
This is a repository copy of Many-Core Real-Time Network-on-Chip I/O Systems for
Reducing Contention and Enhancing Predictability.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/204458/

Version: Published Version

Proceedings Paper:
Jiang, Zhe, Dai, Xiaotian orcid.org/0000-0002-6669-5234, Zhao, Shuai et al. (2 more
authors) (2023) Many-Core Real-Time Network-on-Chip I/O Systems for Reducing
Contention and Enhancing Predictability. In: CPS-IoT Week '23:Proceedings of Cyber-
Physical Systems and Internet of Things Week 2023. Cyber-Physical Systems and Internet
of Things Week, 09-12 May 2023 ACM , USA , 227–233.

https://doi.org/10.1145/3576914.3587514

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1145/3576914.3587514
https://eprints.whiterose.ac.uk/id/eprint/204458/
https://eprints.whiterose.ac.uk/

Many-Core Real-Time Network-on-Chip I/O Systems for
Reducing Contention and Enhancing Predictability

Zhe Jiang
University of Cambridge

Cambridge, United Kingdom

Xiaotian Dai
University of York

York, United Kingdom

Shuai Zhao
Sun Yat-sen University
Guangzhou, China

Ran Wei
Dalian University of Technology

Dalian, China

Ian Gray
University of York

York, United Kingdom

ABSTRACT

In safety-critical and high-integrity computing, it is important to

guarantee both performance and time-predictability of I/O oper-

ations. However, with the continued growth of hardware and ar-

chitectural complexity, satisfying such real-time requirements has

become increasingly challenging because of complex I/O transac-

tion paths and extensive hardware contention. This paper proposes

a systematic framework with a novel I/O controller and a recon-

figurable NoC, effectively optimising I/O transaction paths to en-

counter reduced contention. Moreover, we present a theoretical

model and optimisation process to further improve real-time per-

formance. The evaluations show that our approach outperforms

state-of-the-art I/O processing techniques on a range of metrics.

ACM Reference Format:

Zhe Jiang, Xiaotian Dai, Shuai Zhao, Ran Wei, and Ian Gray. 2023. Many-

Core Real-Time Network-on-Chip I/O Systems for Reducing Contention and

Enhancing Predictability. In Cyber-Physical Systems and Internet of Things

Week 2023 (CPS-IoT Week Workshops ’23), May 09ś12, 2023, San Antonio, TX,

USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3576914.

3587514

1 INTRODUCTION
In modern safety-critical systems, an increasing number of In-

put/Output (I/O) devices are being integrated into System-on-Chips

(SoCs), driven by the diverse functionalities required by embedded

computing [11]. For instance, in an autonomous control system,

decision-making modules rely on a large amount of I/O inputs (e.g.,

camera images) to understand the surrounding environment, and pi-

lot/navigation modules generate a series of I/O outputs (e.g., motor

control) to perform a manoeuvre to avoid dangerous scenarios [13].

To ensure the correctness and timeliness of these safety-critical

modules, it is vital to assure the time-predictability and perfor-

mance of the associated I/O operations [13]. Considering the above

example, significant timing uncertainty or unintended performance

degradation during an I/O process may violate the function of these

modules, leading to disastrous consequences [5, 11].

This work is licensed under a Creative Commons Attribution International
4.0 License.

CPS-IoT Week Workshops ’23, May 09ś12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0049-1/23/05.
https://doi.org/10.1145/3576914.3587514

Research challenges. I/O timing and performance requirements

were usually implicit in conventional safety-critical systems, as

the systems had relatively less complexity and fewer I/Os; hence,

real-time I/O operations were triggered on interrupts of a high-

resolution timer, e.g., a microsecond timer in a RTOS [5].

As the number of hardware elements has grown, modern safety-

critical systems usually involve complex I/O transaction paths and

extensive hardware contention, leading to challenges in guaranteeing

performance and response times of I/O operations. Specifically, to

access an I/O device in a Network-on-Chip (NoC) based many-core

system, I/O requests issued by a processor must pass through the

OS kernel, I/O manager, and software drivers. At the hardware

level, the I/O request is then required to be transmitted between

multiple routers/arbiters and an I/O controller. After processing,

corresponding results (i.e., I/O responses) are sent back to the pro-

cessor using a similar routine. Such complex paths bring significant

communication latency and timing uncertainty to I/O operations.

Moreover, along the transaction paths, hardware contentions occur

extensively and intensively. For instance, contentions can happen

on all routers deployed on an I/O transaction path. Such hardware

contentions elevate the difficulty of satisfying I/O timing and per-

formance requirements.

Related work. Existing efforts aimed at achieving real-time I/Os in

multi/many-core systems often focus on a particular system level.

At the software level, Kim et al. [15] and Dong et al. [7] modified

OS kernels to improve the predictability of I/O scheduling; Kim et

al. [14] and Abdallah et al. [3] presented I/O contention-aware task

mapping and scheduling to reduce I/O contentions between soft-

ware tasks. However, it is tough to ensure real-time performance

of I/O operations from a given software level, as I/O operations

mainly rely on complex interactions with the underlying hardware.

In addition, the software-based methods usually bring extra com-

putational overhead and complexity, leading to a further reduction

of I/O throughput [15].

At the hardware interconnect level, there are a range of ap-

proaches that impose predictability on NoC transactions, e.g., Burns

et al. [4] and Plumbridge et al. [16] proposed approaches for pre-

dictable on-chip communication flows. These papers concentrate

entirely on NoC transactions; such work is important in improving

I/O predictability, but does not solve predictability on its own.

