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Abstract

We present a system for growing graphs which can be thought
of as an extension of the update rules used by Cellular Au-
tomata. As in Neural Cellular Automata, these rules are en-
coded in the real-valued weight matrix of a neural network.
This should make the system easy to evolve, allowing it to
be used as an evolutionary-developmental method of creat-
ing graph structures for use as recurrent neural networks or
substrates in Reservoir Computing. Here we conduct a ran-
dom search experiment and characterise five different classes
of behaviour of the system. The most interesting of these is
when the graph grows for a number of timesteps before natu-
rally coming to a halt as it enters an attractor. This behaviour
is seen more frequently than might be expected and contrasts
with most developmental systems in which growth must be
stopped by external intervention. There are clear parallels
with biological morphogenetic processes where growth natu-
rally comes to a halt.

Introduction

Graphs appear in many places in Artificial Life, from Ar-

tificial Neural Networks (ANNs) to Kauffman’s Random

Boolean Networks (RBNs) (Kauffman, 1969). They are par-

ticularly useful for representing spatially discrete dynami-

cal systems. Such systems have interesting computational

properties. For example, several simple updating rules in

Wolfram’s one-dimensional Elementary Cellular Automata

(ECA) (Wolfram, 2002) have been shown to create dynam-

ics which can be harnessed for Turing complete computation

(Rule 110, for example) (Cook, 2004). The field of Reser-

voir Computing (RC) (Jaeger, 2001; Maass et al., 2002) has

shown that any dynamical system with rich non-linear dy-

namics and fading memory can be used for computation.

Whilst many implementations of RC use physical materi-

als as the dynamical system, the original Echo State Net-

work (ESN) implementation used fixed-weight randomly

connected recurrent neural networks represented as graphs

(Jaeger, 2001). The links between these various types of spa-

tially discrete dynamical systems become clear when they

are all represented as graph structures (Pontes-Filho et al.,

2020).

These uses of graph-structured objects for computing gen-

erally use static graphs. However, there is a separate field of

research focused on developing or growing graphs. Linking

these two areas, and harnessing the dynamics of develop-

mental graphs for computation, is an intriguing area for re-

search. The biological metaphors often applied to ANNs or

dynamical systems usually lack a description of how these

computational structures are formed in the first place. This

point is made by Hiesinger (2021), who laments that ANNs

took their inspiration from neuroscience at a time when it

was believed that neurons in the brain were connected ran-

domly. In fact this is far from the case and infant brains are

by no means blank slates comparable to randomly initialised

ANNs.

Evolutionary approaches have often been used to search

for graph structures with good computational properties

(ANNs, ESNs etc). However, as the size of these networks

is scaled up, the search space can become unmanageably

large. One approach is to combine evolution with an indi-

rect encoding. This can result in a genetic representation

that is highly compressed compared to the final structure it

gives rise to. This reduces the search space, and whilst it

constrains structures that can be found, this constraint can

result in modularity or repeating motifs, which may be ad-

vantageous properties for certain tasks. For example, Hy-

perNEAT (Stanley et al., 2009) uses a small evolved neural

network which is then “queried” to discover the connection

weight between every pair of nodes in a larger network. This

results in ANNs with structural regularities that can usefully

mirror geometric properties in the problem domain (for ex-

ample, the layout of a checkerboard, or relative pixel loca-

tions in an image).

The system introduced here encodes developmental rules

for graphs in the weights of a small “internal” neural net-

work which determines each cell’s behaviour. Many devel-

opmental approaches do not naturally terminate and have to

be arbitrarily halted at some point (eg. Hintze et al. (2020)).

However, the system introduced here has the property that

growth often (but not always) comes to a halt of its own ac-

cord, as an attractor state is reached.
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The paper is organised as follows. We first review related

work in the field of Cellular Automata (CAs) and highlight

some approaches for growing graphs. We then introduce the

model of Developmental Graph Cellular Automata which

uses CA-like updating rules on irregular graphs, which up-

date not only node states, but also the graph structure by

duplicating and removing nodes. This is followed by a sec-

tion detailing the results of an experiment which shows that

this system can frequently reach an attractor state in which

growth comes to a halt naturally. We conclude with a brief

discussion of some biological metaphors that could be ap-

plied to the system, and outline future work in using evolu-

tion to search for interesting behaviour.

