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Abstract

The multivariate adaptive regression spline (MARS) is one of the popular estimation meth-
ods for nonparametric multivariate regression. However, as MARS is based on marginal
splines, to incorporate interactions of covariates, products of the marginal splines must be
used, which often leads to an unmanageable number of basis functions when the order
of interaction is high and results in low estimation efficiency. In this paper, we improve
the performance of MARS by using linear combinations of the covariates which achieve
sufficient dimension reduction. The special basis functions of MARS facilitate calculation
of gradients of the regression function, and estimation of these linear combinations is
obtained via eigen-analysis of the outer-product of the gradients. Under some technical
conditions, the consistency property is established for the proposed estimation method.
Numerical studies including both simulation and empirical applications show its effec-
tiveness in dimension reduction and improvement over MARS and other commonly-used
nonparametric methods in regression estimation and prediction.

Keywords: consistency, gradient estimation, multivariate adaptive regression spline,
nonparametric regression, sufficient dimension reduction

1. Introduction

Nonparametric estimation is an effective tool in statistics and machine learning to capture a
flexible nonlinear relationship between the response and explanatory variables, relaxing
pre-specified model structural assumptions required in parametric estimation methods.
However, extension of the nonparametric regression estimation to the setting with multi-
variate regressors needs to be handled with care, as the required number of observations
(to achieve given estimation accuracy) increases exponentially as the dimension of covari-
ates increases, resulting in the so-called “curse of dimensionality” (e.g., Fan and Gijbels,
1996). To address this problem, we often have to restrict the class of multivariate regression
functions so that only the lower dimensional nonparametric functions are to be estimated.
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Commonly-used function classes include additive models (Hastie and Tibshirani, 1986),
varying-coefficient models (Hastie and Tibshirani, 1993), partially linear models (Engle
et al., 1986) and single-index models (Härdle et al., 1993). However, these restricted non-
parametric estimation methods may have unstable numerical performance in practical
data analysis when the regression function class is misspecified. Hence, it is imperative to
develop a fully nonparametric multivariate estimation method that can reduce the curse of
dimensionality but need no restriction on the class of regression functions.

In nonparametric estimation, the regression function is often approximated by a linear
expansion of base functions (e.g., Chapter 5 of Hastie et al., 2009). In the case of multivariate
covariates, the required number of basis functions in the approximation may increase
dramatically as the dimension of covariates increases. A commonly-used idea to design
a feasible estimation algorithm is to control model complexity and thus limit the number
of basis functions. This can be done by adaptively scanning the set of basis functions and
selecting only those which contribute significantly to the model fitting. Among a long
list of existing estimation algorithms, the multivariate adaptive regression spline (MARS,
Friedman, 1991) is arguably the most popular one. It uses piecewise linear basis functions
and can be viewed as a natural generalization of the stepwise linear regression approach.
Because of the selection of splines in the estimation algorithm, MARS can also result in
variable selection. MARS is well suited for high-dimensional nonparametric regression
problems and can be further extended to tackle classification problems (e.g., Stone et al.,
1997). Existing literature in statistical learning such as Hastie et al. (2009) usually implements
the MARS algorithm directly without making any transformation or dimension reduction
of the covariates. This may result in an unmanageable number of basis functions (if the
level of model complexity or the order of interaction is high) and low estimation efficiency.

In multivariate nonparametric regression, it is often the case that important features of
multiple regressors are retrievable via low-dimensional projections. The low-dimensional
sub-space is expected to retain all (or most of) the information provided by the covariates
on the response, and is thus called the sufficient dimension reduction (SDR) space, which
is first introduced by Li (1991). Aiming at dimension reduction for the conditional mean,
which is more relevant to our main interest, a similar concept (central mean space) is also
introduced by Cook and Li (2002). More recent developments on this topic can be found in
Xia (2008), Chen et al. (2010), Yin and Li (2011), Fukumizu and Leng (2014), Luo et al. (2014),
Ma and Zhu (2014), Wang et al. (2015), Yang et al. (2017), and Fertl and Bura (2022). This
paper aims to combine SDR with MARS by incorporating linear combinations of covariates
to improve the regression estimation. These linear combinations are the SDR directions or
more precisely the central mean space of Cook and Li (2002) when the underlying model
has a multiple-index structure and can effectively reduce the order of covariate interaction
required in MARS and improve the estimation performance. As these linear combinations
in MARS are dimension-reduced covariates, the proposed methodology is called drMARS
throughout the paper.

The nonparametric estimation procedure developed in this paper includes two stages:
(i) estimate the SDR space of the conditional mean; and (ii) modify MARS by incorporating
these linear combinations of covariates (or SDR) to estimate the regression functions. The
main technique in stage (i) is to conduct eigen-analysis of the outer-product of regression
function gradient estimates and estimate the SDR directions by the eigenvectors correspond-
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ing to the first few largest eigenvalues. In particular, we estimate the gradient via a linear
basis expansion determined by MARS and further derive a sensible convergence property
for the resulting estimates. With the MARS algorithm, this new gradient estimation is easy
to implement, complementing other gradient estimation methods such as the local linear
smoothing and reproducing kernel Hilbert space which have been extensively studied in
the literature (e.g., Xia et al., 2002; Xia, 2008; Fukumizu and Leng, 2014). The drMARS in
stage (ii) incorporates the linear combinations of covariates, making it substantially different
from the classic MARS in Friedman (1991). In particular, when a high-order interaction
of covariates can be equivalently expressed as the multiple-index form, our drMARS can
significantly reduce the number of terms in the basis expansion and improve the estimation
efficiency. As a simple example, (x1 + x2 + x3 + x4)

3 has a third-order interaction when the
conventional MARS is applied, but it has only a first-order interaction in the drMARS if the
linear combination is correctly identified. This is confirmed by our numerical studies, which
also show the advantage of drMARS even if the postulated model cannot reduce the order
of interactions via the SDR-determined linear combinations of covariates. drMARS inherits
some nice features from MARS (such as the simple form of linear spline basis functions
and selection of spline in the algorithm) and works well when the dimension of predictors
is relatively large (see the simulation and empirical application). Under some technical
conditions, we derive the consistency theory for the drMARS estimation, complementing
the existing asymptotic theory for the spline-based estimation (e.g., Stone, 1990, 1991; Zhou
et al., 1998; Huang, 2003; Lin, 2013).

Another work related to our approach is the random projection or random rotation
(e.g., Blaser and Fryzlewicz, 2016; Cannings and Samworth, 2017; Bagnall et al., 2018). The
random rotation is an ensemble procedure. It randomly selects the projections and estimates
the model using the projected combinations of the variables as predictors for regression
methods such as the random forest or support vector machine. Each set of projections thus
generates a prediction. The final prediction is a weighted average of these predictions. In
contrast, the rotation in our approach is based on the regression itself, i.e., SDR, and thus is
more efficient for prediction. As we will show in the numerical studies, the rotation based
on SDR has better estimation and prediction accuracy than the random rotation.

The rest of the paper is organized as follows. Section 2 defines the SDR space, introduces
the MARS-based estimation method, and develops the convergence properties of the
estimates. Section 3 describes the drMARS algorithm and its consistency theory. Sections
4 and 5 report the simulation studies and real data applications, respectively. Section 6
concludes the paper. Proofs of the main theorems are available in an appendix. Throughout

the paper, for a vector u = (u1, · · · , ud)
⊺

, we define |u|qq =
∑d

i=1 |ui|q with q ≥ 1; for a
d× d matrix W = (wij)d×d, we let ∥W∥ and ∥W∥F be the spectral and Frobenius norms,
respectively.

2. Estimation of SDR space via MARS

Let Y and X be the response and p-dimensional vector of covariates, respectively. Assume
the following multiple-index model structure:

G(x) = E(Y |X = x) = E
(
Y |B⊺

X = B
⊺

x
)
= G0

(
B

⊺

x
)
, (1)
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where B is a p × d orthogonal matrix with d smaller than p, G(·) is a multivariate non-
parametric regression function on Rp and G0(·) is a nonparametric link function on Rd.
It follows from model (1) that projection of the p-dimensional X onto the d-dimensional
sub-space B

⊺

X retains all the information provided by X for prediction of Y . Hence, the
matrix B determines the SDR directions (or the central mean subspace). The space spanned
by B’s column vectors is called the SDR space.

Letting u = B
⊺

x, by (1), we readily have that G′(x) = BG′
0(u), where G′ and G′

0 are
the gradient vectors. By Lemma 1 in Xia et al. (2002), the space spanned by B is the
same as that spanned by the eigenvectors of ΣG := E

[
G′(X)G′(X)

⊺
]

corresponding to
the largest d eigenvalues, i.e., span(B) = span(β1, · · · , βd), where βj is the eigenvector of
ΣG corresponding to the j-th largest eigenvalue. With a sample of observations (Yi, Xi),
i = 1, · · · , n, we estimate ΣG by the outer-product of gradient estimates:

Σ̃G =
1

n

n∑

i=1

G̃′(Xi)G̃
′(Xi)

⊺

, (2)

where G̃′ is a nonparametric estimate of the gradient G′. A natural estimate of G′ is via
the local linear smoothing method (e.g., Fan and Gijbels, 1996). The estimate of B can be

obtained by subsequently conducting the eigen-analysis of Σ̃G (e.g., Xia et al., 2002; Xia,
2008). However, the local linear estimation is essentially a kernel-based local smoothing
method which is sensitive to the smoothing parameter choice, and still suffers the “curse of
dimensionality” when the dimension p is large.

Next, we propose an alternative technique to estimate G′ via MARS. MARS is an
adaptive estimation procedure using linear spline functions in the basis expansion. For the
k-th covariate, we define the piecewise linear basis functions with knots taken from the set
{tk,1, · · · , tk,nk

}:

h+k,j(xk) = (xk − tk,j)+ =

{
xk − tk,j , if xk > tk,j ,

0, otherwise ,
(3)

h−k,j(xk) = (xk − tk,j)− = (tk,j − xk)+, (4)

which form reflected pairs for the k-th covariate at tk,j , j = 1, · · · , nk. The collection of
marginal basis functions for all the covariates is

C =
{(

h+k,j , h
−
k,j

)
, j = 1, · · · , nk, k = 1, 2, · · · , p

}
.