At the hardware I/O level, industrial vendors and researchers

have developed programmable I/O controllers for real-time appli-

cation scenarios, e.g., a Programmable Real-Time Unit (PRU) and a

Time Processor Unit (TPU) developed by TI [1] and NXP [2], as well

227

https://doi.org/10.1145/3576914.3587514
https://doi.org/10.1145/3576914.3587514
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576914.3587514
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576914.3587514&domain=pdf&date_stamp=2023-05-09

CPS-IoT Week Workshops ’23, May 09ś12, 2023, San Antonio, TX, USA Jiang et al.

as a GPIO command processor (GPIOCP) and a Real-Time I/O con-

troller (RT-IOC) presented by Jiang et al. [12] and Zhao et al. [17].

This work presented dedicated co-processors for I/O processing,

handling I/O requests directly at the hardware level, improving

I/O throughput, and reducing communication latency. However,

as with the other work, these controllers only focus on one phase

of I/O operations (I/O requests) for a single I/O device. Without

considering the full procedure of an I/O operation - the I/O response

paths are ignored - it cannot ensure I/O real-time performance.

A complete solution must capture the entire request and return

path of an I/O operation, from the application model, through the

software level and the on-chip interconnect, to the I/O device. There-

fore, we present a range of novel approaches to address this problem

in totality. In the following sections, we present our methods.

2 NPRC-I/O: ARCHITECTURE
In this section, we give an overview of NPRC-I/O.

2.1 Hardware Level
At the hardware level, system elements are connected using R2NoC

(Fig. 1(b), and detailed in Sec. 4). To minimise hardware modifica-

tions, we follow a conventional architecture to mount processors

and memory on the routers’ local home ports. However, we replace

traditional I/O controllers by NPRC-CCs to handle I/O operations

(detailed in Sec. 3). In addition, we connect the NPRC-CCs and

free routers (i.e., a router without a local client) using a dedicated

I/O crossbar (i.e., I/O-Ring) to support run-time reconfiguration of

connections between the routers and NPRC-CCs.

2.2 Software Level
The software-level structure is made of kernel and user spaces.

Kernel space. In the kernel space, we deploy an RTOS with full

privileges to provide a real-time environment for user applications

that require timing guarantees. In this work, we use FreeRTOS,

but the specific choice of RTOS is not important. With NPRC-CCs,

I/Os are managed in the hardware; hence, we replace the software

I/O manager and low-level I/O drivers (managing I/Os in the con-

ventional systems) with new NPRC-CC drivers. Contrasting with

the conventional architecture, user applications in NPRC-I/O com-

municate with I/O devices using our NPRC-CC drivers (Fig. 1(a)),

without the involvement of the OS kernel. The implementation of

the new drivers is straightforward as all complexity is handled in

the hardware design of NPRC-CCs. The drivers simply forward I/O

requests between user applications and NPRC-CCs. This new struc-

ture gets as much work out of the software as possible, simplifying

I/O transaction paths and associated contentions in software, and

decreasing overhead.

User space. Although NPRC-I/O introduces a new software struc-

ture, the system maintains the original I/O-application interfaces

presented by traditional systems (Fig. 1(a)), ensuring source com-

patibility of the existing user applications ś user tasks designed for

a conventional system can be directly migrated to NPRC-I/O.

2.3 Working Procedures
In general, I/O requests in a system are issued either periodically

or sporadically. Periodic requests are usually determined before

system execution, e.g., periodic sensor sampling, and sporadic re-

quests are usually generated during system execution, e.g., sporadic

I/O Reponse PathI/O Request PathResource contention

R R

C C

R

C

R R

R

C

R

C

R

C

R

C C

R

R

R

R R RR

I/O-

Ring

MC

DDR3

Radar

Lidar

Camera

GNSS

On-chip Off-chip

(0,0) (1,0)

(0,1) (1,1)

U
se

r A
p

p
lica

tio
n

U
se

r A
p

p
lica

tio
n

U
se

r A
p

p
lica

tio
n

U
se

r A
p

p
lica

tio
n

RTOS

Kernel

User Space

Kernel Space

OS

I/F

N
P

R
C

-C
C

 D
riv

e
r

I/O
 B

u
ffe

r

I/O

I/F

(a) Software (b) Hardware Platform

NPRC

-CC_0

NPRC

-CC_1

NPRC

-CC_2

NPRC

-CC_3

Figure 1: System Architecture of NPRC-I/O. Radar and its I/O

controller (NPRC-CC_3) are configured to connect with the

router (0,0).

brake control. Moreover, since I/O requests inherit the properties

of the software tasks issuing them, the timing demands of the I/O

requests can be different, overall classified as hard real-time (HRT)

and soft real-time (SRT). Precisely, an HRT I/O task needs a re-

stricted response time bound for its execution, whereas an SRT I/O

task’s timing bound is relatively less restrictive - the I/O tasks are

allowed to over-execute its soft deadline occasionally. Based on this

understanding, the NPRC-I/O’s working procedures are introduced

in four phases:

Phase 1: NPRC-CC initialisation. Before run-time, NPRC-I/O ini-

tialises NPRC-CCs by sending configuration packets. The initialisa-

tion has two steps (i) pre-loading I/O requests, i.e., a series of I/O

operations, to NPRC-CC’s local memory unit; (ii) reserving time

budget for periodic and HRT sporadic I/O requests. The time budget

is allocated by specifying the requests’ starting time points and the

worst-case ending time points.