Related Work

The present work takes inspiration from two separate fields.

Firstly, recent work in Neural and Graph Cellular Automata

(NCA and GCA respectively) has highlighted that CAs can

be viewed as discrete dynamical systems on graphs with a

lattice topology, in which the update rules may be repre-

sented as arbitrary functions. Secondly, the field of rewriting

rules in general, and graph rewriting in particular provides

various different approaches to encoding developmental sys-

tems.

Neural and Graph Cellular Automata

The idea of replacing the update rule of a CA with a neural

network was introduced by Wulff and Hertz (1992). It was

extended to incorporate evolution by Tavares et al. (2015)

who coined the term Neural Cellular Automata (NCA).

Gilpin (2019) further highlighted the equivalence between

CAs and Convolutional Neural Networks, whilst Mordvint-

sev et al. (2020, 2022) trained the neural networks to pro-

duce growing patterns of cells on the CA grid. In those pa-

pers the term “growing” refers to a growing pattern within

the fixed space of the CA grid; when we talk about “growth”

in the present work, we mean nodes being added to the

graph, ie. the “space” itself expanding and changing topol-

ogy. This has more in common with the way Wolfram’s

hypergraphs (Wolfram, 2020) frame graph rewriting as a re-

configuration of space itself.

Random Boolean Networks (RBNs) (Kauffman, 1996)

have some similarities to CAs in that they comprise a net-

work of nodes that update their state at each timestep based

on the state of their neighbours. However, unlike CAs,

RBNs are based on graphs with random connectivity rather

than regular lattices. The original RBNs are still regular in

graph-theoretic terms as each node has the same in-degree.

Again unlike CAs, rather than using the same update func-

tion at every node, RBNs use a randomly chosen Boolean

function at each node to perform the update step.

One approach to bridging the gap between RBNs and CAs

is Graph Cellular Automata (GCA) (Marr and Huett, 2009),

which use graphs with random connectivity and uniform de-

gree like RBNs, and use the same update function at every

node like CAs. Unlike RBNs they are not constrained to

two-state (Boolean) systems. Grattarola et al. (2021) have

linked GCA and NCA to create Graph Neural Cellular Au-

tomata. These are CAs structured as graphs and use a neural

network for their update rule. These share some similari-

ties with the present system, but do not allow the addition or

removal of nodes, so cannot be used to grow.

Najarro et al. (2022) combine NCAs with the idea of Hy-

perNEAT. The CA grid acts like the “substrate” in Hyper-

NEAT in that the value of each cell is interpreted as a weight

in the final larger neural network, which again has a pre-

defined size and structure.

Growing Graphs

The graph topology of all the systems mentioned above re-

mains fixed after initialisation. By contrast, there are other

systems that focus on structural changes. L-Systems are a

simple example of this type of system. They consist of string

rewriting rules in which all replacements are made in paral-

lel (Lindenmayer, 1968). They were originally conceived as

a way of modelling the growth of blue-green algae, which

grows in linear strands and is therefore easy to represent us-

ing strings of symbols. L-Systems have since found wide

use in simulating growth processes of organic forms in the

context of computer graphics. A novel use of L-Systems

with relevance to the present work is for the development of

graph structures to be used as neural networks (Boers and

Sprinkhuizen-Kuyper, 2001).

Whilst the most basic form of L-Systems use context-free

rules, versions also exist using context-sensitive rules, which

take into account neighbouring symbols. It is therefore pos-

sible to view a non-branching context-sensitive L-System as

a form of CA with a linear topology, much like ECAs, in

which the value of each symbol in the string is equivalent to

the state of a CA cell. If all the rules result in the replace-

ment of one symbol with exactly one other symbol, then they

are effectively identical to CAs since they have a fixed topol-

ogy. However, if a symbol can be replaced with more than

one other symbol (or indeed, can result in the removal of a

symbol), then we effectively have a CA with dynamic struc-

ture, where the number of cells can grow or shrink (although

the topology always remains linear).