When each basis function depends only on a single covariate, the number of basis func-
tions in C is 2

∑p
k=1 nk, assuming all the knots are distinct. To incorporate interactions of

covariates, we use tensor products of the basis functions in C. Specifically, when the order
of interaction is set to be R, a typical R-variate basis function is defined as

hk1j1,··· ,kRjR(xk1 , · · · , xkR) =
R∏

r=1

hkr,jr(xkr), (5)

where hk,j is a basis function from C, 1 ≤ jr ≤ 2nkr , and 1 ≤ k1 ̸= k2 ̸= · · · ̸= kR ≤ p. Note
that the number of the R-variate basis functions increases dramatically as p increases.
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Suppose that the multivariate nonparametric regression function is approximated by
the following form of basis expansion:

G(x) ≈ Gm(x) := θ0 +
m∑

j=1

θjhj(x), (6)

where hj is either a basis function in C or a product of marginal basis functions, see (5),
and m is the number of basis functions which may diverge to infinity. Here G(x) ≈ Gm(x)
means that Gm(x) → G(x) as m → ∞. The coefficients θj , j = 0, 1, · · · ,m, are estimated
by the least squares as in standard linear regression. From (6), we further obtain the basis
expansion for the gradient G′:

G′(x) ≈ G′
m(x) :=

m∑

j=1

θjh
′
j(x), (7)

where h′j is the gradient vector of hj . When the order of interaction R is large (or even
moderately large), it is practically infeasible to include all the R-variate basis functions. The
real art of MARS is to provide an adaptive selection procedure including both the forward
and backward stepwise algorithms to construct the basis functions with the linear spline
functions in C. This adaptive selection reduces the number of basis functions in (6) while
retains the model flexibility.

We next briefly describe the MARS algorithm to determine the basis functions in (6) and
(7). Start with the constant function h0(x) ≡ 1 and use the linear spline functions in C as
the candidate functions. In each stage, let M be the set of basis functions which have been
selected in the previous stages. Construct a new basis function from products of any basis
function in M with one of the reflected pairs in C. This new term in the basis expansion has
the following typical form:

θ|M|+1hl(x)h
+
k,j(xk) + θ|M|+2hl(x)h

−
k,j(xk), hl ∈ M,

(
h+k,j , h

−
k,j

)
∈ C,

where θ|M|+1 and θ|M|+2 are the parameters to be estimated by least squares, and |M|
denotes the cardinality of M. Add the products to the model approximation with the basis
functions in M and choose the product which results in the largest decrease in the training
estimation errors. Repeat the above process until the number of the selected basis functions
reaches a pre-determined number M . As the number M is usually large, the model selected
in the forward stepwise algorithm often overfits the data. Thus, a backward stepwise
algorithm is needed to delete the term whose removal results in the smallest increase in the
residual squared errors.

Let h̃1, · · · , h̃m̃ be the basis functions selected by MARS and h̃′j be the gradient vector of

h̃j , j = 1, · · · , m̃. We write

H̃(x) =
[
1, h̃1(x), · · · , h̃m̃(x)

]⊺
and H̃′(x) =

[
0p, h̃

′
1(x), · · · , h̃′m̃(x)

]⊺
,

where 0p is a p-dimensional zero vector. We use least squares to estimate the parameters in
the final basis approximation:

α̃ = (α̃0, α̃1, · · · , α̃m̃)
⊺

=
(
H̃

⊺

H̃

)−1
H̃

⊺

Y, (8)
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where

H̃ =
[
H̃(X1), · · · , H̃(Xn)

]⊺
and Y = (Y1, · · · , Yn)

⊺

.

Consequently the estimate of G′(x) can be obtained by

G̃′(x) =
m̃∑

j=1

α̃j h̃
′
j(x) = H̃′(x)

⊺
(
H̃

⊺

H̃

)−1
H̃

⊺

Y. (9)

The above gradient estimate is then used to construct Σ̃G in (2). Letting β̃j be the eigenvector

of Σ̃G corresponding to the j-th largest eigenvalue, we obtain B̃ = (β̃1, · · · , β̃d), which will
be shown to be a consistent estimate of B (subject to appropriate rotation); see Theorem 4
below.

If the order of covariate interaction is set as R in MARS, we let H(·) be a vector containing
all the basis functions which are either from C or tensor products of the marginal basis
functions as in (5). Without loss of generality, we may write

H(·) =
[
H̃(·)⊺ , H̃−(·)

⊺
]⊺

,

where H̃−(·) is a vector of basis functions not selected by MARS. Let mH be the dimension
of H(·) which is often much larger than m̃. It is worth pointing out that H(·) is a vector of
deterministic functions which can be seen as the candidate basis functions in MARS, and
mH is a non-random positive integer.

We next study the convergence property for the MARS-based nonparametric estimates

G̃′ and Σ̃G, which requires the following technical conditions.

Assumption 1 (i) Let (Yi, Xi), i = 1, · · · , n, be independent and identically distributed (i.i.d.),
and εi := Yi −G(Xi) be zero-mean and homoskedastic, i.e., E(ε2i |Xi) = σ2 > 0 almost surely (a.s.).

(ii) The density function of Xi exists, and is bounded away from zero and infinity on a compact
set X . Both G and G′ are continuous on X .

(iii) The matrix Ω := E
[
H(Xi)H(Xi)

⊺
]

is positive definite, and mH
√
logmH = o(n).

(iv) There exists ρ̃(·) satisfying ρ̃(u) → 0 as u → ∞, such that

sup
x∈X

∣∣∣G′(x)− H̃′(x)
⊺

αo

∣∣∣
2
= OP (ρ̃(m∗)) , αo =

(
H̃

⊺

H̃

)−1
H̃

⊺

G,

conditional on m̃ = m∗, where G = [G(X1), · · · , G(Xn)]
⊺

.
(v) The matrix ΣG has full rank of d with positive and distinct eigenvalues.

Remark 1 The independence restriction in Assumption 1(i) can be weakened and the theory de-
veloped in this section also holds for stationary and weakly dependent time series satisfying some
mixing properties (e.g., Bradley, 2005). Assumption 1(ii) is commonly used in deriving asymptotic
results of the spline-based estimation. The compact support restriction can be relaxed at the cost of
slightly more lengthy proof with some moment condition on X .

Assumption 1(iii) is a sufficient condition to ensure that the least squares estimate in (8) is

well defined. In fact, by Lemma 10 in the appendix, 1
nH̃

⊺

H̃ is positive definite with probability
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approaching one (w.p.a.1), which is implicitly assumed in Friedman (1991). As the linear spline
basis functions are special polynomial spline functions, we may replace Assumption 1(iii) by an

alternative condition through Huang (2003)’s theoretical framework. Let S̃ be the estimation space
containing the linear spline functions and their tensor products selected by MARS. Given a sample

of covariates X1, · · · , Xn, suppose that S̃ is empirically identifiable in the sense that g ∈ S̃ and

|g|2n = 1
n

∑n
i=1 g

2(Xi) = 0 together imply g ≡ 0. For a vector v, v
⊺

( 1nH̃
⊺

H̃)v = 0 indicates that

|v⊺

H̃|2n = 1
n

∑n
i=1[v

⊺

H̃(Xi)]
2 = 0. Then, as v

⊺

H̃ ∈ S̃, by the empirical identifiability of S̃, we

readily have v
⊺

H̃(x) = 0 for any x ∈ X , and thus v = 0. This shows that 1
nH̃

⊺

H̃ is positive definite
w.p.a.1, and its inverse is well defined. Assumption 1(iii) restricts the divergence rate of mH , which
is very mild for the nonparametric series estimation.

Assumption 1(iv) imposes a high-level condition on the uniform bias order of the gradient

estimate. In fact, α
⊺

oH̃(·) can be seen as the projection of G onto the estimation space S̃ defined

above. In the spline-based estimation theory, it is reasonable to assume |G(x) − α
⊺

oH̃(x)| → 0
uniformly over x ∈ X . Assumption 1(iv) shows that this uniform approximation continues to hold

when G and its projection onto S̃ are replaced by their gradients. Let S be the estimation space

containing all the linear spline functions and their tensor products as in H(·). It is clear that S̃ ⊂ S .
Letting H = [H(X1), · · · ,H(Xn)]

⊺

, we define α† = (H
⊺

H)−1
H

⊺

G so that α
⊺

†H(·) can be seen as
the projection of G onto S . The bias term of the gradient estimation can be decomposed as

G′(x)− H̃′(x)
⊺

αo =
[
G′(x)−H′(x)

⊺

α†

]
+
[
H′(x)

⊺

α† − H̃′(x)
⊺

αo

]

=: b̃ias1 (x) + b̃ias2 (x) . (10)

The first term b̃ias1 (x) is due to the approximation error of G′(·) by its projection onto the space
S. In fact, under some smoothness conditions on G and G′ (e.g., Stone, 1982; Huang, 2003), with

the approximation theory, we conjecture that its order is upper bounded by m
−q/p
H , where q is a

positive number relevant to the order of bounded and continuous derivatives of G(·). The second

term b̃ias2 (x) is induced by the projection onto the MARS-selected estimation space S̃ rather than
S. According to the MARS algorithm, we expect this bias order tends to zero if m̃ is sufficiently
large. If m̃ is of the same order as mH , it is reasonable to conjecture that the two terms on the right
side of (10) have the same approximation order.

Assumption 1(v) is analogous to the condition (C4) in Xia (2008), making it feasible to apply the
Davis-Kahan theorem (e.g., Theorem 2 in Yu et al., 2015) to prove Theorem 4.