Phase 2: R2NoC Reconfiguration. An optimisation algorithm is

executed with the timing information of the I/O responses, assisting

NPRC-I/O to reconfigure the connections between NPRC-CCs and

routers, by finding parameters that lead to minimal contentions.

Phase 3: Request process.At system run-time, NPRC-CCs execute

all pre-loaded periodic I/O requests at the specified time points,

guaranteeing their predictability and performance. NPRC-CCs also

receive and buffer the sporadic I/O requests issued by the processors.

NPRC-CCs execute HRT sporadic requests using the time budget

reserved in Phase 1, ensuring HRT requests can always be served

with an analytical timing bound.When an I/O device is not occupied,

the connected NPRC-CC schedules and proceeds (both HRT and

SRT) sporadic requests based on their priorities.

Phase 4: Response process. After an I/O request is processed,

the I/O device transmits the corresponding result back to the soft-

ware level through the NPRC-CC, I/O-Ring, and routers. R2NoC

provides a dedicated response path to ensure minimal contention

and analysability.

As described in this section, ensuring system-wide I/O predictabil-

ity and performance relies on the novel hardware. In the following

sections, we detail the design of NPRC-CC and R2NoC.

228

Many-Core Real-Time Network-on-Chip I/O Systems for Reducing

Contention and Enhancing Predictability CPS-IoT Week Workshops ’23, May 09ś12, 2023, San Antonio, TX, USA

3 NPRC-CC DESIGN
To handle a broad range of I/O types, NPRC-CC is full-duplex,

providing independent paths for I/O requests and responses.

The response path is pass-through, because the processing speed

of the requesters (e.g., processors) is often hundreds of times faster

than I/O devices. The request path has four parts (Fig. 2): a peri-

odic requests space (P-space), a sporadic requests space (S-space),

scheduling circuits, and an I/O controller. The P-space stores the

periodic I/O requests determined by hard real-time system specifi-

cations. The S-space buffers and prioritises sporadic I/O requests

generated at run-time. The scheduling circuits connect the two

spaces, selecting I/O requests to operate on the I/O device using

the I/O controller.

3.1 Periodic Requests Space (P-space)

The design of the P-space consists of a memory module (including

memory banks and a controller), a fetcher, and shadow buffers.

The memory module stores the periodic I/O requests. If the fetcher

receives a scheduling decision from the scheduling circuits, it then

collects the specified requests from the memory module and de-

composes them to corresponding I/O operations. After that, the

fetcher maps these I/O operations into shadow buffers.

3.2 Sporadic Requests Space (S-space)

The S-space design contains two I/O pools, a loader, and shadow

buffers. The I/O pools are deployed to maintain sporadic I/O re-

quests with similar timing demands (i.e., HRT or SRT). An I/O pool

has a priority queue, an arbiter and a fetcher. Unlike conventional

FIFO queues, the priority queue adopts a more complicated micro-

architecture to enable random access of its stored contents. It uses

a register chain and register banks to store I/O requests and their

associated parameters (detailed in Sec. 5). The register chain is

connected to a loader and a fetcher; the register banks are con-

nected to the arbiter. At execution, the loader pushes I/O requests

received from the processors; the arbiter continuously checks the

requests’ parameters, finding the request with the highest priority

and controlling the fetcher to map the request to shadow buffers.

3.3 Scheduling Circuits
The scheduling circuits consist of a memory module, a scheduler,

and a multiplexer. The memory module stores the timing infor-

mation of the periodic and HRT sporadic I/O requests (Phase 1 in

Sec. 2.3). Timing information is stored in a look-up table (called the

time slot table) to record the run-time behaviours of these requests

in each hyper-period. At run-time, the scheduler synchronises with

a global timer and compares the synchronised results with the time

slot table. Once the system runs at the starting time point of a

periodic or HRT sporadic I/O request, the scheduler controls the

multiplexer to load the I/O request from the corresponding shadow

buffers (in S/P-space) to the I/O controller. At the same time, the

scheduler removes the I/O request from the shadow buffers. If there

is no I/O request specified at a given time point (i.e., the time slot is

free), the scheduler loads the sporadic I/O requests with the highest

priority. Note, to ensure timing correctness, any loaded sporadic

request must be able to complete execution before the starting time

point of the next request.

addr
data
r/wMCLoader

Fetcher

Arbiter

I/O Pool: HRT sporadic

Fetcher

Arbiter

I/O Pool: SRT sporadic

Next

Next

I/O Controller

[Offline]

Periodic I/O

Requests

[Online]

Sporadic I/O

Requests

S-Space P-Space

Scheduling Circuits

I/O Device

I/O Pins

I/O-Ring

Type

Width = 32 Bits

Fetcher

Next

addr
data

rMC

Starting

Time

0x0000

0x0060

0x00A0

0x00D0

Type

P

P

HRT-S

Free

Request

ID

x

y

i

N/A

...

Time Slot Table

I/O Request τx

τx: I/O operation 1

τx: I/O operation 2

...

τx: I/O operation n

I/O Request τy

τy: I/O operation 1

...

Periodic I/O Requests

Next Periodic

I/O Request ID

Global

Timer

Sched
P/HRT-S/SRT-S

Ti Di CiPrioi

Arbiter

Load Fetcher

Priority queue Time Slot Table (Hyper-period)

τy: I/O operation n

Free Time Slots
(P)τx,j (P)τy,j τx,j+1(HRT-S)τi (HRT-S)τk

Shadow Buffer

Shadow Buffer Shadow Buffer

Manager port

Figure 2: Micro-architecture of NPRC-CC.