A more direct approach to developing graphs is pursued in

the field of graph rewriting (Rozenberg, 1997). The replace-

ment rules in these systems directly replace subgraph struc-

tures with other subgraphs. An example is the GP2 graph

programming language (Plump, 2012). Another approach

is Wolfram’s hypergraph rewriting system (Wolfram, 2020).

One feature of such systems is that there is often not a unique

way of applying the rules at each timestep, and the rules can-

not be applied truly in parallel as one subgraph replacement

can invalidate other replacements. This is a key difference
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system connectivity update structure

Cellular Automaton lattice hom fixed
Random Boolean Network regular graph het fixed
Graph Cellular Automaton regular graph hom fixed
Context-sensitive L-System row hom dynamic
present system irregular graph hom dynamic

Table 1: Examples of spatially discrete dynamical systems

with different types of connectivity, update function (homo-

geneous, hom, and heterogeneous, het) and structure.

compared with CAs and L-Systems in which the rules are al-

ways applied in parallel. Graph rewriting systems generally

use rules that replace one subgraph with another, and so the

state changes take place at the level of the subgraph rather

than the individual node. This too contrasts with CAs, in

which the updating rules use only information local to each

node.

The DGCA Model

Requirements

The system presented here is based on irregular networks in

which nodes can have different degrees. RBNs use graphs in

which every node has the same degree (the parameter K in

Kauffman’s formalism (Kauffman, 1969)). This means that

the update functions in an RBN have a fixed arity, since they

all receive input from the same number of connected nodes,

just like the update function in a CA. One of the require-

ments of the present system is that it should have a single

update function that is used at all nodes, but that each node

must be able to have variable degree. Since we are dealing

with growing networks, a single node may change its de-

gree between timesteps: it may gain or lose connections to

other nodes. The differences between CAs, RBNs, GCAs,

context-sensitive L-systems and the system presented here

are summarised in Table 1.

With an irregular and changing graph, there is no obvi-

ous way to order the inputs. In a CA the regular grid pro-

vides a natural way to order the inputs: for example in a

two-dimensional CA using a von Neumann neighbourhood,

the inputs can be supplied to the update function in the order

[North, East, South, West, Centre]. Even

in an RBN, where there is not a grid topology to provide

a natural order to the inputs at each node, an arbitrary or-

der can be defined at initialisation. Since the topology re-

mains fixed, this ordering can be used throughout. However,

if one or more connections may be added or removed at each

timestep, any arbitrary ordering of inputs to the transition

function at each node would have to be constantly redefined.

This means that the update function used must be isotropic.

One solution to the problem of variable and unordered

inputs is to use the counts of nodes in each state as an in-

put to the transition function. CA update rules of this type

are called ‘totalistic’; those that separately take into account

the counts of neighbour cell states and the state of the cen-

tral cell are called ‘outer-totalistic’. The Game of Life CA

(Gardner, 1970) is in the class of outer-totalistic rules. It is

difficult to use totalistic rules on CAs structured as irregu-

lar graphs, however, since the counts of neighbour cells in

each state can be unbounded. Owens and Stepney (2010)

use outer-totalistic rules on Penrose tilings, which are irreg-

ular graphs, but these have an upper bound to the number of

cell neighbours.

Marr and Huett (2009) present a formalism for applying

outer-totalistic rules to irregular graph CAs by calculating

the proportion of neighbouring cells in each state: they di-

vide the counts of neighbours in each state by the degree

of the central node. Since they are concerned with 2-state

systems (Σ = {0, 1}), the output of their function is in the

set {0, 1,+,−} where the symbol + means that the state of

the central cell remains unchanged and − means that it flips

to the other state. The use of these last two symbols makes

their formalism outer-totalistic, since the output of the tran-

sition function depends not only on the counts of neighbour

states, but also the state of the central cell. However, it is

not possible to extend this to systems with more than two

states, since the flipping operation would be undefined. The

system described here presents an alternative solution which

can be used to represent outer-totalistic rules on irregular

graph CAs.

One of the aims of the present system is to use the gener-

ated graphs as RNNs or an RC substrate, so we use directed

graphs. During the development process, the edge directions

do not indicate the flow of information into node transition

functions, but rather are used to provide anisotropy in the

node neighbourhood: the incoming and outgoing edges de-

fine two “types” of neighbours (not to be confused with the

states of the neighbours). One feature of this design deci-

sion is that an ECA can be fully represented in the proposed

system, since the left and right neighbour of a cell/node can

be represented by an incoming and an outgoing edge. This

is discussed further in the next section.