Theorem 2 Suppose that Assumption 1(i)–(iv) is satisfied. Then, conditional on m̃ = m∗,

∣∣∣G̃′(x)−G′(x)
∣∣∣
2
= OP

(
m

1/2
∗ n−1/2 + ρ̃(m∗)

)
, (11)

∥∥∥Σ̃G −ΣG

∥∥∥ = OP

(
m

1/2
∗ n−1/2 + ρ̃(m∗)

)
. (12)

Remark 3 The two convergence rates in (11) and (12) are due to the estimation variance and
bias, respectively. They are comparable to the convergence results obtained by Fukumizu and Leng
(2014), where the gradient is estimated by the covariance operator on the reproducing kernel Hilbert
space. It is worth noting that the rates in (11) and (12) are slower than the root-n rate as MARS
is essentially nonparametric. Furthermore, if the minimum eigenvalue of Ω converges slowly to

7
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zero, the convergence rates would be further slowed down. For instance, we may show the following
convergence property for the MARS estimate of the gradient:

∣∣∣G̃′(x)−G′(x)
∣∣∣
2
= OP

(
(m∗/λ)

1/2 n−1/2 + ρ̃(m∗)
)
, λ = λmin(Ω),

conditional on m̃ = m∗.
In Theorem 2, we assume that the number of candidate covariates in nonparametric regression

is fixed. The convergence results in (11) and (12) can be further extended to the setting when the
covariate number is divergent at a slow polynomial rate of n. Following the proof of Theorem 2 in

the appendix and assuming that S̃ is empirically identifiable, we may show that

∣∣∣G̃′(x)−G′(x)
∣∣∣
2
= OP

(
(pm∗)

1/2 n−1/2 + ρ̃(m∗)
)
,

∥∥∥Σ̃G −ΣG

∥∥∥ = OP

(
p1/2

[
(pm∗)

1/2 n−1/2 + ρ̃(m∗)
])

,

conditional on m̃ = m∗. These convergence properties indicate that the dimension p must be of order
smaller than n1/2. For high-dimensional nonparametric estimation with p possibly larger than n1/2,
we may have to impose sparsity assumptions on G′ and ΣG, and combine the developed MARS
estimation with a shrinkage technique (e.g., Bickel and Levina, 2008).

Theorem 4 Suppose that Assumption 1(i)–(v) is satisfied. Conditional on m̃ = m∗, there exists a

d× d rotation matrix Q such that
∥∥∥B̃−BQ

∥∥∥ = OP

(
m

1/2
∗ n−1/2 + ρ̃(m∗)

)
.

Remark 5 Xia (2008) derives a faster convergence rate by using the minimum average variance
estimation with refined kernel weights. However, some restrictive conditions are imposed on the
smoothing parameter and the dimension d. For instance, d cannot exceed 3 to achieve the root-n
convergence. In contrast, we do not require additional restriction on d.

We need to determine the dimension of the SDR space for which many criteria have been proposed
(e.g., Li, 1991; Xia et al., 2002). In the simulation study, we select the dimension via the 10-fold
cross-validation (CV) criterion. We do not study the theory of the dimension selection in this paper,
but our simulations suggest that this criterion works reasonably well; see Table 2.

As the basis of the SDR space is not unique, the MARS estimate B̃ converges to B up to
appropriate transformation via the rotation matrix Q. However, with Assumption 1(v) and the
model identification conditions as in Proposition 1.1 of Xia (2008), we may consider Q as an identity

matrix and thus B̃ converges to B. Since BQ is also a base of SRD space, for notational convenience,
we do not distinguish between B and BQ in the rest of the paper, and use B to denote both cases.

3. Dimension-reduced MARS

Let

X∗
i = B̃

⊺

Xi =
(
β̃

⊺

1Xi, · · · , β̃
⊺

dXi

)⊺

be a d-dimensional vector of projected covariates, where B̃ is defined in Section 2. Generally,

we can use any SDR method, such as SIR of Li (1991), to estimate B̃, and then apply
MARS to (Yi, X

∗
i ), i = 1, · · · , n. We call this general approach SDR-MARS, while the MARS

8
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estimation based on our dimension reduction proposed in Section 2 is still called drMARS

to avoid possible confusion. Due to the convergence property of B̃ in Theorem 4, we

expect that X∗
i can well approximate X◦

i = B
⊺

Xi. Write x∗ = B̃
⊺

x = (x∗1, · · · , x∗d)
⊺

and
x◦ = B

⊺

x, x ∈ Rp. For the k-th projected covariate, we define h+k,j(x
∗
k) and h−k,j(x

∗
k) similarly

to h+k,j(xk) and h−k,j(xk) in (3) and (4) but with the set of knots {tk,1, · · · , tk,nk
} replaced by{

t∗k,1, · · · , t∗k,n∗

k

}
, and construct

C∗ =
{(

h+k,j , h
−
k,j

)
, j = 1, · · · , n∗

k, k = 1, 2, · · · , d
}
.

With a sample of response and projected covariates (Y1, X
∗
1 ), · · · , (Yn, X∗

n), we use the linear
spline functions in C∗ as the candidate functions and follow the forward stepwise algorithm
and then the backward stepwise algorithm as in Section 2 to adaptively select the basis

functions denoted by ĥj , j = 1, · · · , m̂. By (1), we readily have that G(x) = G0

(
B

⊺

x
)
=

G0 (x◦). Since x∗ → x◦ by Theorem 4, instead of estimating G, we next estimate the
nonparametric link function G0 using the drMARS selected basis functions.

Let

Ĥ(·) =
[
1, ĥ1(·), · · · , ĥm̂(·)

]⊺
, Ĥ∗ =

[
Ĥ(X∗

1 ), · · · , Ĥ(X∗
n)
]⊺

.

We estimate the parameters in the basis expansion via least squares, i.e.,

γ̂ = (γ̂0, γ̂1, · · · , γ̂m̂)
⊺

=
(
Ĥ

⊺

∗Ĥ∗

)−1
Ĥ

⊺

∗Y, (13)

and then obtain the drMARS estimate:

Ĝ0(x∗) = γ̂0 +
m̂∑

j=1

γ̂j ĥj(x∗) = Ĥ(x∗)
⊺
(
Ĥ

⊺

∗Ĥ∗

)−1
Ĥ

⊺

∗Y. (14)

The main difference between drMARS and the conventional MARS in Friedman (1991)
is that the former incorporates the linear combinations of covariates determined by the
SDR projection in the estimation algorithm. Hence drMARS is expected to work better
when the underlying model contains the multiple-index structure (1). In particular, if a
high-order interaction of covariates can be written as the multiple-index form, drMARS
can significantly reduce the number of basis functions in the model approximation, and
subsequently improve the estimation efficiency; see the simulation studies in Section 4.

Similar to H(·) defined in Section 2, we let H(·) be a vector containing all the basis
functions which are either from C∗ or the tensor products of the marginal basis functions,
i.e.,

H(·) =
[
Ĥ(·)⊺ , Ĥ−(·)

⊺
]⊺

,

where Ĥ−(·) is a vector of basis functions not selected by drMARS. Let mH be the dimension
of H(·). Note that H(·) is a vector of deterministic functions, facilitating the asymptotic
derivation of the drMARS estimation.

We need the following technical conditions to derive the convergence theory of the
drMARS estimation.

9
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Assumption 2 (i) The density function of X◦
i exists, and is bounded away from zero and infinity

on a compact set. The link function G0 is continuous and differentiable.
(ii) The matrix Ω := E

[
H(X◦

i )H(X◦
i )

⊺
]

is positive definite, and mH

√
logmH = o(n).

(iii) The numbers of drMARS selected basis functions and MARS selected ones: m̂ and m̃,
satisfy that m̂

[
m̃1/2n−1/2 + ρ̃(m̃)

]
= oP (1).

(iv) There exists ρ̂(·) satisfying ρ̂(u) → 0 as u → ∞, such that

∣∣∣G0(x∗)− Ĥ(x∗)
⊺

γ∗

∣∣∣ = OP (ρ̂(m◦)) , γ∗ =
(
Ĥ

∗⊺

n Ĥ
∗
n

)−1
Ĥ

∗⊺

n G,

conditional on m̂ = m◦.

Remark 6 Assumption 2(i) extends Assumption 1(ii) to the setting including projected covariates.
As discussed in Remark 1, Assumption 2(ii) ensures that the least squares estimate (13) is well

defined. In fact, Lemma 11 in the appendix shows that 1
nĤ

⊺

∗Ĥ∗ is positive definite w.p.a.1, indicating

that its inverse matrix exists. Let Ŝ be the estimation space by including the linear spline functions
and their tensor products selected by drMARS. We may show that Assumption 2(ii) can be replaced

by the empirical identifiability condition on Ŝ. Assumption 2(iii), combined with the convergence

property in Theorem 4, is crucial to ensure the consistency property when we replace B̃ by B in
drMARS.

We next discuss the high-level condition in Assumption 2(iv) on the drMARS estimation bias.
Letting

H◦ =
[
H(X◦

1 ), · · · ,H(X◦
n)
]⊺

, Ĥ◦ =
[
Ĥ(X◦

1 ), · · · , Ĥ(X◦
n)
]⊺

,

we define

γ† = (H
⊺

◦H◦)
−1

H

⊺

◦G, γ◦ = (Ĥ
⊺

◦Ĥ◦)
−1

Ĥ
⊺

◦G.