3.4 I/O Controller

The NPRC-CC design is agnostic to the underlying I/O controllers;

hence either standardised Intellectual Property (IP) cores or cus-

tomised real-time controllers can be applied. The selection of I/O

controllers only depends on the communication protocol required

by the connected I/O device, e.g., I2C, SPI. In addition, we either re-

moved the FIFO queues or minimised their depth in the selected I/O

controller, because (i) I/O requests are maintained in the S-space and

P-space; (ii) deploying FIFO queues forbids request prioritisation.

4 R2NOC DESIGN

Although deploying NPRC-CCs effectively bounds the real-time

performance of I/O requests, NPRC-CC cannot avoid the complex

transactions paths and hardware contentions associated with spo-

radic I/O requests and I/O responses, as they are determined at run-

time. In coping with these I/O transactions, we introduce R2NoC to

support run-time reconfiguration of connections between I/O con-

trollers and routers. With R2NoC, an optimisation method (see

Sec. 5) can be applied, minimising hardware contentions associated

with sporadic I/O requests and I/O responses. The R2NoC design

contains an open-source real-time NoC mesh [16] and an I/O cross-

bar (i.e., I/O-Ring):

4.1 NoC Mesh
The design of the NoC mesh constructs routers in the style of a

Manhattan grid, where the routers are addressed by their horizontal

(𝑋) and vertical (𝑌) coordinates (Fig. 1(b)). Each router has five 32-

bit bi-directional ports, connected to the other routers located at its

north, south, east and west, as well as a local client (using its home

port). The NoC mesh encapsulates on-chip transactions as packets

using a protocol developed in [16], and wormhole-routes the pack-

ets through each router towards their corresponding destinations.

The routers’ design is based on priority queues, transmitting the

packets upon their priorities. As evidenced in [16], the NoC mesh

can bound a packet’s worst-case transmission time between any

two routers.

229

CPS-IoT Week Workshops ’23, May 09ś12, 2023, San Antonio, TX, USA Jiang et al.

C
o

n
fig

u
ra

tio
n

 R
e

g
iste

r

Router_0 Router_1 Router_2 Router_n

NPRC-CC_0

Core

CFG IFC

I/O-Ring

[7:0] [7:0] [15:8] [23:16] [7+8*(n/4) : 8*(n/4)][15:8] [23:16]

I/O Request Path I/O Reponse Path

Subordinate port

Manager port

NPRC-CC_1 NPRC-CC_2 NPRC-CC_n

A
M

B
 A

P
B

Figure 3: Micro-architecture of I/O-Ring in R2NoC.

4.2 I/O-Ring
I/O-Ring is a dedicated crossbar which is placed between routers

and NPRC-CCs. The idea behind the I/O-Ring is to establish a

contention-free and one-to-one link between any router and NPRC-

CCmounted on the I/O-Ring. However, doing this arbitrarily would

be enormously expensive, so I/O-Ring is instead run-time reconfig-

urable to allow it to establish its connections based on the required

timing properties and behaviour of the system.

The I/O-Ring design consists of interface ports, multiplexers and

configuration registers (see Fig. 3). At the interfaces, the I/O-Ring

presents groups of Subordinate ports and Manager ports, physically

connected to the routers’ home ports and NPRC-CCs. Inside the

I/O-Ring, a Subordinate port is fully connected to all Manager

ports with a multiplexer, used to select an active transaction path

between the Subordinate and Manager ports. The path selections

of the multiplexers are stored in the configuration registers (32-

bit), where each multiplexer consumes 8 bitfields. We connect the

configuration registers to an AMBA APB interface and map it to

dedicated memory addresses. This allows the processor to access

these configuration registers directly using memory read/write

operations. Since the connections between the Subordinate and

Manager ports are implemented using pure combinational logic, a

transaction packet can always be transmitted within a fixed single

clock cycle, giving the software the illusion that the NPRC-CC is

directly mounted to the router’s home port. For instance, in Fig. 1,

the NPRC-CC_3 is configured to be łconnectedž to the router (0,0).

5 LATENCY ANALYSIS AND OPTIMISATION
This section provides an analytic bound of the worst-case end-

to-end latency of given I/O flows and an optimisation process to

further improve NPRC-I/O’s real-time performance. We assume a

closed system in which we know the maximum transmission time,

the periods of all periodic I/Os, and the minimum inter-release time

for sporadic I/Os. We also assume deadlines are given. For this work,

the transmission rate is identical on all interconnected routers. This

is a reasonable assumption for the currently-deployed NoC. With

R2NoC, traffic packets are scheduled based on their priorities in a

local router, using a priority queue, i.e., no extra blocking due to

queuing of lower priority traffic. At most one I/O device can be

connected (using the reconfiguration of the I/O ring) to each NoC

router. The routing path is allocated statically by shortest path first.

5.1 System Model
We use a meshed NoC (R2NoC) that has a dimension of 𝑋 ×𝑌 , with

processor cores 𝑃 = {𝑝0, 𝑝1, ..., 𝑝𝑚−1}, | |𝑃 | | =𝑚 and I/O controllers

𝐾 = {𝑘0, 𝑘1, ..., 𝑘𝑛−1}, | |𝐾 | | = 𝑛. Each I/O device has a dedicated I/O

controller. The router on NoC location (𝑥,𝑦) is denoted 𝑅 (𝑥,𝑦) . An

I/O traffic is defined as (𝑖𝑑𝑖 ,𝑇𝑖 ,𝐶𝑖 , 𝐷𝑖 , 𝑝𝑟𝑖𝑜𝑖 , 𝑟𝑜𝑢𝑡𝑒𝑖 = {𝑠𝑟𝑐𝑖 , ..., 𝑑𝑠𝑡𝑖 })

where 𝑖𝑑𝑖 is used to identify the I/O flow;𝑇𝑖 is the period or minimal

inter-release time; 𝐶𝑖 is the maximum transmission time between

two directly connected routers; 𝐷𝑖 is deadline, with 𝐷𝑖 ≤ 𝑇𝑖 ; 𝑝𝑟𝑖𝑜𝑖
is the traffic priority, and 𝑠𝑟𝑐𝑖 and 𝑑𝑠𝑡𝑖 are the source router (where

the I/O response comes out) and the destination router (where the

I/O response comes in), respectively. As the request route is already

reduced to its minimum due to the implementation of NPRC-CC,

we focus on response routes in this analysis. Thus, a source refers

to one of the I/Os and a destination refers to one of the processors.

