑏)

= 𝑣

{
𝐀1

(
𝐈−𝐖𝑣(1)𝐖𝑣(𝑏)

−1
𝐘𝑣(𝑏− 1)

)
+

∞∑
𝑘=0

𝑘𝐀−𝑘

}
. (4.27)

Finally, the result follows after multiplication (on the left) by
[
𝐈− 𝑣

{
𝐀1

(
𝐈−𝐖𝑣(1)𝐖𝑣(𝑏)

−1
𝐙𝑣(1, 𝑏− 1)

)
+

∞∑
𝑘=0

𝐀−𝑘

}]−1

,

on both sides of Eq. (4.27). The existence of this matrix follows from diagonal dominance. To see this, note that the en-
tries of the matrix 

(
𝐈−𝐖𝑣(1)𝐖𝑣(𝑏)

−1𝐙𝑣(1, 𝑏− 1)
)
are non-negative and less than one since, by (3.12), it is equivalent to 

𝔼1

(
𝑣
𝜏−
0 ;𝐽𝜏−

0
, 𝜏−

0
< 𝜏+

𝑏

)
. Moreover, we have 𝐀1 +

∑∞
𝑘=0𝐀−𝑘 = 𝐏. Hence, the sum of the entries in each row of the matrix 

𝑣 
{
𝐀1

(
𝐈−𝐖𝑣(1)𝐖𝑣(𝑏)

−1𝐘𝑣(𝑏− 1)
)
+
∑∞

𝑘=0𝐀−𝑘

}
is strictly less than one. This completes the proof. □

Data availability

No data was used for the research described in the article.

Appendix

Proof of Lemma 1. For 𝑎, 𝑏 ∈ ℕ+, by conditioning on the events in the first period of time and applying the Markov additive 
property, it follows that

𝔼

(
𝑣𝜏

+
𝑎 ;𝐽𝜏+𝑎

, 𝜏+𝑎 < 𝜏−
−𝑏

)
= 𝑣

𝑏−1∑
𝑘=−1

𝐀−𝑘𝔼−𝑘

(
𝑣𝜏

+
𝑎 ;𝐽𝜏+𝑎

, 𝜏+𝑎 < 𝜏−
−𝑏

)

= 𝑣

𝑏−1∑
𝑘=−1

𝐀−𝑘𝔼

(
𝑣
𝜏+
𝑎+𝑘 ;𝐽𝜏+

𝑎+𝑘
, 𝜏+

𝑎+𝑘
< 𝜏−

−(𝑏−𝑘)

)
,

which, from Theorem 2 and the assumption that 𝐀1 is invertible, is equivalent to

𝐖𝑣(𝑏)𝐖𝑣(𝑎+ 𝑏)−1 = 𝑣

𝑏−1∑
𝑘=−1

𝐀−𝑘𝐖𝑣(𝑏− 𝑘)𝐖𝑣(𝑎+ 𝑏)−1.

The result follows after multiplying through on the right by 𝐖𝑣(𝑎 + 𝑏) and re-arranging. The proof of 𝐖𝑣(1) = (𝑣𝐀1)
−1 can be found 

using the same line of logic as in [27, Corollary 1] and thus, is omitted here. □
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