Similar to the bias decomposition (10) in Remark 1, we have

G0(x∗)− Ĥ(x∗)
⊺

γ∗ =
[
G0(x◦)− Ĥ(x◦)

⊺

γ◦

]
+
[
G0(x∗)− Ĥ(x∗)

⊺

γ∗ −G0(x◦) + Ĥ(x◦)
⊺

γ◦

]

=
[
G0(x◦)−H(x◦)

⊺

γ†

]
+
[
H(x◦)

⊺

γ† − Ĥ(x◦)
⊺

γ◦

]

[
G0(x∗)− Ĥ(x∗)

⊺

γ∗ −G0(x◦) + Ĥ(x◦)
⊺

γ◦

]

=: b̂ias1 (x) + b̂ias2 (x) + b̂ias3 (x) . (15)

Hence the high-level bias order in Assumption 2(iv) combines the three bias terms in the decomposi-

tion (15). The first term b̂ias1 (x) is caused by the approximation error of G0(·) by its projection onto
S, an estimation space containing the linear spline functions and their tensor products as in H(·).
As discussed in Remark 1, under some smoothness conditions on G0 , we may show that b̂ias1 (x) is

of order m
−q/d

H
, where q is a positive number relevant to the smoothness level of G0(·). The second

term b̂ias2 (x) is induced by the projection onto the drMARS-selected estimation space Ŝ rather

than S. Lin (2013) discusses the order of b̂ias2 (x) under some extra restrictions. As discussed

in Remark 1, if m̂ is of the same order as mH , we conjecture that b̂ias2 (x) would have the same

approximation order as b̂ias1 (x). Finally, b̂ias3 (x) is the extra bias due to the replacement of B by

B̃ in the drMARS algorithm.

10
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The following theorem gives the point-wise convergence rate for Ĝ0(x∗) defined in (14).

Theorem 7 Suppose that Assumptions 1 and 2 are satisfied. The drMARS estimate Ĝ0(x∗) has
the following convergence result:

Ĝ0(x∗)−G0(x∗) = OP

(
m

1/2
◦ /n1/2 + ρ̂(m◦)

)
, (16)

conditional on m̂ = m◦.

Remark 8 The convergence rate obtained in Theorem 7 is comparable to those derived by Huang
(2003) and Lin (2013) for the polynomial spline regression estimation. Assume that the nonpara-
metric link function is sufficiently smooth, say G0(·) is q-smooth (e.g., Huang, 2003), m̂ ∝ mH ,

and the convergence of B̃ is sufficiently fast, say B̃ is root-n convergent (e.g., Xia, 2008). Following

the discussion in Remark 6, we conjecture that ρ̂(m◦) is dominated by b̂ias1 (x) + b̂ias2 (x), which

is upper bounded by m
−q/d
◦ conditional on m̂ = m◦. Consequently the point-wise convergence

rate of drMARS becomes OP (m
1/2
◦ /n1/2 +m

−q/d
◦ ), indicating that the optimal order of m̂ = m◦

is nd/(d+2q) and the optimal convergence rate is expected to be OP (n
−q/(d+2q)) (e.g., Stone, 1982).

In contrast, as discussed in Lin (2013), if G(·) is q-smooth, the conventional MARS estimation

(without SDR rotation) has the bias order m̂
−q/d
⋄ , where m̂⋄ is the number of the MARS selected basis

functions. If m̂⋄ has the optimal order np/(p+2q), the point-wise convergence rate of the conventional
MARS is OP

(
n−q/(p+2q)

)
. As d is typically smaller than p, it is sensible to expect that drMARS

has faster convergence rate than the conventional MARS under the multiple-index model framework
(1). This is confirmed by the numerical studies in Section 4 for finite samples.

In practice, we may further modify drMARS to obtain the nonparametric estimation that
is robust to possible model misspecification, i.e., the multiple-index structural assumption

(1) is violated. Let X̌i =
(
X

⊺

i , X
∗⊺
i

)⊺
be a vector combining both the original and projected

covariates. Consider a sample (Y1, X̌1), · · · , (Yn, X̌n), use the linear spline functions in
C ∪ C∗ as the candidate functions and apply MARS to adaptively select the basis functions
denoted by ȟj , j = 1, · · · , m̌. Similarly to (14), the estimate of G(x) is obtained by

Ǧ(x) = ϕ̌0 +

m̌∑

j=1

ϕ̌j · ȟj(x̌), (17)

where ϕ̌0, ϕ̌1, · · · , ϕ̌m̌ are the least squares estimates and x̌ =
(
x

⊺

, x
⊺

∗

)⊺
with x∗ = B̃

⊺

x.
Furthermore, the nonparametric estimate can be recast into the following form:

Ǧ(x) = ϕ̌0 + Ǧ†(x∗) + Ǧ‡(x),

where Ǧ†(x∗) is defined by summing over the terms in (17) whose basis functions involve
only the projected covariates whereas Ǧ‡(x) is defined by summing over the terms whose
basis functions involve the original covariates. When the multiple-index model assumption
is valid, it is expected that most of the basis functions involved in defining Ǧ‡(x) would be
screened out in the adaptive selection process, and consequently Ǧ(x) is approximated by

ϕ̌0 + Ǧ†(x∗), which is expected to be close to Ĝ0(x∗) defined in (14).

11
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4. Simulation studies

In this section, we use simulated data to showcase the performance of the proposed dimen-
sion reduction and drMARS methods in two aspects: estimation of the SDR (central mean)
space and estimation of the regression function. For the SDR space estimation, we compare
drMARS with principal Hessian directions (pHd, Cook and Li, 2004), conditional variance
estimator (CVE, Fertl and Bura, 2022), gradient-based kernel dimension reductiong (gKDR,
Fukumizu and Leng, 2014) and minimum average variance estimation (MAVE, Xia et al.,

2002). The accuracy of an estimate B̃ is evaluated by

D(B̃,B) =
∥∥∥(I−B(B

⊺

B)−1B
⊺

)B̃
∥∥∥
F
/
√
d,

where d is the effective dimension which is assumed to be known. Selection of this dimen-
sion is evaluated separately. The smaller D(B̃,B) is, the better the SDR space estimate
is. For the regression function estimation, we compare drMARS with two popular meth-
ods: the support vector machine (SVM, Cortes and Vapnik, 1995) and random forest (RF,
Breiman, 2001). We also compare the function estimation using the SDR directions obtained
by pHd, CVE, gKDR, MAVE and our drMARS, respectively, and call them SDR-MARS in

general. For any estimate of the regression function G(x) = E(Y |X = x), say Ĝ(x), we
define the mean squared error (MSE):

MSE(G) =
1

m

m∑

i=1

[
Ĝ(Zi)−G(Zi)

]2
,

to evaluate the estimation accuracy, where, {X1, · · · , Xn} is the in-sample used to estimate
the regression function G(·) and {Z1, · · · , Zm} is the out-of-sample used to compute the
MSE. Both follow the same distribution.

All methods are implemented with R. Specifically, package dr (Weisberg, 2002) for
pHd, cve function in package CVarE for CVE, package MAVE for MAVE, package earth
(Milborrow et al., 2017) for MARS, svm function in package e1071 (Dimitriadou et al.,
2008) for SVM, package randomForest (Liaw and Wiener, 2002) for RF are used in our
numerical studies. The source codes for gKDR and drMARS as well as all the relevant files
can be downloaded from https://github.com/liuyu-star/drMARS. For all the R
functions, their default values of tuning parameters are used. In addition, as the random
rotation is a commonly-used ensemble method (e.g., Blaser and Fryzlewicz, 2016; Cannings
and Samworth, 2017; Bagnall et al., 2018), we also include it in our comparison, denoted
by RAND. In our setting, for each random rotation matrix B, RAND applies MARS to
(B

⊺

Xi, Yi), i = 1, · · · , n to train the model and then predict the testing data.
The data is generated by the following nonlinear regression model:

Yi = G(Xi) + εi,

where Xi = (Xi1, · · · , Xip)
⊺ i.i.d.∼ Up(−1, 1) or Np (0p,ΣX) with ΣX =

(
0.6|i−j|

)
p×p

, and

εi
i.i.d.∼ N(0, 0.52). The specifications of G(·) are as follows,

(M1) G(x) = 0.5(x1 + x2) + 2.5 exp(−2(x1 + x2 + x3)
2),

12
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(M2) G(x) =
1

30
exp(4x1) +

4

3 + 3 exp(−20(x2 − 0.5))
+

3x3 + 2x4 + x5
3

,

(M3) G(x) = 0.6 sin(πx1x2) + 1.2(x3 − 0.5)2 + 0.6x4 + 0.3x5,

(M4) G(x) = 5x1x2x3,

(M5) G(x) = 4(x1 − x2 + x3) sin(0.5π(x1 + x2)),

(M6) G(x) = x1(x1 + x2 + 1),

(M7) G(x) =
x1

0.5 + (x2 + 1.5)2
.

In terms of SDR, the effective dimensions for M1, · · · , M7 are 2, 3, 4, 3, 2, 2 and 2, respectively.

For example, the SDR space of M3 is spanned by β1 =
(
1,0

⊺

p−1

)⊺
, β2 =

(
0, 1,0

⊺

p−2

)⊺
, β3 =(

0, 0, 1,0
⊺

p−3

)⊺
and β4 =

(
0, 0, 0, 2/

√
5, 1/

√
5,0

⊺

p−5

)⊺
. The dimension p is 50 or 100, and the

sample size n is 200 or 500.
For the estimation of the SDR space, the simulation results based on 100 replications are

shown in Tables 1 and 2. For the seven models, Table 1 shows that the estimation errors of
drMARS are smaller than those of pHd, CVE, gKDR and MAVE, indicating that drMARS
has significant improvement over the competing methods in estimating the SDR space.
Moreover, in most cases the relative estimation error reduction of drMARS over the others
improves as the dimension p increases. For example, for M2 with X following the uniform
distribution and n = 500, the relative estimation error reduction (drMARS over MAVE)
is (0.72− 0.34)/0.72 = 0.5278 when p = 50, and it increases to (0.82− 0.31)/0.82 = 0.6220
when p = 100.