5.2 Worst-case Latency Analysis
The worst-case end-to-end latency of I/O traffic (defined as the end-
to-end delay from the time point at which the response is sent by
the I/O to when it is received by the requesting processor),𝑊𝐶𝐿𝑖 ,
can be obtained using the following equation:

𝑊𝐶𝐿𝑖 =
∑︁

𝑗

𝑊𝐶𝐿𝑖,𝑗 =
∑︁

𝑗

𝐿𝑖,𝑗 +
∑︁

𝑗

𝐵𝑖,𝑗 (1)

where




𝐿𝑖,𝑗 =
∑︁

𝑗 ;𝑘∈ℎ𝑝 (𝑖,𝑗)

𝑙𝑖,𝑗,𝑘 +𝐶𝑖 =

∑︁

𝑗 ;𝑘∈ℎ𝑝 (𝑖,𝑗)

⌈ 𝑙𝑖,𝑗
𝑇𝑘

⌉
× 𝐶𝑘 +𝐶𝑖

𝐵𝑖,𝑗 = max
𝑗 ;𝑘∈𝑙𝑝 (𝑖,𝑗)

(𝐶𝑘)

(2)

𝐿𝑖, 𝑗 is the latency term and 𝐵𝑖, 𝑗 is the blocking term at router 𝑗 ;

𝑙𝑖, 𝑗,𝑘 is the latency at router 𝑗 , caused by waiting for higher priority

traffic 𝑘 to be transmitted; The blocking time, 𝐵𝑖, 𝑗 , as in a non-

preemptive priority scheduled I/O system, is upper bounded by

the maximal transmission time of any lower priority traffic 𝑘 that

goes through this router on its transmission path. As we are using

priority queues, the blocking only occurs at most once.

5.3 Network Optimisation
To reduce the latency of the end-to-end I/O response times, routes

can be optimised by: (i) placing I/O nodes, and (ii) assigning I/O

traffic with appropriate priorities that will produce the lowest con-

tention with other traffic on the NoC.

The optimisation problem is constructed as follows:

• Objective: Minimise the overall latency, i.e.,
∑
𝑊𝐶𝐿𝑖 .

• Subject to: The deadline of all HRT I/O traffic must be met,

i.e.,𝑊𝐶𝐿𝑖 ≤ 𝐷𝑖 , 𝑖 ∈ 𝐻𝑅𝑇 .

• Targeted variables: Allocation of I/O devices and the pri-

orities of I/O traffic flows. An I/O node can be assigned to

any permitted and unallocated NoC router.

The optimisation algorithm. In this paper, the optimisation is

performed by a metaheuristic genetic algorithm (GA). GAs are used

throughout the optimisation of real-time systems [6]. As only one

objective exists (to minimise contention), we use a single-objective

GA. We note that other methods, for example, Integer Linear Pro-

gramming (ILP), can also be used following similar optimisation

procedures to those given in this section.

230

Many-Core Real-Time Network-on-Chip I/O Systems for Reducing

Contention and Enhancing Predictability CPS-IoT Week Workshops ’23, May 09ś12, 2023, San Antonio, TX, USA

Inputs. The inputs to the search algorithm include: (i) parameters

of periodic and sporadic traffic; (ii) number of processor cores and

I/O flows; and (iii) traffic routes.

Outputs. The outputs contain: (i) I/O node locations on the NoC

- encoded as pairs (𝑥,𝑦); (ii) priorities of I/O flows; and (iii) the

lowest worst-case latency of the accumulated I/O requests.

Gene encoding and fitness function. To enable the use of a

genetic algorithm, the gene (genotype) is encoded as (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛,

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) pairs, i.e., [𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦1, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛2, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦2, · · · ,

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛 , 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑛], where the index is the traffic ID and 𝑛 is the

amount of total I/O traffic. The fitness function is the reverse of the

accumulated sum of latency (fitness = 1/
∑
𝑊𝐶𝐿𝑖), in which case a

higher summed latency would suggest a lower fitness.

Algorithm complexity. The time complexity of the GA is in the

order of O(𝑔𝑛𝑚), with 𝑔 being the number of generations, 𝑛 the

population size and𝑚 the size of the individuals (i.e., gene number).

The complexity of exhaustive search (even with priorities given)

is O(𝑃 (𝑘, ℎ)), where 𝑃 (·) is permutation, 𝑘 is the number of I/O

devices to be allocated and ℎ is the candidate locations. As can be

seen from time complexity, the time it takes to find a solution using

exhaustive search is dramatically large.