Preprocessing Step

Consider a system of N nodes where each node can be in

one of S states.

To represent the state of a node, we use a vector of length

S with one-hot encoding. For example, in a 4-state system, a

node in the second state would be represented by the vector

[0, 1, 0, 0].
Stacking N state vectors, one per node, gives the state

matrix S ∈ {0, 1}N×S . This representation of the nodes’

states allows easy calculation of the number of neighbours

in each state that each node has: the matrix product of the

graph adjacency matrix A and state matrix S gives a matrix

C ∈ N
N×S of the counts of each node’s neighbours in each

state:

C = A · S (1)
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In the case of a directed graph (as used here), we can sep-

arately calculate the count of outgoing nodes in each state as

above, and incoming nodes in each state using the transpose

of the adjacency matrix:

Cout = A · S (2)

Cin = A
T · S (3)

The C matrices count only neighbour states and do not

give separate information about each node’s own state. If

each node has a self-loop (equivalent to having ones on the

diagonal of the adjacency matrix) this would ensure that the

node’s own state is counted, in the manner of a totalistic rule.

However, it would not distinguish between the node’s own

state and the counts of its neighbours, so could not be used

to represent outer-totalistic rules.

To allow this finer distinction, we borrow an idea from

Graph Neural Networks (GNNs) (Scarselli et al., 2009)

which are used for machine learning on data structured as

graphs. They perform a convolution operation to combine

the information at each node with that of its neighbours.

To do this they use the graph Laplacian matrix. The graph

Laplacian L is defined as the difference between a diago-

nalised degree matrix D and the adjacency matrix A:

Dij =

{

deg(vi), if i = j

0, otherwise
(4)

L = D−A (5)

We use the Laplacian instead of the adjacency matrix

when counting neighbouring node states by taking the ma-

trix product of L and S:

F = L · S (6)

This gives us a matrix F ∈ Z
N×S of the filtered values

of neighbouring nodes. Using the Laplacian essentially

weights each node’s own state by its degree, and weights

connected node states by minus 1.

We extend this approach to directed graphs by defining an

“out Laplacian” as the difference between the diagonalised

out-degree matrix Dout and the adjacency matrix, and an

“in Laplacian” as the difference between the diagonalised

in-degree matrix Din and the transpose of the adjacency ma-

trix:

Lout = Dout −A (7)

Lin = Din −A
T (8)

Taking the product of each of these with the matrix S, of

the node states, gives us the filtered values of outgoing and

incoming nodes Fout and Fin:

Fout = Lout · S (9)

Fin = Lin · S (10)

0:B

1:C

2:B

3:A

4:B

Figure 1: An example network. Nodes are numbered 0–4

and each is in the the state A, B or C (also indicated by the

node colour). The adjacency matrix, matrix of node states,

and graph Laplacians for this network are given in equations

11 and 13.

Together, Fout and Fin provide a considerable amount

of information about each node’s neighbourhood, and they

remain of a fixed size no matter how each node’s number of

connections varies. This makes them a suitable input for our

transition function.

Graph Example An example of this bi-directional Lapla-

cian filtering of neighbourhood information is shown for the

graph in Figure 1. The corresponding adjacency matrix A,

state matrix S, degree matrices, “out Laplacian”, “in Lapla-

cian” and filtered states are:

A =

[

0 1 1 0 1
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0

]

S =

[

0 1 0
0 0 1
0 1 0
1 0 0
0 1 0

]

(11)

Dout =

[

3 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]

Din =

[

1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1

]

(12)

Lout =

[ 3 −1 −1 0 −1
0 1 0 −1 0
0 0 0 0 0
−1 0 0 1 0
0 −1 0 0 1

]

Lin =

[ 1 0 0 −1 0
−1 2 0 0 −1
−1 0 1 0 0
0 −1 0 1 0
−1 0 0 0 1

]

(13)

Fout =

[ 0 1 −1
−1 0 1
0 0 0
1 −1 0
0 1 −1

]