As mentioned in Section 2, we select the dimension of SDR space by the 10-fold CV
criterion, using a similar idea as in Xia et al. (2002). The data sample is randomly divided
into 10 equal subsamples Ik with size ⌊0.1n⌋, i.e., {1, · · · , n} = ∪10

k=1Ik. The true dimension
(denoted by d0) is estimated as follows

d̂ = argmax
1≤d≤d

CV(d), CV(d) =
1

10

10∑

k=1

R2(d, Ik),

where d is set as 5 in the simulation,

R2(d, Ik) = 1−
∑

i∈Ik

(
Yi − Ĝ−Ik

0 (B̂
⊺

dXi)
)2

∑
i∈Ik

(
Yi − Y

−Ik
)2 ,

B̂d is computed from the whole data set by setting the dimension of SDR space as d, Ĝ−Ik
0 (·)

is computed from the data {(Yi, B̂
⊺

dXi) : i /∈ Ik} using MARS in the R package earth,

and Y
−Ik is the average value of the response {Yi : i /∈ Ik}. The frequencies of correctly

selecting the correct dimension and the computational time for estimating the SDR space
over 100 replications are reported in Table 2, where only the results for X ∼ Np(0p,ΣX) are
reported as the performance is similar for uniformly distributed covariates. For most cases,

the dimension estimates based on drMARS are the most accurate one with ρ(d̂ = d0) larger
than the other methods. Regarding the computing time, pHd is the least time consuming

13
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X ∼ Up(−1, 1) X ∼ Np(0p,ΣX)

Model p n pHd CVE gKDR MAVE drMARS pHd CVE gKDR MAVE drMARS

M1

50
200 0.89 0.75 0.83 0.74 0.53 0.98 0.76 0.83 0.87 0.80
500 0.74 0.66 0.69 0.60 0.47 0.96 0.71 0.75 0.79 0.71

100
200 0.98 0.94 0.91 0.75 0.58 0.99 0.83 0.87 0.87 0.85
500 0.86 0.71 0.81 0.69 0.44 0.99 0.74 0.82 0.87 0.73

M2

50
200 0.96 0.84 0.82 0.81 0.39 0.96 0.85 0.76 0.90 0.81
500 0.94 0.81 0.77 0.72 0.34 0.95 0.85 0.66 0.91 0.79

100
200 0.98 0.89 0.86 0.81 0.38 0.98 0.91 0.83 0.89 0.82
500 0.97 0.84 0.82 0.82 0.31 0.98 0.90 0.75 0.94 0.83

M3

50
200 0.94 0.88 0.85 0.84 0.72 0.93 0.90 0.83 0.82 0.38
500 0.89 0.84 0.78 0.68 0.66 0.89 0.86 0.77 0.76 0.20

100
200 0.98 0.94 0.90 0.86 0.77 0.97 0.95 0.93 0.81 0.46
500 0.96 0.89 0.86 0.84 0.70 0.94 0.90 0.86 0.82 0.25

M4

50
200 0.94 0.92 0.96 0.95 0.78 0.96 0.85 0.87 0.86 0.21
500 0.93 0.81 0.92 0.95 0.51 0.95 0.83 0.78 0.82 0.04

100
200 0.98 0.97 0.98 0.95 0.85 0.98 0.89 0.96 0.86 0.33
500 0.96 0.96 0.98 0.98 0.65 0.98 0.84 0.89 0.88 0.08

M5

50
200 0.81 0.78 0.97 0.42 0.31 0.93 0.93 0.98 0.96 0.79
500 0.50 0.21 0.77 0.11 0.49 0.90 0.85 0.93 0.94 0.44

100
200 0.97 0.96 0.99 0.66 0.27 0.97 0.97 0.99 0.95 0.84
500 0.75 0.71 0.99 0.21 0.47 0.94 0.94 0.99 0.98 0.54

M6

50
200 0.95 0.76 0.73 0.71 0.57 0.92 0.74 0.92 0.69 0.28
500 0.83 0.61 0.56 0.59 0.56 0.84 0.71 0.69 0.61 0.08

100
200 0.98 0.87 0.83 0.71 0.57 0.98 0.78 0.96 0.67 0.40
500 0.95 0.73 0.68 0.70 0.57 0.92 0.73 0.91 0.70 0.13

M7

50
200 0.96 0.88 0.86 0.88 0.76 0.97 0.80 0.86 0.82 0.47
500 0.91 0.77 0.76 0.81 0.71 0.93 0.75 0.73 0.74 0.22

100
200 0.99 0.94 0.92 0.90 0.76 0.99 0.86 0.90 0.81 0.55
500 0.97 0.87 0.84 0.89 0.66 0.98 0.78 0.83 0.84 0.26

Table 1: Average D(B̃,B) for estimation of the SDR space over 100 replications: the smaller
the value, the better the method.

and CVE is the most time consuming, whereas drMARS is in the middle. In summary,
drMARS with the 10-fold CV can substantially improve dimension estimation accuracy
with reasonable (and acceptable) computational time.

Table 3 lists the MSEs for nonparametric regression function estimation, where only the
results for X ∼ Up(−1, 1) are reported as the performance for Gaussian covariates is similar.
Generally, drMARS has smaller MSEs than the conventional MARS. For example, for model
M1 with p = 50 and n = 500, the MSE(G) of MARS is 0.52, the MSE(G) of the SDR-MARS
with SDR estimated by pHd, CVE, gKDR and MAVE are smaller, and the MSE(G) of our
drMARS is the smallest. A similar pattern can also be found for the other data generating
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ρ(d̂ = d0) Computational time (in seconds)

Model p n pHd CVE gKDR MAVE drMARS pHd CVE gKDR MAVE drMARS

M1

50
200 0.00 0.14 0.21 0.13 0.31 0.01 5.79 0.33 2.08 1.57
500 0.00 0.00 0.17 0.09 0.25 0.01 27.56 1.55 7.42 3.38

100
200 0.00 0.31 0.19 0.18 0.19 0.02 17.70 0.70 2.11 2.78
500 0.00 0.01 0.11 0.00 0.20 0.04 55.85 4.85 18.70 6.43

M2

50
200 0.15 0.08 0.10 0.12 0.17 0.01 8.42 0.28 1.87 0.82
500 0.13 0.10 0.08 0.14 0.24 0.01 47.90 1.84 6.71 2.22

100
200 0.17 0.10 0.04 0.13 0.21 0.02 22.04 0.79 1.89 1.24
500 0.13 0.14 0.03 0.17 0.20 0.03 76.34 5.06 16.95 3.17

M3

50
200 0.21 0.00 0.35 0.05 0.36 0.01 13.05 0.26 1.90 1.50
500 0.24 0.00 0.27 0.06 0.30 0.01 66.94 1.53 6.77 4.01

100
200 0.30 0.00 0.29 0.01 0.27 0.02 41.58 0.74 1.95 2.82
500 0.15 0.00 0.23 0.10 0.34 0.03 134.85 4.65 17.25 7.32

M4

50
200 0.13 0.01 0.23 0.14 0.33 0.01 9.53 0.29 1.91 1.13
500 0.15 0.00 0.20 0.04 0.36 0.01 49.21 1.83 6.76 3.09

100
200 0.17 0.00 0.10 0.12 0.35 0.02 28.93 0.82 1.93 1.96
500 0.16 0.00 0.18 0.11 0.43 0.04 93.66 5.18 17.24 5.41

M5

50
200 0.04 0.16 0.17 0.20 0.26 0.01 6.43 0.25 2.08 1.35
500 0.00 0.14 0.20 0.15 0.40 0.01 33.98 1.44 7.38 4.33

100
200 0.04 0.14 0.01 0.15 0.30 0.02 19.38 0.70 2.12 2.61
500 0.00 0.14 0.15 0.04 0.29 0.03 63.76 4.44 18.68 6.75

M6

50
200 0.23 0.02 0.07 0.33 0.44 0.01 5.37 0.26 2.07 1.01
500 0.14 0.01 0.08 0.50 0.46 0.01 25.99 1.53 7.39 1.42

100
200 0.13 0.01 0.16 0.38 0.33 0.02 17.86 0.71 2.11 1.93
500 0.21 0.05 0.01 0.25 0.47 0.04 49.32 4.70 18.63 2.78

M7

50
200 0.03 0.18 0.19 0.21 0.35 0.01 5.43 0.25 2.08 1.38
500 0.03 0.21 0.30 0.25 0.50 0.02 27.11 1.43 7.39 3.48

100
200 0.09 0.18 0.06 0.16 0.39 0.02 17.09 0.70 2.11 2.76
500 0.05 0.23 0.02 0.07 0.53 0.04 51.15 4.28 18.71 6.60

Table 2: The proportion of selecting the true dimension of the SDR space ρ(d̂ = d0) and the
computing time for estimating the SDR space (with the true dimension) over 100 replications
when X ∼ Np(0p,ΣX).

processes. Note that the MSE(G) of MARS may be larger than that of SVM and RF for
some of the data generating processes (such as M1 and M4). However, in most cases, our
drMARS has smaller MSE(G) than (or comparable MSE(G) to) the SVM and RF methods.
The simulation results in Table 3 also show that RAND has poorer numerical performance
than the other SDR-MARS methods.
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Original SDR-MARS

Model p n SVM RF MARS RAND pHd CVE gKDR MAVE drMARS

M1

50
200 0.95 0.80 0.99 0.92 1.03 0.49 1.02 0.54 0.35
500 0.87 0.61 0.52 0.82 0.46 0.15 0.51 0.13 0.09

100
200 0.98 0.83 1.23 0.98 1.65 1.42 1.45 0.63 0.40
500 0.95 0.66 0.64 0.92 0.74 0.26 0.66 0.32 0.10

M2

50
200 0.43 0.28 0.42 0.35 0.42 0.33 0.36 0.59 0.36
500 0.28 0.16 0.29 0.23 0.29 0.27 0.28 0.34 0.27

100
200 0.61 0.31 0.43 0.55 0.43 0.54 0.62 0.61 0.38
500 0.38 0.18 0.34 0.34 0.34 0.31 0.33 0.57 0.31

M3

50
200 0.49 0.29 0.63 0.43 0.64 0.44 0.44 0.65 0.36
500 0.35 0.22 0.42 0.30 0.42 0.28 0.32 0.32 0.27

100
200 0.63 0.31 0.72 0.59 0.74 0.67 0.74 0.71 0.42
500 0.45 0.24 0.55 0.42 0.55 0.39 0.40 0.64 0.32

M4

50
200 0.98 0.98 2.20 1.00 1.22 1.28 1.10 1.91 1.11
500 0.99 0.96 1.25 0.97 0.92 0.62 0.93 1.10 0.70

100
200 0.97 0.96 2.45 0.99 1.73 1.49 1.73 1.99 1.41
500 0.98 0.96 1.94 0.97 1.24 1.27 1.13 1.84 0.97

M5

50
200 6.57 4.18 1.09 6.57 1.09 1.09 1.09 1.08 0.87
500 6.30 2.83 0.24 6.20 0.24 0.24 0.24 0.26 0.25

100
200 6.60 4.53 1.56 6.68 1.56 1.63 1.56 1.54 0.95
500 6.61 3.03 0.27 6.49 0.27 0.27 0.27 0.27 0.28

M6

50
200 0.34 0.15 0.36 0.30 0.37 0.24 0.34 0.32 0.15
500 0.25 0.09 0.26 0.21 0.26 0.10 0.20 0.16 0.09

100
200 0.40 0.16 0.40 0.39 0.40 0.47 0.52 0.36 0.19
500 0.31 0.09 0.31 0.30 0.32 0.20 0.27 0.34 0.10

M7

50
200 0.08 0.05 0.35 0.08 0.23 0.18 0.13 0.31 0.14
500 0.06 0.03 0.23 0.06 0.17 0.10 0.08 0.18 0.12

100
200 0.09 0.05 0.39 0.09 0.35 0.24 0.24 0.32 0.17
500 0.07 0.04 0.29 0.07 0.23 0.17 0.11 0.29 0.12

Table 3: Average MSE(G) for the regression function estimation over 100 replications when
X ∼ Up(−1, 1).