6 EVALUATION
Experimental platform. We built NPRC-I/O on an FPGA de-

velopment board, the Xilinx VC709. NPRC-CCs and R2NoC were

implemented using BlueSpec System Verilog, and R2NoC was con-

figured to use 60 routers, formed as a 10 × 6 grid. As well as the

NPRC-CCs and R2NoC, the system also contained 32 MicroBlaze

processors, memory and I/O devices. We deployed the processors

to the home ports of the routers at the central grid and connected

the routers and I/Os using I/O-Ring. We used FreeRTOS (v.10.4)

as the OS kernel for all processors, with the modifications intro-

duced in Sec.2.2. The software executing on the processors was

compiled using the Xilinx MicroBlaze GNU toolchain. We also in-

troduced four baseline systems (BSs) running on similar hardware

architecture. BS|Legacy was a conventional NoC-based real-time

system without any additional support, which left the I/O man-

agement entirely to the RTOS and routers (reviewed in Sec. 1).

BS|SW was designed based on BS|Legacy with additional software

patches [7], enabling I/O contention-aware scheduling at kernel

level. BS|HW:GPIOCP and BS|HW:RTIOC were two real-time sys-

tems with dedicated hardware I/O co-processors (GPIOCP and

RTIOC) presented in [12] and [17]. All systems ran at 100 MHz.

6.1 Theoretical Evaluation
Experimental setup. The experiment was based on simulations

with theoretical evaluation. The implementation of the search al-

gorithm was based on the PyGAD (Python Genetic Algorithm)

package. I/O traffic was randomly generated with the size of the

NoC and the number of processors and I/Os being fixed (32 and 28,

respectively). The total I/O utilisation was set from 50%-100% to

add workload to the NoC gradually. The population size was set to

double the number of genes, and the maximum iteration number

was set to 100 to upper-bound the search time. Our optimisation

method is compared with (i) a heuristic that allocates the largest

node (i.e. with the highest utilisation) first to the location closest to

its destination; and (ii) a random search that executes a hundred

Figure 4: Search-based optimisation for minimised latency Ð

worst-case latency w.r.t. total utilisation (𝑥-axis: utilisation;

𝑦-axis: fitness).

times more than the GA and takes the best solution. Each utilisation

was evaluated with 50 trials.

Obs 1. The proposed search algorithm was able to find performant

solutions with respect to overall latency with lower complexity.

This observation is based on Fig. 4. In the figure, the proposed ge-

netic algorithm (ga) outperformed both random (rnd) and heuristic

(heu). With the utilisation increases, ga can still find better solu-

tions. Although the heuristic has slightly lower time complexity,

its performance was much lower than both ga and rnd.

6.2 Hardware Overhead
Experimental setup.We configured an NPRC-CC to buffer 100

I/O operations and configured the I/O-Ring to support 16 NPRC-

CCs. We first compared the NPRC-CC’s overhead with standardised

I/O controllers (i.e., SPI, CAN, and I2C) and other real-time I/O con-

trollers. We then examined the I/O-Ring’s hardware overhead along

with the NoC mesh and a general-purpose AXI interconnect (AXI-

IC). The standardised I/O controllers and AXI-IC were chosen from

the Xilinx IP library, and the AXI-IC was configured to support 64

connections (like the NoC mesh). All components were synthesised

and implemented by Vivado (v2021.1).

Obs 2. The design of NPRC-CC and R2NoC was resource-efficient.

NPRC-CC consumed a similar amount of hardware as other real-

time I/O controllers; I/O-Ring increased the NoC mesh’s overhead.

As shown in Table 1, NPRC-CC consumed more resources than

the standardised I/O controllers: SPI (155.0% LUTs, 226.2% regis-

ters), CAN (141.0% LUTs, 172.4% registers), and I2C (149.71% LUTs,

165.12%), but the costs are still very reasonable for real-world imple-

mentation. The additional overhead comes from the hardware-level

implementation of I/O scheduling and management. When com-

pared to other real-time I/O controllers, NPRC-CC required similar

hardware resources: GPIOCP (110.8% LUTs, 144.6% registers, 100%

RAMs), and RT-IOC (92.2% LUTs, 115.0 % registers, 50% RAMs).

For R2NoC, deploying I/O-Ring brought negligible extra over-

head: 14.9% LUTs and 2.8% registers. The introduced overhead was

significantly less than a general-purpose interconnect, i.e., AXI-IC.

6.3 Hardware Scalability
Experimental setup.We adopted the same method described in

Sec. 6.2 to implement NPRC-I/O with scaling numbers of processors

and I/Os. Additionally, we introduced two scaling factors: 𝜂core and

𝜂io to control the number of processors and I/Os (2𝜂).

We first compared the scalability of area consumption between

NPRC-CC, I/O-Ring, NPRC-I/O, and BS|Legacy. The area consump-

tion was normalised by the overall area of the experimental plat-

form. We then examined the scalability of power consumption,

231

CPS-IoT Week Workshops ’23, May 09ś12, 2023, San Antonio, TX, USA Jiang et al.

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6

A
re
a
(%

)

NPRC-CC

I/O-Ring

NPRC-I/O

BS|Legacy

(a) Area consumption.

0

250

500

750

1000

1250

0 1 2 3 4 5 6

P
o
w
e
r(
m
W
)

NPRC-CC

I/O-Ring

NPRC-I/O

BS|Legacy

(b) Power consumption.

0

120

240

360

480

600

0 1 2 3 4 5 6

F
re
q
u
e
n
cy

m
a
x(
M
h
z)

NPRC-CC

I/O-Ring

BS|Legacy

(c) Maximum frequency.

Figure 5: Area, power, and maximum frequency v.s. scaling factor 𝜂io and 𝜂core (𝑥-axis: 𝜂core for black solid lines, 𝜂io for grey

shading dash lines).