Fin =

[

−1 1 0
0 −2 2
0 0 0
1 0 −1
0 0 0

]

(14)

Single-Layer Perceptron

We use a single-layer perceptron (SLP) to define our state

transition function. The input layer consists of a vector of

information about each node plus a bias term, and the output

layer consists of a vector of the same length as the number

of possible “actions” that may be taken by the node. The

index of the maximum value in the output vector indicates

the action to be taken. The actions consist of changing the

node’s state or duplicating or removing the node. The length

of the output vector is therefore S+2. When a node is dupli-

cated, its row and column in the graph’s adjacency matrix is

repeated, meaning the new node gets all the same incoming

and outgoing connections as its parent.

An SLP can be implemented using a matrix-vector multi-

plication in which the real-valued matrix (W) represents the

connection weights. Rather than doing this once per node,
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we do it simultaneously for all nodes by stacking the input

vectors for all nodes in the graph.

We define a matrix G as a horizontal concatenation of ma-

trices Fout and Fin together with a vector of ones for the

bias term. For ease of reading, the matrix sizes are shown as

subscripts.

G(N×(2S+1)) = [Fin(N×S),Fout(N×S),1(N×1)] (15)

Each row of this matrix serves as the input to the SLP for one

node: each row gives information about a node’s neighbour-

hood (as discussed above) together with a bias term which

is always 1. For the example graph in Figure 1, the matrix

G is:

G =

[

−1 1 0 0 1 −1 1
0 −2 2 −1 0 1 1
0 0 0 0 0 0 1
1 0 −1 1 −1 0 1
0 0 0 0 1 −1 1

]

(16)

To run the SLP for all nodes simultaneously we multiply

W by G:

O(N×(S+2)) = G(N×(2S+1)) ·W((2S+1)×(S+2)) (17)

This produces an output matrix O with size N × (S + 2).
The index of the maximum value in each row of this matrix

indicates the action which that node should take.

Continuing the example, consider the weight matrix:

W =







−0.2 −0.7 −0.3 0.1 −0.8
−0.1 −0.1 0.4 0.4 −0.3
0.3 −0.8 0.0 0.5 −1.
0.9 −0.4 −0.6 0.9 0.9
0.9 −0.6 1. −0.4 0.5
0.1 0.7 0.8 0.7 0.3
0.2 0.3 −0.6 0.1 0.7






(18)

Multiplying this by the G matrix in equation 16 gives the

output matrix (rounded to one decimal place):

O =

[ 1.1 −0.4 0.3 −0.7 1.4
0.2 0.0 0.0 0.1 −1.3
0.2 0.3 −0.6 0.1 0.7
−0.3 0.6 −2.5 1.0 1.3
1. −1.0 −0.4 −1.0 0.9

]

(19)

Taking the index of the maximum value in each row gives

[5, 1, 5, 5, 1]. This is the final output of the transition func-

tion and indicates what action each of the five nodes should

take. Values in the range 1–3 indicate that the node should

change to the corresponding state (A–C); the value 4 indi-

cates that the node should be removed; the value 5 indicates

that the node should be duplicated. Thus, in the example,

nodes 1 and 4 change to state A; nodes 0, 2 and 3 are du-

plicated. Here, when a node is duplicated, the original node

retains its original state, whilst the copy takes the state indi-

cated by the index of the next highest value in that row of O

(eg. node 0 would be duplicated; one copy would retain the

original state B, the other would take state A). The resulting

graph after one development step is shown in Figure 2. The

nodes labelled 5, 6 and 7 are duplicates of nodes 0, 2 and

3 respectively, and have the same in/out edges from/to other

nodes as their parents.

0:A

1:A

2:B

3:B

4:A

5:B

6:B

7:A

Figure 2: The graph in Figure 1 after one development step,

using the SLP weights matrix in Equation 18 as explained in

the text.

Comparison with Neural Cellular Automata

The procedure described above has much in common with

the way a neural cellular automaton (NCA) works (Wulff

and Hertz, 1992; Tavares et al., 2015; Mordvintsev et al.,

2020), with a few important differences. NCAs are fixed-

topology grid based CAs in which the update rule is replaced

by a multi-layer perceptron (MLP) neural network. Since

the topology and the neighbourhood of the CA are fixed, the

input to the MLP can simply be the raw vector of the neigh-

bourhood cell states. Alternatively, in Mordvintsev et al.