5. Real data analysis

In this section, we apply the proposed drMARS to the out-of-sample prediction of real data
and statistical inference. Similarly to the simulation studies in Section 4, we consider the con-
ventional MARS and SDR-MARS using various SDR estimation methods and compare their
performance with other commonly-used nonparametric regression methods such as RF and
SVM. We build the model using the training set

{
(Xtrain

i , Y train
i ) : i = 1, · · · , n

}
, and make

prediction for the testing set
{
(Xtest

i , Y test
i ) : i = 1, · · · ,m

}
. The prediction performance is
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evaluated by the relative mean squared prediction error:

rMSPE =

m∑

i=1

(
Ŷ test
i − Y test

i

)2
/

m∑

i=1

(
Y − Y test

i

)2
,

where Ŷ test
i is the fitted value of the response Y test

i and Y = 1
n

∑n
i=1 Y

train
i is a naive

prediction using the average of response observations in the learning set. In addition,
as the use of logistic regression, our drMARS can be used for classification with two
categories denoted as 0 and 1. Specifically, letting the prediction for the testing set be

ŷtesti , i = 1, 2, · · · ,m, the classification is Ŷ test
i = I

(
ŷtesti > 0.5

)
, where I(·) is the indicator

function. The classification performance is measured by the misclassification rate (MCR)
defined as

MCR =
1

m

m∑

i=1

I(Ŷ test
i ̸= Y test

i ).

The following data sets are used to demonstrate the performance of prediction.

data.1 The data (https://archive.ics.uci.edu/ml/datasets/concrete+compr
essive+strength) is about the concrete compressive strength (Y ) and its depen-
dence on concrete’s ingredients and age (X). It has p = 8 predictors and N = 1, 030
observations. The square root transformation is made to the concrete compressive
strength as the response.

data.2 The data (www.kaggle.com/harlfoxem/housesalesprediction) contains
house sale prices for King County in US including Seattle between May 2014 and May
2015. It contains N = 21, 613 house sale records. The interest is to predict the house
sale prices (Y ) based on p = 18 variables (X). The logarithm transformation is made
to the house sale prices.

data.3 The data (archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitor
ing) is composed of a range of biomedical voice measurements from 42 people with
early-stage Parkinson’s disease recruited to a six-month trial of a telemonitoring
device for remote symptom progression monitoring. Data on people’s age, gender,
time interval from baseline recruitment date and 16 biomedical voice measures are
the covariates (X with p = 19), and N = 5, 875 voice recording from these individuals
are collected. Our interest is to predict the motor scores (’motor UPDRS’, Y ) from the
19 covariates.

data.4 The data (https://archive.ics.uci.edu/ml/datasets/Residential+Bu
ilding+Data+Set) contains construction cost, project variables, and economic vari-
ables corresponding to real estate single-family residential apartments in Tehran, Iran.
It contains N = 372 observations. The interest is to predict the construction cost
(Y ) using p = 102 predictors (X) without considering the construction year. The
logarithm transformation is made to the construction cost.

The following data sets are used to demonstrate the classification performance.
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data.5 The data (www.kaggle.com/datasets/muratkokludataset/pistachio-da
taset) includes a total of N = 2, 148 images, 1,232 of Kirmizi type (Y = 0) and 916
of Siirt type (Y = 1). Each image contains 12 morphological features, 4 shape features
and 12 color features (p = 28). We are interested in the classification of the images
based on the 28 features.

data.6 The data (https://archive.ics.uci.edu/ml/datasets/Hill-Valley) con-
tains N = 1, 212 records, each of which represents p = 100 points on a two-dimensional
graph. When plotted in order (from 1 through 100) as the Y co-ordinate, the points
will create either a Hill (a ”bump” in the terrain, Y = 1) or a Valley (a ”dip” in the
terrain, Y = 0). Our interest is to discriminate whether a given record is a Hill or a
valley by 100 points on a two-dimensional graph.

data.7 The data (www.kaggle.com/datasets/cnic92/200-financial-indicator
s-of-us-stocks-20142018) includes N = 986 US stocks in year 2018, each of
which contains p = 216 financial indicators. These predictors are commonly found in
the 10-K filings each publicly traded company releases yearly. Each stock is classified
into two classes: if the value of a stock increases during 2019 then Y = 1; if the value
of a stock decreases during 2019 then Y = 0. The interest is to classify those stocks
that are buy-worthy or not.

We randomly select n = min(1000, ⌊N/3⌋) or n = min(2000, ⌊2N/3⌋) observations as
the training set, and the remaining observations as the testing set, and repeat the random
splitting 100 times. The dimension of SDR space is selected using the 10-fold CV described
in Section 4. The average rMSPEs and MCRs are reported in Table 4 below.

Data Training Original SDR-MARS

(N, p) size SVM RF MARS RAND pHd CVE gKDR MAVE drMARS

data.1 343 21.30 17.86 15.85 21.42 15.85 15.85 15.85 15.88 12.69
(1030, 8) 686 16.75 12.05 14.21 20.10 14.21 14.21 14.15 13.90 10.72
data.2 1000 22.55 16.06 15.50 35.14 15.50 15.50 15.50 15.46 14.62

(21613, 18) 2000 19.57 14.35 13.89 33.37 13.89 13.89 13.86 13.67 13.09
data.3 1000 67.14 35.05 32.16 70.75 30.43 31.14 31.08 31.05 12.79

(5875, 19) 2000 60.20 23.98 30.62 69.58 26.43 28.95 26.51 28.37 10.60
data.4 124 10.02 8.74 5.85 28.86 12.82 5.83 5.86 6.01 4.75

(372, 102) 248 6.73 6.41 4.21 26.75 7.93 4.17 4.22 4.34 3.68

data.5 716 8.74 11.22 9.30 11.23 9.30 9.30 9.30 8.27 9.07
(2148,28) 1432 7.55 10.31 7.72 10.28 7.72 7.72 7.72 7.29 7.52

data.6 404 50.00 44.88 19.38 8.39 20.08 17.88 8.31 14.60 6.21
(1212, 100) 808 50.07 40.88 19.57 5.68 16.90 17.03 6.24 17.08 3.16

data.7 328 19.47 5.19 0.35 21.68 0.49 0.35 0.36 0.95 0.31
(986 ,216) 657 13.94 0.94 0.12 21.46 0.13 0.12 0.12 0.35 0.11

Table 4: Average rMSPE or MCR of the real data over 100 replications (in %)
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As can be seen from Table 4, the conventional MARS often has smaller rMSPE than
SVM and RF in particular when the size of training sets is relatively smaller. SDR-MARS
based on various dimension reduction methods may make a further improvement over
MARS and the improvement of the proposed drMARS is more remarkable than the other
SDR-MARS methods (see the columns under ”SDR-MARS”). In contrast, RAND has the
worst performance in the out-of-sample prediction with the largest rMSPE. Regarding the
classification performance, it can be seen that SDR-MARS again outperforms MARS and
drMARS often has much more significant improvement over MARS than the other methods
(see data.6 and data.7).

We next make some further illustration of the estimated model structure using data.3
and data.4. For ease of comparison, we standardize each variable. The estimation results
of data.3 are listed in Table 5. The dimension of SDR space and the interaction degree of
drMARS are selected as 3 and 1, respectively, and the regression model is estimated as
follows,

E(Y | X = x) = 47.82 + g1(β
⊺

1x) + g2(β
⊺

2x) + g3(β
⊺

3x),
g1(v1) = 553.72(v1 − 0.66)+ + 2.78(0.66− v1)+ + 150.52(v1 − 0.63)+,
g2(v2) = −90.49(v2 + 1.27)+ − 34.30(−1.27− v2)+ + 121.43(v2 + 0.00)+

−111.66(v2 − 0.19)+ + 28.26(v2 − 0.57)+ + 12.22(v2 + 0.41)+
+158.01(v2 + 1.01)+ − 123.24(v2 + 0.65)+,

g3(v3) = −7.67(v3 + 0.29)+ − 8.60(−0.29− v3)+,

where B = (β1, β2, β3) is the direction matrix in SDR space with the estimation results
reported in Table 5. Note that the model is additive (with the interaction degree 1), we are
able to estimate each additive function (with confidence bands) as plotted in Figure 1.
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Figure 1: The estimated additive functions using the SDR directions for data.3
.