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
e

ss
 R

a
ti

o

Proposed

BS|HW:GPIOCP

BS|HW:RTIOC

BS|SW

BS|Legacy

(a) 25% SRT tasks (𝑥 -axis: target utilisation).

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
e

ss
 R

a
ti

o

Proposed

BS|HW:GPIOCP

BS|HW:RTIOC

BS|SW

BS|Legacy

(b) 50% SRT tasks (𝑥 -axis: target utilisation).

0

0.4

0.8

1.2

1.6

E:16-core E:32-core S:16-core S:32-core F:16-core F:32-core

Proposed BS|HW:GPIOCP BS|HW:RTIOC BS|SW BS|Legacy

(c) Normalised average I/O throughput.

Figure 6: Case study: system-level real-time performance (in Fig. 6(a) and 6(b), black solid lines: 16-core systems; grey shading

dash lines: 32-core systems. In Fig. 6(c), E: Ethernet; S: Q-SPI; F:Flexray; error bars: experimental variances).

Table 1: Hardware overhead (implemented on FPGA)

LUTs Registers RAMs (KB)

SPI 674 519 0
CAN 741 681 0
ETH 1,595 943 0

GPIOCP 943 677 16
RT-IOC 1,134 1,021 32
NPRC-CC 1,045 1,174 16

NoC Mesh 18,452 15,238 0
AXI-IC 9,682 8,735 0
I/O-Ring 2,754 432 0

calculated as the sum of static and dynamic power simulated by the

tool. Lastly, we evaluated the maximum frequency of NPRC-CC and

I/O-Ring across the BS|Legacy using varying 𝜂io and 𝜂core.

Obs 3.The area and power consumption of NPRC-CC and R2NoCwere

not affected by 𝜂core and linearly scaled by 𝜂io.

As seen in Fig. 5(a), when systemswere scaledwith𝜂core, the area

consumption of both NPRC-CC and I/O-Ring were nearly constant.

When systems were scaled with 𝜂io, the area consumption of both

NPRC-CC and I/O-Ring were linearly increased. In these cases,

although NPRC-I/O required more hardware than BS|Legacy, the

introduced area consumption was always bounded within 30%.

Power consumption is usually determined by four factors: volt-

age, clock frequency, toggle rate and design area [10]. Because the

unified voltage, clock frequency and simulated toggle rate were

assigned to the items being compared, the design area dominated

overall power consumption. As expected, in Fig. 5(b), we observe

nearly constant and linearly increased power consumption of NPRC-

CC and I/O-Ring when the systems were scaled with 𝜂core and 𝜂io.

Obs 4.When the systemwas scaled with𝜂core/𝜂io, deploying NPRC-

CC and I/O-Ring did not decrease maximum performance.

This observation is shown in Fig. 5(c). In all examined cases,

the NPRC-CCs’ maximum frequency was always around 490 Mhz,

which is significantly higher than BS|Legacy. This is because the

NPRC-CCs were instantiated individually. When the system was

scaled with 𝜂io, I/O-Ring’s maximum frequency slightly decreased,

but it was still greater than BS|Legacy. This means that I/O-Ring

did not become a critical path.

6.4 Real-time Performance: Case Study
We now evaluate the systems using real-world use cases.

Task sets. We presented two sets of tasks: (i) 18 automotive safety

tasks, selected from the Renesas automotive use case database [9],

e.g., CRC, RSA32, etc. (ii) 18 automotive function tasks, chosen from

the EEMBC benchmark [8], e.g., FFT, speed calculation, etc.

We employed a hybrid-measurement approach to obtain WCETs

for all tasks. The raw data processed by the tasks was randomly gen-

erated off-chip and collected by the tasks via an Ethernet controller

(1 Gpbs) at run-time. The calculated results of the safety tasks were

sent back to a Quad-SPI flash (40 Mbps), and the calculated results

of function tasks were sent back to a FlexRay receiver (10 Mbps).

Each task had a randomly defined period (defined before each ex-

periment), with overall processor utilisation approximately 40%.

Additionally, we also collected tasks from the EEMBC benchmark

as synthetic workloads, which could be added to the system to con-

trol overall system utilisation. Like the safety tasks, the calculated

results of synthetic workloads were also sent back to the Quad-SPI

flash. Note that, in practical systems the execution time of a task

is affected by diverse factors (e.g., cache miss rate); hence, adding

synthetic workloads to a system only gives it a target utilisation.

Experimental Setup.We introduced two groups of system con-

figurations, which activated 16/32 processors to execute the task

sets and synthetic workloads. We also presented two experimental

setups for each system configuration, randomly assigned 25%/50%

tasks as SRT tasks and the others as HRT tasks. The HRT task

deadlines were equal to their periods (i.e., implicit deadlines). In

each experimental group, we executed the examined systems 1, 000

times under varying target utilisations, from 40% to 100% (with

an interval of 5%). Each execution lasted 250 seconds. For a fair

comparison, we ensured the data input to the examined systems

was identical in each execution.

232

Many-Core Real-Time Network-on-Chip I/O Systems for Reducing

Contention and Enhancing Predictability CPS-IoT Week Workshops ’23, May 09ś12, 2023, San Antonio, TX, USA

We examined the systems using success ratio and I/O through-

put. The success ratio recorded the percentage of trials that were

executed successfully. For successful execution, a HRT task should

not over-execute its deadline, whereas a SRT task should not exceed

120% of its period [5]. The throughput is normalised by BS|Legacy.

Obs 6. NPRC-I/O improved the system-level real-time performance.