(2020), a series of two-dimensional convolution kernels are

applied to the cell neighbourhoods as a preprocessing step.

The MLP has a single output which can be used directly as

the next state of the cell (either a scalar value or a vector if

cell states are represented as a vector). This is in contrast to

the system described here, which cannot use a raw vector of

neighbourhood states for the reasons outlined above, and so

requires the preprocessing step using bi-directional Lapla-

cian filtering. The present system must not only choose a

new state for each node, but also whether or not the node

should be duplicated or removed, so the output of the SLP is

interpreted as a choice of action for the node to take, rather

than being directly used as a new node state.

GNCAs (Grattarola et al., 2021) are designed to choose

the next state for each node, and do not have the ability to

add or remove nodes. An experiment was conducted there,

in which each node’s state vector represented its spatial po-

sition, which in turn determined its connectivity, leading to

graphs with dynamic topology but a fixed number of nodes.

(G)NCAs use MLPs rather than SLPs to update cell states

as this allows a greater diversity of update rules to be repre-

sented. Many of the most interesting rules in conventional

CAs, such as the ECA rules 110 and 30 in Wolfram’s cata-

loguing scheme (Wolfram, 2002), are not linearly separable.

This means that they cannot be represented by a SLP. MLPs

with even a single hidden layer can be fitted to functions

which are not linearly separable. Since part of the purpose

of NCAs is to discover interesting rules which create high-

complexity patterns, it makes sense to use MLPs there.
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The main aim of the present work is to introduce the

model of DGCAs as simply as possible, hence the use of

SLPs. However, future work will experiment with the use of

MLPs to power the update behaviour at each timestep.

Experiment

The long term aim is to use DCGAs to grow graphs with

suitable properties for different applications. The system is

well suited to exploration using an evolutionary algorithm,

since the update rule is entirely specified by the real-valued

weight matrix of the SLP, W.

Before embarking on full-blown search, however, it is

useful to perform an initial investigation to explore and char-

acterise some of the different behaviours that are possible in

this system. For this initial investigation, we use random

search over W.

Detecting Attractors

Conventional CAs with a finite number of cells have a finite

state space and therefore ultimately always reach an attrac-

tor, since their update rules are deterministic.

In the case of a growing graph, the state space can get

bigger at each timestep, meaning that it is not inevitable that

the system reaches an attractor: the state space can grow

faster than it can be explored. Subjectively speaking, run-

away growth of the system is not particularly interesting be-

haviour. For example, a doubling of the number of nodes

at each timestep is a low complexity behaviour. The type

of behaviour we are interested in exploring is growth that

comes to a halt. Such behaviour could be an analogue of the

self-regulating growth seen in living organisms: growing to

a mature state.

It is not possible to say for sure whether growth will stop

for a given ruleset. However, it is possible to be sure that

growth has stopped in a particular case. This occurs if the

system reaches an attractor. Even if the number of nodes re-

mains constant for several timesteps, if the system has not

reached an attractor, growth may resume again at any point.

The system may only partially explore the state space for a

given number of nodes before moving into a different state

space with a different number of nodes. However, once an

attractor has been reached the system will remain in that at-

tractor forever (since it is a closed, deterministic system).

To test whether the present system has reached an attrac-

tor, we check whether the graph is isomorphic to a previous

graph given the node states. This is a non-trivial task. Un-

like a conventional CA, we cannot simply look at the vector

of node states, but must also check that those states exist at

isomorphically equivalent nodes.

Five classes of growth behaviour

We identify five classes of behaviour the system can display

in terms of its growth. These are based simply on the total

number of nodes in the graph.

• Runaway Growth occurs when the number of nodes in

the graph increases rapidly and shows no sign of stopping.

This can be exponential if all nodes are duplicated at each

timestep, or at a sub-exponential rate if a subset of nodes

is duplicated. Here we use an arbitrary cut-off of network

size to categorise runaway growth.