Note that as MARS takes a step-wise procedure to select the spline bases, some of them
may be screened out. As a consequence, some of the predictors may not be selected in
the model. This is shown clearly in the estimated coefficients of the directions in Table
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5. It is known that gender and age are two important factors for the parkinson’s disease,
which are clearly dominant in the first two directions; see the first two columns of Table 5
and the left and middle plots of Figure 1. It is also interesting to see that the last column
in Table 5 is mainly comprised of Shimmer.DDA (with coefficient 0.4893) and Jitter.RAP
(with coefficient 0.4176) and Jitter.DDP (with coefficient -0.3865). As the first two directions
are mainly influenced by age and sex, we can plot them separately as shown in Figure 1,
which is in line with the understanding of the relationship between the disease and the
two variables. The estimated coefficients for the third projection imply that higher value of
Shimmer.DDA leads to a lower degree of the disease. The result sheds some light on the
debate about the usefulness of Shimmer.DDA in the disease diagnostics, suggesting that
Shimmer.DDA is indeed useful in identifying the disease (e.g., Hausdorff, 2007; Kirchner
et al., 2014).

X β1 β2 β3

age -0.0237 -0.9440 0.0722
sex -0.9443 -0.0126 0.0399
test time 0.0000 0.0000 -0.0547
Jitter(%) 0.0000 0.0000 -0.1374
Jitter.Abs 0.0000 0.0000 0.0606
Jitter.RAP 0.0000 0.0106 0.4176
Jitter.PPQ5 0.0000 0.0000 -0.1404
Jitter.DDP 0.0000 0.0000 -0.3865
Shimmer 0.0000 0.0000 -0.1577
Shimmer.dB 0.0000 0.0000 0.2654
Shimmer.APQ3 0.0000 0.0000 -0.3347
Shimmer.APQ5 0.0000 0.0000 -0.1152
Shimmer.APQ11 0.0000 0.0000 -0.0935
Shimmer.DDA 0.0000 0.0126 0.4893
NHR 0.0000 0.0000 0.0635
HNR 0.0000 0.0000 0.0814
RPDE 0.0000 0.0000 0.0226
DFA 0.0000 0.0000 0.3361
PPE 0.0000 0.0000 0.0000

Table 5: The estimated SDR directions for data.3

For data.4, the dimension of SDR space and the interaction degree of MARS are selected
as 3 and 2, respectively, and the model is estimated as follows,

E(Y | X = x) = 5.82 + g1(β
⊺

1x) + g2(β
⊺

2x) + g3(β
⊺

3x) + g12(β
⊺

1x, β
⊺

2x) + g13(β
⊺

1x, β
⊺

3x),

where β1, β2 and β3 are directions of the SDR space, and

g1(v1) = 31.67(v1 + 0.00)+ − 42.83(−0.00− v1)+

−12.97(v1 + 0.03)+ − 10.30(v1 − 0.03)+,
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g2(v2) = −7.52(v2 + 0.00)+ − 3.73(−0.00− v2)+,

g3(v3) = −28.42(v2 − 0.03)+,

g12(v1, v2) = 881.25(−0.00− v1)+(v2 − 0.01)+,

g13(v1, v3) = −153.80(v1 + 0.03)+(v3 − 0.01)+.

Inherited from MARS, drMARS may remove some variables if they are not important.
Hence only a small portion of the 102 predictors are selected by drMARS in the final
model and have nonzero coefficients in the directions, and the coefficients of the remaining
variables are zero. Table 6 only lists those variables that have nonzero coefficients. Note that
the 102 predictors include 7 project physical and financial variables, and 5 groups of time lag
economic variables (5*19 variables in total), which we denote in Table 6 as lag k, k = 1, · · · , 5.
It shows that none of project physical and financial variables is significant, and significant
economic variables appear in multiple time lags, indicating that economic variables have a
durable effect on final costs. Specifically, the building services index (x9, x28, x47, x66) and
consumer price index (x22, x23, x41, x42, x60, x61) are important factors for the final cost. The
land price index (x33, x52) and the cumulative liquidity (x12, x31, x50, x69) also affect the
final cost.

variables that has non-zero coefficients in drMARS β1 β2 β3

x9: Building services index (BSI) for a preselected base year (lag 1) 0.4291 -0.2057 0.1172
x12: Cumulative liquidity (lag 1) 0.1303 0.0000 0.1469
x22: Consumer price index (CPI) in the base year (lag 1) 0.0000 -0.1739 0.0000
x23: CPI of housing, water, fuel & power in the base year (lag 1) 0.3816 0.2211 0.0000
x28: Building services index (BSI) for a preselected base year (lag 2)-0.5875 0.0000 0.0000
x29: Wholesale price index (WPI) of building materials for the base

0.0000 -0.1322 0.0000
year (lag 2)

x31: Cumulative liquidity (lag 2) 0.0000 -0.1167-0.1606
x33: Land price index for the base year (lag 2) 0.0000 0.1473 0.0000
x41: Consumer price index (CPI) in the base year (lag 2) 0.2372 0.0000 0.1360
x42: CPI of housing, water, fuel & power in the base year (lag 2) -0.2168 -0.5692-0.3176
x47: Building services index (BSI) for a preselected base year (lag 3) 0.1970 0.6146 0.3905
x50: Cumulative liquidity (lag 3) -0.1275 0.0000-0.3034
x52: Land price index for the base year (lag 3) -0.1467 0.0000-0.1483
x60: Consumer price index (CPI) in the base year (lag 3) 0.0000 -0.1859 0.0000
x61: CPI of housing, water, fuel & power in the base year (lag 3) 0.1178 0.2444 0.4858
x66: Building services index (BSI) for a preselected base year (lag 4)-0.2091 0.0000-0.4764
x69: Cumulative liquidity (lag 4) 0.1549 0.0000 0.2307

Table 6: The estimated SDR directions for data.4 with nonzero coefficients, while coefficients
for those not listed here are all 0.

Due to the interaction degree 2, we draw plots in the three-dimensional space for the
dependence of the cost Y on the projected variables β

⊺

jX, j = 1, 2, 3, as shown in Figure 2.
The first row of plots shows the relationship between cost and the directions; the second
row shows the corresponding fitted functions specified in the estimated model above.
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Figure 2: Plots for data.4: the plots on the top panel are the cost against each direction, and
those on the bottom panel are the fitted functions

.

Interestingly, as shown in the last panel of Figure 2, the cost has a non-linear dependence
on the direction. The nonlinearity is along the second direction, which is a contrast between
BSI for a preselected base year x47 (coefficient 0.6146) with the CPI of housing, water, fuel &
power in the base year x42, x61 (coefficient -0.5692, 0.2444). The reason for this nonlinearity
needs further investigation.

6. Conclusion

This paper has proposed a general method that combines SDR with the commonly-used
MARS algorithm to estimate nonparametric regression functions. The special structure
of the MARS basis functions makes it easy to compute the gradient vector of regression
functions and thus the SDR space. The selection of spline functions in MARS also makes
our dimension reduction method more suitable for high dimensional data. The proposed
drMARS based on the SDR space can in turn improve the efficiency of conventional MARS.
Through the comparison with other commonly-used nonparametric estimation and dimen-
sion reduction techniques, our numerical studies including both simulation and empirical
applications show that the proposed drMARS has better finite-sample performance in both
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in-sample estimation and out-of-sample prediction. In summary, there are two key factors
in drMAVE that contribute to its performance. Firstly, drMARS benefits from the automatic
selection of the basic function, a feature inherent in MARS itself, which can also lead to
the selection of variables. Second, drMARS performs dimension reduction with the same
objective of minimizing the loss function of MARS.

Several issues can be studied further. Cai et al. (2022) suggest a hybrid of random
projection with SDR, which uses random projection to reduce the dimension of predictors
to a lower-dimensional space and then applies SDR to the smaller space. We conjecture that
such a hybrid may be adopted here. Our method can also be applied to other regression
methods such as the random forest or support vector machine to solve the interaction
between variables.

Appendix: Proofs of the asymptotic theorems

In this appendix we prove the main theorems in Sections 2 and 3. Throughout the proofs,
we let C denote a generic positive constant whose value may change from line to line. We
start with a useful inequality for independent random matrices (Tropp, 2012).

Lemma 9 Suppose that Λi, i = 1, · · · , n, are independent q1× q2 random matrices with zero mean
and max1≤i≤n ∥Λi∥ ≤ λn. Then for any z > 0,

P

(∥∥∥∥∥
n∑

i=1

Λi

∥∥∥∥∥ ≥ z

)
≤ (q1 + q2) exp

{
− z2

2(ξ2n + λnz/3)

}
,

where

ξ2n = max

{∥∥∥∥∥
n∑

i=1

E
[
ΛiΛ

⊺

i

]
∥∥∥∥∥ ,
∥∥∥∥∥

n∑

i=1

E
[
Λ

⊺

iΛi

]
∥∥∥∥∥

}
.

The following lemma ensures that the least squares estimate (8) is well defined.

Lemma 10 Suppose that Assumption 1(i)–(iii) is satisfied. Then 1
nH̃

⊺

H̃ is positive definite w.p.a.1.

Proof of Lemma 10. Recall that H = [H(X1), · · · ,H(Xn)]
⊺

. We first prove

∥∥∥∥
1

n
H

⊺

H−Ω

∥∥∥∥ = oP (1). (18)

Note that
1

n
H

⊺

H−Ω =
1

n

n∑

i=1

[
H(Xi)H(Xi)

⊺ −Ω
]
.

We next make use of the inequality in Lemma 9 with Λi = H(Xi)H(Xi)
⊺ − Ω to prove

(18). It is easy to verify that λn = c1mH and ξ2n = c2m
2
H , where c1 and c2 are two positive

constants. By Lemma 9 and mH
√
logmH = o(n), for any ϵ > 0, we have

P

(∥∥∥∥
1

n
H

⊺

H−Ω

∥∥∥∥ ≥ ϵ

)
= P

(∥∥∥∥∥
n∑

i=1

[
H(Xi)H(Xi)

⊺ −Ω
]
∥∥∥∥∥ ≥ nϵ

)
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≤ 2mH exp

{
− ϵ2n2

2
(
c2m2

H + ϵc1mHn/3
)
}

≤ 2mH exp

{
− ϵ2n2

3c2m2
H

}

= exp

{
log(2mH)− ϵ2

3c2
· n2

m2
H

}
= o(1),

completing the proof of (18).
Combining Assumption 1(iii) with (18), we may show that 1

nH
⊺

H is positive definite
w.p.a.1, i.e., λmin(

1
nH

⊺

H) is positive and bounded away from zero, where λmin(·) denotes
the minimum eigenvalue of a square matrix. It is trivial to verify that

λmin(H
⊺

H) ≤ λmin(H̃
⊺

H̃).