This observation is given by Fig. 6, In most of the examined cases,

NPRC-I/O outperformed the BSs, in terms of success ratio, I/O

throughput and experimental variances. However, with an increas-

ing number of processors, the improvement of I/O throughput

brought by NPRC-I/O decreased slightly. This is because introduc-

ing more processors also increased the number of I/O requests,

pushing the I/O devices’ throughput in all systems close to their

physical limits.

Obs 7. Raising the distribution of SRT tasks increased the real-time

performance of NPRC-I/O, when utilisation was relatively low.

This observation is given by comparing the experimental re-

sults in Figs. 6(a) and 6(b). When the system utilisation was lower

than 85%, NPRC-I/O’s success ratio significantly increased with the

increased distribution of SRT tasks. But, when the utilisation ex-

ceeded 85%, NPRC-I/O achieved similar success ratios with different

distributions of SRT tasks, indicating system utilisation dominated

the real-time performance when the system was overloaded.

7 CONCLUSION

This paper presents a new systematic framework (i.e., NPRC-I/O) for

multi-/many-core real-time I/O processing. NPRC-I/O introduces

a novel I/O controller (NPRC-CC) and a run-time reconfigurable

NoC (R2NoC), optimising I/O transaction paths with reduced con-

tentions. Moreover, we present a theoretical model and optimisation

to further improve NPRC-I/O’s real-time performance. As shown

in theoretical and practical evaluations, NPRC-I/O outperforms the

state-of-the-art I/O processing techniques with varying hardware

configurations. The reason that this work demonstrates both pre-

dictability and high performance is that it presents a configurable

hardware-based solution to predictable I/O. The cost of this ap-

proach is that each new task set requires the system configuration

to be updated by allocating time budget and locations in the I/O

controllers. This requires offline analysis, and also benefits from a

search-based optimisation stage. This paper demonstrates that this

can be done tractably.

REFERENCES
[1] 2023. PRU. http://www.ti.com/tool/pru-swpkg.
[2] 2023. TPU. http://www.nxp.com/products/microcontrollers-and-processors.
[3] Laure Abdallah, Mathieu Jan, et al. 2016. I/O contention aware mapping of

multi-criticalities real-time applications over many-core architectures. (2016).
[4] Alan Burns, LS Indrusiak, N Smirnov, and J Harrison. 2020. A Novel Flow

Control Mechanism to Avoid Multi-Point Progressive Blocking in Hard Real-
Time Priority-Preemptive NoCs. In Proc. RTAS.

[5] Alan Burns and Andrew J Wellings. 2001. Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX.

[6] Xiaotian Dai, Wanli Chang, et al. 2019. A dual-mode strategy for performance-
maximisation and resource-efficient CPS design. ACM TECS (2019).

[7] Pan Dong, , et al. 2021. Exploring Real-time Hybrid-Criticality System on ARM
TrustZone Technology. Journal of Systems Architecture (2021).

[8] EEMBC. 2023. EEMBC benchmark. https://www.eembc.org/autobench/.
[9] Renesas Electronics. 2023. Renesas: Automotive Use Cases. https://www.renesas.

com/solutions/automotive.html.
[10] John L Hennessy. 2011. Computer architecture: a quantitative approach.
[11] ISO. 2018. 26262: Road vehicles-Functional safety. FDIS (2018).

[12] Zhe Jiang and Neil C Audsley. 2017. GPIOCP: Timing-accurate general purpose
I/O controller for many-core real-time systems. In DATE. IEEE.

[13] Zhe Jiang, Neil C Audsley, and Pan Dong. 2018. Bluevisor: A scalable real-time
hardware hypervisor for many-core embedded systems. In 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, 75ś84.

[14] Jung-Eun Kim, Man-Ki Yoon, Richard Bradford, and Lui Sha. 2014. Integrated
modular avionics (IMA) partition scheduling with conflict-free I/O for multicore
avionics systems. In Proc. COMPSAC.

[15] Namhoon Kim, Stephen Tang, Nathan Otterness, James H Anderson, F Donelson
Smith, and Donald E Porter. 2018. Supporting I/O and IPC via fine-grained OS
isolation for mixed-criticality real-time tasks. In RTNS.

[16] Gary Plumbridge. 2014. Blueshell: a platform for rapid prototyping of multipro-
cessor NoCs and accelerators. Computer Architecture News (2014).

[17] Shuai Zhao et al. 2020. Timing-accurate general-purpose I/O for multi-/many-
core systems: scheduling and hardware support. In Proc. DAC.

233

http://www.ti.com/tool/pru-swpkg
http://www.nxp.com/products/microcontrollers-and-processors
https://www.eembc.org/autobench/
https://www.renesas.com/solutions/automotive.html
https://www.renesas.com/solutions/automotive.html

	Abstract
	1 Introduction
	2 NPRC-I/O: Architecture
	2.1 Hardware Level
	2.2 Software Level
	2.3 Working Procedures

	3 NPRC-CC Design
	3.1 Periodic Requests Space (P-space)
	3.2 Sporadic Requests Space (S-space)
	3.3 Scheduling Circuits
	3.4 I/O Controller

	4 R2NoC Design
	4.1 NoC Mesh
	4.2 I/O-Ring

	5 Latency analysis and optimisation
	5.1 System Model
	5.2 Worst-case Latency Analysis
	5.3 Network Optimisation

	6 Evaluation
	6.1 Theoretical Evaluation
	6.2 Hardware Overhead
	6.3 Hardware Scalability
	6.4 Real-time Performance: Case Study

	7 Conclusion
	References