• Death occurs when the number of nodes in the network

shrinks to zero. This can occur if nodes are removed at

every timestep. Once there are zero nodes in the network

it is impossible for new nodes to be produced, since there

are no nodes to duplicate.

• Static Networks do not grow at all and remain fixed at

the size of the seed network. This does not preclude the

network structure changing: one node could be added and

one removed at each timestep, for example, meaning the

network would retain the same size but might change con-

nectivity. To be included in this class, the graph must

reach an attractor in which the number of nodes remains

static: this confirms it will not subsequently change size.

• Halting Growth is the class of behaviour we are most

interested in. The graph changes size from its original

seed (it can get bigger or smaller) but eventually reaches

an attractor, meaning growth has finished. In the case of a

point attractor, the graph remains at a fixed size. A cyclic

attractor can cycle between node state configurations in a

fixed size network, or can cycle between states in different

sized networks. Although the size of the graph in the latter

case is not static, we still include it in the halting growth

class of behaviour as the network size fluctuates regularly

and runaway growth or death is now impossible.

• Slow Growth is how we categorise graphs for which we

have not been able to determine another class of behaviour

after some arbitrary number of timesteps. The graph has

not grown beyond the threshold which would put it in the

runaway growth category, nor has it reached an attractor.

Three of these classes represent the system reaching an at-

tractor. Reaching a zero node state (“death”) can be thought

of as a point attractor. “Halting growth” is defined as reach-

ing an attractor which has more than zero nodes. The

“static” case is a special case of halting behaviour: the sys-

tem ends up in an attractor with a fixed number of nodes

which is the same as the original number of nodes in the

seed network, and during the transient phase (before it has

reached the attractor) the number of nodes also remains

fixed. However, we treat it separately since such static be-

haviour is the only behaviour possible with a conventional

finite-space CA. When the system displays this type of be-

haviour it is not doing anything more than a conventional

CA can do.
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Figure 3: Chart showing the number of occurrences of each

of the five classes of behaviour for 1000 trials with each

number of states in the system. As the number of states

in the system increases, runaway growth behaviour is seen

less, and halting growth behaviour is seen more.

Results

We run an experiment to ascertain how frequently each of

the five classes of behaviour outlined above are observed in

systems with 2–8 states. For each number of states we create

1000 seed graphs with randomly initialised weight matrices

in their SLPs (which effectively define the update rules for

the system). Each seed graph has the same structure: a ring

of 8 nodes with edges connecting them in one direction. The

states of nodes in the seed graph are randomly initialised.

We run each of these seed graphs for a maximum of 256

timesteps. Runaway growth is defined as the graph growing

to greater than 256 nodes within this time. In most cases,

within the 256 timesteps, the system will either exceed this

threshold or will enter an attractor corresponding to one of

three classes of behaviour: death, static or halting growth. In

rare cases (fewer than 5 out of 1000 trials), the system shows

neither runaway growth nor reaches an attractor within the

256 timesteps, in which case we class the behaviour as “slow

growth”. The results are shown in Figure 3.

For a 2-state system, the runaway behaviour is the most

common and is observed in 392 out of the 1000 trials. The

halting growth behaviour is the next most common with 282

occurrences. This alone is a surprising result, given that the

state space is unbounded (at each timestep the system can

move to an entirely different state space). In spite of this, the

system still manages to find attractors where growth halts.

As the number of states in the system is increased, the run-

away growth becomes less common and the halting growth

becomes prevalent. By the time we get to a 5-state system,

over half of the trials result in halting growth.

It is not immediately obvious why a system with more

states would be more likely to find an attractor within the

256 timesteps used in the experiment. Indeed, for a given

network size, the state space is larger if there are more pos-

sible states that each node can be in. For example, in a 100

node graph with two states the number of possible over-

all states of the system is 2100 ≈ 1030, whereas in a 100

node graph with five states, the number of possibilities is

5100 ≈ 1070. One might therefore expect the system to

take longer to reach an attractor when the number of pos-

sible nodes states is higher, since the state space for a given

network size is order of magnitudes larger.

On the other hand, due to the way the transition rule SLPs

are used, the node duplication and removal operations are

less likely to occur when there are more states in the system.