Hence, we may claim that 1
nH̃

⊺

H̃ is positive definite w.p.a.1.

Proof of Theorem 2. Without loss of generality, we next prove the convergence results by
setting m̃ = m∗, where m∗ is a non-random positive integer. Letting ε = (ε1, · · · , εn)

⊺

and
G = [G(X1), · · · , G(Xn)]

⊺

, by (8), we have

G̃′(x)−G′(x) = Π1(x) + Π2(x), (19)

where

Π1(x) = H̃′(x)
⊺
(
H̃

⊺

H̃

)−1
H̃

⊺

ε, Π2(x) = H̃′(x)
⊺
(
H̃

⊺

H̃

)−1
H̃

⊺

G−G′(x).

We first consider Π1(x). Let FX = σ(X1, · · · , Xn) and Em∗
= (e1, e2, · · · , em∗

)
⊺

, where
ej is an mH -dimensional vector with the j-th element being 1 and the others being zeros.

Note that H̃
⊺

= Em∗
H

⊺

. By Assumption 1(i), we have

Em∗
Var

(
n−1/2

H
⊺

ε | FX

)
E

⊺

m∗

= σ2

(
1

n
Em∗

H
⊺

HE
⊺

m∗

)
= σ2

(
1

n
H̃

⊺

H̃

)
, (20)

indicating that

|Π1(x)|22 ≤
C

n
·
∥∥∥∥∥H̃

′(x)
⊺

(
1

n
H̃

⊺

H̃

)−1

H̃′(x)

∥∥∥∥∥ w.p.a.1. (21)

As ∥H̃′(x)∥ is of order m
1/2
∗ , it follows from (21) and Lemma 10 that

|Π1(x)|2 = OP

(
m

1/2
∗ n−1/2

)
. (22)

On the other hand, by Assumption 1(iv), we have

|Π2(x)|2 =
∣∣∣∣H̃′(x)

⊺
(
H̃

⊺

H̃

)−1
H̃

⊺

G−G′(x)

∣∣∣∣
2

=
∣∣∣H̃′(x)

⊺

αo −G′(x)
∣∣∣
2
= OP (ρ̃(m∗)) . (23)
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By (22) and (23), we complete the proof of (11).
We next turn to the proof of (12). Note that

Σ̃G −ΣG =

[
1

n

n∑

i=1

G̃′(Xi)G̃
′(Xi)

⊺ − 1

n

n∑

i=1

G′(Xi)G
′(Xi)

⊺

]
+

[
1

n

n∑

i=1

G′(Xi)G
′(Xi)

⊺ −ΣG

]

=: Π3 +Π4. (24)

By Assumption 1(i) and Lemma 9, we readily have

P

(∥∥∥∥∥
1

n

n∑

i=1

G′(Xi)G
′(Xi)

⊺ −ΣG

∥∥∥∥∥ ≥ Mn−1/2

)
→ 0

when M → ∞. This indicates that

∥Π4∥ =

∥∥∥∥∥
1

n

n∑

i=1

G′(Xi)G
′(Xi)

⊺ −ΣG

∥∥∥∥∥ = OP

(
n−1/2

)
. (25)

Re-write Π3 as

Π3 =
1

n

n∑

i=1

[
G̃′(Xi)−G′(Xi)

] [
G′(Xi)

]⊺
+

1

n

n∑

i=1

[
G′(Xi)

] [
G̃′(Xi)−G′(Xi)

]⊺
+

1

n

n∑

i=1

[
G̃′(Xi)−G′(Xi)

] [
G̃′(Xi)−G′(Xi)

]⊺

=: Π3,1 +Π3,2 +Π3,3. (26)

Following the proofs of (20)–(23), we may show that

1

n

n∑

i=1

|Π1(Xi)|2 ≤ Cn−1/2 · 1
n

n∑

i=1

∥∥∥H̃′(Xi)
∥∥∥ = OP

(
n−1/2m

1/2
∗

)
, (27)

and
1

n

n∑

i=1

|Π2(Xi)|2 = OP (ρ̃(m∗)) . (28)

By the decomposition (19), the Cauchy-Schwarz inequality, (27) and (28), we have

∥Π3,1∥ ≤ 1

n

n∑

i=1

∥∥∥
[
G̃′(Xi)−G′(Xi)

] [
G′(Xi)

]⊺∥∥∥

≤ 1

n

n∑

i=1

∣∣∣G̃′(Xi)−G′(Xi)
∣∣∣
2

∣∣G′(Xi)
∣∣
2

≤ C · 1
n

n∑

i=1

∣∣∣G̃′(Xi)−G′(Xi)
∣∣∣
2
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≤ C

(
1

n

n∑

i=1

|Π1(Xi)|2 +
1

n

n∑

i=1

|Π2(Xi)|2
)

= OP

(
m

1/2
∗ n−1/2 + ρ̃(m∗)

)
, (29)

and similarly

∥Π3,2∥ = OP

(
m

1/2
∗ n−1/2 + ρ̃(m∗)

)
, ∥Π3,3∥ = OP

(
m∗n

−1 + ρ̃2(m∗)
)
. (30)

By virtue of (24)–(26), (29) and (30), we complete the proof of (12).

Proof of Theorem 4. By Assumption 1(v) and the Davis-Kahan theorem (e.g., Yu et al.,
2015), there exists a d× d rotation matrix Q such that

∥∥∥B̃−BQ

∥∥∥ ≤ C
∥∥∥Σ̃G −ΣG

∥∥∥ ,

which, together with (12), proves Theorem 4.

The following lemma ensures that the least squares estimate (13) is well defined.

Lemma 11 Suppose that Assumptions 1 and 2(i)–(iii) are satisfied. Then 1
nĤ

⊺

∗Ĥ∗ is positive definite
w.p.a.1.

Proof of Lemma 11. Recall that Ĥ∗ = [Ĥ(X∗
1 ), · · · , Ĥ(X∗

n)]
⊺

and define Ĥ◦ = [Ĥ(X◦
1 ), · · · ,

Ĥ(X◦
n)]

⊺

. By Theorem 4, the smoothness property of the basis functions and Assumption
2(iii), we have

∥∥∥∥
1

n
Ĥ

⊺

∗Ĥ∗ −
1

n
Ĥ

⊺

◦Ĥ◦

∥∥∥∥ = OP

(
m̂ · (m̃1/2n−1/2 + ρ̃(m̃))

)
= oP (1). (31)

By (31), it is sufficient to show that 1
nĤ

⊺

◦Ĥ◦ is positive definite w.p.a.1. This can be proved
by using Assumption 2(ii) and following the proof of Lemma 10.

Proof of Theorem 7. Without loss of generality, we next prove the consistency property
by setting m̂ = m◦, where m◦ is a non-random positive integer. Let ε = (ε1, · · · , εn)

⊺

and
G = [G(X1), · · · , G(Xn)]

⊺

as in the proof of Theorem 4. Note that

Ĝ0(x∗)−G0(x∗) = Ĥ(x∗)
⊺
(
Ĥ

⊺

∗Ĥ∗

)−1
Ĥ

⊺

∗ε+

[
Ĥ(x∗)

⊺
(
Ĥ

⊺

∗Ĥ∗

)−1
Ĥ

⊺

∗G−G0(x∗)

]

= Ĥ(x∗)
⊺
(
Ĥ

⊺

∗Ĥ∗

)−1
Ĥ

⊺

∗ε+OP (ρ̂(m◦)) (32)

conditional on m̂ = m◦.
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Letting H◦ =
[
H(X◦

1 ), · · · ,H(X◦
n)
]⊺

with H(·) defined in Section 3, and Em◦
= (e1, e2, · · · , em◦

)
⊺

,

we then have Ĥ
⊺

◦ = Em◦
H

⊺

◦. Note that

Ĥ
⊺

∗ε = Ĥ
⊺

◦ε+
(
Ĥ∗ − Ĥ◦

)⊺

ε = Em◦
H

⊺

◦ε+
(
Ĥ∗ − Ĥ◦

)⊺

ε. (33)

As in the proof of (20), we may show that

Em◦
Var

(
n−1/2

H

⊺

◦ε | FX

)
E

⊺

m◦

= σ2

(
1

n
Em◦

H

⊺

◦H◦E
⊺

m◦

)
= σ2

(
1

n
Ĥ

⊺

◦Ĥ◦

)
,

which, together with Lemma 11, indicates that

∣∣∣∣Ĥ(x∗)
⊺
(
Ĥ

⊺

∗Ĥ∗

)−1
Ĥ

⊺

◦ε

∣∣∣∣ =

∣∣∣∣Ĥ(x∗)
⊺
(
Ĥ

⊺

◦Ĥ◦

)−1
Ĥ

⊺

◦ε

∣∣∣∣ (1 + oP (1))

= OP

(
m

1/2
◦ n−1/2

)
. (34)

On the other hand, by Theorem 4, Lemma 11 and the smoothness property of the MARS
basis functions, we have

∣∣∣∣Ĥ(x∗)
⊺
(
Ĥ

⊺

∗Ĥ∗

)−1 (
Ĥ∗ − Ĥ◦

)⊺

ε

∣∣∣∣ = oP

(
m

1/2
◦ n−1/2

)
. (35)

By virtue of (33)–(35), we have

∣∣∣∣Ĥ(x∗)
⊺
(
Ĥ

⊺

∗Ĥ∗

)−1
Ĥ

⊺

∗ε

∣∣∣∣ = OP

(
m

1/2
◦ n−1/2

)
(36)

With (32) and (36), we complete the proof of (16).
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