These actions are only two of the possibilities that the SLP

may choose, while the other actions are changing to one of

S states. All else being equal, there is a higher chance of a

randomly initialised SLP choosing a simple “change state”

operation when there are more states to choose from. This

means that we might expect the systems containing more

states to change size more rarely than those with more states.

Space-Time Diagrams

A common way of visualising the behaviour of ECAs is to

plot space-time diagrams that represent the state of all cells

in the system at each timestep by a row of coloured squares.

These are stacked on top of each other to show how the sys-

tem evolves over time. This method is not directly applica-

ble to the present system as the nodes are not ordered, and

because the number of nodes can grow and shrink over time.

However, by using a fixed arbitrary ordering of the nodes,

and varying row sizes, this type of diagram can be adapted

for use with the present system, as shown in Figure 4. Newly

created nodes are added at the end of the line, and when a

node is removed, the rest of the line is shifted left.

The diagram of development of a 6-state system in Fig-

ure 4 shows the complexity of the behaviour which is possi-

ble with this type of system. The graph grows rapidly from

its initial eight nodes, displaying a wide variety of states.

Its size then fluctuates until it reaches its final size of 16

nodes (all of which are in the same state). After this no more

changes take place: it has reached a point attractor.

A different kind of behaviour is shown in Figure 5. The

graph size remains fairly small throughout. After a transient

of 45 steps, a 7-step attractor cycle is found.

Conclusion

We have introduced an extension of the concept of Graph

Cellular Automata which allows the structure of the graph

to develop over time. The system displays not only the dy-

namics of nodes changing state, but also the meta-dynamics
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Figure 4: An example space-time diagram for a 6-state sys-

tem in which growth halts. Timesteps proceed down the y-

axis. At each timestep, the state of every node is concate-

nated into a vector, shown as a line containing six different

possible colours. This line gets longer as the graph grows.

It can be seen that the graph grows and shrinks over time

before reaching a stable state. The final (bottom) two lines

are the same, indicating that the system has reached a point

attractor.

Figure 5: This system has a transient length of 45 steps fol-

lowed by a 7-step attractor cycle (the line at timestep 52 is

the same as that at timestep 46).

of the structure of the graph itself changing. The experi-

ment uses random search to examine the behaviour of dif-

ferent rule sets (as represented by SLP weights). Five differ-

ent classes of behaviour are defined, three of which involve

the system reaching an attractor state. One of these (halting

growth) appears to be the most “interesting” as it involves

the seed graph altering its structure for a finite number of

timesteps before coming to rest in an attractor. This class of

behaviour invites comparisons with organic morphogenesis

in which structures develop from a seed state but in which

growth “naturally” comes to a halt. The experiment shows

that, despite the state space for these growing graphs be-

ing unbounded, coming to rest in an attractor is quite com-

mon, and furthermore the “interesting” behaviour of halting

growth is the most common attractor type. Systems with

more possible node states reach this type of attractor more

often; this may be a consequence of the way the system is

set up, with structural alterations having a lower probability

in systems with more states.

Future Work

A key future aim is to use evolutionary search on the weights

of the SLP that defines the update rule to find interesting be-

haviours. What constitutes an interesting behaviour is an

open question, but an initial aim is to use novelty search to

see what the system is capable of. Subsequent work will ex-

amine whether it is possible to evolve rules which generate

graphs with particular properties.

Replacing the SLP with a MLP would enable a wider set

of update rules to be used by the system, at the expense of

having more parameters to evolve.

The graphs which are developed could also be used as re-

current neural networks (RNN) themselves once they have

stopped developing. One goal for the evolutionary process

could therefore be to create graphs that perform well on a

particular task. The Reservoir Computing paradigm could

be useful in this, as it allows a fixed weight RNN to be used

for tasks by training a simple readout layer. An extension

of this goal might be to push the system into different at-

tractors during the growth process by perturbing some of

the states. Each different attractor might result in a network

which is suited to a different task. Thus a single ruleset (ie.

SLP weights) and seed network could be thought of as anal-

ogous to a stem cell which could be differentiated to become

suitable for a wide range of tasks during its growth process.

Source Code

Source code for the DGCA system and the experiment de-

scribed here here can be found at https://github.

com/rvrsdl/alife2023_dgca.
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